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a b s t r a c t 

What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the 
patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this 
yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled 
neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that 
the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations 
underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for 
integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function. 
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. Introduction 

Neural activity oscillates: neurons and neural populations transiently
ntrain in synchronized movements, rhythmically coupling and uncou-
ling ( Buzsaki, 2006 ). This intermittent synchronization between neu-
on populations is mediated by the underlying structural network of
xon bundles and can span over widespread areas of the brain, en-
aging neural populations to form functional networks that are ac-
ive during task and rest ( Smith et al., 2009 ). Functional networks
ere found in slow ( < 0.1 Hz) functional magnetic resonance imaging

fMRI) activity, but similar network patterns were also found with faster
agnetoencephalography (MEG) and electroencephalography (EEG)

 Brookes et al., 2011 ; Hipp et al., 2012 ). A compact way to represent
unctional networks are FC matrices where each entry quantifies the cor-
elation or other statistical measures of association between every pair
f brain signals in a data set ( Bullmore and Sporns, 2009 ). The longer
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he time series used to compute FC (several minutes to hours) the more
tatic and conserved is the network pattern. Computed over short time
indows (seconds to minutes), the FC pattern changes rapidly, which is

alled dynamic FC (dFC) or short-term FC ( Lurie et al., 2020 ; Preti et al.,
017 ). To characterize the evolution of dFC the window is slided over a
onger time series and the dFC matrices at different times are compared
ith each other, e.g., by pairwise correlation. The results are then writ-

en into another matrix, called FCD matrix ( Hansen et al., 2015 ), where
ach axis encodes the time points of the time series (see Fig. 2 for ex-
mplary static FC and FCD). For example, the matrix entry at row 20
nd column 30 would contain the correlation coefficient between the
FC matrix computed at time point 20 and the dFC matrix computed
t time point 30. FCD matrices often show a checkerboard pattern with
uadratic blocks, indicating that dFC configurations form, exist for a
hile, dissolve and re-occur at a later point in time ( Hutchison et al.,
013 ), which is interpreted to reflect an ongoing transitioning between
-charite.de (P. Ritter). 
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rain states ( Kringelbach and Deco, 2020 ), like the transition from sleep
o wakefulness ( Deco et al., 2019 ). While FC can be computed with a
ariety of different methods, the essential aspect we are focusing on is
he synchrony or coherence between time series, that is, the tendency
f recurrent activity patterns (waves, oscillations) to engage in constant
elative phase relationships; therefore, the conclusions drawn from the
eviewed papers are relatively independent from a specific FC method
s the commonly used methods like correlation, mutual information,
r phase synchrony indices are all able to express aspects of synchrony
 Bakhshayesh et al., 2019 ; Bastos and Schoffelen, 2016 ). Research on
mpirical data is paralleled by theoretical brain network modelling stud-
es that help to relate FC(D) to the dynamics of networks of neuron pop-
lation models ( Breakspear, 2017 ). The key idea of brain network mod-
lling is to study the dynamics that emerge when we couple models of
ocal neural activity ( Deco et al., 2008 ) according to ’structural connec-
ivity’ (SC), which is an aggregated description of the large-scale neu-
oanatomic fibers network that quantifies coupling strengths and time
elays between brain areas ( Calamante, 2019 ; Yeh et al., 2021 ). That
s, the brain is considered as a graph where nodes represent brain ar-
as connected by edges that represent axons, fiber bundles, or electrical
ynapses, which is then formalized as a dynamical system of coupled
ifferential equations ( Breakspear, 2017 ; Sanz-Leon et al., 2015 ). Simu-
ated node time series are then related to empirical recordings like local
eld potentials, membrane potentials, firing rates, or synaptic activities
o study the performance of the model ( Ritter et al., 2013 ). Further-
ore, the simulated activity is used to predict the signals of noninva-

ive techniques like fMRI, EEG or MEG using so-called forward models.
or example, to predict blood-oxygen-level-dependent imaging (BOLD)
MRI signals the simulated time series are convolved with a hemo-
ynamic response function or input to a Balloon-Windkessel hemody-
amic model, which describe the transduction of neural activity into
erfusion changes and the coupling of the latter with the BOLD signal
 Friston et al., 2003 ; Sanz-Leon et al., 2015 ). After simulation, the pre-
icted region-wise fMRI time series can be used to compute simulated
C and FCD matrices and compare them with their empirical counter-
arts in order to fit the parameters and to validate or falsify the model.

SC is usually estimated using diffusion-weighted MRI (dwMRI) trac-
ography in humans ( Sotiropoulos and Zalesky, 2019 ) and tract trac-
ng in mouse ( Oh et al., 2014 ) and monkey ( Markov et al., 2013 ;
tephan et al., 2001 ). DwMRI tractography is a noninvasive technique
or the virtual reconstruction of the pathways of white-matter fiber
racts that are then aggregated for each pair of brain regions to build
omprehensive maps of large-scale white-matter connectivity. Tractog-
aphy is controversial as it is known to be prone to errors like over-
eighting simple and straight pathways and underweighting complex
ber configurations ( Calamante, 2019 ; Jeurissen et al., 2019 ; Sampaio-
aptista and Johansen-Berg, 2017 ). One major limitation of dwMRI
ractography is that we cannot directly measure all the relevant mi-
rostructural properties that influence coupling weights or transmission
elocities of fiber tracts ( Sotiropoulos and Zalesky, 2019 ). That is, even
f the density or number of fibers could be reliably estimated, as at-
empted with dwMRI tractography, axonal connection strengths depend
n more than just the number of axons, e.g., the number of synapses,
xon diameter, spines and myelination, which implicates that tractog-
aphy results must be interpreted with caution ( Jeurissen et al., 2019 ;
eh et al., 2021 ). Reconstructing fiber pathways is based on a mapping

rom water diffusion to fiber orientations, which is in general an ill-
osed problem as MRI voxels are too large to resolve axons; neither the
rientation of axon bundles in a voxel can be resolved, nor can different
rrangements like bending, fanning, crossing or kissing be distinguished
 Sotiropoulos and Zalesky, 2019 ). Consequently, tractography does not
rovide a direct measure of connection weights or time delays, but only
 model-based estimation of streamline counts and their lengths, which
re then used to approximate interregional coupling strengths and time
elays. To mitigate this problem there are efforts to combine the results
rom tractography and invasive tract-tracer studies in mouse and mon-
2 
ey, which, for example, allows to constrain the directionality of fibers
econstructed with tractography ( Shen et al., 2019 ). 

As SC can be assumed to remain relatively static, a central question of
NM research is: how does the diverse repertoire of dFC configurations
merge from a fixed white matter connectivity? While many different lo-
al population models have been found to have comparable qualities for
imulating static FC patterns, only a subset of those were able to simulate
ealistic dFC and FCD ( Cabral et al., 2017 ). Depending on the underly-
ng modeling assumptions, population model dynamics differ consider-
bly with respect to their complexity and biophysical realism, ranging
rom detailed spiking neuron models, over neural field or neural mass
odels that simulate average features of neural populations, to highly

bstract models with no clear interpretation in terms of physiological
ntities ( Deco et al., 2008 ; Sanz-Leon et al., 2015 ). In large-scale BNMs
he nodes are usually entire brain areas that contain millions of neurons
nd are therefore not simulated by spiking neurons, but rather by sim-
lified models that simulate the combined behavior of a population of
eurons, like the ongoing fluctuation of the mean population firing rate
r of the mean membrane potential at each node. Together the state
ariables of all nodes span a high-dimensional phase space where each
oint corresponds to a unique combination of the system’s states. In the
hase space the system’s equations prescribe a flow that defines how
he system evolves when it starts at a given point. That is, phase flow
inks into trajectories, called orbits, that form geometric structures in
hase space that capture the relevant characteristics of the system’s dy-
amics ( Izhikevich, 2007 ). For example, so-called fixed-point attractors
orrespond to a steady state solution of the system, while a limit cy-
le corresponds to periodic activity, like the regular spiking of a neuron
r the oscillation of a brain rhythm. Even simple deterministic systems
an show complex phase space geometries with so-called strange attrac-
ors characterized by unstable, diverging orbits, leading to chaos, with
pparently random (but fully deterministic) behavior and strong sensi-
ivity to initial conditions ( Izhikevich, 2007 ). Studying the behavior of
odels in phase space in such a manner gives researchers the opportu-
ity to explain specific observations from empirical data and dedicated
odels in terms of generic properties of dynamical systems, as we re-

iew below. In this context it is important to note that the number of
xisting studies that use systems of differential equations to analyze the
echanistic origin and emergence of FC(D) is rather limited and in some

ases there exists just a single study that models a particular mechanism,
hich limits the degree to which this review can distinguish general re-

ults from results that are specific to a given model implementation. 
In this article we review research that links the emergence of FC(D)

o the ongoing fluctuation of synchronization and desynchronization
f population activity, focusing on building an intuitive understand-
ng of dynamical systems concepts and providing references to primary
iterature for more details. A fundamental set of related observations
rom empirical data and computational modelling is that functional
etworks, firing rates, BOLD amplitudes, and the power and phase of
EG/MEG bands collectively increase and decrease in a manner that
s coordinated with the increase and decrease of the coherence be-
ween neural activity time series, a process that we call ’intermittent
ynchronization’, which results in an ongoing fluctuation of the slid-
ng window correlation between neural time series and hence the ob-
erved FCD ( Allen et al., 2014 ; Betzel et al., 2016 ; Breakspear et al.,
004 ; Cabral et al., 2014 ; Esfahlani et al., 2020 ; Freyer et al., 2011 ,
009 ; Honey et al., 2007 ; Magri et al., 2012 ; Schirner et al., 2018 ;
alesky et al., 2014 ). This ongoing fluctuation of synchrony is impor-
ant for behavior as it predicts the performance of perception, decision-
aking, attention, expectancy and predictive processing ( Engel et al.,
001 ; Freyer et al., 2013 ; Haegens et al., 2021 , 2012 ). Importantly,
nvasive recordings show a direct link between neural synchrony, fir-
ng and behavioral performance as the power of the alpha rhythm pre-
icts task performance and firing rates in monkey discrimination tasks
 Haegens et al., 2011 ). Likewise, brain disorders such as schizophre-
ia, epilepsy, autism, Alzheimer’s, and Parkinson’s disease were associ-
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Fig. 1. Illustrating how a system switches between multistability and metastability as a control parameter changes. a, Trajectories of the extended HKB model 
( Haken et al., 1985 ) that relate the relative phase 𝜙 between two coupled oscillators to its change in time 𝜙̇. In mono- and multistable systems the state converges 
onto an attractor (e.g., a point, which corresponds to a steady state solution or a limit cycle, which corresponds to periodic oscillations) after initial transients. An 
attractor is stable if all solutions starting sufficiently near will ultimately approach it, while in the case of an unstable attractor all nearby solutions diverge from 

it. Metastable systems are stable only on short timescales and spend a long time in states that change extremely slowly, but that are far from stable or unstable 
solutions. Stable fixed-point attractors are represented with filled circles and unstable fixed points with unfilled circles. b, Exemplary time series corresponding to 
the four different dynamical regimes in each column for different initial conditions. In the multistable regime (fourth column) the system has two stable fixed points 
to settle in. Which one is observed depends on the initial conditions and the sizes of the basins of attraction. As the control parameter changes, the less stable fixed 
point disappears, but the stronger attractor and its repelling partner remain, rendering the system monostable (third column). For a further change of the control 
parameter the flow no longer intersects the x-axis: all the fixed points have disappeared, making the system metastable (second column). In the uncoupled regime 
(first column) the two oscillators behave independently. A key aspect of the metastable regime is that remnants of attraction and slow flow remain where fixed points 
used to be (ghost states) as can be seen in the corresponding time series, where the system intermittently dwells near the former fixed points. Successive visits to 
these remnants of the fixed points are intrinsic to the system and do not require any additional sources of input. 
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ted with abnormal neural synchronization ( Schnitzler and Gross, 2005 ;
hlhaas and Singer, 2006 ). 

While synchronization can be simulated with models of coupled os-
illators, the mathematical analysis and theoretical understanding of
ynchronization is a hard problem ( Mirollo and Strogatz, 1990 ). The
ood news is that to understand their behavior we do not have to seek
ut specific mechanisms for different physical, chemical, biological, or
ognitive entities of interest, but it is sufficient to look at the generic
ehavior of dynamical systems, which is based on the same dynamic
rimitives (patterns of behavior that robustly emerge from different
inds of dynamic systems) regardless of spatial scale, form of imple-
entation, functional interpretation or timescale ( Kelso, 2012 , 1995 ).
onsequently, in the following we review how the emergence of slow
orrelated fluctuations underlying FC(D) can be explained by the dy-
amic mechanisms of multistability and metastability, irrespective of
he specific type of neural model. Multistability refers to the coexistence
f multiple stable system states, while in a metastable regime there exist
o stable states and the system moves along sequences of states that are
nly intermittently stable on short time scales ( Fig. 1 , Table 1 ). These
wo basic mechanisms of dynamic systems behavior are closely related
o the notions of ’stability’–in the brain, the ability of neural popula-
ions to sustain a state through reverberating activity–and ’criticality’,
hich refers to ongoing dynamic instability reflected by scale-free spa-

ial and temporal pattern formation ( Bak et al., 1987 ). ’Scale-free’ here
ndicates that the probability distribution of system variables does not
ave a characteristic time or length scale, but rather follows a power-
aw distribution. Criticality is highly relevant for brain sciences as the
ssociated scale invariance is getting increasingly apparent in the brain
 Beggs and Timme, 2012 ; Chialvo, 2010 ) and function can be closely
inked across multiscale processes, ranging from molecular to system
evels ( Muñoz, 2018 ). Power-law scaling can be observed, for example,
n fMRI ( He, 2011 ), EEG ( Linkenkaer-Hansen et al., 2001 ; Stam and De
ruin, 2004 ), electrocorticography ( Miller et al., 2009 ), and slice prepa-
ations ( Beggs and Plenz, 2003 ). Indeed, a central result from BNM re-
earch is that a BNM must be tuned close to the critical point of a bi-
urcation for the emergence of plausible multistable or metastable dy-
amics and FC(D) ( Cabral et al., 2017 ; Deco and Jirsa, 2012 ). In ad-
ition, computational models suggest a range of adaptive benefits of
3 
riticality including maximum dynamic range, optimal information ca-
acity, storage, transmission and selective enhancement of weak inputs
 Cocchi et al., 2017 ). 

. Attractors, bifurcations and multistable switching 

The behavior of spiking and brain networks can be modelled by ’mul-
istable attractor dynamics’ ( Amit and Brunel, 1997 ; Deco et al., 2008 ;
eco and Jirsa, 2012 ), which relates to the stability of the solutions of

he underlying dynamical system under small perturbations of initial
onditions ( Izhikevich, 2007 ; Fig. 1 ). A stable attractor is an object in
hase space that will ultimately be approached by all solutions that start
ufficiently close, in the attractor’s ’basin of attraction’; the term ’multi-
table’ characterizes systems that have two or more coexisting attractors
 Izhikevich, 2007 ). In contrast, if trajectories diverge away from them,
olutions of dynamical systems are called ’unstable’, or sometimes ’re-
ellors’. Attractors can assume different shapes and configurations in
hase space. For example, many neurons and neuron models exhibit a
istability where they switch between a resting (fixed-point) and a spik-
ng (limit cycle) attractor. With fixed-point attractors the system tends
o move towards and then settle in stationary ’equilibrium’ states, like
 constant firing rate or the quiescent state. On the other hand, limit
ycle attractors correspond to closed trajectories in phase space and can
herefore be used to describe oscillatory dynamics, like the tonic spiking
f a neuron or the collective rhythm of a population ( Deco et al., 2008 ).
mportantly, when fixed-point or limit cycle units are (weakly) coupled
hey may synchronize themselves at a common rhythm with emerging
low coherent fluctuations of activity ( Strogatz, 2000 ), which is funda-
ental for the emergence of correlated activity at different locations,

hat is, FC(D) ( Cabral et al., 2017 ). 
Critically, the study of dynamical systems reveals generic properties

f complex systems that are conducive for intermittent synchronization
nd how these can be related with properties of biological neural net-
orks ( Strogatz, 2000 ). Tuning parameters like noise, external inputs,

oupling, and others can cause transitions between attractors, destabi-
ize existing attractors, or create new attractors. For example, without
nput a neuron is (typically) in a quiescent state, modelled by a fixed-
oint attractor. When a current is injected into the model (that is, a pa-
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Fig. 2. Comparing empirical resting-state activity with simulated metastable ( Deco et al., 2017b ) and multistable dynamics ( Kong et al., 2021 ). a, Exemplary time 
series of fast activity in three brain regions and averaged power spectra over all regions. MEG recordings show typical features of electromagnetic resting-state activity 
(1/f relationship between power and frequency with a peak in the alpha range; blue line: line of best linear fit); the slow supercritical Hopf model is only simulated 
on the slow time scale; simulated synaptic activity time courses exemplify the dynamics of the nonlinear dynamic mean field model, which do not reproduce the 1/f 
shape and peak in the alpha range. b, Exemplary time series of slow activity in three brain regions and averaged power spectra over all regions. Resting-state fMRI 
is characterized by a peak in the slow range (0.001 - 0.1 Hz), which can be simulated by the supercritical Hopf model by directly setting the intrinsic frequency of 
Hopf oscillators; in the nlDMF model slow synchronized oscillations become prominent when the fast simulated dynamics are forwarded to a hemodynamic model, 
which acts like a lowpass filter. c, static FC matrices computed over ∼15 minutes of activity. d, FCD histograms and FCD matrices for dFCs with a window size of 60 
seconds. 
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ameter is changed), and ramped up, it starts to fire tonic spikes, which
orresponds to a limit cycle in phase space. Such qualitative transfor-
ations of the phase portrait in dependence of a parameter change are

alled ’bifurcations’ ( Fig. 1 ) and in our example the parameter ’input
urrent’ controls a bifurcation that separates the dynamics of a single
table equilibrium from a regime where several attractors coexist. De-
ending on the way in which the bifurcation changes the phase portrait
t is called supercritical if stable objects appear when the system was
uned past the bifurcation point, for example, if stable limit cycle oscil-
ations occur when the value of the control parameter is greater than a
ertain value; conversely, a bifurcation is subcritical when unstable ob-
ects appear, which allows for a regime of multistability where multiple
table objects (for example one fixed-point and one limit cycle sepa-
ated by one unstable repellor) can co-exist ( Izhikevich, 2007 ). Outside
f the subcritical regime there is an either-or, but no co-existence of
xed-points and limit cycles. While the vicinity of a supercritical bifur-
ation is characterized by the emergence of slow, "critical", scale-free
uctuations, the dynamics in the vicinity of a subcritical bifurcation
re governed by multistable switching ( Freyer et al., 2012 ). This mul-
istable switching is triggered by noise or regular inputs that move the
tate of the system over the boundaries of the respective basins of at-
raction. Such a noise-driven switching can also lead to slow oscillatory
ynamics, but with strictly different statistics: while critical fluctuations
ollow a power-law, noise-driven multistable switching does not show
cale-free properties. Rather, with large additive noise the transitions
ppear akin to a Poisson process and therefore follow an exponential
istribution; small, state-dependent noise, on the other hand, leads to
ong dwelling in each state that follow a heavy-tailed exponential dis-
ribution ( Freyer et al., 2012 , 2011 ). Although characterized as multi-
table in the past, it is in some modelling studies often not fully clear to
hich degree slow synchronous oscillations are actually due to switch-

ng between the basins of attraction of different fixed-points ( Deco and
4 
irsa, 2012 ) or whether they emerge from a noise-driven exploration of
he vicinity of a single fixed-point ( Ghosh et al., 2008 ). Closer analy-
is and numerical exploration should be performed in future studies to
etter assess phase space behavior. 

. Multistability and slowing in bottom-up models 

We now focus on the question how multistable units with fixed-point
ynamics synchronize to explain the emergence of the correlated slow
ctivity that makes up FC(D). Starting from a fixed-point solution and
ithout any inputs the network would stay in its equilibrium state for-

ver. This is different in stochastic simulations, where noise drives the
ystem out of its fixed point(s) leading to an "exploration" of the respec-
ive basin of attraction ( Pisarchik and Feudel, 2014 ). Ongoing noise can
rigger a sequence of multistable switching from the basin of attraction
f one attractor to another one with lifetimes of the different states that
re on a considerably slower temporal scale compared to the intrinsic
ime scale of the model and the noise it receives ( Arecchi et al., 1985 ).
n addition to noise, another important precondition for the emergence
f slow correlated fluctuations is the specific setting of parameters such
hat the system is close to a bifurcation where existing attractors become
nstable and before new attractors stabilized, which leads to a critical
lowing of the phase flow. Critical slowing refers to the tendency of a
ystem to take longer to return to its attractor after perturbations and
t has been observed in a diverse set of systems that underwent abrupt
nd rapid qualitative changes from ecosystems to medicine and finance
 Kuehn, 2011 ). Importantly, critical slowing is accompanied by an in-
rease in signal variance and autocorrelation and can be used as marker
or the onset and termination of epileptic seizures ( Maturana et al.,
020 ), the onset and termination of depression ( van de Leemput et al.,
014 ), the onset of spiking in neurons ( Meisel et al., 2015 ), or crashes in
nancial markets ( May et al., 2008 ). Importantly, in BNMs the best fits
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Table 1 

Comparison of multistable and metastable dynamics and their functional consequences for explaining FC(D) with BNMs. 

(Multi)stability Metastability 

Description existence of stable states (e.g., fixed-point and limit cycle attractors), 
mediated by (reverberating) input 

states change extremely slowly, but are far from a stable or unstable 
state; states with long dwell times and slow evolution are connected by 
fast transients 

emerges in a subcritical regime near bifurcation where fixed point loses 
stability 

emerges near supercritical Hopf bifurcation in between stable regimes 

noise (or stimulation) drives exploration of basin of attraction and 
multistable switching between stable attractors 

system moves along sequences of metastable states ("heteroclinic 
orbits"); transitions not actively induced: neither noise nor parameter 
change required 

dwell times follow exponential or stretched exponential distribution, 
depending on noise amplitude 

dwell times show a characteristic timescale, depending on noise 
amplitude 

Functional consequences emergence of slow synchronized oscillations results from multistable 
switching and noise-driven exploration of basin(s) of attraction 

emergence of slow synchronized oscillations results from fluctuating 
transient entrainment of limit cycle oscillations 

critical slowing as the system approaches a phase transition slow decay of metastable states with characteristic dwell-time 
distribution 

ghost states provide escapable regime with slow flow; small 
reconfigurations can turn ghost states into genuine attractors to stabilize 
function; makes repertoire of brain states available for rapid activation 

flexible switching between differently coordinated states; 
synchronization behavior is less constrained, large number of 
synchronization states with complex multiscale temporal structure 

good quantitative capturing of spiking network attractors with 
mean-field models 

a single parameter controls transition from stable to metastable 
dynamics in supercritical Hopf model 

waveform shows transitions between noisy fixed point and limit cycle 
oscillations (e.g., waxing-and-waning of alpha rhythm) or between 
multiple fixed-points (e.g., quiescent and burst state) 

waveforms express a combination of both noisy fixed-point dynamics 
and limit cycle oscillations; fast oscillators temporarily synchronize at 
slower delay-dependent network frequencies 

Relation to FC linearized models sufficient to explain FC pattern; analytic relationship 
between SC and static FC in linearized models 

slow variations in the statistics of intermittent synchronization explains 
predicted FC pattern and slow oscillations in BOLD signal 

best fit near edge of bifurcation where low-firing attractor becomes 
unstable 

good fit over wide range of global coupling strengths and Hopf 
bifurcation parameters 

best fit, highest variability and autocorrelation for intermediary 
coupling strengths 

highest complexity, and variability for weak coupling strengths 

Relation to FCD increasing the number of attractors and noise (compared to FC models) 
necessary to instantiate dFC switching 

slow fluctuation of dFC patterns results from the ongoing fluctuation of 
synchrony of transient couplings on faster time scales 

emergence of new network attractors required bistability in uncoupled 
units 

highest (closest to empirical) metastability is only present in narrow 

range of bifurcation parameter near supercritical Hopf bifurcation 
best fit for coupling strength that yields largest number of attractors, at 
a different point as in the case of static FC (where low-firing attractor 
loses stability) 

best fit very close to supercritical Hopf bifurcation where variability of 
brain phase synchrony configurations is maximized 

Criticism (individually) system can get "trapped" in stable states system never settles for a time much longer or shorter than 
characteristic time scale 

either noisy fixed-point dynamics or limit cycle oscillations, but not the 
complex waveform of fMRI time series or MEG envelope time series 

mixture of noisy fixed-point dynamics and limit cycle oscillations, but 
only for single oscillation frequency 

best fit with static FC, respectively FCD, is at different working points very narrow range for optimal working point for FCD 
simplifying assumption in mean field analysis: only accounting for 
stationary states 

Hopf model is abstract, no direct relationship to physiological entities 

in studies often not fully clear whether dynamics characterized as 
"multistable" are actually switching between different basins of 
attraction or noise-driven exploration of the vicinity of a single 
(monostable) fixed-point attractor 
stationary equilibria and resulting "invariant" behavior at odds with 
variability and creativity of human behavior 

ongoing metastability at odds with fixation of function, e.g., through 
attentional mechanisms 

Criticism (both) spiking networks used to simulate brain areas are orders of magnitude smaller than in reality 
generic spiking network architectures do not account for the complex function and dynamics that may be embedded in microcircuit schemas 
structural connectivity (coupling strengths and time delays) is estimated from dwMRI data, no direct measurement 
simplifying assumptions in mean field analyses, e.g., only modelled around stationary states 
implausible frequency spectra 
no function (task-related activity) in BNM, only resting-state 
fixed parameters (e.g., no plasticity) 
no somatic afferents (brain without a body) 
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etween simulated and empirical FC have been found near the edge of
 bifurcation where the low-firing attractor became unstable and before
igh-activity attractors stabilized, which led to the necessary slowing of
he system ( Deco et al., 2013 ; Deco and Jirsa, 2012 ). 

Studying brain network activity from the bottom up, Deco and
irsa (2012) simulated a detailed brain model, based on the spiking
euron networks from Brunel and Wang (2001) , where populations of
xcitatory and inhibitory integrate-and-fire neurons were coupled us-
ng SC from dwMRI tractography, which yielded a global fixed-point
ttractor network. Under this model and parameterization the sum of
ll (external plus recurrent) inputs is slightly subthreshold, and firing
s therefore primarily triggered by fluctuations of the input around the
ring threshold, which drives the neurons to a state of "spontaneous"
ring with excitatory cells firing asynchronously at a rate of 3 Hz and
5 
nhibitory neurons at 9 Hz, which corresponds to typical values for spon-
aneous activity in the cerebral cortex ( Burns and Webb, 1976 ; Koch and
uster, 1989 ; Wilson et al., 1994 ). When the strength of (global) cou-
ling between brain areas is increased, this low-firing ("spontaneous")
ttractor becomes unstable and high-activity attractors emerge where
ersistent fast firing is generated through recurrent excitation. Under
his model the stabilization of the high-activity attractor is primarily
ediated by recurrent activation in the global network. 

Importantly, the emergence of slow ( < 0.1 Hz) synchronous oscilla-
ions and the best match between empirical and simulated FC occurred
oth near a critical value of global network coupling. When the mean
nter-areal coupling strength was tuned towards such a critical point at
he edge of a bifurcation, the spontaneous low-firing state became un-
table and high-firing attractors emerged in the network. This region of
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ecreased stability was in the middle between two stable regions: for
ero and very low values of global coupling only the trivial low firing
ttractor existed: this equilibrium state was stable and small random in-
uts had only a minor impact on the system’s state. Likewise, for a very
igh value of global coupling the system was also stable and only a sin-
le (limit cycle) attractor existed: continuous firing, like in an epileptic
eizure. Here, again, small random inputs had no big effect on the am-
litude of oscillations. Also, in both extreme cases the simulated FC did
ot correspond well to empirical FC patterns. However, for intermedi-
ry values of global coupling a high correspondence with empirical FC
nd at the same time the highest variability (entropy) of simulated ac-
ivity emerged, characterized by the co-existence of multiple attractors
hat corresponded to different configurations of high firing activity in
articular brain areas, and which enabled the emergence of slow, os-
illatory transitions between these attractors. Put into the language of
raph theory, in the subcritical region at a low value of global coupling
rain regions are effectively uncoupled–segregated–showing a lack of in-
egration. Conversely, when global coupling is too high cortical activity
s coupled too tightly and again only a trivial (e.g., hypersynchronous)
tate emerges, characterized by too much integration. However, near
he critical point of a phase transition the system shows a dynamic bal-
nce between integration and segregation and an increased ability for
pontaneous reconfiguration. 

Slow synchronous fluctuations emerge close to a bifurcation when
xed-point attractors lose stability, which leads to a loss of attraction
round the destabilizing fixed point, which in turn leads to a slowing
f the time scale and long transients ( Hastings et al., 2018 ). Such crit-
cal slowing is characteristic of many complex systems close to a criti-
al point, where the time scale of fluctuations changes from a fast ex-
onential to a slower power law process. It should be mentioned that
uch slowing does not imply that the entirety of system dynamics be-
omes slow, but only that unstable modes decay more slowly. With lin-
ar stability analysis, dynamic instability and slowing can be expressed
y the Lyapunov exponent, which quantifies the rate of decay of small
erturbations based on a local linear approximation ( Kuehn, 2011 ).
ar from the bifurcation the spontaneous state is strongly attractive,
ith exponential decay; when the associated, negative Lyapunov ex-
onent approaches zero, the system approaches a phase transition and
hese fluctuations decay more slowly. However, at some point near
he instability the local linearization breaks down and higher-order
onlinear effects increasingly contribute in a way that fluctuations no
onger decay exponentially but can persist for longer, which increases
utocorrelation and allows the emergence of correlated activity over
arger distances and longer timescales ( Kuehn, 2011 ). Slowing is also
eflected in power spectral densities, where the power of low frequen-
ies ( < 0.1 Hz) increases when global coupling increases ( Deco et al.,
013 ). Furthermore, slowing near a critical point corresponds to sharp
ncreases in the variation of the activity and its autocorrelation, lead-
ng to functional benefits ( Shew and Plenz, 2013 ) like optimized in-
ormation transmission ( Beggs and Plenz, 2003 ), information storage
 Haldeman and Beggs, 2005 ), computational power ( Bertschinger and
atschläger, 2004 ), and dynamic range, the sensitivity to react to input
cross a broad spectrum of intensities ( Kinouchi and Copelli, 2006 ). 

Why do slow synchronized oscillations emerge at a critical working
oint? If the system would be instead in a stable subcritical state, then
andom microscopic fluctuations would remain confined to the micro-
copic scale, because the strong stable fixed-point damps fluctuations on
arger scales quickly with an exponential decay rate. Conversely, above
he critical point, the system follows a strongly attractive limit cycle,
hich drives and absorbs activity on other scales. Therefore, in both

xtremes the activity is "trapped" at one scale–it cannot interact with
ther scales. Conversely, in the immediate vicinity of a critical point
mall perturbations can grow in magnitude, as the decay rate is much
lower, now following a power-law shape. That is, close to the critical
oint microscopic, respectively, fast, fluctuations have the ability to dis-
eminate to larger, respectively, slower, scales without being damped or
6 
ominated. This ability of activity to "flow" across scales enables stochas-
ic resonance effects and build-up of energy at coarser and slower scales
i.e., synchronized oscillations in slower bands), which increases the cor-
elation between the units. This explanation in terms of optimality of
nergy transfer is now also reflected in the emerging interest to under-
tand brain dynamics as turbulent-like ( Deco and Kringelbach, 2020 ), as
ne of the most relevant aspects of turbulence is to facilitate fast energy
ransfer along a cascade of scales ( Frisch and Kolmogorov, 1995 ). 

. Ghost states 

In addition to the functional benefits mentioned above, the loss of
tability of fixed-points leads to further interesting dynamical proper-
ies, as the phase space close to a bifurcation where stable fixed points
ecome unstable is often governed by latent "ghost" states or "bottle-
ecks" ( Strogatz and Westervelt, 1989 ), which are characterized by long
ransients and slow flow ( Strogatz, 2018 ). For example, ghosts can ap-
ear after the collision of two fixed points that annihilate each other in
 so-called saddle-node bifurcation, leaving a region in phase space that
amps trajectories before allowing them to passage out to another fixed
oint ( Strogatz, 2018 ). Although the system does not exhibit a fixed
oint at that point in phase space, it mimics the dynamics of a system
hat possesses an attractor at that point, providing a region in phase
pace by which the flow is attracted. It is called a ghost, because the
ttractor is "haunting" the phase space like the ghost of a former attrac-
or: at that point in phase space there does not exist a stable fixed point,
ut there would be one, if conditions (parameters) were slightly differ-
nt. An important intuitive consequence of a ghost is that it enables the
ystem to stay for some time in its vicinity, without being "trapped" by
t: the system can eventually move away. Such an "escapable" regime
ith reduced flow leads to slow transients in the vicinity of the ghost

tate, which makes it possible to create a BNM that slowly oscillates be-
ween different states without getting trapped in a fixed-point ( Deco and
irsa, 2012 ). Furthermore, multistable ghost dynamics provide a model
o explain how sudden and intense shifts of brain state can occur even
n the absence of underlying parameter changes and, therefore, provide
n explanation for the existence of cognitive stability on the one hand,
nd rapid flexibility and adaptation on the other ( Deco and Jirsa, 2012 ).
hen the value of inter-areal coupling is just below the critical value

or the bifurcation a minor reconfiguration of the network parameters
e.g., related to attention) allows the system to turn a ghost into a gen-
ine attractor and stabilize there to perform a cognitive function, which
akes a repertoire of brain states available for rapid activation, even in

he absence of any task. For example, the onset of a specific cognitive
unction may reflect the stabilization of a ghost state through input re-
ulting from sustained attention. Since only a small change of the system
s needed to turn a ghost state into a genuine attractor these states can
e easily stabilized when needed, which contrasts with a mechanism
here stimulus-driven rapid transitions between genuine attractors are
ssumed. Rather, the long transients implied by ghost states offer the
unctional benefit of an extended window of response time as well as a
orm of short-term memory that would not be available for systems that
apidly switch between stable states ( Hastings et al., 2018 ). 

. Limit cycle attractors and subcritical Hopf bifurcations 

Up to this point we focused on models that explain how slow ( < 0.1
z) oscillations originate from multistable fixed point dynamics and did
ot explicitly take the fast (1-100 Hz) oscillations into account that are
bundant in empirical activity. These fast oscillations can be modelled
y limit cycle attractors ( Ashwin et al., 2016 ). Importantly, limit cycles
an form together with fixed-point attractors a multistable phase space,
hich can be used to simulate the switching of neurons or neural popu-

ations between a noisy ground state and a high-power oscillatory mode.
or example, Freyer et al. (2011) studied a corticothalamic neural field
odel that reproduced the bistable switching dynamics of the human
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lpha rhythm, which is constantly switching between a noisy ground
tate and a high-power mode, with dwell times in each mode of up to
20 s. Under this model, the switching between high- and low-power
ode corresponds to noise-induced jumps between the fixed-point at-

ractor and the limit-cycle attractor. That is, noise enables to cross the
oundaries of the basins of attraction of the two attractors. This spon-
aneous switching from a noisy, linearly stable, damped oscillation to
trong nonlinear periodic oscillations with higher amplitude matches
mpirical results where it was found that low-power alpha has such a
igh complexity that it cannot be distinguished from a linear random
rocess while the high power mode was better explained by a nonlin-
ar limit cycle model ( Stam et al., 1999 ). This coexistence of fixed point
nd limit cycle dynamics, separated by an unstable periodic orbit, occurs
n the vicinity of a subcritical Hopf bifurcation, which is characterized
y a stable fixed-point becoming unstable and the surrounding unsta-
le spiral becoming absorbed by a stable limit cycle ( Izhikevich, 2007 ).
herefore, the normal form equations for a subcritical Hopf bifurcation,
alled ’subcritical Hopf model’ in the following (while the normal form
quations of a supercritical Hopf bifurcation will be called ’supercritical
opf model’), are a natural candidate for modelling the alpha rhythm,
s it is a canonical model for studying multistable transitions between
oisy and oscillatory brain dynamics ( Freyer et al., 2012 ). 

The subcritical and supercritical Hopf models are, however, quite
bstract as their state variables have no direct interpretation in terms
f neurophysiological entities like it is the case with neuron models
r neural population models where the model structure and associated
tate variables are designed to be interpreted, for example, as mem-
rane voltages, firing rates or ion channel activities. Therefore, the as-
ociated synchronization dynamics and dynamic regimes are more in-
uitively understood and better relatable to biology using models of bi-
logical neural networks that aim to directly represent neurophysiolog-
cal entities. A typical behavior of biological neurons and their models
s that they are in a quiescent state when there is no input but start fir-
ng at increasingly higher rates when stimulated with increasing input
 Izhikevich, 2007 , 2004 ), which is also reflected in many neural pop-
lation models ( Deco et al., 2008 ). In terms of dynamical systems, the
ransition from a spontaneous low-activity (or quiescent) state to large
mplitude oscillations corresponds to a fixed point that is rendered un-
table by the increasing input current and the stabilization of a limit
ycle ( Deco et al., 2008 ). Likewise, in BNMs the transition from the
pontaneous fixed-point to a high-activity limit cycle depends on the
trength and time delay of network coupling ( Ghosh et al., 2008 ). To
nderstand these effects of coupling strengths and coupling delays on
he emergence and stability of sustained oscillations, we consider how
wo excitatory populations that oscillate in-phase at 10 Hz will rein-
orce each other when coupled instantaneously: if the coupling strength
s large enough the two populations can mutually excite each other,
hich leads to a self-sustaining oscillation, described by a stable limit cy-

le in the phase space. Conversely, with a time delay of 50 ms the stable
imit cycle becomes unstable, because the signal from the one population
ow arrives during the antiphase of the other population. For example,
hosh et al. (2008) studied the stability of a FitzHugh Nagumo-based
rain model in dependence of coupling strength and transmission veloc-
ty. As in the example with 10 Hz synchronization, the system’s stability
s relatively unaffected by fast transmission velocities ( > 20 m/s), but
or a physiologically realistic range of myelinated and unmyelinated ax-
ns (1-20 m/s), changes in transmission velocity have strong effects on
he system’s stability. Likewise, for small coupling strengths the system
as a stable low-activity fixed point and only if coupling is gradually in-
reased the fixed-point becomes unstable and oscillatory activity starts.
arther away from this critical region, oscillations are either strongly
amped or high-amplitude, resembling pathological activity. Intrigu-
ngly, for coupling values that were just below the critical boundary, in
etween such "pathological" regimes, simulated time series resemble the
haracteristic transient and spindle-like "waxing and waning" of human
lpha-band EEG and MEG. Importantly, the amplitude fluctuation that
7 
as modulated on top of the of the oscillatory (band-limited) time series
nvelope corresponded to the synchronized slow oscillation of the fMRI
ignal that was subsequently predicted from the neural time series. This
odel therefore provided a first mechanistic link between the dynamic
axing and waning of fast neural activity and the slow oscillations in

MRI that underly FC(D), which we will deepen in the following. 

. Multistability in mean-field reductions 

To model such a mechanistic link up to the brain level, spiking net-
orks are however impractical, because they come with a large number
f free parameters and this complexity limits their efficiency for simu-
ating entire brains ( Jordan et al., 2018 ). Therefore, and to make them
ore amendable to analytical and numerical treatment, the central in-

ights created by their study are condensed and simplified to build so-
alled neural mass or mean-field models ( Deco et al., 2008 ). 

In BNMs that are based on spiking networks ( Deco et al., 2013 ;
eco and Jirsa, 2012 ; Ghosh et al., 2008 ) the decisive element for

he best fit with empirical FC was the tuning of the system to a criti-
al point where the low firing attractor became unstable. Importantly,
his dynamical regime for the emergence of slow correlated oscillations
an not only be produced from the bottom up in realistically coupled
ntegrate-and-fire spiking networks, but it can also be captured by re-
uctions made by mean field approximations, and even by further lin-
ar simplifications ( Deco et al., 2008 ). Mean-field analysis with diffu-
ion approximation simplifies synaptic input terms under the assump-
ion that network activity fluctuates around a stationary state with con-
tant population firing and synaptic currents, which yields a much sim-
ler model that nevertheless reproduces the essential attractor dynam-
cs and that can be integrated much quicker than the full spiking net-
ork ( Brunel and Wang, 2001 ). Several reductions of the realistic spik-

ng models down to a linearized variant ( Deco et al., 2013 ) all showed
ualitatively identical dynamical properties and were all able to (fairly)
redict static FC, indicating that linear interaction is sufficient to ex-
lain important characteristics of the network pattern of static FC. In
ddition, with simplified models the network’s covariance can be ana-
ytically calculated from the eigenvectors of the system’s Jacobian ma-
rix, which provides a direct analytical link between static FC, SC and
ynamics ( Deco et al., 2013 ). This analysis indicates, as expected from
umerical simulation of spiking and reduced models, that static FC can
e interpreted as a function of an individual’s SC ( Deco et al., 2013 ). 

. Multistability and functional connectivity dynamics 

Up to now we reviewed explanations for the emergence of static
C and found that the best predictions in the previously discussed
odels ( Deco et al., 2013 ; Deco and Jirsa, 2012 ) and similar models

 Deco et al., 2009 ; Ghosh et al., 2008 ) have occurred near a bifurca-
ion where the spontaneous low-firing state of the network became un-
table and firing moved towards higher values. However, in contrast
o static FC, the best prediction of FCD with a multistable model was
ot found near the bifurcation where the spontaneous state became un-
table. Hansen et al. (2015) used a slightly different parameterization
higher excitatory recurrence, higher noise, lower global coupling) that
ielded up to six instead of two firing rate attractors in the dynamic
ean field reduction of the discussed spiking model ( Deco et al., 2013 ).
his parameterization had the important effect that now a bistability
as directly implemented in uncoupled units: an additional fixed-point
ttractor allowed uncoupled units to assume a high-firing state without
he need for slow reverberating excitatory inputs from the global net-
ork. Importantly, the working point optimized to fit static FC is not

he same that optimized fit with FCD (to optimize FCD the Kolmogorov-
mirnov distance between empirical and simulated FCD distributions
as minimized). Under this slightly differently parameterized model the
ptimal working point for predicting static FC was still close to a crit-
cal point where the spontaneous state became unstable. However, at
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he optimal working point for FC no stable dFC patterns emerged and
o dFC switching occurred. Rather, the best fit with FCD occurred at
 lower value for global coupling where the simulated dFCs were less
onstrained by SC and showed complex non-trivial patterns, strongly
eminiscent of RSN topologies. While the pattern of the static FC still
orrelated strongly with SC, dFCs showed a richer repertoire of patterns
hat were quite dissimilar to the SC pattern, but which were transiently
table enough to enable a better reproduction of the checkerboard pat-
ern found in empirical FCD maps. The emergence of these additional
ttractor states required an interplay between local and collective dy-
amics that led to the emergence of six new firing-rate attractors, which
ere not observed with the simpler variants of this model that did not
ave a local bistability in uncoupled units. In this BNM the model’s
tate continuously sampled the rich dynamical repertoire of a complex
ulti-attractor multistable phase space. This sampling is characterized

y short periods of dwelling in the basins of attraction of the different at-
ractors interleaved with ongoing switching between them. Although the
ystem is constantly attempting to converge towards one of its six fixed
oints, it is constantly pushed out of these equilibria by noise, which en-
bles to sample the different subspaces. The ongoing movement either
owards a fixed-point or escaping towards a different attractor gives rise
o a dynamic itinerancy characterized by transient states that never set-
le in an equilibrium. This ongoing multistable switching between states
s similar to metastable dynamics, which are discussed in the following.

. Metastability and intermittent synchronization 

In contrast to stable attractor states metastable states are stable only
n short timescales and metastable systems have solutions that spend a
ong time in a state that changes extremely slowly, but that is far from a
table or unstable stationary solution ( Carr and Pego, 1990 ; Fusco and
ale, 1989 ). While metastable states are characterized by a very slow
volution, they can be connected to other metastable states through in-
ermittent periods of fast motion ( Fusco and Hale, 1989 ). Importantly,
etastable states can be linked into a sequence of intermittently stabiliz-

ng states, so-called heteroclinic cycles, along which the system wanders,
ut never ultimately settles ( Afraimovich et al., 2004 ). Heteroclinic cy-
les are therefore an attractive model to understand the contradictory
equirements of cognitive functions like learning and decision-making
n a changing environment: they need to be robust and reproducible on
he one hand, but sensitive and flexible on the other hand ( Kelso, 2012 ;
abinovich et al., 2008 ). In neural models of weakly coupled oscillators
etastability can, for example, be observed as slowly alternating epochs

f intermittent phase synchronization and desynchronization between
he units ( Honey et al., 2007 ). At weak coupling levels such a system
f coupled oscillators never settles in a steady state but instead a large
umber of metastable states with complex multiscale temporal struc-
ure emerges. An important take-away from this study is that the ongo-
ng fluctuation of the degree of synchronization between populations on
he fast time scale gives rise to oscillations on a slower time scale. That
s, the fast neural dynamics of different brain regions exhibited intermit-
ent synchronization and desynchronization on a time scale of hundreds
f milliseconds with epochs of synchronization typically lasting between
0 and 300 msec, which is consistent with in vivo observations (Varela
t al., 2001). Importantly, this ongoing modulation of synchronization
atterns–slow variations in the statistics of intermittent coupling and
ecoupling–determined the emerging BOLD amplitude and the correla-
ion between BOLD signals and hence the FC pattern. Further analysis
howed that the strengths of functional connections in FC matrices, the
OLD signal amplitude and the strength of synchrony of fast activity
etween different brain regions were strongly correlated, pointing to-
ards a common origin: region pairs that engaged in long synchronous

pisodes tended to have a stronger FC and elevated BOLD amplitude
 Honey et al., 2007 ). 

In other words, the intermittent synchronization mechanism identi-
es the origin of the slow fluctuation of fMRI dFC ( < 0.1 Hz) as a re-
8 
ult from the fluctuation of transient coupling on a much faster time
cale ( ∼10 Hz), but with a lag of about 2-4 s due to hemodynamic de-
ays. This theoretical result provides an explanation for empirical ob-
ervations that show that large-scale networks in MEG can be well de-
cribed by recurring visits to short-lived transient network states (50–
00 ms) that have characteristic patterns of intermittently synchronized
ower envelopes ( Baker et al., 2014 ) and phase coupling time series
 Vidaurre et al., 2018 ) that correspond well with the topography and
witching of resting-state networks in fMRI. These studies suggest that
pontaneous brain activity can be broken down into distinct network
atterns that are stable for periods of 50 to 200 ms and that these tran-
ient states reflect the temporal switching of FCD ( Baker et al., 2014 ).
onsistent with earlier results that show the similarity of spatial net-
orks in fMRI ( Beckmann et al., 2005 ; Smith et al., 2009 ) and temporal
etworks in MEG ( Brookes et al., 2011 ) these observations support the
dea that functional brain networks derive from the sequential activation
f a set of metastable brain states rather than having stable attractors
 Tognoli and Kelso, 2014 ). 

. Chimera states and slowed collective synchronization 

Metastable intermittent synchronization can also explain ampli-
ude envelope FC and FCD observed in alpha- and beta-band ( ∼8–
0 Hz) MEG, which itself has a strong correspondence with fMRI FC
 Brookes et al., 2011 ; Hipp et al., 2012 ). In a Kuramoto-based BNM
 Cabral et al., 2014 ) uncoupled units were set to oscillate at 40 Hz,
hich is a reasonable resonant frequency of neural masses following
lectrophysiological ( Buhl et al., 1998 ) and theoretical ( Brunel and
ang, 2003 ) results. Time-delayed coupling near a critical working

oint led to an ongoing fluctuation of intermittent synchronization and
esynchronization between subsets of nodes, forming and dissolving of
etastable coalitions. Interestingly, under this model the slow oscilla-

ion was not modulated on top of the intrinsic fast oscillation of the
ncoupled units (amplitude envelope fluctuation); rather, the 40 Hz os-
illators temporarily synchronized at slower delay-dependent network
requencies with a peak in the alpha/beta band due to the presence of
oupling delays on the order of 10 ms. More specifically, the dynam-
cs of the model alternated between their intrinsic limit cycle at 40 Hz
nd slow collective limit-cycles of synchronized sub-networks, which
re slowed due to the time delays of signal transmission between brain
reas ( Niebur et al., 1991 ). Epochs of strong synchronization (ergo, high
orrelation; ergo, high dFC) were characterized by bursts of high-power
ctivity in frequency bands much lower (10–20 Hz) than the intrin-
ic frequency of 40 Hz. This coexistence of synchronized and desyn-
hronized domains in a network are called ’chimera’ states and it is
nexpected to find such a break of symmetry in identical oscillators
ith symmetric coupling ( Abrams et al., 2008 ). Importantly, synchro-
ization is strongest in the slow ( < 0.1 Hz) amplitude envelope fluctu-
tion of band-pass (alpha, beta, gamma bands) filtered node time se-
ies, which matches the time scales of envelope fluctuations observed
n empirical MEG data ( Brookes et al., 2011 ; Hipp et al., 2012 ). In sum-
ary, in a metastable regime subnetworks of fast limit-cycle oscillators
ave the ability to spontaneously synchronize and desynchronize on a
low time scale and this fluctuation in the degree of synchrony explains
he correlated slow BOLD-signal fluctuations underlying fMRI BOLD FC
 Deco et al., 2009 ) and MEG envelope FC ( Cabral et al., 2014 ). 

0. Slow oscillations by pulsed inhibition 

While the previous model agrees with the empirically observed
ositive correlation between gamma band activity and BOLD fMRI
 Logothetis et al., 2001 ), as well as the negative correlation between
lpha activity and BOLD fMRI ( Goldman et al., 2002 ; Laufs et al.,
003 ; Moosmann et al., 2003 ; Ritter et al., 2009 ), it does not pro-
ide a direct mechanistic explanation why the switch from fast oscil-
ations to slower oscillations leads to reduced energy requirements and
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etabolic demands that would explain the decrease of neural firing and
he BOLD fMRI amplitude during high alpha activity ( Kilner et al., 2005 ;
chirner et al., 2018 ). By injecting EEG that was simultaneously ac-
uired with fMRI into the excitatory and inhibitory populations of a
NM, a mechanism was inferred that directly links ongoing alpha ac-
ivity modulation with the slow hemodynamic oscillations observed in
esting-state fMRI ( Schirner et al., 2018 ). The injected source-localized
EG data drove BNM dynamics such that simulation results not only
redicted FC patterns, but also the underlying empirical fMRI time se-
ies, which were used to fit the model. Although the model was fit to the
low fMRI time series dynamics, it helped explain activity on much faster
ime scales, like the anticorrelation between individual alpha phase cy-
les and firing rates ( Haegens et al., 2011 ) and their relationship with
he ongoing balance of excitatory and inhibitory currents ( Atallah and
canziani, 2009 ). Importantly, the identified mechanism of this model
ostulates that intermittent bursts of high-power alpha activity led to
ulses of inhibition that reduce the recurrent build-up of excitation in
he global brain network, which leads to a phasic decrease of the ongo-
ng firing of excitatory populations. The ongoing waxing-and-waning of
lpha power and its effect on neural firing then led to slow resting-state
scillations as observed in fMRI. Taken together, this and the previously
iscussed mechanism of slowed collective synchronization ( Cabral et al.,
014 ) may explain the positive relationship between gamma power and
OLD amplitude as well as the inverse relationship between alpha power
nd BOLD amplitude: gamma power decreases and alpha power in-
reases when gamma oscillators synchronize at a slow collective alpha
hythm ( Cabral et al., 2014 ); the increased alpha power in turn leads to
n inhibition of neural firing and the reduced energetic demands lead
o decreased BOLD amplitude ( Schirner et al., 2018 ). 

1. Metastability near a supercritical HOPF bifurcation 

Multistable and metastable dynamics were both used to explain the
mergence of FC(D) in the models discussed above. To better isolate the
uestion which kind of dynamics better explains FC(D) we now turn to-
ards Landau-Stuart oscillators, which describe the dynamics of a sys-

em near a supercritical Hopf bifurcation, where the system switches
etween damped oscillations around a fixed-point and sustained limit-
ycle oscillation ( Izhikevich, 2007 ). This model enables to study the
ynamic principles underlying the emergence of FC(D) in a more direct
anner, as a single parameter controls whether the system is governed

y a multistable regime on either side of the bifurcation or a metastable
egime at the bifurcation point ( Freyer et al., 2012 ; Vlachos, 1995 ). For
xample, Deco et al. (2017b ) studied a brain model based on Landau-
tuart oscillators where the intrinsic frequency of all network nodes was
et into the range of the 0.04–0.07 Hz band of slow fMRI oscillations,
hich is interesting as it isolates those aspects of FC and FCD that can
e readily explained by slow processes without the need for faster ac-
ivity. Interestingly, analysis of model dynamics revealed an important
dvantage of metastable regimes in comparison to multistable regimes
 Hansen et al., 2015 ). For the existing multistable model the optimal
orking point of global network strength for predicting FCD distribu-

ions was at a different value than the optimal working point that op-
imally predicts static FC ( Hansen et al., 2015 ), which is implausible,
ecause FC and FCD co-occur in empirical data where dFC matrices can
e computed from a sliding window analysis of the longer time series
nderlying static FC ( Hutchison et al., 2013 ). Conversely, the metastable
ynamics of the Landau-Stuart oscillators at a supercritical Hopf bifur-
ation enabled to simultaneously optimize the fit with static FC and
CD ( Deco et al., 2017b ). Importantly, at the optimal working point at
he bifurcation not only FCD fit peaked, but also the variability of syn-
hronization patterns–used as an indicator of metastability–was maxi-
ized and at the closest to its empirical value. While a wide range of

lobal coupling values predicted static FC equally well, the fit with FCD
eaked only within a relatively narrow range, which makes it a can-
idate metric for model optimization. This model, therefore, provides
9 
trong corroboration for metastability as the underlying FCD mecha-
ism, since here a single parameter allows for a smooth transition be-
ween and direct comparison of multistable versus metastable dynamics.
omparing model dynamics for attractor dynamics (fixed point for neg-
tive values of the bifurcation parameter, and limit cycle oscillations
or positive values) versus metastable dynamics at the bifurcation be-
ween the attractor states (bifurcation parameter equals zero) shows a
lear superiority of the metastable state to describe FCD. Importantly,
hat distinguishes the multistable from the metastable regime is that in

he former the synchrony (phase uniformity) between nodes remained
elatively stable while in the metastable regime there was more vari-
nce and switching between synchronized and desynchronized clusters.
nterestingly, the best fit occurred at the edge of the Hopf bifurcation,
lose to the value zero for the bifurcation parameter, but still on the
egative side, such that oscillations were still damped. The produced
ime series at this working point therefore also showed more plausi-
le waveforms and spectral contents than previous models: neither a
ustained oscillation (as it is for example the case with Wilson-Cowan
nd Kuramoto units), nor the "filtered noise" spectrum resulting from
xed point attractor dynamics that lacks a clear peak at a dominant fre-
uency. Rather, a mixture of the two emerged: the time series had a
haotic and high-dimensional appearance, like noise, but with a domi-
ant oscillatory component around 0.05 Hz, visually similar to resting-
tate fMRI time series ( He, 2011 ). In summary, Landau-Stuart oscillators
llow a more direct comparison of multistable and metastable dynamics
ithin a single model, underlining the superiority of metastable dynam-

cs to predict FCD. The involved simplifications come, however, with a
rawback: the model does not help to explain how the slow oscillations
merge and what their relationship is with the faster frequency content
f neural power spectra. 

2. Plausible power spectra 

Current BNMs generally fail to adequately replicate the complex frac-
al shape of EEG or MEG spectra ( Messé et al., 2015 ). Empirical spec-
ra have a scale-free 1/f shape (power is inversely proportional to fre-
uency) with defined peaks, e.g., in the alpha range during wakeful
est or in the delta range during deep sleep ( Linkenkaer-Hansen et al.,
001 ). Neural models typically produce either "filtered noise" (the in-
ected noise "filtered" by the fixed-point dynamics), pure oscillations (in
imit cycle models), or noisy metastable oscillations, all of which do
ot address all of the salient characteristics of empirical power spectra
 Messé et al., 2015 ). Although the delay-dependent slowed collective
ynchronization reviewed above is an intriguing mechanism to explain
ow limit cycle oscillators could produce a variety of collective oscilla-
ion frequencies, the produced time series of existing models still show
mplausible waveforms with strong individual peaks in the spectrum
nd a lack of power in other bands preventing to form the character-
stic 1/f shape ( Cabral et al., 2014 ). Problematically, most models as-
ume a single homogeneous oscillation frequency in every brain area
 Deco et al., 2017a ). In contrast, when comparing empirical electro-
hysiological and fMRI data there are multiple "carrier" bands for FC
nd FCD ( Brookes et al., 2011 ; Hipp et al., 2012 ) and their amplitude
nvelopes show a rich correlation structure (that is, FC) over a wide
ange of different frequency bands from 2 to 128 Hz that are strongly
orrelated with fMRI FC ( Hipp and Siegel, 2015 ). Interestingly, elec-
rophysiological oscillations showed primarily connection-specific and
ot network-specific correlations with the BOLD signal indicating that
OLD networks reflect a mixture of neuronal activity oscillations across
ifferent frequency bands rather than being linked to individual specific
requencies ( Hipp and Siegel, 2015 ). 

Problematically, a neural model with a single oscillatory frequency
nly produces envelope correlations in that single band while there is
ot much power in the other bands ( Deco et al., 2017a ). Consequently,
mplitude envelope FC is restricted to a frequency band closely located
round the fundamental frequency of the uncoupled oscillators and does
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ot explain envelope dynamics in the other frequency bands, as ob-
erved with MEG and EEG. 

To produce more plausible spectra and band-specific envelope FC,
eco et al. (2017a) used seven Landau-Stuart oscillators that were set to
ifferent fundamental frequencies (4, 8, 12, 16, 20, 24 and 28 Hz) to sim-
late each brain region. Here the oscillations in the different bands acted
s carrier waves onto which slow power fluctuations were modulated,
hich enabled to predict amplitude envelope FC in all bands, better re-

embling empirical data. However, because the same SC matrix is used
o connect the oscillators at different frequencies, there is little diversity
n the pattern of envelope FCs at different frequencies, which is in con-
rast to empirical data that shows that different rhythms show distinct
C topographies ( Hipp and Siegel, 2015 ; Vezoli et al., 2021 ). Further-
ore, under this model, where no coupling between oscillators at dif-

erent frequencies exists, no cross-frequency interactions like amplitude-
o-amplitude, phase-to-phase or phase-to-amplitude coupling emerged,
hich is in conflict with empirical literature ( Engel et al., 2013 ). In sum-
ary, although the model addressed the BNM problem of implausible
ower spectra, it is an open question in how far stacks of oscillators are
 plausible model for explaining the spectrum of brain waves, as such
tacks would correspond to brain areas that would resonate in parallel at
 range of different frequencies. An alternative hypothesis is that the 1/f
hape emerges from neurons simultaneously synchronizing at a multi-
licity of different delay-dependent network frequencies, similar to what
s proposed in the Cabral et al. (2014) model reviewed above, but with
 more broader distribution of emerging delay-dependent frequencies,
hich would probably require a much more complex neurocircuitry and
elay architecture. 

3. Intermittent synchronization and communication through 

oherence 

Empirical and modelling results indicate that intermittent synchro-
ization may have important functional benefits for gating interareal
ommunication. For example, the influential ’Communication through
oherence’ (CTC) theory ( Fries, 2015 , 2005 ) posits that neuronal com-
unication is subserved by rhythmic synchronization as this creates al-

ernating epochs of excitation and inhibition that focus both spike out-
ut and sensitivity to input into narrow temporal windows. Excitatory
inhibitory) inputs that arrive consistently during periods of excitation
inhibition), have a higher chance of triggering (preventing) postsynap-
ic spikes compared to inputs that arrive at random times and therefore
ncrease effective connectivity, that is, the directed influence one popu-
ation exerts over another population. Consequently, a population that
eceives inputs from several different populations responds primarily to
hose with which it is synchronized, which makes neural communica-
ion selective and allows for precise and flexible routing of information
hile maintaining the same underlying skeleton of anatomical connec-

ions. The theory received experimental support, for example, from stud-
es that show that rhythmic activity modulates input gain ( Siegle et al.,
014 ; van Elswijk et al., 2010 ), that strong effective connectivity re-
uires coherence ( Womelsdorf et al., 2007 ), and that selective commu-
ication is implemented through selective coherence ( Schoffelen et al.,
011 ). Complementary modelling results show that circuits that exhibit
ntermittent synchronization display emerging frequency entrainment
nd phase locking that determine the direction of information flow, as
redicted by the CTC theory ( Palmigiano et al., 2017 ). In this study
pontaneous short-lived bursts of gamma synchronization were pro-
uced by coupling individual units that were tuned below the onset
f stable oscillatory synchrony. The resulting transient epochs of coher-
nce then either boosted or suppressed information transfer, depend-
ng on the transient phase relationship between the involved units, en-
bling to selectively gate information flow along different pathways.
rucial for the emergence of effective inter-areal communication was,
gain, the tuning of the coupling strength parameter to a weakly-
oupled state in between trivial fully asynchronous or synchronous
10 
tates, similar to the emergence of FC(D) in the models discussed
bove. 

Studying CTC in brain models in this manner reveals a striking rele-
ance of both, intermittent synchronization and metastability, for both,
unctional connectivity and effective connectivity ( Deco and Kringel-
ach, 2016 ). As we discussed earlier, tuning a brain model close to a
upercritical Hopf bifurcation not only maximized FC(D) fit, but also
he system’s metastability, characterized as the variability of phase-
ocking synchronization patterns between different nodes ( Deco et al.,
017b ). This observation is non-trivial as a broad and diverse num-
er of phase-coupling states between different network nodes is equiv-
lent to a broad and diverse set of channels for communication through
hase synchronization. In other words, a large repertoire of intermit-
ently stable phase relationships gives rise to a large repertoire of CTC-
ike communication routes. Consequently, maximizing metastability in
his manner simultaneously maximizes the ability for flexible and effec-
ive communication in static brain networks, which supports the idea
hat healthy brain dynamics maximize metastability in order to support
exible communication between areas, while a more limited repertoire
f CTC channels would lead to neurocognitive impairments ( Deco and
ringelbach, 2016 ). 

4. Conclusion 

After comparing the different mechanisms underlying the different
odels in this review, it is becoming clearer that for creating viable

heories of FC(D) it is not enough to "blindly" fit dynamic models with
ndividual metrics of empirical FC(D) and then selecting that with the
ighest fit. The value of BNMs is that they seek to simulate actual phys-
ological entities like firing rates, membrane potentials or BOLD time
eries, with the idea that by analyzing their behavior researchers can
iscover underlying physiological mechanisms. None of the individual
odels provided a full picture that integrated all the important details,

ut rather pointed to certain pieces of the puzzle. The differences be-
ween the models are the assumptions and simplifications on which
hey are built. For example, Kuramoto-based models helped to create
ypotheses on the formation of structured envelope oscillations and
elay-dependent slowed synchronization ( Cabral et al., 2014 ) that are,
hanks to their simplicity, amenable for analytic study. However, the
ink between phenomenological oscillators and neural biophysics is not
lear as they are built on the assumption that brain areas are constantly
ngaged in self-sustained oscillations, as even uncoupled units are con-
tantly oscillating at their set intrinsic frequency, without providing a
echanism that would explain the origin of this oscillation, which re-

uires more detailed neuron-level models. By addressing the problem
rom different perspectives, different models provide different mecha-
istic information that may be useful to build an overall theory. 

In this context, the question "multi- or metastable?" (or multistable
witching between metastable cycles?) seems not so important, because,
s we have seen, the same system could be characterized as both, mul-
istable or metastable, depending on what aspects of the system were
hosen as the relevant state variables, control parameters, etc. When
e talk about multistability we primarily mean that there appear states

hat we identified as "stable" and attractive, which corresponds in the
rain to population activity that supports itself through reverberating
nputs. However, what appears more crucial is the ongoing ability of
he system to destabilize in order to induce the itinerant dynamics of
unctional brain networks, which is then cast into different dynamic pro-
esses like multistable noise-driven switching, noise-driven exploration
f the vicinity of an attractor, reconfiguring the attractor landscape via
arameter changes or wandering along heteroclinic orbits. The deci-
ive element in successful models of FCD–e.g., the multistable model of
ansen et al. (2015) and the metastable model of Deco et al. (2017b )–

eems to be the existence of many different (semi-)stable states. In
ansen et al. (2015) the best prediction happened at the working point
f the model where the highest number of multistable states emerged in
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he network. Similarly, in Deco et al. (2017b ) the best FCD prediction
appened at the point where the variability of the number of states of
hase synchrony was maximized. In this light, the question of whether
ubspaces are stable or unstable–or whether their stability can be flexi-
ly reconfigured–seems less important than the number of states and the
ombined dynamic repertoire that they are able to provide. And more
mportant even than the number of states is the functions they encode,
hich are in the currently existing BNMs arguably simple. Therefore,

t appears promising to better understand how low-dimensional sub-
paces that constrain the system’s flow (and thereby the possible func-
ional configurations of the system), called structured flows on mani-
olds ( McIntosh and Jirsa, 2019 ), could be designed in a targeted man-
er, e.g. by using circuit training algorithms ( Zenke and Vogels, 2021 ).
romising are also studies where BNMs are equipped with the more
omplex dynamics of so-called strange attractors (which exhibit a fractal
tructure, alluring to scale invariance), which yielded good predictions
f both FC and FCD, similar to the supercritical Hopf model, but over a
ider range of parameters ( Piccinini et al., 2021 ). 

What are the next steps? Predicting static FC from SC with BNMs is
ot an overly complex task–even simple linear models can predict the
attern to a fair degree ( Cabral et al., 2017 ). On the other hand, pre-
icting plausible itinerant switching dynamics of FCD is much harder.
here exist successful models to explain the histogram of FCD, phase
ynchronization, metastability (meaning "variability"), slow oscillations
nd synchronization patterns. However, an open question is in how far
he actual repertoire of dFC patterns and their explicit switching dy-
amics can be reproduced, as fitting only the FCD distribution conveys
o information about the plausibility of the dFC patterns or their se-
uence of switching. Also, what is missing is a model that predicts dFCs
nd FCD on the basis of plausible neural activity. The power spectra of
NM simulations look implausible–either filtered noise or overly dom-

nant oscillations–and do not reproduce the characteristic shape of em-
irical spectra (1/f slope with a waxing-and-waning peak in the alpha
ange and ongoing short-lived power modulations in lower and higher
ands), even those that are based on spiking networks ( Cabral et al.,
017 ; Messé et al., 2015 ). Here, too, the goal is not an exact quantita-
ive reproduction but rather explaining key qualities and the underlying
echanisms leading to their emergence. Different models reproduce dif-

erent aspects of the desired power spectra, so failure to reproduce could
e related to the simplifications in these models. One key question, for
xample, is that on the emergence of slower rhythms (e.g., alpha and
eta bands), as well as their ongoing power modulation. One hypothesis
osits that slow oscillations emerge from metastable chimera synchro-
ization as in Cabral et al. (2014) where fast oscillators (40 Hz) spon-
aneously synchronized on a slower network limit cycle in the alpha
nd beta band range. An alternative hypothesis is provided through the
odel of Freyer et al. (2011) where a slow multistable switching of the

lpha rhythm power emerged at a subcritical Hopf bifurcation, repro-
ucing detailed empirical observations. Neither of the two hypotheses
an explain the full complexity of empirical data, but they nevertheless
elp to elucidate candidate mechanisms that can be used to refine and
onstrain more detailed models and to design empirical experiments.
 parsimonious way forward may be multiscale simulations where the
ajority of the brain are simulated with simple models and more de-

ails are only incorporated at selected regions of interest ( Meier et al.,
021 ). Likewise, simulations can also be simplified by not directly mod-
lling all aspects of brain activity, but instead injecting empirical data
e.g., source projected EEG or MEG, or artificially generated plausible
ctivity) into the population models ( Schirner et al., 2018 ). 

Having traced the origins of FC(D) to synchronization of coupled os-
illators, we may ask: what is this tendency of neural populations to
ynchronize good for, anyway? Apart from the already mentioned ad-
antages of systems near a critical point (regarding improved communi-
ation, increased repertoire of states, information capacity and dynamic
ange) the function of synchronization and network-formation may be
elated to ’predictive coding’ theories. Predictive coding assumes that
11 
he brain is encoding a model of the world that is used to predict sensory
nputs in order to adapt behavior and to update the model based on pre-
iction errors ( Fiser et al., 2010 ; Rao and Ballard, 1999 ). The link to pre-
ictive coding is important as there is a remarkable correspondence be-
ween the anatomical connectivity of canonical cortical microcircuitry,
ts tendency for synchronization in different frequency bands, and the
ynamical constraints implied by predictive coding ( Bastos et al., 2012 ).
pecifically, the predictive coding model predicts that the frequency of
scillatory activity of superficial pyramidal cells for encoding predic-
ion errors is suppressed when passing prediction errors to deep pyra-
idal cells ( Friston, 2008 ), which is in close agreement with empiri-

al data that showed that gamma-band synchrony was largely confined
o superficial layers whereas deep layers showed maximal coherence
n theta and alpha ranges ( Bosman et al., 2012 ; Buffalo et al., 2011 ).
he resulting functional implications of such concurrent synchroniza-
ion with different rhythms have been formulated in the Communication
hrough Coherence hypothesis, which posits that the faster bottom-up
amma rhythms selectively focus synaptic inputs to arrive simultane-
usly by entraining the rhythm between pre- and postsynaptic neurons,
hile the slower alpha-beta band top-down rhythms implements an at-

entional sampling of different inputs or representations ( Fries, 2015 ).
xtending this idea beyond the skull, the function of synchronization for
redictive coding could be one of creating a resonance effect between
nternally generated (e.g., memory-dependent) activity fluctuations and
ctivity fluctuations originating outside the brain, arriving in the form
f external stimuli ( Berkes et al., 2011 ). Under this theory, perception
ould induce dynamical instabilities and associated critical slowing that
nable the brain to respond sensitively to sensory perturbations to aid
ctive inference ( Friston et al., 2012 ). 

Implementing predictive coding, e.g., with the help of orches-
rated plasticity rules, and gradients of excitation versus inhibition
 Wang, 2020 ), to shape a hierarchical topology that supports exchange
f predictions and prediction errors between higher and lower areas
 Kanai et al., 2015 ), could pave the way for brain models that self-learn
omplex functions from supplied inputs ( Zenke et al., 2015 ). 

The idea that synchronization is part of a general mechanism for
erception, communication and adaptation that extends even beyond

he individual receives impressive support by a growing number of ex-
eriments that revealed the existence of synchronized fMRI activity as
ell as synchronized dFC fluctuations across participants that can be re-

iably linked with visual, auditive or even narrative features of complex
free viewing" naturalistic stimuli like watching a movie ( Betzel et al.,
020 ; Bolton et al., 2019 ; Hasson et al., 2004 ; Manning et al., 2018 ;
imony et al., 2016 ). Out of this perspective the question may follow:
ow are functional networks and synchronization related to cognitive
ontent like thoughts and other mental activity? On the one hand there
s compelling evidence that BOLD dFC is sensitive to ongoing cognitive
nd behavioral tasks and states ( Cohen, 2018 ; Gonzalez-Castillo and
andettini, 2018 ; Lurie et al., 2020 ; Shine and Poldrack, 2018 ). Im-
ortantly, classifiers trained on dFC patterns during task execution can
e used to predict subjective emotional experience, objective measures
f task performance, task epoch, condition-specific pretrial preparatory
rocesses, subsequent behavioral performance and perceptual outcomes
 Lurie et al., 2020 ). For example, it has been possible to accurately track
he mental state of subjects that engaged in and transitioned between
ifferent externally cued tasks for time windows ranging from 180 s
o 22.5 s and at the same time a significant association between clas-
ification performance and behavioral performance was demonstrated
 Gonzalez-Castillo et al., 2015 ). Similarly, in the absence of task instruc-
ions or stimulation spontaneous BOLD activity and network dynam-
cs can also be closely associated with self-reported thoughts and other
eatures of ongoing mind wandering ( Chou et al., 2017 ; Kucyi, 2018 ;
ucyi and Davis, 2014 ; Mittner et al., 2014 ). On the other hand, the
onclusion drawn from these observations that all ongoing BOLD ac-
ivity directly reflects cognition and behavior can be easily challenged
 Laumann and Snyder, 2021 ) as FC topography remains remarkably sta-
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le during slow-wave sleep ( Sämann et al., 2011 ), anesthesia (although
ovariance diminishes with increased sedation; ( Mhuircheartaigh et al.,
010 )), task state ( Gratton et al., 2018 ), over long scanning times
 Poldrack et al., 2015 ), across scanning sessions ( Gratton et al., 2018 ),
cross humans ( Damoiseaux et al., 2006 ), and even across mammalian
pecies ( Hutchison et al., 2010 ; Mantini et al., 2011 ). A more nuanced
erspective therefore acknowledges that brain activity may not only
e for "online" thinking processes, but may also include "offline" pro-
esses such as homeostatic and consolidative signaling related to learn-
ng and memory ( Laumann and Snyder, 2021 ). Especially ongoing fluc-
uations of arousal have been associated with global waves of activity
hat slowly propagate in parallel throughout the brain and that likely
ccount for a large portion of variance in FCD and synchronization dy-
amics ( Lurie et al., 2020 ; Raut et al., 2021 ). 

In summary, BNMs helped to understand important aspects of resting-

tate FC(D) in terms of relatively simple dynamical primitives (in com-
arison to the much more complex behavior of strange attractors). Now
t seems high time to equip BNMs with more complex function, for
xample, by first learning the structure of low-dimensional manifolds
rom empirical data ( Gallego et al., 2020 ; Rué-Queralt et al., 2021 )
nd then implementing them into small-scale and large-scale networks
 McIntosh and Jirsa, 2019 ; Zenke and Vogels, 2021 ). 
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