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The post-Newtonian dynamics of black hole binaries in Einstein-scalar-Gauss-Bonnet theories of
gravity depends on the so-called “sensitivities”, quantities which characterize a black hole’s adiabatic
response to the time-dependent scalar field environment sourced by its companion. In this work, we
calculate numerically the sensitivities of nonrotating black holes, including spontaneously scalarized
ones, in three classes of Einstein-scalar-Gauss-Bonnet gravity: the shift-symmetric, dilatonic and
Gaussian theories. When possible, we compare our results against perturbative analytical results,
finding excellent agreement. Unlike their general relativistic counterparts, black holes in Einstein-
scalar-Gauss-Bonnet gravity only exist in a restricted parameter space controlled by the theory’s
coupling constant. A preliminary study of the role played by the sensitivities in black hole binaries
suggests that, in principle, black holes can be driven outside of their domain of existence during the
inspiral, for binary parameters which we determine.

I. INTRODUCTION

The detection of gravitational waves from compact bi-
nary coalescences by the LIGO-Virgo collaboration [1–3]
started a new era in experimental gravitational physics
where, for the first time, we can test the predictions of
general relativity (and modifications thereof) in highly
dynamical, nonlinear environments [4–12]. A prerequisite
to perform such tests is a description of the orbital dy-
namics and the associated gravitational wave emission of
inspiralling compact objects (i.e., neutron stars and black
holes) in relativistic gravity theories [13–15].

A well-motivated class of modifications to general rela-
tivity introduces a dynamical scalar field that couples non-
minimally to the Gauss-Bonnet density. These Einstein-
scalar-Gauss-Bonnet (ESGB) theories arise in the low-
energy limit of heterotic string theory [16], and also from
the dimensional reduction of higher-dimensional Lovelock
theories [17]. They are a subclass of Horndeski grav-
ity [18, 19] and also arise from an effective field theory
perspective [20, 21]. Due to the coupling between the
scalar field and the Gauss-Bonnet density, black holes in
these theories can violate no-hair theorems [22–37] and
exhibit spontaneous scalarization [38–42]. As a conse-
quence, black holes are endowed with a monopole scalar
charge, which can source dipolar scalar radiation in bi-
nary black hole systems [43, 44]. This makes black hole
binaries ideal systems to constrain (or to look for evidence
in favor of) these theories with current [10–12] and future
gravitational-wave observatories [45, 46].
With this motivation, considerable effort has been

placed in developing tools to model the dynamics of black
hole binaries in ESGB gravity, including the prediction
of gravitational waveforms, using both post-Newtonian
(PN) [43, 47–50] and numerical relativity [51–59] ap-
proaches, the latter accompanied by works studying the
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FIG. 1. Illustration of the problem. Two black holes with
Arnowitt-Misner-Deser (ADM) masses MA,B and with scalar
charges QA,B are in a binary system. The scalar field of each
black hole affects its companion, altering its mass and scalar
charge. In the PN regime, and when finite-size corrections
(e.g. tidal and out-of-equilibrium effects) can be neglected,
these changes take place adiabatically, keeping the Wald en-
tropy S A,B

W of each black hole constant. The change in the
mass due to a slowly-varying scalar field environment at con-
stant Wald entropy is the sensitivity, which we calculate here.

Cauchy problem in this theory [60–65]. The “skeletoniza-
tion” of an analytical black hole solution in this theory [47]
can be used to show that the two-body Lagrangian de-
scribing the dynamics of black hole binaries at first PN
order requires the knowledge of the so-called “sensitivi-
ties”, quantities which characterize the adiabatic changes
(more precisely, at constant Wald entropy) in the black
holes’ mass and scalar charge induced by the slowly vary-
ing external scalar field sourced by their companion, as
illustrated in Fig. 1. These sensitivities are the black hole
counterparts of a similar concept introduced for neutron
stars in scalar-tensor theories in [66–70]. They also arise in
the two-body problem in Einstein-Maxwell-scalar [71–73]
and in Lorentz-violating theories [74, 75].
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Here we develop a method to compute the sensitivities
of nonrotating black holes using a full numerical approach.
This requires, as a preliminary step, that we obtain black
hole solutions that generalize those in the literature: we
obtain families of constant Wald entropy black holes with
nonvanishing asymptotic scalar fields. The sensitivities
were also calculated using the analytical, but perturbative,
approach of Ref. [47]. We show that the analytical Padé-
approximants obtained there (and extended to higher
orders here) show remarkable agreement with numerical
calculations. We also calculate, for the first time, the
sensitivity of nonrotating, spontaneously scalarized black
holes. With these results at hand, we speculate that black
holes with real and regular scalar hair can cease to exist in
binaries in ESGB theories, and we discuss the implications
of this possibility. The method developed here to calculate
the black hole sensitivity should be applicable in other
gravitational theories as well.

The paper is organized as follows. In Sec. II we briefly
review ESGB gravity and how black hole solutions are
obtained numerically in this theory. In Sec. III we develop
a strategy to calculate the sensitivities numerically, and
present results for selected classes of ESGB theories. In
Sec. IV we apply these results to study the evolution of
black holes in binaries in this theory. Finally, in Sec. V we
summarize our main findings and discuss possible avenues
for future work. We use geometrical units (G = c = 1)
throughout this work.

II. EINSTEIN-SCALAR-GAUSS-BONNET
GRAVITY

A. Action and field equations

The theory we consider is described by the action

S =
1

16π

∫
d4x
√−g

[
R− 2(∂ϕ)2 + `2f(ϕ)G

]
, (1)

where we use the same notation as in Ref. [47]: R is the
Ricci scalar, g = det gµν is the metric determinant, and
ϕ a scalar field with kinetic term (∂ϕ)2 = gµν∂µϕ∂νϕ
which couples to the Gauss-Bonnet invariant

G = RµνρσRµνρσ − 4RµνRµν +R2 = RµνρσPµνρσ , (2)

where Rµνρσ and Rµν are the Riemann and Ricci tensors,
respectively, and

Pµνρσ = Rµνρσ − 2δµ[ρR
ν
σ] + 2δν [ρR

µ
σ] + δµ[ρδ

ν
σ]R ,

(3)

with brackets denoting antisymmetrization, as in
δµ[ρδ

ν
σ] = (1/2)(δµρδ

ν
σ − δµσδ

ν
ρ). The tensor Pµνρσ

has the symmetries of the Riemann tensor and is
divergence-free due to the Bianchi identities (see e.g.
Refs. [63, 76, 77]). The integral of the Gauss-Bonnet
scalar over a four-dimensional spacetime

∫
d4x
√−g G is a

boundary term [78]. The function f(ϕ) defines the theory,

and the Gauss-Bonnet coupling strength is set by the
constant `, with dimensions of length.

The field equations of the theory, obtained by varying
the action (1) with respect to gµν and ϕ, are:

Rµν = 2∂µϕ∂νϕ− 4`2
(
Pµανβ − 1

2gµνPαβ
)
∇α∇βf , (4a)

�ϕ = −(`2/4)f,ϕ(ϕ)G , (4b)

where Pµν = Pαµαν , ∇µ is the metric-compatible covari-
ant derivative associated to gµν , and � = ∇µ∇µ. We also
use (·),ϕ = d(·)/dϕ to indicate derivatives with respect to
the scalar field ϕ.

B. Nonrotating black holes

We are interested in obtaining static, spherically sym-
metric black hole solutions. We consider a line element
of the form [37]:

ds2 = −N(r)σ2(r)dt2 +N(r)−1dr2

+ r2(sin2 θ dθ2 + dφ2) , (5)

in Schwarzschild-Droste coordinates xµ = {t, r, θ, φ} and
a scalar field ϕ(r). We define

N(r) = 1− 2m(r)/r , (6)

where m(r) is the Misner-Sharp mass [79] such that
m(r) → M as r → ∞, and M is the ADM mass of
the spacetime. The Schwarzschild solution is recovered
by setting m(r) = M and σ = 1. The Gauss-Bonnet
invariant G for this line element is

G =
4

r2

[
N ′

2
+
σ′

σ
N ′(5N − 3)

+N(N − 1)

(
N ′′

N
+

2σ′′

σ

)]
, (7)

from which we can recover the familiar result G =
48M2/r6 in the Schwarzschild limit.

For convenience, we introduce the dimensionless quan-
tities

r∗ = r/rH , and `∗ = `/rH , (8)

where for now rH is an arbitrary length (in this paper, an
asterisk subscript will always denote a quantity that has
been made dimensionless by dividing by rH). We can then
use Eq. (5) in the field equations (4a)-(4b) to obtain a
system of differential equations for N ′, σ′, and ϕ′′, where
(·)′ = d(·)/dr∗. The steps are as follows. First, the (tt)-
and (rr)-components of Eq. (4a) provide a system of two
equations, which we can solve for m′ and σ′ in terms
only of N and first and second derivatives of ϕ. These
are the first two equations we need. Second, from the
(θθ)-component of Eq. (4a), we solve for m′′. Finally, we
can use the equations obtained in the previous step to
eliminate m′, m′′ and σ′ from Eq. (4b). This is the third
equation we need.

Explicitly, the system of equations we work with is:
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1−N − r∗N ′
2

[
1 +

2`2∗
r∗

(1− 3N)ϕ′f,ϕ

]
− r2
∗
2
Nϕ′

2 − `2∗(N − 1)

{
2Nϕ′

2
f,ϕϕ +

[
(1− 3N)

ϕ′

r∗
+ 2Nϕ′′

]
f,ϕ

}
= 0 , (9a)

σ′

σ

[
1 +

2`2∗
r∗

(1− 3N)ϕ′f,ϕ

]
−
[
r∗ϕ
′2 − 2`2∗

r∗
(N − 1)

(
ϕ′

2
f,ϕϕ + ϕ′′f,ϕ

)]
= 0 , (9b)

ϕ′′
[
1 +

2`2∗
r∗

(1− 7N)ϕ′f,ϕ −
12`4∗
r4∗

[
(N − 1)2 + 2r2

∗(1− 3N)Nϕ′
2
]
f,ϕ

2

+
8`6∗
r5∗

{
6(N − 1)2 + [1 + 3(2− 5N)N ]r2

∗ϕ
′2
}
Nϕ′f,ϕ

3

]
+`2∗

{
f,ϕ
r4∗N

[
3(1−N)2 + 2r2

∗
(
1−N − 12N2

)
ϕ′

2 −Nr4
∗ϕ
′4
]
− 2

r∗
(1−N)ϕ′

3
f,ϕϕ

}
+

4`4∗
r5∗

{[
−3(N − 1)2 + 2r2

∗(−1 + 3N)(−1 + 7N)ϕ′
2

+Nr4
∗ϕ
′4
]
f,ϕ

−r∗(−1 +N)
[
3(−1 +N) + r2

∗(−1 + 3N)ϕ′
2
]
ϕ′ f,ϕϕ

}
ϕ′ f,ϕ

8`6∗
r5∗

[
r∗(1− 3N)2(1− 5N)ϕ′f,ϕ + 3N(N − 1)2(2 + r2

∗ϕ
′2)f,ϕϕ

]
ϕ′

3
f,ϕ

2 +
1 +N

r∗N
ϕ′ = 0 . (9c)

This is a system of three coupled ordinary differential equa-
tions for N ′, σ′ and ϕ′′, which then requires four initial
conditions. The system can be solved numerically once a
particular function f and value of `∗ have been chosen.
For example, choosing f = 2ϕ, we recover Eqs. (3.3)-(3.4)
from Ref. [37] (see also [26]).

To obtain black hole solutions, we now identify rH with
the horizon radius and assume that the functions N , σ
and ϕ admit power series expansions near r∗ = 1 as:

N = NH
1 (r∗ − 1) + . . . , (10a)

σ = σH + σH1 (r∗ − 1) + . . . , (10b)

ϕ = ϕH + ϕH1 (r∗ − 1) + . . . . (10c)

We can substitute these expressions into Eqs. (9) and
solve order-by-order to fix all their coefficients in terms
of `∗, ϕH and σH only. In particular, we find

ϕH1 = −1−
√

1− 24 `4∗ f,ϕ(ϕH)2

4`2∗f,ϕ(ϕH)
, (11)

from which we conclude that `∗ and ϕH must satisfy the
well-known condition [32]

24 `4∗ f,ϕ(ϕH)2 < 1 (12)

for ϕ′ to be real at the horizon, hence restricting the range
of allowed values of ϕH given `∗ = `/rH .

We numerically integrate Eqs. (9) to find N(r∗), σ(r∗)
and ϕ(r∗) given four initial conditions on the horizon:

N = 0, σ = σH , ϕ = ϕH , and ϕ′ = ϕH1 , (13)

where ϕH1 is given by Eq. (11). Note that the numerical
value of σH is pure gauge: it can always be absorbed

in a rescaling of time t, cf. Eq. (5). Hence, black hole
solutions depend on two integration constants only, ϕH
and `∗ = `/rH . The latter fully takes into account the
dependence on the fundamental coupling `, which only
enters through this ratio in Eqs. (9).
We can also expand N , σ and ϕ in inverse powers of

r∗ to study their asymptotic behavior at spatial infinity,
i.e. for r∗ � 1. By substituting the series

N = 1− 2M∗
r∗

+
N∞2
r2∗

+
N∞3
r3∗

+ . . . , (14a)

σ = 1 +
σ∞1
r∗

+
σ∞2
r2∗

+
σ∞3
r3∗

+ . . . , (14b)

ϕ = ϕ̄+
Q∗
r∗

+
ϕ∞2
r2∗

+
ϕ∞3
r3∗

+ . . . , (14c)

into Eqs. (9) and solving iteratively we find

N∞2 = Q2
∗ , N∞3 = M∗Q

2
∗ ,

σ∞1 = 0 , σ∞2 = −Q2
∗/2 , σ∞3 = −4M∗Q

2
∗/3 ,

ϕ∞2 = M∗Q∗ , ϕ∞3 = (8M2
∗Q∗ −Q3

∗)/6 . (15)

At all orders, the coefficients entering Eq. (14) are func-
tions of three constants M∗, Q∗ and ϕ̄. But for black
holes, all three quantities are fixed by the two integration
constants `∗ and ϕH [once σH is set to ensure the gauge
σ = 1 at infinity as in Eq. (14b)]: the “scalar hair” is said
to be “secondary” [80, 81]. AlthoughM∗, Q∗ and ϕ̄ can be
obtained from the O(r−1

∗ ) fall-off of N and ϕ, we also use
subleading terms up to O(r−3

∗ ) and the expansion of σ to
accurately extract them from our numerical integration,
which terminates at a finite r∗.

Let us conclude this section by further illustrating the
consequences of Eq. (12), as it will play an important role
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below. Solving analytically for the coefficients of Eqs. (10)
up to ϕH4 , NH

4 and σH3 , we can compute the near-horizon
scalar field and Gauss-Bonnet invariant (7) as

ϕ = ϕH +

4∑
n=1

ϕHn (r∗ − 1)n +O(r∗ − 1)5 , (16a)

G r4
H = gH +

2∑
n=1

gHn (r∗ − 1)n +O(r∗ − 1)3 , (16b)

where ϕH1 is given by Eq. (11) and where the other coef-
ficients are long functions of `∗ and ϕH [but not of the
gauge-fixing quantity σH , see below Eq. (13)] available
online [82]. However, near the saturation of the bound
(12), i.e., when ε2 = 1− 24 `4∗ f,ϕ(ϕH)2 � 1 but ε 6= 0, we
find

ϕH1 = −
√

3

2
+O(ε) , (17a)

ϕH2 =

√
3

2

9

16

χ

ε
+O(ε0) , (17b)

ϕH3 = −
√

3

2

27

128

χ2

ε3
+O(ε−2) , (17c)

ϕH4 =

√
3

2

729

4096

χ3

ε5
+O(ε−4) , (17d)

and

gH = 48 +O(ε) , (18a)

gH1 = −216
χ

ε
+O(ε0) , (18b)

gH2 =
729

4

χ2

ε3
+O(ε−2) , (18c)

with χ = 3 + 4`2∗f,ϕϕ(ϕH). While ϕH1 and gH are finite
and do not depend on f(ϕ) in this limit, every other
coefficient in Eqs. (17)-(18) is singular. We find quali-
tatively similar results, that we report in Appendix A,
for the Ricci and Kretschmann curvature invariants R
and K = RµνρσRµνρσ. In Sec. III A, we will compare the
analytic predictions (16) to numerical results.

III. BLACK HOLE SENSITIVITIES

The PN dynamics of black hole binaries in ESGB grav-
ity was studied in Refs. [43, 47–49] in the weak-field,
slow orbital velocity limit. In this context, Refs. [47, 83]
showed that when finite-size corrections (e.g. tidal and
out-of-equilibrium effects) can be neglected, each black
hole is described by a sequence of static configurations
with identical Wald entropy SW defined as [84–86]

SW =
AH

4
+ 4π`2f(ϕH) , (19)

where AH is the horizon surface area (here 4πr2
H). The

PN Lagrangian [47] and fluxes [43, 48, 49] then depend on

“sensitivities” which characterize the response of each black
hole to its adiabatically changing scalar-field environment.

More precisely, the sensitivity of a black hole is defined
as the logarithmic change in M with respect to ϕ̄ [cf.
Eq. (14c)] at fixed Wald entropy SW [47, 83]:

α ≡ d lnM

dϕ̄

∣∣∣∣
SW

=
1

M

dM

dϕ̄

∣∣∣∣
SW

, (20)

and we denote its derivative with respect to ϕ̄, which also
enters the 1PN Lagrangian [47], by β:

β ≡ dα

dϕ̄

∣∣∣∣
SW

. (21)

Equation (20) is similar to the notion of sensitivity for
self-gravitating bodies (such as neutron stars) in scalar-
tensor theories, defined as the logarithmic change in the
ADM mass M with respect to some external ϕ̄, but at
fixed baryonic mass [68–70].

In a binary, the sensitivity α of a body accounts for the
readjustments of its ADM mass M and scalar charge Q
during the inspiral. This sensitivity has to be evaluated at
a value ϕ̄ corresponding to its time-varying but spatially
homogeneous background scalar field sourced by the far-
away companion (recall that finite-size effects are here
neglected). For our purposes, we take ϕ̄ to be just some
nonzero scalar field value in which the isolated black hole
is embedded.
Reference [47] also showed that the variation of SW,

M and ϕ̄ with respect to the black hole’s integration
constants (here `∗ and ϕH , see Sec. II B) must satisfy the
identity

T δSW = δM +Qδϕ̄ , (22)

where T is the temperature [47], whose expression we do
not need here. Comparing this first law of thermodynam-
ics in the case of interest (δSW = 0) with the definition
(20) we get

α = −Q/M , (23)

which provides a second, independent way of calculating
the black hole sensitivity.

We numerically calculate the sensitivity α as follows:

1. Fix a value of the dimensionless ratio `/µ, where

µ2 =
SW

4π
(24)

is the irreducible mass squared [87]. From Eq. (19),
this ratio is related to `∗ = `/rH and ϕH through

(`/µ)−2 = (4`2∗)
−1 + f(ϕH) . (25)

2. Choose a value of the scalar field at the horizon ϕH .
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3. Using Eq. (25), solve for `∗ and use this value to
numerically construct a black hole, integrating the
system (9) with initial conditions (13) at r∗ = 1 up
to a large value of r∗. The constant σH is pure gauge
and we fix it by requiring that the line element (5)
asymptotes to σ = 1.

4. Calculate the quantities ϕ̄, M∗ and Q∗ from the
asymptotic expressions (14).

5. Repeat steps (2) to (4) for the range of ϕH values
allowed by Eq. (12), hence obtaining a family of
constant Wald entropy black holes. For such a
family the condition (12) becomes

3
2f,ϕ(ϕH)2 < [(µ/`)2 − f(ϕH)]2 . (26)

6. Since a constant SW is equivalent to a constant µ,
we can calculate α numerically by inserting

M/µ = M∗(`/µ)`−1
∗ (27)

into Eq. (20), or by directly computing the
scalar-charge-to-mass ratio −Q∗/M∗ = −Q/M [cf.
Eq. (23)], which is invariant under rescaling by rH .
Once we know α, we calculate β using Eq. (21).

The numerical methods used in this paper are summa-
rized in Appendix B. In calculations that will follow, we
will be interested in the behavior of certain quantities
close to the saturation of Eq. (26). Numerically, we can
only reach a minimum value of ε = |ϕH − ϕmax

H |, where
ϕmax
H saturates Eq. (26). Here we take ε ∼ 10−5, and

we will refer to the limiting process as “approaching the
saturation of Eq. (26).”

In the context of PN calculations, M/µ, α and β must
be viewed as functions of the asymptotic scalar field ϕ̄, the
irreducible mass µ, and the fundamental constant `. The
last two only contribute through their dimensionless ratio
`/µ, since the only free parameter entering the differential
equations (9) is `∗, which is in turn related to `/µ through
Eq. (25). We find full agreement between both methods
specified in step 6 above to compute the sensitivity α.
This proves that our families of constant-entropy black
holes are consistent with the first law of thermodynamics:
see the discussion following Eq. (22).

When possible, our numerical results will be compared
against the analytical black hole sensitivities obtained in
a small-`/µ expansion around Schwarzschild in Ref. [47].
The results there have the schematic form

α = −x
2
−

N∑
n=2

An(ϕ̄)xn , x =
`2f ′(ϕ̄)

µ2
, (28)

where the coefficients An depend on f and its derivatives
evaluated at ϕ̄. The calculation in Ref. [47] obtained the
series (28) up to N = 4 and here we extend it up to
N = 10 for a more careful comparison with our numerical
results. These lengthy results are available online [82].
In the following subsections we compare the numeri-

cal and analytical calculations for black holes for three
particular choices of the coupling function f .
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ϕH = 3.77

ϕH = 3.775
ϕH = 3.7752
ϕH = 3.77525

−3 0 3

105 · (r∗ − 1)

45.0

47.5

50.0
Analytical

FIG. 2. A sequence of constant (`/µ)2 = 10−1 black holes
with ϕH approaching ϕmax

H ≈ 3.77526, inside (shaded region,
r∗ < 1) and outside (r∗ > 1) the horizon. Top panel: the
Gauss-Bonnet scalar diverges at r∗ = {0.956, 0.965, 0.999}
when ϕH = {3.50, 3.60, 3.77} approaches ϕmax

H . The inset also
shows ϕH = {3.775, 3.7752, 3.77525}, closing in into ϕmax

H one
order of magnitude after another. Bottom panel: the scalar
field is finite at the curvature singularity. In the bottom panel
and in the top panel’s inset, the numerical results agree at
r∗ = 1 with the (2, 2)-Padé resummation of Eq. (16a) and
the (1, 1)-Padé resummation of Eq. (16b), respectively. In
particular, G r4H approaches the value 48 when ϕH approaches
ϕmax

H , hence recovering Eq. (18a), with G r4H ≈ 47.73 for ϕH =
3.77525. Both G r4H and ϕ converge to finite values for all
r∗ > 1 when ϕH is increased towards ϕmax

H .

A. Shift-symmetric theory

As a first example, consider the theory

f(ϕ) = 2ϕ , (29)

such that the action (1) becomes invariant under the shift
ϕ → ϕ + ∆ϕ, where ∆ϕ is a constant. The condition
for the existence of a real scalar field at the horizon of
constant entropy black holes (26) simplifies to

ϕH <
1

2

(
µ2

`2
−
√

6

)
. (30)

In Fig. 2, we show the radial profiles of the Gauss-
Bonnet invariant (top panel) and scalar field (bottom
panel), both inside (shaded region, r∗ < 1) and outside
(r∗ > 1) the horizon, for a sequence of constant (`/µ)2 =
10−1 black holes, as ϕH approaches the maximum value
ϕmax
H = (10−

√
6)/2 ≈ 3.77526 saturating Eq. (30). As is
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r/
r H

=
1

FIG. 3. Numerical Gauss-Bonnet scalar G r4H evaluated at the
event horizon r∗ = r/rH = 1 for a sequence of black holes with
constant (`/µ)2 = 10−1. As the scalar field at the horizon ϕH

approaches its maximum allowed value ϕmax
H ≈ 3.77526, the

Gauss-Bonnet scalar tends to the limit G r4H = 48 (horizontal
line) predicted analytically by Eq. (18a).

well-known from, e.g., Refs. [29, 35], the black holes have
a hidden curvature singularity which is driven towards the
horizon as ϕH approaches ϕmax

H . However, in this paper we
wish to shed new light on this phenomenon. To this aim,
we carefully let ϕH approach ϕmax

H one order of magnitude
after another, since we cannot saturate Eq. (30) exactly
due to the finite precision of numerical integrations.
Figure 2 shows the excellent agreement at r∗ = 1

between the numerical profiles and their analytic near-
horizon counterparts in Eqs. (16). Moreover, a striking
feature of the radial profiles of Gr4

H and ϕ is that they
both converge to finite values for all r∗ > 1 when ϕH is
increased towards ϕmax

H despite, meanwhile, the hidden
curvature singularity approaching the horizon. Our re-
sults provide numerical evidence that as ϕH approaches
ϕmax
H , the Gauss-Bonnet scalar reaches the finite value
Gr4

H = 48 as r∗ → 1 with r∗ > 1, as shown in Fig. 3.
This value of Gr4

H = 48 coincides with the first term in
the analytic, theory-independent prediction of Eq. (18a).
Given these results, it is not clear that a naked singu-
larity arises when one saturates the bound in Eq. (12)
(see e.g. [29, 35]). We find qualitatively similar behav-
ior for the Gauss-Bonnet scalar and scalar field in the
other ESGB theories considered in this paper. We also
provide analytical near-horizon expansions of the Ricci
and Kretschmann scalars valid for all ESGB theories in
Appendix A.

Let us now return to the sensitivity α. As explained
below Eq. (27), this quantity must be seen as a function
of ϕ̄ and of the ratio `/µ. However, we can exploit the
theory’s shift symmetry to calculate it for all values of
`/µ at once. Indeed, the Wald entropy (19) now reads

SW = π(r2
H + 8`2ϕH) , (31)

and it is linear in ϕH . The sensitivity can therefore only
depend on the combination

ϕ̄− µ2

2`2
(32)

which is invariant under a scalar field shift, i.e., under
the simultaneous redefinitions ϕ̄ → ϕ̄ + ∆ϕ and µ2 =
SW/4π → µ2 + 2`2∆ϕ. This means that the sensitivities
of black holes with constant irreducible masses µA and µB ,
in shift-symmetric theories with fundamental couplings `A
and `B respectively, are related to each other as αA(ϕ̄) =
αB(ϕ̄+ ∆ϕ̄) with

∆ϕ̄ =
1

2

(
µ2
B

`2B
− µ2

A

`2A

)
. (33)

That this is the case was verified in the perturbative cal-
culation of Ref. [47], but it can also be proven nonpertur-
batively as follows. Substitute ϕ = Φ + µ2/(2`2) into the
differential system (9) with `2∗ = −1/(8ΦH) [cf. Eq. (25)],
and observe that the result depends on a single parameter,
ΦH = ϕH−µ2/(2`2). Then, integrate the system using the
initial conditions (13) on the horizon r∗ = 1, i.e. N(1) = 0,
Φ(1) = ΦH and Φ′(1) = ΦH − (Φ2

H − 3/2)1/2, and note
that ΦH is therefore the only integration constant. The
latter can finally be traded for Φ̄ = ϕ̄− µ2/(2`2), which
is the asymptotic value of Φ at large r∗ that coincides
with Eq. (32), by inverting Φ̄(ΦH).

In Fig. 4, we therefore show the ADM-to-irreducible
mass ratioM/µ (left panel) and sensitivity α (right panel)
as functions of the combination of Eq. (32). The top-right
panel also includes analytic approximants of α obtained
from the Taylor series (28) with N = 4, its (2, 2)-Padé
resummation [47], and the (5, 5)-Padé resummation of
Eq. (28) pushed to N = 10 in this paper. Here x =
2(`/µ)2, and we use Padé approximants to accelerate
the convergence of our analytic results. The bottom-
right panel shows the relative error between analytic and
numerical calculations. We relegate a discussion of the
quantity β, deduced from α by means of Eq. (21), to
Appendix C.

The agreement between the numerical sensitivity and
its (5, 5)-Padé counterpart is remarkable, modulo one
substantial qualitative difference. The Padé approximants
diverge as ϕ̄−µ2/(2`2) is increased, and they feature poles
as an artifact of the method [88]. By comparison, we find a
finite numerical sensitivity, whose curve terminates earlier
than that of the (5, 5)-Padé approximant, at

ϕ̄− µ2

2`2
. −1.651 . (34)

Indeed, the saturation of this inequality coincides numeri-
cally with that of the horizon bound (30), which, in turn,
is related to the hidden curvature singularity approaching
the black hole’s horizon, see Fig. 2.

The role of the scalar background ϕ̄ of a black hole with
fixed Wald entropy SW = 4πµ2 is therefore the following:

1. when ϕ̄ → −∞ the black hole decouples from the
scalar field, since α = −Q/M (as well as its deriva-
tives, such as β) vanishes. More precisely, the di-
agonal (n, n)-Padé approximants with n ∈ [1, 5] of
Eq. (28), which we know up to N = 10, all predict
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FIG. 4. Black hole mass and sensitivity in the shift-symmetric theory (29) as functions of the quantity ϕ̄− µ2/(2`2) introduced
in Eq. (32). Left panel: the numerical ADM-to-irreducible mass ratio M/µ. Right panel: the numerical sensitivity α and
its analytic estimates from Eq. (28) with N = 4, its (2, 2)-Padé resummation, and the (5, 5)-Padé resummation of Eq. (28)
with N = 10. The bottom-right panel shows the fractional error between analytic (“a”) and numerical (“n”) calculations. The
numerical sensitivity and its (5, 5)-Padé counterpart show excellent agreement, modulo one substantial qualitative difference: the
Padé approximant is singular as an artifact of the method, while the numerical sensitivity curve ends at ϕ̄− µ2/(2`2) ≈ −1.651

as we approach saturation of Eq. (30). In the limit Φ̄ = ϕ̄ − µ2/(2`2) → −∞, we have M/µ = A|2Φ̄|1/2 + O|Φ̄|−1/2 with
A ≈ 0.316 and α→ 0, and at the end points we find M/µ ≈ 0.555 and α ≈ −0.350.

α = 1/(2Φ̄)+O(Φ̄−2) with Φ̄ = ϕ̄−µ2/(2`2)→ −∞.
Integrating Eq. (20) then implies

M/µ = A |2Φ̄|1/2 +O|Φ̄|−1/2 , (35)

which fits our numerical results for A ≈ 0.316. We
remark that this fit works remarkably well in the
whole range of Φ̄ (see Fig. 4), despite having been
obtained only in the range Φ̄ ∈ [−10, −9];

2. when ϕ̄ is increased, the black hole develops a
nonzero and negative sensitivity α, and the hid-
den curvature singularity approaches the horizon
at ϕ̄− µ2/(2`2) ≈ −1.651, where M/µ ≈ 0.555 and
α ≈ −0.350 as shown in Fig. 4: see also Eq. (34).

The consequences of point 2 above on adiabatically inspi-
ralling black hole binaries will be investigated in Sec. IV.

B. Dilatonic theory

As a second example, consider the theory

f(ϕ) =
1

4
exp(2ϕ) , (36)

such that the action (1) is invariant under the simulta-
neous redefinitions ϕ → ϕ + ∆ϕ and ` → ` exp(−∆ϕ),
where ∆ϕ is a constant. The condition for the existence
of a real scalar field at the horizon of constant entropy
black holes (26) becomes

ϕH + ln

(
`

µ

)
<

1

2
ln

(
4

1 +
√

6

)
. (37)

As with the shift-symmetric case, we can exploit the
symmetry of the theory to calculate the sensitivity α for
all values of `/µ at once. Indeed, the Wald entropy (19)
now reads

SW =
1

4
[r2
H + 4π`2 exp(2ϕH)] . (38)

As observed in [47], the sensitivities can therefore only
depend on the combination

ϕ̄+ ln

(
`

µ

)
, (39)

which is invariant under the simultaneous redefinitions
ϕ̄→ ϕ̄+∆ϕ, ϕH → ϕH +∆ϕ and `→ ` exp(−∆ϕ), since
then µ = (SW/4π)1/2 is also invariant. In other words,
the sensitivities of black holes with constant irreducible
masses µA and µB , in dilatonic theories with fundamental
couplings `A and `B respectively, are related to each other
as αA(ϕ̄) = αB(ϕ̄+ ∆ϕ̄) with

∆ϕ̄ = ln

(
`A/µA
`B/µB

)
. (40)

This statement was verified in the perturbative calcu-
lation of Ref. [47], but we can again prove it nonpertur-
batively as follows: substitute ϕ = Φ− ln(`/µ) into the
differential system (9) with `∗ = (`/µ)/(4− e2ΦH )1/2 [cf.
Eq. (25)], and observe that the result only depends on one
parameter, ΦH = ϕH + ln(`/µ). Then, integrate the sys-
tem using the initial conditions (13) on the horizon r∗ = 1,
i.e. N(1) = 0, Φ(1) = ΦH and Φ′(1) = −x+ (x2− 3/2)1/2

where x = 2e−2ΦH − 1/2, and note that ΦH is the only
integration constant. The latter can finally be traded
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FIG. 5. Black hole mass and sensitivity in the dilatonic theory (36) as functions of the quantity ϕ̄+ ln(`/µ) introduced in
Eq. (39). Left panel: the numerical ADM-to-irreducible mass ratio M/µ. Right panel: the numerical sensitivity α and its
analytic estimates from Eq. (28) with N = 4, its (2, 2)-Padé resummation, and the (5, 5)-Padé resummation of Eq. (28) with
N = 10. The bottom-right panel shows the fractional error between analytic (“a”) and numerical (“n”) calculations. The numerical
sensitivity and its (5, 5)-Padé counterpart show excellent agreement, expect for one substantial qualitative difference: the Padé
approximants are singular as an artifact of the method, while the numerical sensitivity curve ends at ϕ̄+ ln(`/µ) ≈ −0.276 as
we approach saturation of Eq. (37). In the limit ϕ̄+ ln(`/µ)→ −∞ we have M/µ→ 1 and α→ 0, and at the end points we
find M/µ ≈ 0.913 and αA ≈ −0.285.

for the asymptotic value of Φ, Φ̄ = ϕ̄ + ln(`/µ), which
coincides with Eq. (39), by inverting Φ̄(ΦH).
In Fig. 5 we show the ADM-to-irreducible mass ra-

tio M/µ (left panel) and sensitivity α (right panel) as
functions of the combination (39). As with Fig. 4, the top-
right panel also includes analytic estimates of α derived
from the Taylor series (28) with N = 4, its (2, 2)-Padé
resummation [47], and the (5, 5)-Padé resummation of
Eq. (28) extended to N = 10 here, with x = `2e2ϕ̄/(2µ2).
We discuss the sensitivity β, obtained from α through
Eq. (21), in Appendix C.

As shown by the bottom panel, the agreement between
the numerical sensitivity and its (5, 5)-Padé counterpart is
excellent, except for one substantial qualitative difference.
The Padé approximants feature artificial poles, while the
numerical sensitivity is finite and its curve terminates
earlier than that of the (5, 5)-Padé approximant, at

ϕ̄+ ln

(
`

µ

)
. −0.276 . (41)

We find that the saturation of this inequality indeed
coincides numerically with that of the horizon bound
(37), which, in turn, indicates that a hidden curvature
singularity is approaching the black hole’s horizon, in
analogy with the shift-symmetric theory.
The role of the scalar background ϕ̄ of a fixed Wald

entropy black hole therefore resembles the shift-symmetric
case:

1. when ϕ̄ → −∞, the black hole reduces to the
Schwarzschild solution, since M/µ → 1 and α =
−Q/M → 0 (as well as its derivatives β), both
analytically and numerically;

2. when ϕ̄ is increased, the sensitivity is negative and a
hidden curvature singularity approaches the horizon
at ϕ̄ + ln(`/µ) ≈ −0.276, with M/µ ≈ 0.913 and
α ≈ −0.285, as shown in Fig. 5: cf. (41).

The impact of point 2 above on adiabatically inspiralling
black hole binaries will be studied in Sec. IV.

C. Gaussian theory

As a third and last example, consider the theory intro-
duced in Ref. [38],

f(ϕ) = − 1

12
exp(−6ϕ2) , (42)

for which the action (1) is invariant under the Z2-
symmetry transformation ϕ → −ϕ. We note that the
Schwarzschild spacetime is a solution of this theory when
ϕ = 0, since then Eq. (4a) reduces to Rµν = 0 and f,ϕ(ϕ)
vanishes in Eq. (4b).

For small ϕ, the coupling can be approximated as

f(ϕ) =
1

2
ϕ2 + . . . (43)

modulo boundary terms in the action, which is the
quadratic model studied in Ref. [39] and developed further
in Refs. [89, 90]. When the ratio

`/M ≈ 1.704 , or `∗ = `/rH ≈ 0.852 (44)

is exceeded, the Schwarzschild spacetime is unstable, and
“spontaneously scalarized” black holes with nontrivial
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scalar field profiles branch off from the Schwarzschild
solution [38, 39]. In the full Gaussian theory (42), scalar-
ized yet stable black holes were obtained numerically [38],
but they are restricted to asymptotically zero scalar fields.
In Appendix D we review how these scalarized solutions
were found.

Here, we derive the numerical sensitivity of a scalarized
black hole as a function of `/µ and of its generically
nonzero asymptotic scalar field value ϕ̄. Note that a
scalarized black hole’s sensitivity cannot be estimated
from the analytic formula (28), which can only vanish
when ϕ̄ = 0, since then f ′(ϕ̄) = 0.

The condition for the existence of a real scalar field at
the horizon of constant entropy black holes (26) is

`2e−6ϕ2
H

2µ2

(√
6|ϕH | −

1

12

)
< 1 , (45)

which is a transcendental equation for ϕH , while the Wald
entropy (19) reads

SW = π[r2
H − (`2/3) exp(−6ϕ2

H)] . (46)

Using the Z2 symmetry of the theory, we anticipate from
the definition (20) that α→ −α when ϕ̄→ −ϕ̄. However,
the Gaussian theory lacks further symmetries to obtain α
at once for all `/µ ratios, contrary to the shift-symmetric
and dilatonic theories. Thus, we focus here on a few
illustrative examples, but gather our complete results for
values (`/µ)2 6 20 with increment ∆(`/µ)2 ≈ 0.2 in [82].
We leave a discussion of the sensitivity β to Appendix C.

In Fig. 6, we show the ADM-to-irreducible mass ra-
tio M/µ (left panel) and sensitivity α (right panel) for
five values of the ratio `/µ. For sufficiently small `/µ
the curves are single-valued, as shown by the example
(`/µ)2 = 3.00. The sensitivity is qualitatively similar to
the analytic curves obtained in Ref. [47], Fig. 3, since
spontaneous scalarization does not occur at ϕ̄ = 0 in such
cases. Moreover, we always find that α = 0 at ϕ̄ = 0,
thus recovering a stable Schwarzschild spacetime ϕ = 0
at this particular point: see below Eq. (42).

However, when

(`/µ)2 & 3.82 , (47)

the scalarization threshold (44) is exceeded [take µ2 =
SW/4π, where SW is given by Eq. (46) and ϕH = 0
for Schwarzschild], and the situation changes. First, the
curves become multivalued. This is most easily seen for
ϕ̄ = 0, such that α can either be zero, or take two equal
and opposite nonzero values, whose magnitude increase
with `/µ. The former vanishing α corresponds to an un-
stable Schwarzschild spacetime, while its latter nonzero
values are those of the stable scalarized black holes re-
viewed in Appendix D, with asymptotically zero scalar
fields ϕ̄ = 0. For clarity, we gather in Table I the corre-
spondence between the values `/µ used here and those
of the ratio `∗ = `/rH used in the literature and in Ap-
pendix D, found using Eq. (25).

`2∗ = `2/r2H `2/µ2 ±ϕH ±α
1.00 4.89 0.318 0.264
1.56 7.19 0.481 0.394
2.78 12.3 0.614 0.522
4.58 19.9 0.702 0.618

TABLE I. Scalarized black hole examples in the theory (42),
with asymptotically vanishing scalar fields, ϕ̄ = 0. The values
in the first three columns are related to each other by Eq. (25).

For larger `/µ ratios, the sensitivity curve is increas-
ingly sheared and it can even be discontinuous when
(`/µ)2 & 5.61, see e.g. (`/µ)2 = 7.19. The discontinu-
ity happens due to the existence of intervals of values
of ϕH which do not satisfy the horizon bound (45), but
that are encountered while implementing the algorithm
given in the beginning of Sec. III. These intervals are
shown in the bottom panel of Fig. 12, in Appendix D.
As one approaches the saturation of Eq. (45), a hidden
curvature singularity resembling that of shift-symmetric
theories (cf. Fig. 2) approaches the horizon. Finally,
as ϕ̄ → ±∞, we notice that M/µ → 1 and α → 0 (as
well as β and higher derivatives) for all `/µ values, thus
recovering scalar-field-decoupled black holes.
Given a fixed ratio (`/µ)2 & 3.82, we will split our

curves into the three following segments, or “branches”.
We name the branch bracketed by the circles in Fig. 6,
going through α = 0 at ϕ̄ = 0 and with the largest M/µ
ratio at ϕ̄ = 0, the “Schwarzschild branch”. It describes a
family of black holes that can be continuously deformed
into the Schwarzschild solution through adiabatic changes
in ϕ̄. We recall that since (`/µ)2 & 3.82, the Schwarzschild
spacetime (with ϕ = 0) is unstable [38, 39]. However,
the other points with ϕ̄ 6= 0 belonging to this branch
correspond to new black hole spacetimes whose stability
is so far unknown. We leave their study to future work.
Next, we name the remaining two branches, going through
equal and opposite α 6= 0 and equal M/µ at ϕ̄ = 0, the
“scalarized branches”. They describe two families of black
holes that can be continuously deformed into each other
through adiabatic changes of ϕ̄, and that include, e.g.,
the stable scalarized black holes listed in Table I at ϕ̄ = 0.
The points with ϕ̄ 6= 0 belonging to these branches also
represent new black hole solutions, whose stability we
also leave to future work.
For (`/µ)2 ∈ [3.82, 5.61], the three branches above are

connected, see the (`/µ)2 = 4.89 curves in Fig. 6. Hence,
in principle, black holes can evolve adiabatically from one
branch to another. Note however that M/µ features a
cusp at the branches’ junction, see the left inset in Fig. 6.
The black hole’s sensitivity β, defined as the slope of α by
Eq. (21), must therefore diverge at the junction, as shown
in Appendix C. Finally, for values (`/µ)2 ∈ [13.6, 13.8] and
(`/µ)2 & 14.0, the ratio M/µ of the scalarized branches
also features a cusp (while the three branches are always
disconnected), as shown by the example (`/µ)2 = 19.9 in
the right inset of Fig. 6.
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FIG. 6. Black hole mass and sensitivity in the Gaussian theory (42) as functions of ϕ̄ and `/µ. We consider five families of
constant entropy solutions with (`/µ)2 = {3.00, 4.89, 7.19, 12.3, 19.9}, and the legend is shared by both panels. Left panel: the
numerical ADM-to-irreducible mass ratio M/µ. Right panel: the numerical sensitivity α. For values (`/µ)2 . 3.82 the curves
include a stable Schwarzschild solution α = 0 at ϕ̄ = 0. For values (`/µ)2 & 3.82 the curves are multivalued due to the occurrence
of spontaneous scalarization. The segments bracketed by the circles denote the “Schwarzschild branches”, which include an
unstable Schwarzschild solution α = 0 at ϕ̄ = 0. The remainder of the curves form two “scalarized branches” which include the
stable scalarized black holes presented in Appendix D and reviewed in Table I, with ϕ̄ = 0 but α 6= 0 . For (`/µ)2 ∈ [3.82, 5.61],
these three branches are connected. At their junction, M/µ features a cusp, and the slope of α is infinite, cf. (`/µ)2 = 4.89 and
the left inset; but when (`/µ)2 & 5.61, the branches are discontinuous due to the violation of the horizon bound (45). When
(`/µ)2 ∈ [13.6, 13.8] and (`/µ)2 & 14.0, the ratio M/µ of scalarized branches also features a cusp, cf. (`/µ)2 = 19.9 and the right
inset. For all ϕ̄ values, M/µ is larger along the Schwarzschild branch than along its scalarized counterparts, and at ϕ̄ = 0, both
scalarized branches have the same M/µ ratio.

Let us conclude this section with the following observa-
tion, which will play an important role below. Consider
a scalarized black hole with fixed (`/µ)2 & 3.82 and, ini-
tially, α > 0 (α < 0) at ϕ̄ = 0. Then, ϕ̄ cannot be
increased (decreased) in adiabatic conditions indefinitely.
Indeed, depending on (`/µ)2: either

1. the black hole flows along the scalarized branch up
to a cusp of M/µ, cf. (`/µ)2 = 4.89 or (`/µ)2 =
19.9 in Fig. 6. At the cusp, ϕ̄ cannot be increased
(decreased) further, or the black hole must leave its
branch discontinuously, thus losing adiabaticity; or

2. the black hole eventually reaches the end point of its
scalarized branch, cf. (`/µ)2 = 7.19 and (`/µ)2 =
12.3 in Fig. 6. At the end point, the condition (45)
is saturated and a hidden singularity approaches
the black hole’s horizon.

The consequences of points 1 and 2 above on adiabatically
inspiralling black hole binaries will be studied in Sec. IV.

IV. THE FATE OF BLACK HOLE BINARIES

Perhaps the most startling conclusion we drew from
Figs. 4 to 6 above is that adiabatic changes to the envi-
ronmental scalar field ϕ̄ of a black hole can induce it to
evolve towards a limiting ϕ̄ value, beyond which it can no
longer be continuously deformed into a black hole with
the same Wald entropy.
We can then ask: could this scenario be realized in a

black hole binary, where changes to the scalar environment
ϕ̄A of a black hole A are induced by the scalar hair of

R
φ̄A ∼ QB(φ̄B)

Rφ̄B

S A
W S B

W

FIG. 7. Illustration of the two-body dynamics. Two black holes
with ADM masses and scalar charges MA(ϕ̄A), QA(ϕ̄A) =
−MA(ϕ̄A)αA(ϕ̄A) and their B counterparts are inspiralling at
fixed irreducible masses µA and µB . In the previous sections,
we calculated these quantities non perturbatively. The back-
ground scalar field ϕ̄A, experienced by black hole A, can now
be estimated at leading-order by the ∝ 1/R potential (48a)
sourced by black hole B, and vice-versa. The values of ϕ̄A

and ϕ̄B change as the orbital radius R decreases.

an inspiralling companion B? The setup is illustrated in
Fig. 7.

To answer this question, we use the results of Ref. [47].
There, the PN dynamics of bound binary systems was
studied in the weak-field, small orbital velocity limit
O(M/R) ∼ O(v2). The field equations were solved itera-
tively around a Minkowski metric gµν = ηµν + δgµν , and
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a constant scalar background ϕ0 imposed by the binary’s
cosmological environment, ϕ = ϕ0 + δϕ. At Newtonian
(0PN) order, to which we restrict ourselves here, we thus
have [47]

ϕ̄A = ϕ(t,xA) = ϕ0 −
M0
Bα

0
B

R
+O(v4) , (48a)

ϕ̄B = ϕ(t,xB) = ϕ0 −
M0
Aα

0
A

R
+O(v4) , (48b)

where R = |xA−xB | is the orbital separation, and where
the superscript “0” denotes a quantity evaluated by for-
mally setting ϕ̄A,B = ϕ0. For shift-symmetric and dila-
tonic models, we can set ϕ0 = 0 without loss of generality,
using the symmetries given below Eq. (29) and below
Eq. (36). For the Gaussian theory we choose ϕ0 = 0,
which corresponds to a nondynamical scalar field on cos-
mological scales, at least classically [91]. Given a binary
system with irreducible masses µA and µB , and a funda-
mental coupling value `, the quantities entering Eqs. (48)
are then fully evaluated from Figs. 4, 5 and 6 by setting
formally ϕ̄ = 0 there, and they hence depend only on the
ratios `/µA and `/µB .
As a minimal value for the orbital radius, we use the

light ring RLR. Indeed, in general relativity the light ring
marks the transition to the ringdown phase in a compact
binary evolution, and it can be estimated, e.g., using the
effective-one-body (EOB) formalism [92, 93]. The EOB
framework was generalized to scalar-tensor theories in
Refs. [94, 95], but the results were shown in Ref. [47] to
also include ESGB models. Here we will need the light
ring at 0PN,

RLR = 3GABM , (49)

whereM = M0
A+M0

B , andGAB = 1+α0
Aα

0
B is an effective

gravitational coupling reflecting the linear addition of the
metric and scalar interactions at this order.

In the following, we explore whether adiabatically read-
justing black holes can be driven outside their domain of
existence in an inspiralling binary black hole system with
orbital radius R > RLR for shift-symmetric, dilatonic and
Gaussian models.

A. Shift-symmetric theory

When f(ϕ) = 2ϕ, we have from Fig. 4 that both black
holes in a binary must satisfy the condition (34):

ϕ̄A −
µ2
A

2`2
. −1.651 , (50a)

ϕ̄B −
µ2
B

2`2
. −1.651 . (50b)

In the early inspiral regime, R → ∞ and both ϕ̄A
and ϕ̄B vanish, see Eqs. (48) and below. The conditions
above then yield (`/µA)2 . 0.303 and (`/µB)2 . 0.303,

which excludes the dark (blue) shaded region in the upper
left panel of Fig. 8. In this regime, the Gauss-Bonnet
coupling ` is bounded from above: it must be smaller
than a fraction of each black holes’ fixed Wald entropies
S A

W = 4πµ2
A and S B

W = 4πµ2
B. Our result is consistent

with previous constraints obtained in, e.g., Ref. [51] for
isolated black holes with constant ADM masses.

However, in general ϕ̄A and ϕ̄B are nonzero and positive
[cf. Eq. (48)], α0

A and α0
B being negative and given in

Fig. 4, and they increase as the orbital radius R decreases.
This effectively tightens the conditions (50) gradually
along the inspiral, and extends the excluded parameter
space, as depicted by the light (yellow) shaded region.
For any point in the latter, there indeed exists a critical
orbital radius Rcrit > RLR where at least one of the
conditions (50) is saturated. As discussed in Sec. IIIA,
this signals that at least one of the black holes’ hidden
singularity is approaching its horizon, see point 2 there.
At the border with the white region, we have Rcrit = RLR.

The light (yellow) shaded region is here relatively nar-
row, because the influence of black hole A on ϕ̄B is lim-
ited by the assumption R > RLR, and the fact that
α0
A ≈ −0.350 at most, see Fig. 4. The region also shrinks

when, say, (`/µA)2 � 1, because then black hole A de-
couples from the scalar field, and it cannot affect ϕ̄B
since α0

A → 0. Conversely, the region is thickest for
symmetric binaries µA = µB, yielding a tighter bound
(`/µA)2 . 0.294. Finally, conditions (50) are always sat-
isfied down to RLR in the white region.

The lower left panel of Fig. 8 shows the 0PN potential
value GABM/Rcrit at criticality, that is when Eqs. (50)
saturate, for the example of symmetric binaries, µA = µB .
This potential is related to the binary’s orbital velocity
φ̇ = dφ/dt via Kepler’s law (see e.g. Ref. [73]):

GABM

Rcrit
= (GABMφ̇crit)

2/3 +O(v4) , (51)

and its numerical value varies from 1/3 (Rcrit = RLR) to
zero (Rcrit → ∞) as we move along the line µA = µB,
across the light (yellow) shaded region of the upper panel.

B. Dilatonic theory

The steps presented above are now easily adapted to
the dilatonic case. When f(ϕ) = (1/4) exp(2ϕ), we have
from Fig. 5 that a binary black hole must satisfy two
copies of the condition (41):

ϕ̄A + ln

(
`

µA

)
. −0.276 , (52a)

ϕ̄B + ln

(
`

µB

)
. −0.276 . (52b)

In the limit R→∞, both ϕ̄A and ϕ̄B vanish (48), and
the conditions above yield (`/µA)2 . 0.576 and (`/µB)2 .
0.576. The resulting excluded dark (blue) shaded region
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FIG. 8. Parameter space of an inspiralling binary black hole with fixed ratios `/µA and `/µB in shift-symmetric and dilatonic
theories. In the infinite separation limit R → ∞, each black hole is isolated and the conditions (50) and (52) exclude the
upper panels’ dark (blue) shaded regions. In the light (yellow) shaded regions, the binary is initially regular at infinity, but
at least one of the black holes violates the conditions above before the system reaches its light ring (49), i.e., at some critical
orbital radius Rcrit > RLR. This signals that this black hole’s hidden curvature singularity has reached its horizon. The critical
orbital radius Rcrit is shown by the lower panels for the example of symmetric binary systems µA = µB , and it varies between
Rcrit → ∞ and Rcrit = RLR, depending on how close the black holes initially are to saturating (50) or (52). Left panels: in
the shift-symmetric case f(ϕ) = 2ϕ, isolated black holes must satisfy (`/µA)2 . 0.303. For binaries, this bound is tightened
and becomes (`/µA)2 . 0.294 when µA = µB . Right panels: in the dilatonic case f(ϕ) = exp(2ϕ)/4, isolated black holes must
satisfy (`/µA)2 . 0.576. For binaries, this bound is tightened and becomes (`/µA)2 . 0.536 when µA = µB .

is shown in the upper right panel of Fig. 8. When the
orbital radius R is finite, ϕ̄A and ϕ̄B are nonzero and the
conditions (52) extend the excluded parameter space, as
shown by the light (yellow) shaded region. Just as with
the shift-symmetric case, for each point in this region there
exists a critical orbital radius Rcrit > RLR at which at
least one of the conditions (52) is saturated. As discussed
in Sec. III B, the latter signals that one of the black
holes’ hidden singularities is approaching its horizon, see
point 2 there. The region is thickest when µA = µB,
in which case the Gauss-Bonnet coupling is bounded by
(`/µA)2 . 0.536.

The critical Newtonian potential GABM/Rcrit is shown
in the lower panel for µA = µB, and it varies from 1/3
when Rcrit = RLR, to zero when Rcrit →∞.

C. Gaussian theory

The Gaussian case is perhaps the most striking, but
it must also be treated most carefully. As discussed in
Subsection IIIC, when (`/µA)2 & 3.82 a black hole A

can in principle either belong to a Schwarzschild branch
or to one of its two scalarized counterparts. However,
in this paper we choose the quantity ϕ0, which the envi-
ronment ϕ̄A of the black hole reduces to when R → ∞,
to be zero [cf. Eq. (48) and below]. Given such initial
conditions, the black hole must belong to a scalarized
branch, since otherwise it would reduce initially to an
unstable Schwarzschild black hole. When (`/µA)2 & 3.82,
we therefore start from scalarized black holes such as those
presented in Table I and typically discussed in the litera-
ture, and when (`/µA)2 . 3.82, from stable Schwarzschild
black holes.
Figure 9 shows the parameter space of an inspiralling

black hole binary with fixed ratios `2/µ2
A and `2/µ2

B,
which we explored for (`/µA,B)2 6 20 with increments
in ∆(`/µA,B)2 ≈ 0.2. In region 1○, at least one of the
black holes, say A, satisfies (`/µA)2 . 3.82. As shown by
Fig. 6 on the example (`/µA)2 = 3.00, we have α0

A = 0
and thus ϕ̄B = 0 by Eq. (48). Since, moreover, black
hole A exists for all ϕ̄A values, any point in region 1○
represents a binary system that can adiabatically inspiral
until merger.
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FIG. 9. Parameter space of an inspiralling binary black hole
with fixed `/µA and `/µB and initially vanishing scalar field
environments ϕ0 = 0 in the Gaussian theory. The black hole A
reduces initially to the Schwarzschild solution when (`/µA)2 .
3.82, and to a scalarized black hole when (`/µA)2 & 3.82. In
region 1○, at least one black hole is initially Schwarzschild
and the system can inspiral adiabatically until merger. When
(`/µA)2 & 3.82 and (`/µB)2 & 3.82, each inspiralling black
hole evolves along a scalarized branch such as those presented
in Fig. 6. When their sensitivities αA and αB have the same
sign, they can inspiral adiabatically until merger. But when αA

and αB have opposite signs, almost the entire parameter space
is excluded, as shown by the shaded regions. In region 2○, at
least one of the black holes meets point 1 of Subsection III C
at some Rcrit > RLR and must leave its scalarized branch
discontinuously there. In region 3○, a black hole meets point 2
at Rcrit > RLR, meaning that its hidden curvature singularity
reaches its horizon there. The remaining parameter space
that allows the system to inspiral adiabatically until merger
is comparatively small, and depicted by region 4○. In the
limit `/µA � `/µB , we have |α0

A| � |α0
B | so that black hole B

always completes the scenario 1 or 2 before A. Then region 2○
is delimited by the ranges (`/µB)2 ∈ [3.82, 5.61] , [13.6, 13.8]
and (`/µB)2 & 14.00 discussed in Subsection III C. The critical
orbital radius Rcrit > RLR at which points 1 or 2 indifferently
happen is shown by the lower panel for µA = µB (but αA =
−αB). It varies between Rcrit →∞ and Rcrit = RLR.

Next, we take (`/µA)2 & 3.82 and (`/µB)2 & 3.82,
corresponding to two initially scalarized black holes such
as those of Table I, which evolve along their respective
scalarized branches as they inspiral, see Fig. 6. We note
that for every `/µA,B values we considered, the sensi-
tivities at infinity α0

A,B are always defined, contrary to

shift-symmetric and dilatonic theories, which exclude the
dark (blue) shaded regions of Fig. 8.
Let us consider two scalarized black holes with sensi-

tivities αA and αB of the same sign, taken to be positive
without loss of generality. Then, α0

A,B > 0, so ϕ̄A,B are
both negative [cf. Eq. (48)], with increasing magnitudes as
the orbital radius R decreases. The black holes gradually
drive each other away from the cusps or end points of
their respective branches, see Fig. 6. Hence, scalarized
black hole binaries with sensitivities of the same sign can
adiabatically inspiral until merger.
The picture above changes radically if the scalarized

black holes (`/µA)2 & 3.82 and (`/µB)2 & 3.82 have
sensitivities αA and αB with opposite signs. Indeed, if
α0
A > 0 and α0

B < 0, then ϕ̄A > 0 and ϕ̄B 6 0, with
increasing absolute values as R decreases. We recover
the situation described by points 1 and 2 at the end of
Sec. III C. As shown by the shaded regions of Fig. 9,
the parameter space is then almost entirely excluded.
More precisely, for any point of region 2○, there exists
a critical orbital radius Rcrit > RLR where at least one
of the black holes, described by point 1, cannot inspiral
further without leaving its branch discontinuously at Rcrit.
For any point of region 3○, at least one black hole is
described by point 2 and at some Rcrit > RLR, its hidden
curvature singularity approaches the horizon. In the
limit `/µA � `/µB, α0

A is large and we find that black
hole B always completes the scenario 1 or 2 before A.
The shaded regions are delimited by `/µB intervals that
reduce to those observed above points 1 and 2 of Sec. III C:
when (`/µB)2 ∈ [3.82, 5.61] , [13.6, 13.8] and (`/µB)2 &
14.0, the black hole B is described by point 1, and in
the complementary intervals it is described by point 2.
The remaining allowed region 4○ is comparatively small.
There, the black holes live on a sufficiently large scalar
environment range, while keeping their scalar charges
small enough for neither scenario 1 nor 2 to happen.

The critical Newtonian potential GABM/Rcrit at which
indifferently 1 or 2 happen is shown in the lower panel
of Fig. 9 for µA = µB, and hence αA = −αB. It varies
between 1/3 when Rcrit = RLR and zero when Rcrit →∞.

D. Epilogue

In this section, we considered shift-symmetric, dilatonic
and Gaussian ESGB models. In all three cases, we found
parameter spaces such that the adiabatic inspiral of black
hole binaries must break down. Let us conclude with the
following remarks.
First, we estimated the scalar environments ϕ̄A,B of

each black hole using a Newtonian, leading-order approxi-
mation for simplicity. Therefore, our results should not be
considered as definitive, but they suggest an interesting
parameter space to be further explored, e.g., at higher
PN order [47], or using numerical relativity [51, 55–58] to
reveal the ultimate fate of the black holes. Note however
that the phenomena we found can happen in the weak
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field regime. As shown by the bottom panel of Fig. 8
in shift-symmetric and dilatonic theories, a black hole A
can be adiabatically driven to the end point of its sen-
sitivity curve arbitrarily far into the Newtonian regime
GABM/R � 1, provided that `/µA is large enough. In
Gaussian theories, a black hole with ratio `/µA just above
the scalarization threshold (`/µA)2 ≈ 3.82 must discon-
tinuously leave its scalarized branch very early in the
inspiral GABM/R � 1, see the bottom panel of Fig. 9.
As for the sensitivities α, we recall that they were obtained
nonperturbatively.

Second, the adiabatic analysis we performed describes
binary systems in the limit where tidal and out-of-
equilibrium effects can be discarded. The fact that the
adiabatic analysis formally breaks down might signal the
occurrence of nonperturbative out-of-equilibrium phenom-
ena. It will hence be important to study the stability
of the new black holes with nonzero asymptotic scalar
fields presented here. In particular, addressing dynamical
(de)scalarization phenomena [57] in ESGB gravity might
complete the scenario 1 found in Subsection III C.
Third, in all ESGB models considered, we found pa-

rameter space regions such that the hidden singularities
of black holes can approach their horizons before merger,
cf. point 2 in Subsection III C in the Gaussian case. Un-
less the black holes then “reopen” into other compact
objects [96], the theories might simply not predict any
binary evolution once 2 has happened.
If the predictions of this section are qualitatively con-

firmed in the future, while none of the scenarios listed
above are observed in currently available and future grav-
itational wave event candidates, then new interesting
constraints on ESGB theories might be obtained. In par-
ticular, scalarized binary black holes with opposite scalar
charges might be severely constrained.

V. CONCLUSIONS

We introduced a method to numerically calculate the
sensitivities of nonrotating black holes in ESGB theory.
This complements the analytical, but perturbative, cal-
culation of Ref. [47], which we also generalized here by
calculating higher-order terms in the perturbative series.
In the subclasses of this theory where comparison was
possible, we showed that analytical and numerical ap-
proaches agree remarkably well. The numerical approach
also allowed us to calculate the sensitivities of sponta-
neously scalarized black holes for the first time. We
arrived, through a restrictive PN analysis, at the surpris-
ing conclusion that adiabatically inspiralling black holes
in some of these theories can in principle be driven out-
side their domain of existence. It would be interesting to
confirm this finding by working to higher PN orders or
through numerical relativity simulations [51, 55–58].
Our results are important for the PN description of

black hole binaries in ESGB gravity [43, 47–49, 97, 98],
including gravitational waveform predictions [49, 50], al-

lowing to finally specialize them to scalarized black hole
binaries. Our work could also be used to develop an effec-
tive action model [99] of dynamical black hole descalariza-
tion [57] and explore further the differences with respect
to neutron star binaries in scalar-tensor theories [100–105]
that predict spontaneous scalarization [106].

More broadly, the method introduced here can, in prin-
ciple, also be used to calculate the sensitivities of black
holes in other gravity theories, e.g., the effective field
theory introduced in [21], the effective field theory for
black hole scalarization of [90], the models of [107–109],
and generalizations of ESGB gravity with multiple scalar
fields [110]. Indeed, we expect the sensitivities, as cal-
culated here, to play a role beyond ESGB theories: see
Refs. [71, 83] for another example. Hence, it is desirable
that future work on black holes in modified gravity theo-
ries study how the black hole “charges” vary as a function
of the theory parameters, but also of the asymptotic value
of the scalar field (if any) at fixed Wald entropy.

Our findings open some avenues for future work. First,
we could analyze the stability of the constant-entropy
sequence of solutions for the Gaussian theory studied in
Sec. III C. It is known that the equations describing gravi-
tational perturbations of such black holes can cease to be
hyperbolic [111–113], suggesting that their time evolution
becomes ill-posed. Taking this fact in consideration could
in principle shrink further the exclusion regions in Fig. 9,
but more work is needed to draw definite conclusions.
Finally, in preparation to model the binary dynamics

of spinning black holes in ESGB gravity, one could extend
the calculation done here to rotating black holes. The
inclusion of spin would introduce a “moment of inertia
sensitivity” analogous to that of neutron stars in scalar-
tensor theories [70]. In the Gaussian model, it would be
particularly interesting to compute the sensitivities of the
spin-induced scalarized black holes of Refs. [41, 42].

ACKNOWLEDGMENTS

We thank Carlos A. R. Herdeiro, Mohammed Khalil,
Eugen Radu, Jan Steinhoff, and Helvi Witek for numerous
discussions. We also thank Alessandra Buonanno and Har-
ald Pfeiffer for questions that helped us improve parts of
the text. H.O.S and N.Y. are supported by NASA Grants
No. NNX16AB98G and No. 80NSSC17M0041. N.Y.
also acknowledges support from the Simons Foundation
through Award number 896696. F.-L.J. and E.B. are sup-
ported by NSF Grants No. PHY-1912550, AST-2006538,
PHY-090003 and PHY-20043, and NASA Grants No. 17-
ATP17-0225, 19-ATP19-0051 and 20-LPS20-0011. The
figures in this work were produced with Matplotlib [114]
and TikZ [115]. This work has received funding from
the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie grant
agreement No. 690904 and networking support by the
GWverse COST Action CA16104, “Black holes, gravita-
tional waves and fundamental physics”.



15

−0.8

−0.6

−0.4

−0.2

0.0

0.2
β Numerical integration

N = 4 Taylor

(2, 2)-Padé
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FIG. 10. Black hole sensitivities β obtained from α in Figs. 4 and 5 using the definition (21). Left panel: the sensitivity β in
the shift-symmetric case as a function of ϕ̄− µ2/(2`2), cf. Eq. (32). Right panel: the sensitivity β in the dilatonic case as a
function of ϕ̄+ ln(`/µ) cf. Eq. (39). The upper panels show numerical and analytic results obtained from Eq. (28) with N = 4,
its (2, 2)-Padé resummation, and the (5, 5)-Padé resummation of Eq. (28) with N = 10. The bottom panels show the fractional
error between analytic (“a”) and numerical (“n”) calculations. The numerical sensitivities and their (5, 5)-Padé counterpart
show excellent agreement, except for one qualitative difference: the Padé approximants are singular, while the numerical curves
end at ϕ̄− µ2/(2`2) ≈ −1.651 and ϕ̄+ ln(`/µ) ≈ −0.276 as one approaches the saturation of the theories’ respective horizon
bounds (30) and (37). In the limit ϕ̄→ −∞ we have β → 0 for both theories, and at the end points we find β = −0.376 and
β = −1446, respectively.
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FIG. 11. Black hole sensitivities β in the Gaussian theory as functions of ϕ̄ and `/µ. We consider the same constant entropy
solutions as in Fig. 6. For values (`/µ)2 . 3.82 the curve includes a stable Schwarzschild solution at ϕ̄ = 0, with α = 0, but
β < 0 can be large, cf. (`/µ)2 = 3.00. When (`/µ)2 & 3.82 the curve is multivalued. The segments bracketed by the circles
denote the “Schwarzschild branches” with β > 0. They include an unstable Schwarzschild solution at ϕ̄ = 0, with α = 0. The
remainder of the curves form two “scalarized branches” that include the stable scalarized black holes with ϕ̄ = 0 and α 6= 0. For
(`/µ)2 ∈ [3.82, 5.61], the three branches are connected. At their junction, M/µ features a cusp, cf. Fig. 6, and the slope of α,
that is β here, is infinite. When (`/µ)2 & 5.61, the branches are discontinuous due to the violation of the horizon bound (45).
But when (`/µ)2 ∈ [13.6, 13.8] and (`/µ)2 & 14.0, the ratio M/µ of scalarized branches also features a cusp and β hence diverges.
This is illustrated with (`/µ)2 = 19.9 in the right panel.

Appendix A: Near-horizon expansion of the Ricci
and Kretschmann curvature invariants

In Section II B, we obtained the coefficients of the power
series expansions (10) up to ϕH4 , NH

4 and σH3 . We then
computed the scalar field and Gauss-Bonnet invariant as
in Eqs. (16). We can use the same coefficients to calculate
the Ricci and Kretschmann curvature invariants R and

K = RµνρσRµνρσ as:

Rr2
H = ρH +

2∑
n=1

ρHn (r∗ − 1)n +O(r∗ − 1)3 , (A1a)

K r4
H = kH +

2∑
n=1

kHn (r∗ − 1)n +O(r∗ − 1)3 , (A1b)

where the coefficients are long functions of `∗ and ϕH
available online [82]. Near the saturation of the horizon
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FIG. 12. Finding scalarized black hole solutions in the Gaus-
sian theory (42). Top panel: the asymptotic value log10 |ϕ̄|
of the scalar field as a function of its value at the horizon
ϕH for several ratios `∗ = `/rH . When `2∗ . 0.725 only one
zero of ϕ̄, located at ϕH = 0 exists as shown by the cusps in
the data points. It corresponds to the Schwarzschild solution.
As we increase `∗, two additional zeros of ϕ̄ with ϕH 6= 0
appear. They have the same magnitude, but opposite signs,
as expected from the theory’s Z2-symmetry. Note that for
`2∗ = 1.56, 2.78 and 4.58 the curve is not continuous. Bottom
panel: the existence condition (12) as a function of ϕH . The
solid, dashed, dot-dashed, dash-double-dotted and dotted lines
correspond respectively to `2∗ = {0.7, 1.0, 1.56, 2.78, 4.58}. In
the shaded region, Eq. (12) is violated. For `2∗ = 1.56, 2.78 and
4.58, the condition is violated on ϕH intervals. This causes
the discontinuity in the data points with the same values of
`∗ in the top panel.

bound (12), i.e. for ε2 = 1− 24 `4∗ f,ϕ(ϕH)2 � 1, we find

ρH = 2 +O(ε) , (A2a)

ρH1 = −18
χ

ε
+O(ε0) , (A2b)

ρH2 =
243

16

χ2

ε3
+O(ε−2) , (A2c)

and

kH = 84 +O(ε) , (A3a)

kH1 = −648
χ

ε
+O(ε0) , (A3b)

kH2 =
2187

4

χ2

ε3
+O(ε−2) , (A3c)

with χ = 3 + 4`2∗f,ϕϕ(ϕH). As with the Gauss-Bonnet
scalar, we have that ρH and kH are finite and do not
depend on f(ϕ) in this limit, while the other coefficients in
Eqs. (A2)-(A3) are singular. The near-horizon expansion

of the curvature invariant RµνRµν = (K+R2 −G)/4 can
then be inferred from our results, and its first term is
finite too.

Appendix B: Numerical methods

For all our numerical calculations, we used Mathe-
matica’s differential equation solving function NDSolve,
with the method “StiffnessSwitching”, that automati-
cally changes between a nonstiff or stiff solver when neces-
sary. We set both PrecisionGoal and AccuracyGoal
to 15, and worked with the default WorkingPrecision.
The integrations of Eqs. (9) were performed in the domain
r∗ ∈ [1− 10−ε, 1010], with ε = 5. An exception is in the
near-horizon integrations done in Sec. IIIA cf. Fig. 2.
There we set WorkingPrecision to machine precision
and ε = 6.
To calculate the asymptotic parameters M∗, Q∗ and

ϕ̄ in Eqs. (14), we proceeded as follows. First, from
the numerical integration we know the values of ϕ, ϕ′,
and N at our “numerical infinity”, r∗ = 1010. Then, the
value ϕ at r = r∗ = 1010 gives ϕ̄, since for r∗ � 1 all
1/r∗ corrections are negligible. Next, the values of N
and ϕ′ are respectively used in the right-hand sides of
Eq. (14a) and of Eq. (14c) (after taking a derivative with
respect to r∗). This constitutes a system of two equations
for the two unknowns M∗ and Q∗, which is then solved
with Mathematica’s NSolve function. As a consistency
check, we verified thatM∗ calculated this way agrees with
the directly evaluation of Eq. (6) at r∗ = 1010.

Appendix C: Black hole sensitivity β

We gather here the sensitivities β of black holes in
the shift-symmetric, dilatonic, and Gaussian theories,
obtained from the numerical and analytic sensitivities
α of Figs. 4, 5 and 6 using Eq. (21) (recall that a fixed
SW is equivalent to a fixed µ). They are useful in the
context of PN calculations. For instance, they enter the
1PN Lagrangian of Ref. [47].

In Fig. 10 we show β in the shift-symmetric (left panel)
and dilatonic (right panel) cases. We see once more the
remarkable agreement between the numerical sensitivities
and their (5, 5)-Padé counterparts. For a black hole with
fixed irreducible mass µ in the shift symmetric case, we
find β → 0 for ϕ̄→ −∞ and β = −0.376 at the end point.
In the dilatonic case, we have β → 0 for ϕ̄ → −∞ and
β ≈ −1446 at the end point.
In Fig. 11, we show β in the Gaussian case, for the

`/µ values chosen in Fig. 6. When (`/µ)2 . 3.82, the
spontaneous scalarization of Schwarzschild black holes
(ϕ = 0) does not occur, and we found α = 0 at ϕ̄ = 0
in Fig. 6. By contrast, the sensitivity β of these stable
Schwarzschild black holes is nonzero at ϕ̄ = 0, and it
can even be large and finite, cf. (`/µ)2 = 3.00 in Fig. 11.
Above the scalarization threshold, a Schwarzschild branch
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with β > 0 bracketed by the circles appears, together
with two scalarized branches. Given the definition (21),
the sensitivities β of the latter are even-symmetrical due
to the theory’s Z2 symmetry. We recall that when 3.82 .
(`/µ)2 . 5.61, the branches are connected. As shown, e.g.,
for the example (`/µ)2 = 4.89 in Fig. 6, M/µ features a
cusp at their junction. This means that the slope of α,
i.e. β in Fig. 11, is infinite there. When (`/µ)2 & 5.61,
the branches are discontinuous, cf. (`/µ)2 = 7.19 and
(`/µ)2 = 12.30 in Fig. 11. The discontinuity happens
due to the existence of ϕH ranges that do not satisfy the
horizon bound (45). Our results for values (`/µ)2 6 20
in ∆(`/µ)2 ≈ 0.2 increment can be found in [82].

Appendix D: Obtaining spontaneously scalarized
black holes

We briefly review here how spontaneously scalarized
black hole solutions have been obtained in the literature
[38, 39] for the example of the Gaussian theory (42), when
the scalar field vanishes asymptotically.
We first choose a pair of values `∗ = `/rH and

ϕH , and numerically integrate Eqs. (9) outwards, from
r∗ = r/rH = 1 up to a large value of r∗, and we extract the
asymptotic scalar field value ϕ̄. We repeat these steps for
a range of ϕH values allowed by the reality condition (12),
while keeping `∗ fixed. The outcome is a function ϕ̄(ϕH)
that generally has a single zero at ϕH = 0 corresponding
to the Schwarzschild solution [cf. below Eq. (42)]. How-

ever, for certain disjoint `∗ ranges, an additional even
number of zeros with equal and opposite ϕH 6= 0 appear.
They correspond to scalarized black holes, which come in
pairs due to the theory’s Z2-symmetry.
The pair of solutions with smallest |ϕH |0 values has a

nodeless scalar field configuration (“ground state”), while
solutions with successively increasing |ϕH |k values corre-
spond to scalar field configurations with k nodes (“excited
states”). In the first `∗ range (with smallest `∗ values)
allowing for spontaneous scalarization, only ground states
with k = 0 are found. In the second `∗ range, k = 0 states
and their excited k = 1 counterparts are observed. In the
third `∗ range, k = 0, 1, 2 states are observed, and so on.
It must however be noted that excited states with k > 1
are radially unstable [111].
In the present paper and in the online repository [82]

we focus on `/µ ratios up to (`/µ)2 = 20, for which
scalarized black holes with ϕ̄ = 0 have ϕH ≈ ±0.70. This
translates into `2∗ . 4.59 using Eq. (25). For such `∗
values, Ref. [111, 112] showed that only ground states
exist, hence the presence of at most one pair of nonzero
sensitivities α at ϕ̄ = 0 in Fig. 6. Moreover Refs. [111, 112]
proved that ground states are always radially and axially
stable, when ϕ̄ = 0 if `2∗ . 25.02. This implies that our
scalarized black holes are stable at least when ϕ̄ = 0.

Fig. 12 shows log10 |ϕ̄| as a function of ϕH (top panel)
and the regularity condition (12) (bottom panel) for `2∗ =
{0.7, 1.0, 1.56, 2.78, 4.58}. The smallest `∗ values are
respectively slightly below the scalarization threshold
`2∗ ≈ 0.725, while the other values are those of Table I.
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