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Abstract

We present a Fourier-decomposition-based approach aided by a Neural Net-
work for the classification of the eigenfunctions of an operator appearing in
ideal magnetohydrodynamics. The Neural Network is trained on individual
Fourier modes, which enhances the robustness of the classification. In our
tests, the algorithm correctly classified 93.5% of the data and returned the
remaining 6.5% for manual classification. The probability of misidentifying
the eigenfunctions is estimated as 0.03%. The discussion is kept quite general
allowing for potential applications in other fields.
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1. Introduction

Magnetohydrodynamics (MHD) serves as the working horse in explaining
equilibrium states of plasmas in magnetic fields and their stability in a wide
range of plasma parameters.

For the development and design of fusion devices, the stability of the
configurations of interest plays an important role. In the seminal work by
Bernstein et al. [1] it was shown that information on stability can be obtained
by minimizing the energy of these systems. For small perturbations, this
leads to the so-called energy principle of ideal MHD.

Normal modes for small-field perturbations can be associated with a gen-
eralized eigenvalue problem [2]. There is a large number of numerical ap-
proaches to solve this problem using a variety of methods for the numerical

Email address: mkuc@ipp.mpg.de (M. D. Kuczynski)

Preprint submitted to Computer Physics Communications February 15, 2022



0.5 ! I i I i I i I i
0.4F -
L 2 .
0.3F 1':' .
w | S ]
3 4
0.2 ]
8 Lol .
3
0.1 o
1 2
i 5 > |
0 1 | 1 | 1 | 1 | 1
0 0.2 0.4 0.6 0.8 1
S

Figure 1: Example MHD spectrum. FEach point corresponds to one eigenvalue. The
frequency shown is that of the eigenvalue and the radial position is the maximum of the
associated eigenfunction. Example eigenfunctions (enumerated boxes and diamonds) are
shown in Fig. 2.

discretisation of the perturbations in space [3, 4, 5|. In case of ideal MHD,
which treats the plasma as a perfectly conducting fluid and does not in-
clude resistivity nor viscosity, the eigenvalue problem is self-adjoint with real
eigenvalues w?. Negative eigenvalues correspond to instabilities, while pos-
itive ones describe stable plasma oscillations. The solution of this problem
allows one to calculate the spectrum of sound and Alfvén waves [2, 6].

The spectrum (Fig. 1) consists of discrete (continuously differentiable)
and continuum (singular) modes. The latter ones are localized near flux
surfaces (labeled by s) and form branches w(s), which are named according
to their physical properties. Examples of continuum and discrete modes are
shown in Fig. 2.

In magnetic fields which are homogeneous, the branches are usually con-
tinuous and can intersect. In contrast, in shaped plasmas, due to the interac-
tion mediated by the inhomogeneities of the magnetic field, the crossings re-
solve into gaps similarly to the electron band structure in solid states physics.
In these gaps global (square-integrable) modes may exist, as is visible in Fig.
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Figure 2: Example eigenfunctions selected from the spectrum shown in Fig. 1. Differ-
ent colours correspond to different Fourier modes. The horizontal axis denotes the flux
surface label. The only two gap modes in the spectrum are visible in panels 100 and 2[].
Some continuum modes are shown in panels 10-4<¢. There exist examples of other modes
which do not strictly belong to the mentioned two classes. However, the algorithm can
incorporate an arbitrary number of classes.



In practice, especially the unstable modes are of interest as they may harm
plasma performance, but also the stable global modes are often analysed in
order to explain plasma oscillations observed in experiments and to study
their excitation by resonant interaction with fast particles. The latter process
again may impact machine performance.

While for axisymmetric tokamaks the arising eigenvalue problems are of
moderate size even if high resolution is required, for stellarators, their lack
of a continuous symmetry and the increased configuration complexity lead
to much larger matrices. Consequently, the number of eigenvalues forming
the MHD spectrum is also much larger. When scanning through numerically
calculated eigenvalues for a certain case, converged and unconverged eigen-
values have to be distinguished. Furthermore, a distinction between modes
belonging to the continuum and global modes is desirable. Usually the num-
ber of eigenmodes delivered by an eigenvalue code is very large, and manually
classifying the modes is a rather tedious task. Modes belonging to the MHD
continuum are usually heavily damped [7, 8] and are not observed in exper-
iments while global modes may resonantly interact with e.g. a fast particle
population and thus become unstable [9, 10]. A distinction by the damping
rate is not practical because its calculation is a task requiring considerable
effort [7, 11, 12].

In this work we apply a supervised Neural Network (NN) based on the
architecture of [13] to classify the MHD eigenmodes. We demonstrate that a
simple implementation of a NN leads to satisfying results which can, without
a doubt, be further improved. We note that the creation of the perfect ma-
chine learning model with the highest possible performance for this problem
is not the focus of this article.

2. Theoretical Formulation

The desired result of an eigenfunction Classification Algorithm (ECA)
is to associate a label [ € L to an input eigenfunction f(s, ¢,6) signifying
whether the mode is singular, [ = 1, or not!, [ = 0. Since the potentially
singular behaviour of an eigenfunction is best seen by looking at its Fourier
components, it is first decomposed into Fourier modes through a two dimen-
sional Fourier transform (FT) over the toroidal ¢ and poloidal 6 directions.

IMore labels can be introduced if it is desired.



Consequently the Fourier modes ¢, ,,(s) are functions of only the radial vari-
able s:

F(5,6,0) =D @nm(s)e’otm?, (1)

n,m

We assume that each Fourier mode ¢, ,,(s) can itself be classified with a
label [,,,, € L. The algorithm then proceeds in two steps: First, a total
of N, Fourier modes with largest absolute value are selected, giving a set
of indices §. Next, the NN assigns a label [,,,, to each Fourier mode with
(m,n) € §. Formally this can be written:

£(5,6,0) % @pm(s), 2)

V(n,m) €S; ©nm(s) pi Lnm.- (3)

In general the Fourier modes are complex valued, so we assume that it is
sufficient to only consider their real part?. As a consequence, we reformulate
step two into finding the mapping:

R{Gnm ()} ™ Lo (4)

(from now on we shall treat the Fourier modes as real valued functions, i.e. we
will write ¢, (s) = R{pnm(s)}). The architecture and key hyperparameters
of this NN are discussed in the following sections.

Not all the Fourier modes ¢, ,, of an eigenfunction need to have the same
label ,, ,,. Even if the eigenfunction is singular, only some of its Fourier com-
ponents may be singular while others may be regular. Additionally there is
the possibility that the NN may simply classify a Fourier component wrongly.
Therefore, the last step of the algorithm is to apply a filter® F which infers
the true label [ of the eigenfunction from the set {l,,,}:

{ln,m}(n,m)es 'E) . (5>

The proposed eigenfunction classification algorithm is summarised in Fig. 3.
The main advantage of this approach is its robustness. The overall perfor-
mance of the ECA is expected to be greater than the performance of the NN.

2The NN can easily be extended to cope with complex values. Here, however, we
consider only the real part for simplicity.
3As an example, this can be just the most frequent member of {l,, ,,}.
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This is because even if the NN mislabels some Fourier modes, an appropriate
choice of F will overcome this problem and the final label of ECA will be the
correct one.
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Figure 3: Schematic breakdown of the ECA. FT represents a 2D Fourier decomposition
of the eigenfunction f. NN is the Neural Network that assigns a label I, , to each of
the Fourier modes ¢, . F stands for the filter that infers the eigenfunction label [ from
various lp, »,.

3. NN Architecture

This section focuses on the technical details of the NN. The code was
implemented in Python with the use of the Keras library [14]. The architec-
ture is heavily inspired by [13] and is a variant of what the authors refer to
as Fully Convolutional Networks (FCN).

3.1. Forward Propagation

The FCN contains a total of 3 hidden layers. Each of them consists of
a convolutional layer followed by a Batch Normalization layer (BN) and a
Rectified Linear Unit (ReLU) activation layer. Formally, the output h of
such a hidden layer given input x is written as:

y=W®&x+b
s = BN(y)
h = ReLU(s). (6)

Here, ® is the 1D convolution operator with kernel sizes {kj, k2, k3} cor-
respondingly to each hidden layer. The convolution is performed without
striding. W is the matrix of weights and b is the bias term. The number of
filters in each hidden layer is { f1, f2, f3} accordingly. After the convolutional
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layers, the features are fed into a global average pooling layer and finally the
labels [,, , are extracted via a softmax layer. Figure 4 summarises the FCN
architecture described above (the reader can refer to [15] for details on NN
terminology).
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Figure 4: The architecture of the FCN.

3.2. Backward Propagation

The model is trained with an Adam optimizer with a learning rate 0.001,
B = 0.9, B = 0.999 and € = 1e-8. The loss function is the categorical cross
entropy. The training is stopped when the validation accuracy decreases for
two subsequent epochs.

4. Data Preparation

In this section we discuss how the data were prepared for training. We
also show an approach for generating artificial data resembling the gap type
Fourier modes. Finally, we discuss a criterion that was used to measure the
performance and to tune the hyperparameters of the FCN.

4.1. Desired Qutput and Input

In our application, we focus on the binary classification L. = {0, 1}, how-
ever, the algorithm presented supports an arbitrary number of classes. Here,
the label [ = 0 corresponds to a gap mode and the label [ = 1 to other modes.
The latter class contains mainly continuum modes, modes with mixed gap
and continuum characteristics, and also modes dominated by numerical noise.
Examples of eigenfunctions decomposed into Fourier modes from each class



are shown in Fig. 5. To avoid confusion we refer to labels [ of the eigenfunc-
tion as gap- or non-gap modes, but the labels I, ,, of ¢, ,, are said to be of
gap- or non-gap type.

The input of the FCN needs to have a fixed size. Each of the Fourier
modes was interpolated using 3rd order splines to contain n, = 512 ra-
dial points (note that r now labels the radial point, r € [1,n,]). Changing
the number of radial points in a sample can lead to problems, for exam-
ple, smoothing out discontinuities or missing high frequency components.
However, it was found that a 3rd order spline with n, = 512 or more radial
points is optimal. Lowering the interpolation order gave slightly less accurate
results.

Since the calculated Fourier modes are prone to numerical errors, we
chose to only use a few N, ,, Fourier modes for training. The discussion
below considers the case N,,,, = 3, which we compare later with the choice
of Ny, = 4. For smaller harmonics the numerical noise often blurs the crucial
characteristics of the Fourier modes to the point that it is not reasonable to
include them in the classification.

Lastly, for the benefit of the convergence of the training, the Fourier
modes were rescaled by:

Qon,m<r)
1% {[onm () @)

relln,]

P (7)

The above input preprocessing steps are summarised in Fig. 5, where we
show the spectral decomposition of an example eigenfunction and the corre-
sponding normalised input.

4.2. Generation of Training Data

For training, a total of 12455 pre-classified Fourier modes therein Gy =
67 gap type and Ny = 12388 non-gap type were manually classified. The
training data were taken from two different sources: results from the CAS3D
[16] and the CKA [17] code. Each of the codes was run in cylinder (minor
radius 1m, length 207m), tokamak (circular cross-section, minor radius 1m,
aspect ratio 4) and stellarator (W7-AS [18] and W7-X [19]) geometry in
order to provide plenty of mode structure. Clearly, the class of gap modes
was underrepresented which is due to the fact that they occur much more
rarely in real data. To overcome this difficulty we relied on artificial data
generation. Based on the observation that, in contrast to all the Fourier
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Figure 5: Example eigenfunctions decomposed into Fourier modes. Top: a continuum
mode before (left) and after (right) preprocessing. Bottom: the same for a gap mode.
During preprocessing the N, ,,, = 3 harmonics largest in absolute value were selected,
interpolated to contain 512 radial points and rescaled.



modes in class [, ,, = 1, the gap type Fourier modes are smooth functions,
we created new gap type functions by applying the following techniques:

1. Inclusion of elementary smooth functions.

We considered:

O,.(r) = sin (wkni) , (8)

r

U, (r) = e 2 sin (wki) : (9)

oy

for an integer k < 5. After normalisation, {®,(r)} and {W(r)} were
added to the database. Adding S smooth functions results in an in-
crease in the number of gap modes: G — G + S.

2. Sum of two Fourier modes.

Since the sum of two gap modes resembles a gap mode, the normalised
sums (1), where ®(r) = @pm () + Grrw (), m > m’ and n > n’ were
added to the database. The corresponding increase in the number of
gap type Fourier modes is G — (G?+@G)/2. This step can be reiterated
to further increase GG, but this poses a risk of creating complex, non-

smooth shapes with each iteration. We decided to do this step twice.

3. Reflection symmetry.

Since reflections preserve the smooth character of functions, we in-
cluded ®(r) = —@pm(r) and O(r) = @y m(n, —r+ 1). This results in
in G — 2@ for each case.

As a result, the training data contained G = 52012 and N = 27388 Fourier
modes. N was augmented using only the method 2 mentioned above. The
final database is dominated by gap type Fourier modes what will affect the
training in a favourable way. The FCN will favour the precision of class
ln,m = 0 detection since it appears more often in the training data. This
is a desirable property, which can also be achieved, for example, by using
non-constant weights in the calculation of the loss function.
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5. FCN Hyperparameters

In this simple binary classification the FCN’s performance can be evalu-
ated with two parameters: g and n. We define g to be the gap type Fourier
modes detection coefficient, i.e. the ratio of the class zero Fourier modes de-
tected by the FCN to the total number of class zero Fourier modes in the
data. n is defined accordingly for non-gap type Fourier modes. Since the pre-
sented algorithm aims at filtering out the gap modes, the FCN architecture
and the hyperparameters? were chosen in an attempt to maximise § while
ensuring that n was reasonably high.

To test the generalizability of the FCN and tweak its hyperparameters,
the following procedure was proposed:

1. A test subset, 7, was excluded from the training set. The FCN was then
trained on the remaining subsets further splitting them into training
sample and test sample.

2. The predicted labels were compared with those from the pre-classification
and counted for all Fourier modes in the test subset. That is, CEO’O)

(cgl’l)) was the total number of gap (non-gap) type Fourier modes cor-

rectly classified and 61(0,1) (cl(-l’o)) was the total number of gap (non-gap)

type Fourier modes falsely classified. This information results in a con-

fusion matrix C;. An example is shown in Fig. 6.

3. A new test subset was chosen and the procedure was repeated.

k5
s 0 23 57
S
2 3 1551
o
0 1
True

Figure 6: An example result of the generalization test. White: the count of correctly
classified Fourier modes. Grey: the misclassified Fourier modes.

Once the loop ran through all the subsets in the database, the following
two ratios were defined to measure performance:

4For example, the filter and kernel sizes, activation function type, etc.
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Tests for three dominant Fourier modes

type || g n Ji | fo | f3 | k1| k2| ks
1* 0.65 | 0.95 || 128 | 256 | 128 | 8 5 3
2 0.86 | 0.93 64 | 128 | 64 8 5 3
3 0.61 | 0.96 || 128 | 64 | 128 | 8 5 3
4 0.82 1 0.95 | 128 | 256 | 128 | 16 | 8 4
5 080|096 | 64 | 128 | 64 |16 | 8 | 4
6 0.74 10951 128 | 64 | 128 | 16 | 8 4
7 0.67 | 0.94 64 32 16 | 32 |16 | 8
8 0.86 | 0.96 || 128 | 64 32 1321116 | 8

Tests for four dominant Fourier modes!

type || g n Si | fo | fs | k1| k2| ks
1* 0.75 | 095 || 128 | 256 | 128 | 8 | 5 | 3
2 0.85 | 0.89 64 | 128 | 64 8 ) 3
3 0.82 094 || 128 | 64 | 128 | 8 5! 3
4 0.81 | 0.93 || 128 | 256 | 128 | 16 | 8 4
5 090 | 094 | 64 | 128 | 64 | 16 | 8 4
6 0.75 1094 || 128 | 64 | 128 | 16 | 8 4
7 0.84 | 0.92 64 32 16 | 32|16 | 8
8 0.86 | 0.94 || 128 | 64 32 | 3216 | 8

Table 1: The ratios ¢ and 7 for different choices of the hyperparameters f;_3 and ky_3.
* Kernel and filter sizes suggested in [13].

T Note that adding the 4th strongest Fourier mode to the data set increases G and N
compared to the values given in section 4.2

Nl

1 ©00) . 1 (1,1)

%

We summarise this information for eight different sets of hyperparameters in
Tab. 1 and also present the corresponding results for N, ,, = 4 dominant
harmonics. One final property that we imposed on the FCN is that ¢ and
n should not vary drastically when N, ., is changed. It follows that the
FCN type most consistent across the tested N, ,, values is the FCN of type
8. These are the hyperparameters that we choose in the following (together
with N, =4).
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6. Practical Application

We split the output of the FCN into five groups, each characterised by
the number of gap type Fourier modes detected for each eigenvalue. For
example, group 0 will have zero class [,, ,, = 0 Fourier modes and four class
ln.m = 1 Fourier modes, etc®. We prepared two test sets A and B, comprising
85 and 117 eigenfunctions, respectively. The result of running the FCN on
the test sets is summarised in Tab. 2. As we noted in the introduction,
in an ideal situation the FCN should place the eigenfunctions in either the
group 0 corresponding to only non-gap type Fourier modes or the group 4
corresponding to only gap type Fourier modes. This is the case for the test
set A. In the test set B, however, we have some eigenfunctions in groups 1, 2
and 3. Here, we suggest that they are returned as "unclassified’ so that they
have to be labelled manually. Alternatively, one could define a filter that
infers the labels [ from [, ,,, even in the mixed classes. However, we see that
even the most restrictive approach significantly reduces the manual labour
needed for the classification of the eigenfunctions.

7. Conclusions

We have presented a Fourier-decomposition-based approach aided with a
Neural Network for the classification of ideal MHD operator eigenfunctions.
In the past, this classification was usually done by visual inspection, which
can be tedious. Typically, one is not interested in the plethora of singular
modes but only in the rare, global gap modes, which can be destabilised by
fast particles. Training the NN to recognise the individual Fourier modes
allows for a secure algorithm for gap modes detection. This approach has
been applied to Alfvén modes calculated with two different codes: CAS3D
and CKA. In the presented example we managed to filter out correctly 93.6%
of the data, leaving the remaining 6.4% for classification by a user defined
filtering procedure. The probability of misidentifying each gap type Fourier
mode of an eigenfunction is on average 1 — g = 14%. Therefore, the prob-
ability of misidentifying all its four components is roughly 0.14* ~ 0.03%,

We could treat groups like (1,0,0,0) and (0,0,0,1) differently. An eigenfunction
being a member of the latter group might hint towards the fact that the numerical noise
overwhelms the important characteristics in the fourth most dominant mode. With our
proposed group classification we do not consider this subtlety in order to simplify the
presentation of the results.

13



Test set A

NN
gn[))up cog;nt actual
1 0 group count
5 0 non-gap 83
3 0 gap 3
4 3
Test set B
NN
group | count
actual
(1) 134 group count
5 3 non-gap | 117
3 1 gap 0
4 0

Table 2: The result of applying the ECA on the test sets.

which is sufficient for practical applications. We conclude that NNs are well
suited for the laborious task of MHD eigenfunction classification.

Finally, we would like to outline that there are numerous ways of further
improving the algorithm. These include incorporating the imaginary part
of the eigenfunctions, including additional information for the training (for
example the mode number), or employing unsupervised learning.
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