
 

Journal Pre-proof

Brain simulation as a cloud service: The Virtual Brain on EBRAINS

Michael Schirner , Lia Domide , Dionysios Perdikis ,
Paul Triebkorn , Leon Stefanovski , Roopa Pai , Paula Prodan ,
Bogdan Valean , Jessica Palmer , Chloê Langford ,
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André Blickensdörfer , Michiel van der Vlag , Sandra Diaz-Pier , Alexander Peyser ,
Wouter Klijn , Dirk Pleiter , Anne Nahm , Oliver Schmid , Marmaduke Woodman , Lyuba Zehl ,
Jan Fousek , Spase Petkoski , Lionel Kusch , Meysam Hashemi , Daniele Marinazzo ,
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Abstract 

 

The Virtual Brain (TVB) is now available as open-source services on the cloud research 

platform EBRAINS. It offers software for constructing, simulating and analysing brain 

network models including the TVB simulator; magnetic resonance imaging (MRI) processing 

pipelines to extract structural and functional brain networks; combined simulation of large-

scale brain networks with small-scale spiking networks; automatic conversion of user-

specified model equations into fast simulation code; simulation-ready brain models of 

patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient 

models; data and software for mouse brain simulation; and extensive educational material. 

TVB cloud services facilitate reproducible online collaboration and discovery of data assets, 
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models, and software embedded in scalable and secure workflows, a precondition for 

research on large cohort data sets, better generalizability, and clinical translation. 

 

Introduction 

 

This paper introduces cloud services for brain simulation that are now being offered on the 

open brain research platform EBRAINS (European Brain Research INfrastructureS), which 

makes scientific data, tools, and results accessible to everyone within a protected 

environment that promotes reproducible work. Scientific studies depend on increasingly 

complex workflows that are often difficult to replicate and the produced findings are often 

not confirmed by additional data (Aarts et al., 2015; Ioannidis, 2005). The data and the 

computational steps that produced the findings as well as the explicit workflow describing 

how to generate the results were identified as the minimal components for independent 

reproduction of computational results (Stodden et al., 2016). EBRAINS addresses these 

challenges by offering modelling and simulation services for collaborative brain research, 

databases with annotated and curated data of many modalities, atlases of human and 

rodent brains, image processing workflows, supercomputing resources, neuromorphic 

systems, and virtual robots. EBRAINS was developed by the Human Brain Project, a research 

initiative funded by the European Commission with the mission to decode the human brain 

(Amunts et al., 2019, 2016). TVB cloud services (Tables 1, 2) were developed by the Human 

Brain Project subproject "The Virtual Brain" in collaboration with the two Human Brain 

Project partnering projects TVB-Cloud (virtualbraincloud-2020.eu) and TVB-CD 

(bit.ly/3ogLYtb). To provide supercomputing resources, the Human Brain Project offers as 

part of the Interactive Computing E-Infrastructure project access to compute and storage 

resources of the Fenix infrastructure (fenix-ri.eu), a network of six European 

supercomputing centres. 

TVB cloud services are interlinked and make use of EBRAINS cloud services (Figure 1), which 

we briefly introduce in the following before focussing on the TVB services. Please see Table 

3 for a glossary of technical terms and abbreviations. The 'Collaboratory' (Supplementary 

Note: The EBRAINS Collaboratory) provides online workspaces, called 'collabs', where 

research teams can exchange data and work together on documents, secured with access 

control to restrict usage to authorized users. 'Lab' provides JupyterLab instances for 
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developing applications and running code in a protected environment that cannot be 

accessed by other users. Jupyter notebooks provide a programmatic interface to EBRAINS 

services, allow to execute live code and to link processing steps with visualized results and 

documentation. Data can be found and accessed via the 'KnowledgeGraph', which provides 

a graphical user interface (GUI) and Application Programming Interface for searching, 

populating, and editing the data base. The KnowledgeGraph uses controlled vocabularies 

and ontologies that are mapped with existing neuroimaging and brain simulation ontologies 

to store data in a structured format, which enables to search the EBRAINS platform for data 

sets and to identify related information (Supplementary Methods: Data integration and 

TVB-ready data). In addition, EBRAINS offers services for professional curation of data sets 

including minting of persistent identifiers like Digital Object Identifiers (DOI; doi.org), 

licensing, versioning, and setting up of data sharing agreements. RESTful APIs are used for 

connecting different cloud components, as well as for authentication, data transfer and 

control of supercomputers. Atlases provide common spatial reference spaces including a 

multilevel atlas of the human brain as well as the Waxholm Space rat brain atlas (Osen et al., 

2019; Papp et al., 2014). The Multilevel Human Brain Atlas uses the Julich-Brain probabilistic 

cytoarchitectonic maps (Amunts et al., 2020) to link with template spaces such as BigBrain 

(Amunts et al., 2013) at the micrometer scale and MNI (Das et al., 2016) at millimeter scale, 

and combines them with imaging-based maps of function (Evans et al., 2012) and 

connectivity (Guevara et al., 2017). Linking a growing set of multimodal features, the Human 

Brain Atlas captures brain organization in its different facets. 

What are the benefits of a cloud-based research platform? One important advantage are 

on-demand scalable computing resources. Neuroimaging and brain modelling workflows 

that are used to analyze large data sets (like the UK Biobank or the Human Connectome 

Project data sets) require processing power and storage beyond what personal computers 

can offer. On EBRAINS a network of powerful supercomputers enables to scale computing 

resources to the needs of a project. Another key advantage of cloud-based research is the 

ability for interoperable and reusable sharing of data and software, which is an urgent need 

as there is typically not one individual researcher doing all the work from data acquisition, 

analysis, hypotheses generation, model building, validation, up to writing and publishing. 

Rather, it is getting increasingly common that multiple teams, with team members being 

potentially scattered all around the planet, work together in large projects that require 
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ongoing interaction and synchronization of data and code. Instead of frequently 

transmitting data sets via the internet and maintaining intricate software environments at 

multiple computing sites it is more efficient and practical to have a shared platform where 

teams can work together on datasets and run software in a common computing space. 

Problematically, sharing of and collaborative work on personal data raises privacy concerns: 

highly personal and detailed health data like MRI can be misused for malicious intents and 

must therefore be thoroughly protected, which is reflected in legislation like the General 

Data Protection Regulation (GDPR) of the European Union. With TVB on EBRAINS we 

created a software environment that globally implements state-of-the-art security 

mechanisms like encryption, access control and sandboxing to protect personal data, while 

at the same time workflows can be flexibly and reproducibly modified using containerized 

applications. These globally implemented measures for data protection make it easier for 

individual researchers to protect confidential data and to comply with the law. An additional 

benefit of TVB on EBRAINS workflows is that mechanisms for data management, 

provenance tracking and reproducible research are directly embedded using DataLad 

(Halchenko et al., 2021), which enables explicit tracking of all inputs, codes and processing 

steps that produced a result in a manner similar to how GitHub (github.com) is used for 

source code management. Having reproducibility already "built-in" makes it not only easier 

for the scientist to understand and re-use their own complex workflows years later. More 

importantly, it makes it also easier for everyone else to understand and use a complex 

workflow or just individual steps thereof. With simple commands a reviewer, a student, or 

another researcher can start the entire process or just individual steps and verify the 

consistency and correctness of the research, or use and adapt it for another problem, 

without necessarily needing domain knowledge about the used software, which helps to 

make workflows and results more robust and easier to review and reproduce.  

In the following we guide readers through the main components of TVB on EBRAINS, 

highlighting their main features and the respective advantages of cloud-based operation. 

Subsequently, we demonstrate an end-to-end use case example including the implemented 

mechanisms for reproducibility and provenance tracking (please see additional use cases in 

the Supplementary Material). We conclude the main part with a description of data 

protection mechanisms, the TVB on EBRAINS shared responsibility model, and a discussion. 

Technical details about the services and their deployments can be found in the Methods 
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section and exhaustive online documentation (Table 1). Supplementary material provides 

further information on the different components of TVB on EBRAINS. 

 

Results 

 

 

Figure 1. TVB on EBRAINS cloud services. Human brain network modelling and neuroimaging 

require personal data applicable to data protection regulation. Encryption, sandboxing, and 

access control are used to protect personal data. EBRAINS provides core cloud services: the 

'Multilevel Human Brain Atlas' provides maps of structure, function, and connectivity in 

multiple reference spaces; 'Drive' for storing and sharing files; 'Wiki' and 'Office' to create 

workspaces and documents for collaborative research; 'Lab' for running live code in 

sandboxed JupyterLab instances; 'OpenShift' for service and resource management; 'HPC' 

are supercomputers for resource-intensive computations. All software components interact 

via RESTful APIs and use UNICORE for communication with supercomputers. Software 

components exist in the form of web GUIs, container images, Python notebooks, Python 

libraries and high-performance machine codes. Curated scientific results, input and output 

data can be loaded from and stored into the EBRAINS KnowledgeGraph using openMINDS-

compliant metadata annotations to enable efficient and robust sharing and reproducible re-
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use. The connectors show interactions between different components (colours group 

connectors according to different forms of software implementation). 

 

Service Function URLs 

The Virtual 
Brain  

Brain network 
simulation 

Web-App 
   thevirtualbrain.apps.hbp.eu 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain 

End-to-end use case 
   wiki.ebrains.eu/bin/view/Collabs/user-story-tvb 

Source code 
   github.com/the-virtual-brain/tvb-root 

Python library 
   pypi.org/project/tvb-library 

Container image 
   hub.docker.com/r/thevirtualbrain/tvb-run 

Demo brain network model data 
   https://zenodo.org/record/4263723#.YYRPgL1Bzxg 

 

TVB Image 
Processing 
Pipeline 

Connectome 
analysis 

Web-App 
   thevirtualbrain.apps.hbp.eu 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/tvb-pipeline 

Source code 
   github.com/BrainModes/tvb-pipeline 

Container images 
   hub.docker.com/r/thevirtualbrain/tvb_converter 

 

Multiscale Co-
Simulation 

Two toolboxes 
for concurrent 
simulation of 
large-scale 
and spiking 
networks 

Web-App (TVB-Multiscale) 
   tvb-nest.apps.hbp.eu 

Collab (TVB-Multiscale) 
   wiki.ebrains.eu/bin/view/Collabs/the-virtual-brain-multiscale 

Collab (Parallel CoSimulation) 
   wiki.ebrains.eu/bin/view/Collabs/co-simulation-tvb-and-nest-high-
computer 

Source code (TVB-Multiscale) 
   github.com/the-virtual-brain/tvb-multiscale 

Source code (Parallel CoSimulation) 
   github.com/multiscale-cosim/TVB-NEST 

Container image (TVB-Multiscale) 
   hub.docker.com/r/thevirtualbrain/tvb-nest 

 

TVB-HPC Automatic 
code 
generation 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/rateml-tvb/ 

Source code 
   github.com/the-virtual-brain/tvb-root 

 

Fast_TVB Parallelized 
simulation 
(multithreadin
g) 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/fast-tvb 

Source code 
   github.com/BrainModes/fast_tvb 

Container image 
   hub.docker.com/r/thevirtualbrain/fast_tvb 

 

Bayesian 
Virtual 
Epileptic 
Patient 

Epilepsy 
modelling 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/bayesian-virtual-epileptic-patient 

Source code 
  github.com/ins-amu/BVEP 
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TVB Mouse 
Brains 

Mouse brain 
simulation 

Collabs 
   wiki.ebrains.eu/bin/view/Collabs/tvb-mouse-brains 
   wiki.ebrains.eu/bin/view/Collabs/mouse-stroke-brain-network-model/ 

TVB-ready 
dataset  
 

SC, FC, and 
fMRI from 
tumour 
patients and 
controls 

DOI 
   10.25493/1ECN-6SM 
URL 
   kg.ebrains.eu/search/instances/Dataset/a696ccc7-e742-4301-8b43-
d6814f3e5a44 

openMINDS 
metadata for 
TVB-ready 
data 

Metadata in 
JSON-LD 
format 

Collab 
   wiki.ebrains.eu/bin/view/Collabs/openminds-metadata-for-tvb-
ready-data 

openMINDS schema 
   github.com/HumanBrainProject/openMINDS 

 

TVB atlas 
adapter 

Brain atlas Collab 
   wiki.ebrains.eu/bin/view/Collabs/sga3-d1-1-showcase-1 

Source code 
   github.com/FZJ-INM1-BDA/siibra-python 
   github.com/FZJ-INM1-BDA/siibra-api 

Visualizer 
   brainsimulation.org/atlasweb_multiscale 

 

INCF TVB 
training space 

Education and 
training 

URL 
   training.incf.org/collection/virtual-brain-simulation-platform 

Table 1. TVB cloud software, source codes and URLs leading to their main entry points. 

Cloud service Publications 

The Virtual Brain  (Ritter et al., 2013; Sanz-Leon et al., 2013, 2015) 

TVB Image Processing Pipeline (Proix et al., 2016; Schirner et al., 2015a) 

Fast_TVB (Costa-Klein et al., 2020; Schirner et al., 2018; 
Shen et al., 2019; Zimmermann et al., 2018) 

Bayesian Virtual Epileptic Patient (Hashemi et al., 2020; Jirsa et al., 2017) 

TVB Mouse Brain (Melozzi et al., 2019, 2017) 

TVB ready datasets (Aerts et al., 2020, 2018) 

INCF TVB training space (Matzke et al., 2015) 
Table 2. Publications using software, workflows or data sets underlying different TVB cloud software. 

access control (computer 
security) 

selective restriction to consume, enter or use a resource 

annotation of data categorization and labelling of data 

authentication (computer 
security) 

verifying the identity of a computer system user 

authorisation (computer 
security) 

specifying access rights and privileges to resources; access control rules are used to 
decide whether access requests from (authenticated) users shall be granted or not 

API; application 
programming interface 

interface that connects computers or software 

BIDS Brain Imaging Data Structure; a standard for organizing neuroscience data 

brain network model system of coupled differential equations for simulating brain activity 

checksum a small block of data that contains information about the contents of another block 
of data for the purpose of detecting errors  

cloud computing on-demand availability of computing power and storage over the internet 

cloud service infrastructure, platforms, or software made available through the internet 

container image, 
containerization 
(software) 

(creating) executable packages of software that include all dependencies needed to 
run an application reliably in different computing environments  

controlled vocabulary carefully selected list of words and phrases for unambiguous tagging of units of 
information  

curation organization and integration of data collected from various sources 
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data sharing agreement legal contracts that detail what data are being shared and the appropriate use for 
the data 

differential equation equation that relates functions and their derivatives (rate at which the value of a 
function changes with respect to a change of its argument) 

EBRAINS European Brain Research INfrastructureS 

encryption converting information into secret code that hides the information's true meaning 

functional connectivity statistical relationships between brain signals represented as a network; often a 
matrix of pairwise correlation coefficients between region-average fMRI signals 

General Data Protection 
Regulation 

a regulation in European Union law on data protection and privacy with the aim to 
increase individual's control and rights over their personal data 

GUI graphical user interface 

Jupyter notebooks open-source web application to create and share documents that contain live code, 
equations, visualizations and narrative text 

JupyterLab web-based interactive development environment for Jupyter notebooks 

key (computer security) a piece of information, which, when processed through a cryptographic algorithm, 
can encode or decode cryptographic data 

knowledge graph a data model and database for linking, integrating, and storing information in a 
graph structure 

licensing (software) providing a software product with a legal statement (license) that governs its use 
and redistribution 

metadata data that provides information (annotations) about other data 

metadata schema a definition how metadata is structured 

MRI magnetic resonance imaging 

neuromorphic systems electronic analog circuits to mimic neuro-biological architectures 

ontology (information 
science) 

a way to organize data, information, knowledge by defining concepts, categories 
and their relationships 

openMINDS specifications for structuring metadata in neuroscience 
(github.com/HumanBrainProject/openMINDS) 

persistent identifiers a long-lasting reference to an (often digital) object (e.g., document, file, web page); 
one example are digital object identifiers (DOI, doi.org), which are widely used to 
identify publications and data sets 

public-key cryptography a system that uses a different key for decryption than for encryption; this has the 
advantage that the decryption key needs not to be communicated via insecure 
channels, while the key for encryption can be known by everyone ("public") without 
compromising safety 

RESTful API an architectural style for APIs where resources are provided in a textual 
representation that can be read and modified with a predefined set of operations 

sandbox (computer 
security) 

security mechanism for separating running programs in an effort to protect 
computing systems from failure or attacks, often used to run untrusted programs 
and code 

structural connectivity aggregated descriptions of the networks that couple neurons, neural populations 
and brain areas 

supercomputer a computer that is shared by many users and that provides a high level of 
performance regarding processor time, memory and storage space 

TVB The Virtual Brain, a software to simulate brain network models 

UNICORE interface for exchanging data and commands between different computers in a 
network (unicore.eu) 

versioning (software) assigning unique version names or unique version numbers to unique states of 
computer software 

version control tracking and managing changes to software code or data sets 

virtual robots computer simulation of a physical robot 

Table 3. Glossary of technical terms and abbreviations. 

 

The Virtual Brain 
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TVB (thevirtualbrain.org) is an open-source software for simulating and analysing brain 

network models, which describe the brain as a graph composed of nodes that represent 

brain areas and edges that represent physical connections between these areas 

(Supplementary Note: Brain simulation with TVB) (Ritter et al., 2013; Sanz-Leon et al., 2013). 

TVB can be directly used on EBRAINS from a web GUI (Table 1), without the need to install 

further software or to have a specific operating system, computing environment or 

hardware. In addition, TVB can also be used as a Python library for programming in the 

EBRAINS Lab (Figure 1). Via these interfaces users can upload brain network models, 

configure, and run simulations, as well as postprocess and export results. TVB usage is 

introduced through Jupyter notebooks, explanatory videos, and technical documentation 

(Table 1). TVB's main documentation is hosted at docs.thevirtualbrain.org. 

Importantly, TVB interfaces with supercomputers to rapidly perform simulations that 

require extensive processing time and storage space. For example, parameter space 

explorations with hundreds of parameter sets can be simulated in parallel. The web GUI 

simplifies the process of running high-performance simulations as no further knowledge 

about supercomputing usage is required: the entire process of sending encrypted data to a 

supercomputer, decrypting, sandboxed processing, encrypting of results and transmission 

to the web GUI is handled by the software automatically without any intervention by the 

user.  

 

TVB Image Processing Pipeline 

 

Brain network modelling requires a description of the anatomical network that connects 

brain areas, called structural connectivity, which can be estimated from diffusion-weighted 

MRI data using the TVB Image Processing Pipeline. The pipeline takes anatomical, functional 

and diffusion MRI as input and provides as output structural connectivity, region-average 

functional MRI time series, functional connectivity, brain surface triangulations, projection 

matrices for predicting EEG, and brain parcellations. The outputs can be directly uploaded to 

TVB for brain simulation and analysis. Users can configure and control pipeline steps from 

the TVB web GUI (Table 1), without needing to directly operate a supercomputer. A 

workflow orchestrator coordinates the execution of the pipeline and deals with privacy and 
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reproducibility aspects. GUI and orchestrator ensure that the highly personal human brain 

data can only be accessed by authorized users, that they are always encrypted while at rest 

or in transit, and that they are only decrypted and processed inside a sandbox that is 

inaccessible by users of the cloud environment. In addition, the pipeline orchestrator 

supports provenance tracking and actionable reproducibility: the entire code, data, and all 

computational steps necessary to reproduce results starting from the raw data can be 

stored and re-run with a small set of simple commands on a chosen level of granularity, 

which enables easy reproduction of research results. The pipeline supports flexible 

processing workflows as it consists of a sequence of container images that can be adapted, 

exchanged, added, or removed. Containerization makes the pipeline more platform-

independent: it can be executed on all similar hardware platforms that support container 

runtimes like Docker or Singularity. Accordingly, the pipeline serves as a prototypical 

example for general-purpose protected and reproducible cloud workflows.  

 

Multiscale Co-Simulation 

 

Multiscale Co-Simulation are two new Python toolboxes for simulating large-scale brain 

networks with TVB that interact with spiking networks in NEST (Gewaltig and Diesmann, 

2007). The toolboxes provide interfaces to couple the two simulators by connecting the 

programmatic Python interface of TVB (Sanz-Leon et al., 2013) with PyNEST (Eppler et al., 

2009), a Python wrapper for NEST. Multiscale Co-Simulation can be downloaded as 

standalone container image or used on EBRAINS from Jupyter notebooks (Table 1). 

The need for a high-performance environment is for multiscale co-simulations even more 

important than for single-scale simulations: instead of one resource-demanding simulator 

there are two and they need to be executed in parallel. Critically, the two simulators need 

to synchronize to exchange their respective inputs, which is costly because the latency of 

network interaction is often orders of magnitude higher than the time needed to compute 

these inputs. To address the involved bottlenecks, the toolboxes implement routines that 

optimize communication and parallel execution. The Multiscale Co-Simulation project is 

under ongoing development currently focussing on postulating and validating coupling 

scenarios between the scales, optimizing the user interfaces as well as optimizing 

performance. See Supplementary Methods: Multiscale Co-Simulation for more information. 
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High-Performance implementations of TVB 

 

Large software products like TVB are often designed with the goal to ease maintainability 

and long-term development, but that often comes at the cost of non-optimal execution 

speeds and resource consumption. Algorithms that are not optimized for speed can be 

orders of magnitude slower than optimized versions: instead of taking days or weeks, a 

simulation can be done in mere minutes, depending on how it is implemented. 

Problematically, optimizing computer code for speed is challenging and a task that is largely 

independent from scientific tasks like postulating and validating a new model: researchers 

must be put in a position where they can easily manipulate a given model in order to rapidly 

test hypotheses. To make it easier to simulate high-performance codes, two different 

strategies were realized. The first one, TVB-HPC (Table 1), automatically produces high-

performance codes for CPUs and GPUs using an easy XML-based language called RateML for 

model specification. RateML is based on the domain-independent language 'LEMS' (Vella et 

al., 2014), which allows for the declarative description of computational models using a 

simple XML syntax. The already existing example implementations can be easily adapted to 

test different models, without requiring any knowledge about algorithmic optimization. The 

second one, Fast_TVB (Table 1), is a specialized high-performance implementation of the 

"Reduced Wong Wang" model (Deco et al., 2014; Sanz-Leon et al., 2015). Written in C it 

makes use of several optimization strategies and a sparse memory layout to efficiently use 

CPU resources, which makes it possible to simulate extremely large models with millions of 

nodes even on a standard computer in a reasonable time. Further information and 

benchmarks are provided in Supplementary Methods: High-performance implementations. 

 

TVB atlas and data adapters 

 

TVB on EBRAINS provides interfaces for interoperability with different components and 

services offered on EBRAINS, which enables researchers to plug in different analysis and 

modelling tools into their custom workflows. While the different TVB components are 

already interoperable by design, there is a need for 'adapters' that enable to interconnect 
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with other EBRAINS services like the siibra toolbox, which connects TVB with the Human 

Brain Atlas (Table 1). The Human Brain Atlas characterizes brain regions with a growing set 

of multimodal features, including transmitter receptor densities (Palomero-Gallagher and 

Zilles, 2019), cell distributions, and physiological recordings, based on the Julich-Brain 

cytoarchitectonic maps (Amunts et al., 2020). Aligned with standard brain templates, the 

Human Atlas can be registered with individual brains to export multimodal microstructural 

"fingerprints" that can be used to set the parameters of brain models. The siibra adapter 

gives direct programmatic access to EBRAINS atlas services like selecting a parcellation, 

browsing and searching brain region hierarchies, and obtaining maps of atlas features like 

the distributions of cell densities, neurotransmitters, or gene expression data. Internally, 

siibra connects with repositories like the EBRAINS KnowledgeGraph or the Allen Brain Atlas 

to retrieve the requested data, hiding the complexity of interacting with different services 

and minimizing common risks like misinterpretation of coordinates from different reference 

spaces. Complementary to siibra a viewer was implemented to visualize different atlas maps 

on the cortical surface (Table 1). 

Additional adapters are under development that connect TVB with the Knowledge Graph 

and the Human Intracerebral EEG Platform to inform brain network model parameterization 

and to compare simulation results with empirical data. For example, it is planned to link 

intracranial electrophysiology recordings with the respective Julich-Brain regions to set 

model parameters based on direct measurements of effective connectivity and transmission 

delays from stimulation experiments (Trebaul et al., 2018).  See Supplementary Methods: 

TVB atlas and data adapters for more information. 

 

Data integration and TVB-ready data 

 

Another advantage of cloud-based operation is that research results from different groups 

can be directly integrated into a central data record where they can be found and re-used 

by others. This functionality is provided by the EBRAINS KnowledgeGraph, an ontology-

based graph data base where data sets are richly annotated with openMINDS metadata in 

order to ensure their interpretability in the future (Table 1). The openMINDS metadata 

annotations define an exact classification of research inputs and outputs (for example, 

empirical recordings, software, articles, books, imaging coordinate systems, reference 

                  



 

 14 

atlases, models, projects) against a scientific ontology or knowledge framework. To ensure 

data quality EBRAINS employs a team of expert curators who assist in creating and verifying 

that data format and metadata annotations fulfil state of the art practices for provenance 

tracking and data management with regard to long-term availability and interpretability of 

the results. Data in the KnowledgeGraph is protected by the 'Human Data Gateway', which 

controls access to human datasets through regulatory compliant data use agreements and 

access policies. A first example of modelling results that were integrated into the 

KnowledgeGraph are TVB-ready connectivity data sets in BIDS format from tumor patients 

and matched control participants. The data set contains region-average fMRI time series, 

FC, and SC from 31 brain tumor patients before and after surgery, and 11 healthy controls 

(Aerts et al., 2019). See Supplementary Methods: Data integration and TVB-ready data for 

more information. 

 

End-to-end use case with reproducible brain model construction 

 

Upon introducing the individual components of TVB on EBRAINS we now exemplify how 

they may be combined. Additional use cases are described in the Supplementary Material, 

especially in the section ‘Advanced use cases and training’. To get acquainted with TVB one 

may start by performing a few test simulations with TVB's default structural connectivity to 

learn usage of the web GUI and the Python interface; documentation and tutorials explain 

the steps (Table 1). Visualizing the outputs for different parameter settings and fitting 

simulation results with empirical data (for example, using functional connectivity) helps to 

create an intuitive understanding of brain network model dynamics. Next, researchers may 

want to perform a more detailed analysis, for example, comparing individuals in patient 

versus control groups to study mechanisms of pathological versus healthy brain dynamics. 

Here, the researchers can use the TVB Image Processing Pipeline to compute individual 

structural and functional connectivity from human MRI data. Estimating connectomes from 

MRI data consists of many complex steps, making it hard to explicitly track all the necessary 

provenance data to robustly reproduce a particular configuration of processing steps. Just a 

minor update of a dependency or an untracked renaming of a file can break the entire 

workflow and make a result not reproducible. The pipeline uses DataLad (datalad.org) to 

make its workflow reproducible in an actionable manner: all software and data are tracked 
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in a way that the entire workflow or just individual steps can be easily re-run, archived, 

published and shared. With DataLad all data and code files are version-controlled and 

managed in a manner that is comparable to how software is managed with GitHub 

(github.com), allowing to capture complex hierarchical project structures and all 

computational steps from raw data to final figures.  

When large cohorts are modelled users may find the speed of standard brain model 

implementations insufficient and switch to TVB's high-performance implementations, which 

allow fast execution and easy generation of high-performance codes for custom models 

with TVB's XML-based modelling language RateML. To inform model parameters 

researchers may decide to include microstructural information from the EBRAINS Human 

Brain Atlas using the siibra interface (Wang, 2020). Or they may extend large-scale models 

to encompass finer scales using TVB Multiscale to study hypotheses about brain function 

that span spatial scales from individual point neurons over populations to whole brain 

models. In a recent preprint this novel approach was used to study the effect of deep brain 

stimulation on a spiking basal ganglia model (Meier et al., 2021). Finally, the resulting data 

outputs can be annotated with metadata, curated, and integrated into the KnowledgeGraph 

for future reuse by the community. 

 

Advanced use cases and training 

 

In addition to the introductory use cases described above, EBRAINS provides tutorials for 

several advanced use cases (Table 1). The Bayesian Virtual Epileptic Patient tutorials 

showcase how Bayesian inference can be used to compute posterior probability 

distributions for region-wise parameter settings of TVB's Epileptor model in order to study 

the spread of epileptic seizures (Jirsa et al., 2017, 2014). The approach makes use of prior 

distributions obtained from empirical data (for example, a patient’s structural connectivity, 

or lesions detected in MRI) and model simulations to take into account the likelihood for 

these observations. For example, estimating excitability parameters of an Epileptor brain 

network model yields a map of region-wise epileptogenicity to guide clinical decision-

making. The Virtual Mouse Brain extends TVB with tractography-based as well as tracer-

based mouse SC (Melozzi et al., 2017), which was estimated from the Allen Mouse Brain 

Connectivity Atlas (Oh et al., 2014). Tutorials demonstrate how to export mouse 
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connectivity at different resolutions and how to simulate strokes in mice. In addition to 

these notebook tutorials the INCF (International Neuroinformatics Coordination Facility) 

training space holds a dedicated collection for TVB with didactic use cases, video tutorials, 

Jupyter notebooks and example data sets (Table 1). See Supplementary Methods: Advanced 

use cases and training for more information. 

 

What can go wrong? Common pitfalls of brain network modelling. 

 

Although cloud services make it easier to run scalable modelling workflows there are several 

limitations to consider. Already one of the first steps, creating a brain network model from 

MRI data, involves several caveats. One major limitation of MRI tractography is that 

coupling strengths and time delays of nerve fiber tracts cannot be directly measured 

(Sotiropoulos and Zalesky, 2019). Identifying and quantifying fiber tracts is based on a 

mapping from water diffusion to fiber orientations, which is in general an ill-posed problem 

as MRI voxels are too large to resolve individual fibers. Neither the orientation of fibers in a 

voxel can be resolved, nor can different arrangements like bending, fanning, crossing or 

kissing be distinguished. As a result, tractography provides only a model-based 

approximation of interregional coupling strengths and time delays. Problematically, these 

approximations are biased by factors like the distance of the regions, algorithmic choices, 

and individual anatomical properties (Jeurissen et al., 2019; Yeh et al., 2021). Furthermore, 

even if fibers could be reliably counted, there are several microstructural properties known 

to influence the strength of coupling that also cannot be directly measured like myelination, 

axon diameter and synaptic properties, which implicates that tractography results must be 

interpreted with caution (Jeurissen et al., 2019; Yeh et al., 2021). A related problem is node 

delineation and the question what is a meaningful parcellation of the brain to form the 

nodes of a network model? Unlike the microscale, where the mapping between nodes and 

neurons is obvious, defining nodes at the macroscale is less clear. An intuitive criterion 

would be functional homogeneity: voxels get grouped based on how similar their activity is, 

which is plausible, because one model node is usually governed by one type of dynamics. 

However, matters are complicated by individual structure-function variability. For example, 

the size of a well-characterized area like V1 can vary twofold in size across subjects (Amunts 

et al., 2000; Van Essen, 2013), which would be missed by group-level parcellations. Similarly, 
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the scale and the number of nodes heavily impacts the resulting model and they must 

therefore be aligned with the goals of the research (Proix et al., 2016). For example, the 

parcellation must be fine enough to be able to represent and differentiate between the 

specific features of the system that are related to the aims of the research. 

Probably one of the biggest challenges is to identify whether a given model can or cannot 

reproduce a set of observations, which is done in a process called ‘inference’ that works by 

comparing modelling outputs with the actual data and selecting the model that explains the 

observed phenomenon in a way that is deemed optimal. Problematically, already the 

related task of finding optimal parameter values for a given set of model equations suffers 

from the so-called ‘curse of dimensionality’: with each added dimension the space of 

possible model parameterizations increases exponentially (there is a combinatorial 

explosion in the possible values that the parameters can jointly take), making it harder to 

find models that generalize to the typically high-dimensional real-world scenarios in digital 

medicine (Berisha et al., 2021). Complex mechanistic models are poorly suited for inference, 

because computing the likelihood for a given observation is typically intractable (Cranmer et 

al., 2020), as this would require integrating over all potential outcomes of a simulation, the 

number of which increases exponentially with each model dimension. Likewise, complex 

systems are often degenerate, producing indistinguishable observations by infinitely many 

realizations of the same process. While new approaches for "likelihood-free" simulation-

based inference are under development (Cranmer et al., 2020), in practical cases often 

recourse is made to traditional approaches like relying on the insights of scientists into the 

system to construct powerful summary statistics to effectively compare observed with 

simulated data. A related problem, especially regarding clinical application, is that models 

always involve (per definition) enormous simplifications and are often based on 

assumptions that are only weakly justified and might be very restrictive. Consequently, the 

conclusions that can be drawn are a function of the validity of the knowledge that was used 

to build the model and the efficiency with which the verbal knowledge was translated into 

mathematical equations and then into computer code. Especially in clinical applications 

false expectations, misinterpretations and overconfidence in simulated results can lead to 

significant real-life problems. Consequently, these workflows may not be used in a "turn-

key" manner and with the expectation that they will automatically produce meaningful 

results. To produce meaningful results and to adequately interpret them knowledge about 
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modelling and numerical methods as well as neuroscience domain knowledge are 

fundamentally necessary. 

 

Data protection in the TVB on EBRAINS cloud 

 

Biomedical research is facing challenges because many methods lack technical 

infrastructure to protect the privacy of sensitive data. Research often involves that teams 

exchange and process sensitive data on shared infrastructure like the internet and high-

performance computers, which poses risks for illegitimate access. Consequently, an 

important requirement for privacy protection is to enable secure processing of sensitive 

data in shared infrastructures, as the involved networks and computers can be accessed by 

many human and non-human users with only logical separation between them. Cloud 

platforms have the advantage that privacy technology and legal compliance measures can 

be globally implemented and offered as a standardized and certified service, which makes it 

easier for the individual researchers to overcome technical and organizational hurdles for 

demonstrating compliance with data protection law. The European Union's General Data 

Protection Regulation (GDPR) and similar international and national laws impose restrictions 

on the processing of personal data including storage and sharing. Problematically, 

biomedical data cannot be easily anonymized or pseudonymized such that all potentially 

identifiable information are removed, and potential re-identification is excluded (Byrge and 

Kennedy, 2018; Gymrek et al., 2013; Rocher et al., 2019). A principle means of ensuring 

GDPR-compliant data processing is the implementation of technical and organizational 

measures to ensure a level of security appropriate to the risk of the processing (Article 32 

GDPR). To protect data by design and default (Article 25 GDPR), TVB on EBRAINS 

implements access control, public-key cryptography, and sandboxing (Figure 2). 
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Figure 2. Securing personal data processing workflows in shared environments. Access 

control ensures that only authorized users can access sensitive data. Sensitive data is 

encrypted with public-key cryptography on the data controller's computer before upload to 

the cloud. The key pair for upload is generated within a sandboxed process at the final 

processing site and the private key never leaves the sandbox. This ensures that the data can 

only be decrypted at the final processing site and that no human gets into possession of the 

key for decryption. All processing is performed in the sandbox and personal data is never 

written outside the sandbox in unencrypted form. A public key generated by the data 

controller is used for returning encrypted results, which ensures that only the data 

controller can decrypt the data. 

Access control mechanisms, like the TVB web GUI, hide direct access to systems where 

sensitive data are actively processed: users need to log into the GUI with their password and 

can only access data that they uploaded or created themselves or that was made available 

to them through the role-based access control and permission management functionalities 

of the EBRAINS Collaboratory (see Supplementary Note: The EBRAINS Collaboratory). 

Sensitive data is encrypted before upload to EBRAINS and remains encrypted at all times 

with the only exception being the time when a processing job is actively executed. 

Cryptographic keys are created ad-hoc and independently for each processing job and the 

system is designed such that no human gets into possession of the decryption key while the 

data is in the cloud: the sensitive data can only be decrypted at their final processing site by 

an automatic procedure. During the actual processing sensitive data may exist in 

unencrypted form, but only within isolated temporary memory locations that cannot be 
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accessed by other users of the system (sandboxes). See Supplementary Methods: Data 

protection in the TVB on EBRAINS cloud for more information. 

 

Shared responsibility & compliance 

 

In addition to technical measures also organizational aspects must be considered for 

processing to be lawful. The GDPR describes two roles for lawful processing of personal 

data: data controllers and data processors. Data controllers are responsible for, and 

required to be able to demonstrate, compliance with GDPR (Art. 5, GDPR), by implementing 

technical and organisational measures that ensure appropriate security of the personal data 

(Art. 24, GDPR). In contrast, data processors process personal data only on behalf of data 

controllers, acting under the authority of the controller to carry out the processing (Art. 

28/29, GDPR). When a user uses TVB on EBRAINS services to process personal data the user 

is always the data controller, while EBRAINS as a service provider is always the data 

processor, because the user is directing the processing through its interaction with the 

offered services, while EBRAINS is only executing the provided instructions. As data 

processor EBRAINS is responsible for protecting the global infrastructure with documented 

procedures and services on behalf of the user. As data controller a user maintains control 

over the data that it hosts or processes with TVB on EBRAINS, as mechanisms were put in 

place to prevent unauthorized access and to enable that data controllers can independently 

or jointly determine the means of the data processing. To use TVB cloud services a user 

must therefore agree to terms that clarify its personal responsibility regarding compliance 

with GDPR with respect to security precautions, access permissions, contact persons, 

personal responsibilities, monitoring, logging, and passing of information to third parties 

(ebrains.eu/terms). 

 

Discussion 

 

TVB cloud services were developed to lower the barriers to brain simulation and 

connectome analysis. They offer reproducible and protected workflows for collaborative 

computational neuroscience research. All codes are open source and available for download 

from EBRAINS and GitHub (Table 1). Software is packaged in container images that can be 
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directly used without the need to install dependencies. Several software and data 

components have been peer-reviewed, and results were published in academic journals 

(Table 2). To enable actionable reproducibility the image processing workflow is equipped 

with tools for data management and provenance tracking. All computational steps, inputs 

and software are tracked, and each step can be easily rerun and verified with a simple set of 

commands. Technical and organisational measures for protecting the privacy of personal 

data are globally implemented into the services offerings of the platform, making it easier 

for researchers to demonstrate compliance with data protection regulation. Access control, 

encryption and sandboxing ensure that sensitive data stays confidential. Comprehensive 

documentation in the form of manuals, tutorials, lectures, Jupyter notebooks, demo data, 

workshops, videos, use cases, mailing lists and support contacts provide efficient and 

didactic dissemination of knowledge and support. EBRAINS core services enable to map and 

organize complex projects by large remote teams into a persistent and replicable structure 

at a central and secure place, which makes it easier to pick up projects at a later time. The 

flexibility of the platform and its focus on community-driven research enable rapid adoption 

of advances in brain simulation and connectomics, as well as correction of errors. Technical 

and organisational security mechanisms are designed to provide highest data protection 

standards, while at the same time providing the required flexibility to enable state-of-the-

art research. To keep the high quality of the cloud services, ongoing and future efforts are 

directed towards the continuous integration of improved community standards and best 

practices. The TVB on EBRAINS ecosystem can be transferred to other cloud environments 

within the European Open Science Cloud or beyond. Thus, it serves as a reference 

architecture for secure processing and simulation of neuroscience data in the cloud (Figure 

1 and Supplementary Discussion). 

 

Methods 

 

The Virtual Brain 

 

The methods behind the main TVB neuroinformatics simulator are extensively described in 

several publications (Ritter et al., 2013; Sanz-Leon et al., 2015, 2013) and in online 

documentation (Table1; docs.thevirtualbrain.org). To deploy TVB as cloud service it was 
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implemented as container image executed on OpenShift, an open source container 

orchestration platform. This deployment serves TVB's GUI via the web and automatically 

scales the number of running instances of the TVB container depending on demand. The 

GUI is connected with the EBRAINS identity and access management system to perform 

access control: only registered EBRAINS user can access the GUI and they can only access 

the data for which they were given role-based permission. Depending on their complexity, 

simulation jobs are either directly computed in the running OpenShift instance that serves 

the web GUI or on a supercomputer. Currently users still have the responsibility to manually 

encrypt their data with a public key before upload, but in a next release it is planned that 

this will be automatically performed by the upload function. After upload every project is 

individually re-encrypted with a dedicated key. Decryption only happens when a user opens 

a project in the web GUI and the decrypted data is immediately deleted when the project is 

closed or the user logs out. The decrypted project is not directly written to a file system, but 

only stored inside the running container. For high-demand operations that run on the 

supercomputer data is only decrypted after the job gets started by the job scheduler and 

only inside the running TVB container. See Supplementary Methods: Brain simulation with 

TVB for more information. 

 

TVB Image Processing Pipeline 

 

The TVB Image Processing Pipeline (Schirner et al., 2015b) allows users to select and 

combine dedicated neuroimaging workflow containers, like BIDS Apps (see Supplementary 

Note: BIDS Apps), into reproducible workflows that process MRI data on supercomputers 

while protecting the privacy of personal data in compliance with data protection regulation. 

Containerization makes it easier to deploy neuroimaging workflows, as they often rely on a 

high number of dependencies and computational steps. Users can select among different 

neuroimaging containers like fmriprep for functional MRI processing (Esteban et al., 2019), 

Mrtrix3_connectome for diffusion MRI tractography (Smith and Connelly, 2019; Tournier et 

al., 2019), or the Human Connectome Project pipelines for both (Glasser et al., 2013). Like 

main TVB, the pipeline execution on the supercomputer can be controlled from the TVB 

web GUI without giving users direct access to the supercomputer. An orchestrator program 

on the supercomputer coordinates the execution of the container images and ensures that 
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personal data is encrypted at all times, except for the duration of the processing and then 

only in the main memory of a sandboxed process (Figure 2 and Supplementary Note: TVB 

Image Processing Pipeline for more details). To make workflow processing reproducible the 

open source distributed data management solution DataLad (datalad.org; (Halchenko et al., 

2021)) was used for version control and provenance tracking: all files involved in a workflow 

(such as data, code and computational environment) are stored within nested directory 

trees, which allows to explicitly store the evolution of a data set from its raw state to the 

final result. Checksums allow the user to uniquely identify the contents of every file, which 

in turn allows to verify the correct execution of every computational step and thereby full 

computational reproducibility of the entire workflow. See Supplementary Methods: TVB 

Image Processing Pipeline for more information. 

 

Data availability 

 

The datasets generated and analysed during the current study are available in the EBRAINS 

KnowledgeGraph repository, search.kg.ebrains.eu. KnowledgeGraph is a DOI-minting 

repository where EBRAINS data and software services are indexed and referenced. To share 

personal data among researchers subject to national or international data protection laws 

(e.g., the General Data Protection Regulation of the European Union) protected 

environments and workflows as well as a shared responsibility model were created 

(Supplementary Methods: Data protection in the TVB on EBRAINS cloud). 

 

Code availability 

 

All software codes presented in this article have open-source licenses and can be 

downloaded from GitHub (Table 1). The EBRAINS database service KnowledgeGraph 

(search.kg.ebrains.eu) is a DOI-minting repository where all data and software services are 

indexed and archived. Source codes are deployed as cloud services that can be used on 

ebrains.eu and as standalone download versions that can be pulled as container images 

from Docker Hub (Table 1). 
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Data availability 

 

The datasets generated during and/or analysed during the current study are available in the 

EBRAINS KnowledgeGraph repository, search.kg.ebrains.eu. KnowledgeGraph is a DOI-

minting repository where EBRAINS data and software services are indexed and/or archived. 

To share personal data among researchers subject to national or international data 

protection laws (e.g., the General Data Protection Regulation of the European Union) 

protected environments and workflows as well as data sharing agreement templates were 

created (Supplementary Note: Data protection in the TVB on EBRAINS cloud). 

Code availability 

 

All software codes presented in this article have open-source licenses and can be freely 

downloaded from GitHub (Table 1). The EBRAINS database service KnowledgeGraph 

(search.kg.ebrains.eu) is a DOI-minting repository where all data and software services are 

indexed and/or archived. Source codes are deployed as cloud services that can be used on 

ebrains.eu and as standalone download versions that can be pulled as container images 

from Docker Hub (Table 1). 
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