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Abstract
We present a class of exactly solvable nonlinear evolution equations

that arise in the context of the stability of the ocean’s thermohaline
circulation. Using Lyapunov techniques we obtain the solution of this
type of equations by isolating their invariant subsets in phase space.
It is shown that some solutions have finite escape time. In extension,
the method is applicable to the analysis of partial differential equa-
tions of similar structure.
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1 Introduction

The representation of elementary aspects of the oceanic large—scale circula-

tion in terms of box models has attracted some studies of climate sensitivity

(among others: Stommel, 1961; Marotzke, 1994; Ruddick and Zhang, 1996).

Following Stommel (1961), these studies consider primarily the possibilities

of multiple equilibria of the large-scale thermohaline circulation. This topic

was boosted by Bryan’s (1986) study, finding that complex numerical ocean

circulation models exhibit multiple equilibria under the same atmospheric

forcing conditions. To understand the interactions of the thermohaline cir-

culation with other climate components, energy balance models proposed

by Budyko (1969) and Sellers (1969) have been rediscovered. These models
parameterize the meridional heat transport in terms of diffusion (North, 1975

a b), more recent energy balance models include furthermore a hydrological

cycle (Jentsch, 1991; Chen et al., 1995; Chu and Ledley, 1995).

As the simplest possible conceptual model for the thermohaline circula-

tion, moist atmospheric energy balance models have been coupled to Stom-

mel’s (1961) ocean model (Nakamura et al., 1994; Marotzke and Stone, 1995;
Lohmann et al., 1996). Here, we will present the analytical solution of this

class of simplified models which are based on Stommel’s (1961) box model.
In the following, the derivation of the analytical solution for this class of

simplified models will be discussed. An extensive analysis of the physical

implications of this solution for climate relevant aspects of the oceanic ther-

mohaline circulation is given elsewhere (Lohmann and Schneider, 1997).



The ordinary differential equation is transformed into a linear differential

equation which can be solved analytically. For this transformation, we ana—

lyze the invariant subsets of the evolution equation. The method of obtaining

invariant subsets is quite a general one: A polynomial ansatz for a Lyapunov

function is used which is similar to the well known method of Zubov (1964).

2 Solving evolution equations of Jacobi—type

Let U, V be linear spaces, H a Hilbert space and X and Y some sets. We

use the symbols:

L (U,V) The set of linear continuous mappings from U to V.

(-, -) The scalar product of the Hilbert space H.

(X —) Y) The set af all mappings from X to Y.

Let n e N, a; e (R3r —> R"), a e R" and A e L(R",R"). The climate
models under consideration (among others: Stommel, 1961; Marotzke and

Stone, 1995; Lohmann et al., 1996; Ruddick and Zhang, 1996; Lohmann and

Schneider, 1997) are of the following structure:

dam = Am + (a, z) w, :c (0) = m0 6 R" (1)

where (-‚ > : R" x R" —) R is the canonical scalar product in R". Elimina-
tion of the time t in this equation yields a Jacobian differential equation as

discussed by Stephanow (1982, Chapter I, § 5).



In Prop. 2.1, we obtain invariant sets in the phase space of ordinary

differential equations using Lyapunov techniques:

Proposition 2.1 Suppose that for every solution t t—) y (t) of a difierential

equation in R"

d
d—ty = f(tay)a 1/030) = yo, 73,750 G R, y(t) G R" (2)

and some Lyapunov function F G (R" ——> R), one has

finger» = Feet» - «mu», t> o, <3)
where t I—) F (y (t)) is absolutely continuous and t I—-) '(‚b (y (t)) is locally
integrable.

Then the sets

.7-‘0 := {weR“ | F(:c) =0}
13> := {we R” | F(a:) >0}

.7-‘< := {we R“ |F(:1:) <0}

are invariant sets of the difierential equation (2).
Proof:

For t,t0 e R (3) yields

film/(m - exp (—/t:¢(y(7)) dt)] = o ‚
thus

F(y(t)) = Fem» . exp (Arie/(n) an)
and the operator F e (Rn —> R) conserves the sign of y(t) E R"

E]



For our differential equation (1), we try the simplest possible form for F , a

function that is the sum of a nonzero constant and a linear part. Because of

notational reasons, a proper choice for F E (R" ——> R) is:

F (m) = (aus) — 1 , with w E R". (4)

It follows that

d_tF (w) = (w, Ax) + (w, w) (a, w)
= (A*w‚ m) + (a, m) + F (5”) (a, w)
= (A*w + a, m) + F (03) (a, 5”) i

where A* is the (Hilbert space) adjoint of A. Therefore, we obtain us-

ing Prop. 2.1:

Proposition 2.2 Let w e R" be defined as some solution of the equation

A*w + a ; 0. Using the function F of (4) the sets (see Prop. 2.1) To, .77)

and .75'< are invariant subsets of the diflerential equation (1). It is

ditF (w) = (a, w) F (m)
This means especially, that for m0 G .7") or m0 E .’F< one may apply the

transformation

a: a:
p 1: um) = (m) — 1 (5)

to the differential equation (1), which maps the invariant subspace .7-"0 to

infinity. Inversion of that transformation yields

P P:1:=—=mp) <w,p'> — 1 ' (6)



Using (1) and Prop. 2.2, we get

p = Fm) Fz)F(m)
(Prag 2.2) :f: (l:

(i) AL = Ap

Thus, p satisfies the linear differential equation

ditp = Ap‚ 10(0) = Po (g) —<w‚ 9:3 _ 1 (7)
with solution

pa) = exp (At)po, te R. (8)
Equations (6) and (7) yield therefore the solution of our original differential
equation (1):

_ exp (At) 230
a: (t) _ (w,exp (At) 33g) _. (w,:co) + 1’ ATw + a é 0. (9)

The considerations leading to (9) show that this solution is valid only for

mo 6 .7-"< U .7-">. However, (9) is also defined for :00 E .7-"0. Substitution of

m () from (9) into (1) and using A*w + a = 0 shows, that this function solves
the differential equation also in the remaining case a: E .70.

Some solutions of the differential equation (1) exist according to (9) only
for a finite time, because these solutions escape to infinity in a finite amount

of time. We denote the denominator in (9) as

7 (t; x0) :2 (w,exp (At) :80) — (w, :30) +1 . (10)

It is 7 (0) = 1 initially. For the initial states wo G R", we define the boundary

times



t_ (m0) := inf{'r E (—oo,0] I 7(t;m0) > 0 for all t G (7', 0]}
(11)

t+ (m0) := sup{'r G [0,+oo) | 7(t;m0) > 0 for all t G {0,7)} ‚

such that (1) exists in the time interval (t- (m0) , t+ (9:0)) . Summing up, we

obtain the following result:

Theorem 2.1 Let there exist a solution w to the equation A*w + a = 0.

Then the solution of the difierential equation (1) is

a: (t) = exp (At) m0 ,
(w, eXp (At) :30) — <0"): (1:0) + 1

m0 E R", t E (t_ (wo), t+ ((1:0)) .

From (10), (11) and Th. 2.1 we obtain the following stability condition:

Proposition 2.3 The solution R3“ 3 t |——) m (t) E R" starting at m0 E R“
does not escape to infinity in finite time 4:}

7(t;a:0) >0 for alltERa'

Bounded solutions of this type are of interest for the application of (1) to

climate sensitivity studies. Problems of wave-breaking or the onset of tur-

bulence, on the other hand, are particularly concerned with the escape-time

determined by solutions of (1) with 7 (t; m0) S 0.

Naturally, there arises the question weather we have simply solved a par-

ticular type of equation or we have found a method of solving more general

classes of equations. The next theorem gives us an answer:



Theorem 2.2 Consider the difi‘erential equation in R"

däm=Am+f(m), :c(0)=a:OER",

f(93)=0(||m||)‚ 93—“) ‚

where H“ denotes a norm in R". There exists a transformation p = o (m) a:

with 0 E (R" —> R) transforming the nonlinear differential equation into

the linearized equation p = Ap <=>

f is of the form f(m) = p(:z:):z: with p E (R” —) R)

Proof:

Let p := a (m) :1: such that p = Ap. Using the differential equation for m,

one obtains with the abbreviation q (m) := ln (o (m)) the relation

f0”) + (V(I(96),Avc+1°06»?c = 0 ‚
and thus f (m) = p (m) m with p(:1:) = (Vq (a3) , A0: + f (517)) .

On the other hand, let f (m) = p(a:) a: and consider the linear partial

differential equation for R” 3 m 0—) q (m) E R

Mm) + (VW?) ‚ (A + p(w))w> = 0-

It possesses a solution q with characteristics leading to the original dif-

ferential equation from which we obtain the transformation p = eq(‘”)m.

Inserting gives

p=eqib+4p=eqi2—pp=Ap



Therefore, our transformation may be applicable for the solution of a specific

class of equations where the nonlinearity is directed towards the variable m E

R". However, the first step of our approach, the determination of invariant

subsets using the Lyapunov—Zubov method, is valid in a more general context.

Without solving the equations, the method yields important information

about the phase space structure to find appropriate coordinates to be used

as a starting point for perturbation methods and numerical work.

Furthermore, the above algorithm is readily generalized to infinite di-

mensional systems. Then, we define our differential equation as an evolu-

tion equation in a convenient functional analytic setting (Showalter, 1979;

Temam, 1988). As an example consider the integro differential equation

68—1?=GA¢+¢./Ra(m)¢(m)d7'(m), weH, aEC,

where A denotes the Laplacian. The integral with kernel (1 (1:) and measure

7' (in) defines a linear operator on the Hilbert space H. Using a Hilbert space

formulation and the above described method, this equation can be trans-

formed into a solvable equation. It is conceivable that such integro differen-

tial equations can be used for nonlinear phenomena with a self-interaction or

for modeling processes having a finite time interval. Such types of evolution

equations provide a good starting point for further investigations.



3 Concluding Remarks

We were able to solve a class of nonlinear evolution equations in R" by

reducing it to a linear differential equation. The key step was to find a cor—

responding transformation. This was accomplished by using Lyapunov tech-

niques, determing purely algorithmically the invariant subsets in phase space.

Application of this procedure to a simple climate model provides a concep-

tual framework for the study of the thermohaline circulation (Lohmann and

Schneider, 1997). Moreover, our method presented here is valuable for a large

class of nonlinear evolution equations.
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