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Abstract

We present a constrained model-based optimization and predictive control frame-

work to maximize the production efficiency of batch fermentations based on the core

idea of manipulating adenosine triphosphate (ATP) wasting. In many bioprocesses,

enforced ATP wasting —rerouting ATP use towards an energetically possibly sub-

optimal path— allows increasing the metabolic flux towards the product, thereby

enhancing product yields and specific productivities. However, this often comes at

the expense of lower biomass yields and reduced volumetric productivities. To maxi-

mize the overall efficiency, we formulate ATP wasting as a model-based optimal con-

trol problem. This allows for balancing trade-offs between different objectives such

as product yield and volumetric productivity for batch fermentations. Unlike static

metabolic control, one obtains a higher degree of flexibility, adaptability, and compet-

itiveness. This can be advantageous towards achieving a sustainable and economi-

cally efficient biotechnology industry. To compensate for model-plant mismatch,

disturbances, and uncertainties, we propose not only solving the optimal control

problem once. Instead, we exploit the concept of moving horizon model predictive

control combined with constraint-based dynamic modeling to capture the fermenta-

tion dynamics. The approach is underlined considering the industrially relevant

bioproduction of lactate by Escherichia coli. We discuss practical challenges for the

described control strategy and provide an outlook towards future developments.
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1 | INTRODUCTION AND MOTIVATION

Biotechnology holds the potential to aid in the transition towards a circu-

lar and thus sustainable economy. Many current fossil-based fuels,

chemicals, and materials could be replaced by bio-based alternatives via

fermentation processes—using “microbial cell factories”.1 One of the core

challenges to achieve this goal is the optimization of the overall fermenta-

tion process efficiency. Currently, this is very often done by a time-

consuming and expensive series of experiments. While model-based

design and control strategies to optimize fermentation process efficiency
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have been extensively considered by now,2–4 they have not found wide-

spread industrial application for a multitude of reasons. Often, no models

or models of only minimal descriptive power for the design and control of

fermentation processes are available.2,4 Furthermore, the operation might

be subject to significant disturbances and possible changes in process

dynamics, which are difficult to reflect in the optimization and models

used. While disturbances can sometimes be minimized by precise and

well-defined process conditions, this is often economically challenging or

impossible, for example, considering processes involving biological waste

products with changing properties. Moreover, maximization of production

efficiency often involves a multitude of objectives.5–7 For example, a high

titer or product concentration often enables efficient and cost-effective

downstream processing. On the other side, a high product volumetric pro-

ductivity rate might be desirable for minimizing capital and production

costs, especially when dealing with bulk chemicals (high volume/low

value). Additionally, the yield of product on substrate is often of interest,

mainly when the substrate cost is an economic constraint.8,9

To tackle the outlined challenges, we propose a model-based

moving horizon optimal control framework to maximize the produc-

tion efficiency of batch fermentations based on the core idea of

manipulating adenosine triphosphate (ATP) wasting. The approach

allows considering and balancing different process objectives and

exploits constraint-based dynamic modeling to capture the fermenta-

tion dynamics. The moving horizon repeated solution of the optimal

control problem allows handling large disturbances and online adjust-

ments to changing process conditions.

1.1 | Towards efficient bioprocesses: Enforced
ATP wasting

Although having high product yields and volumetric productivities is

desirable, there is a well-known trade-off between these two parame-

ters. Due to the intrinsic nature of cell metabolism, maximizing the

product yield is often linked to less substrate flux directed towards

biomass. In turn, this often translates into slower growth rates and

lower volumetric productivities in batch fermentations given the role

of biomass as the “catalyst” of the process.8,10 There are several

approaches to address this trade-off, for example, two-stage

fermentations.8,11

Furthermore, ATP supply plays a major role as an energy provider

for the cell and in regulating cellular processes.12 Enforced ATP

wasting is a promising strategy to improve the product yield where

the product pathway is the primary source of ATP (Figure 1).12–19

Basically, enforced ATP wasting imposes a certain ATP drain in the

cell metabolism, for example, by introducing an ATP futile cycle14 or

expressing an ATP-hydrolyzing enzyme such as the F1 portion of the

ATPase.15,20 The cell needs to respond to this drain with an increment

in the product flux to counteract the ATP loss. Hence, increasing ATP

wasting or turnover should result in increased product yields and spe-

cific productivities. However, given the trade-off between biomass

and product, this also means that the biomass yield will decrease

along with the volumetric productivity.8,13–19 This leads to the ques-

tion on how to address this trade-off in a structured, adaptable, and

flexible way. To do so, we propose combining model-based control

with constraint-based models, namely dynamic enzyme-cost flux bal-

ance analysis (deFBA). For details see Section 2.

1.2 | Modeling, optimization, and control of ATP
wasting

The idea of enforced ATP wasting has been considered for one-stage

and two-stage fermentations.8,14–18 In two-stage processes, cells are

grown first without ATP wasting, followed by a production phase cata-

lyzed by growth-arrested cells with ATP wasting. For one-stage pro-

cesses, ATP wasting is enhanced during the entire process. Naturally,

modeling and simulating ATP wasting in fermentations would allow one

to understand and optimize the production process. Previous efforts on

mathematical modeling of ATP wasting have involved unstructured,

somewhat simplified equations with very generic (lumped) parameters.

Most of the approaches have focused on simulating one-stage and two-

stage scenarios to deepen the understanding.8 The obtained precision of

the derived models, however, is so far often limited.

Fine-tuning the ATP turnover in the cell by online optimization and

control could provide more flexibility and new opportunities to the bio-

technology industry. With the help of computer-aided optimization tech-

niques and tunable gene-expression systems,21–25 one could adjust the

ATP wasting online to achieve desired user-defined trade-offs between

product yield and volumetric productivity. As such, this idea belongs to

the concept of dynamic metabolic engineering10 because different levels

of ATP wasting would render different metabolic flux distributions in time.

1.3 | Tackling process uncertainties, model-plant
mismatch, and disturbances via moving horizon
control

Many factors in industrial bioreactors (e.g., mass/heat transfer, mixing,

etc.) can limit and influence growth and conversion rates.26 Even

for highly stable and well-controlled conditions, there remains

stochasticity in gene expression and consequently in the observed cell

phenotype and process dynamics.27 To account for possible

F IGURE 1 Principle effect of adenosine triphosphate (ATP)
wasting on the metabolic flux distribution with net ATP production
linked to product formation. Left-hand side: no ATP wasting; growth-
dominant scenario. Right-hand side: high level of ATP wasting;
production-dominant scenario. The red arrow indicates the induced
ATP drain
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model-plant mismatch, uncertainty, and disturbances, we propose

introducing feedback control by repeated solution of the optimal con-

trol problem in form of model predictive control (MPC) with shrinking

time horizon.28 Unlike autoregulation of cellular metabolism,29 this

offers expanded flexibility in the form of in silico feedback control.

The cell/bioreactor is connected to the controller, which is

implemented externally in silico, allowing for a higher degree of flexi-

bility, online adjustment, and improved overall control.30,31

MPC using constraint-basedmodels has been considered, for exam-

ple, in Reference 32, where a predictive control strategy with online

parameter and state estimation based on a deFBAmodel was developed.

The overall efficiency of this approach has been validated by maximizing

ethanol volumetric productivity via adjusting the oxygen uptake rate

online in a glycerol fermentation with Escherichia coli. In this regard, the

main novelty of our work involves the application of dynamic manipula-

tion of enforced ATP wasting, a generalizable concept that can be

employed by biotechnologists towards maximizing batch fermentation

efficiency in bioprocesses where the product pathway is coupled to ATP

synthesis. We underline the concept considering the batch anaerobic

lactate production from glucose by an engineered E. coli strain with

knock-out of competitive pathways.14 The ATP wasting activity in the

cell is captured by simulating the ATP-hydrolyzing effect of the ATPase

enzyme (F1-subunit)
20 within the deFBA. To the best of our knowledge,

this is the first time that dynamic ATP wasting is tackled and formulated

as amodel-based optimal control problem.

The contribution of this work is threefold. We present an optimal

and predictive control framework of ATP turnover for dynamic meta-

bolic control in batch fermentations. We highlight the applicability of

MPC of ATP turnover for dealing with model-plant mismatch, distur-

bances, and uncertainties. To do so, we use constraint-based model-

ing in the form of deFBA to better capture the effect of temporal

manipulations of the cellular ATP turnover on the fermentation

dynamics. The results are in our eyes highly relevant for the

bioprocess sector, an industry that has been historically strongly rec-

ipe driven. It often operates with predefined control action policies

based on trial and error or often oversimplified dynamic models, thus

frequently leading to suboptimal process performance.33

The remainder of the article is structured as follows. Section 2

focuses on the constraint-based modeling framework, which provides

the required flexibility and descriptive power. In Section 3, we outline

our optimal control formulation to maximize process efficiency con-

sidering ATP turnover. Section 4 focuses on the MPC formulation

regarding ATP turnover to counteract disturbances and model-plant

mismatch. We highlight the potential of our optimization and control

strategy using the lactate fermentation by E. coli as a case study in

Section 5.

2 | CONSTRAINT-BASED MODELING

We utilize constraint-based models as a base for optimizing the fer-

mentation process. Constraint-based models basically combine all

available information about the process in a set of algebraic and

differential equations.34–36 They combine conservation relations in

metabolism based on the stoichiometric matrix of a given metabolic

network on a genome-scale level and can also include phenomenolog-

ical relations describing the overall fermentation process dynamics.

Typically, constraint-based models are underdetermined if one con-

siders only the known balance constraints due to limited insight into

the process. To eliminate the undetermined degrees of freedom, an

optimization or dynamic optimal control problem with a biologically

meaningful objective function is often formulated, and additional con-

straints are included to further limit the solution space. This allows

obtaining sound predictions of the unknown variables, such as meta-

bolic fluxes and, in the case of dynamic versions, of the change of

extracellular concentrations in time. One of the key steps herein is the

selection of a biological reasonable optimality criterion the cell might

optimize. This could be, for example, maximum growth.37

We focus on deFBA, a specific constraint-based modeling frame-

work.32,38,39 It allows capturing changes in the biomass composition

due to temporal metabolic adaptions and considers the “cost” of pro-
ducing such biomass components. deFBA modeling assumes that the

biomass is composed of enzymes, ribosomes, and so-called quota

compounds whose states are combined in the vector p. We denote by

b the vector containing the corresponding molecular weights of the

biomass components. Hence,

B¼ bTp ð1Þ

expresses the total biomass dry weight in g=L. Extracellular metabo-

lites z and the biomass components are collected in the molar vector

x, leading to the mass balances:

_x tð Þ¼ _z tð Þ, _p tð Þð Þ¼ SxV tð Þ, x t0ð Þ¼ z0, p0,ð Þ: ð2Þ

Here, Sx denotes the stoichiometric matrix of the species in the vector

x. Reaction fluxes for exchange, metabolic, and biomass production

reactions are collected in the flux vector V.

For simplification, one often assumes quasi-steady-state condi-

tions for the intracellular metabolites m:

0¼ _m tð Þ¼ SmV tð Þ , ð3Þ

where Sm is the stoichiometric matrix of the species in the molar vec-

tor m.

Moreover, metabolic fluxes are constrained by the amount of

enzyme and its corresponding turnover number or catalytic con-

stant kcat:

X
j � cat ið Þ

Vj tð Þ
kcat,j

����
����≤ pi, i�, ð4Þ

where cat ið Þ accounts for all reactions that an enzyme pi from the set

of enzymes  catalyzes.

Additionally, metabolic fluxes can be limited by biologically feasi-

ble lower and upper bounds:
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Vmin tð Þ≤V tð Þ≤Vmax tð Þ, ð5Þ

A minimal fraction φQ � 0,1½ � of the biomass dry weight is forced

to correspond to quota compounds pQ, which comprises all macromol-

ecules needed by the cell to function properly but that are not explic-

itly modeled:

φQb
Tp tð Þ≤ pQ tð Þ: ð6Þ

Depending on the available insight, the set of Equations (1)–(6) is typi-

cally underdetermined. To overcome this problem, one can assume

that cells evolved in a way that they are always optimizing a certain

cost functional, for example, given by:

max
V �ð Þ

ðtdeFBA

t0

FV pð Þdt, ð7Þ

where FV is the cell optimized objective function over a time horizon

t0,tdeFBA½ �. Note that tdeFBA can in principle span to infinity. Fre-

quently, the objective function of the cell in deFBA models is chosen

as the maximization of the biomass integral,32,38–40 which is said to

work generally well as long as the cells are not under starvation condi-

tions.41 This leads to the dynamic optimization/optimal control prob-

lem subject to constraints:

max
V �ð Þ

ðtdeFBA

t0

bTp tð Þdt

s:t: Eqs: 2ð Þ� 6ð Þ:
ð8Þ

Note that Equation (8) is an optimal control problem aiming at deter-

mining a function V instead of a vector, which is in general difficult to

solve, especially if many constraints and variables are involved.42

3 | MAXIMIZATION OF THE
FERMENTATION EFFICIENCY IN TERMS OF
OPTIMAL CONTROL OF ATP TURNOVER

To optimize the process efficiency, one often considers a subpart of

the fluxes as directly manipulable. We assume that the ATPase flux

VATPase can be directly influenced as manipulated variable. We can see

from Equation (4) that different VATPase values can in principle be

reached by rational manipulation of the ATPase enzyme concentration

level. This can be achieved in reality, for example, by putting the

ATPase genes under the control of an inducible promoter. In the con-

text of synthetic dynamic control circuits, different input signals can

be used to modulate enzyme expression, ranging from exogenous

stimuli (e.g., chemical inducers and light) to process parameters such

as pH, oxygen level, and temperature.10,22,25 Naturally, depending on

the selected genetic module, a suitable actuator shall be applied that

translates the desired optimal ATPase flux V�
ATPase

� �
into an optimal

input u�ð Þ to the plant. To keep the analysis limited to the general

effect of dynamically controlling the ATP turnover, it is assumed in

this study that a proper genetic module and actuator are available and

well-characterized to achieve the desired flux levels at the specific

control actions.

Changing ATP turnovers will result in increasing and decreasing

patterns of the product and biomass yields. We formulate the quest

for an optimal flux strategy that maximizes the efficiency of the batch

process defined with the cost function J xð Þ assuming, for simplicity,

that the batch time tf is fixed:

max
VATPase �ð Þ

J xð Þ
s:t: 8ð Þ:

ð9Þ

One could consider, for example, maximizing the yield of product on

substrate, the volumetric productivity, or a multi-objective cost func-

tion.6,7,32 The decision variable in the optimal control problem corre-

sponds, for simplicity of presentation, to the manipulated or regulated

metabolic flux VATPase. Note that in principle one can exploit more

manipulated fluxes.

The optimal control problem will determine the optimal ATPase flux.

The deFBA model will consider the ATPase flux as given. Note that in

principle there will be couplings between the maximum allowed ATPase

flux and the variables appearing in the deFBA model. Those can be inte-

grated via additional constraints in the optimal control formulation.

Note that Equation (9) is a bilevel optimal control problem, involving

an inner and outer optimization, which is in general difficult to solve.43

Often this is overcome utilizing a discretization of the “manipulated” var-
iables in the upper and lower level, or by approximating the lower-level

optimal control problem, for example, by letting tdeFBA go to infinity and

finding an approximated solution of the stationary problem.

3.1 | Remark on state measurements

In formulation (9), initial conditions z0,p0ð Þ are required to solve the

optimization problem. From a practical side, this implies that the

states of both z and p need to be known always. However, getting mea-

surements of the intracellular biomass composition is not straightforward.

We do not focus on this aspect here. One might for example use suitable

estimators/observers, cf. for example, Reference 32 which exploits a tai-

lored estimator. We use in the example section a tailored estimator.

4 | SHRINKING HORIZON MPC OF ATP
WASTING

The outlined open-loop control of ATP wasting allows, depending on

certain economic requirements, to achieve user-defined trade-offs

between product yield and volumetric productivity that would guaran-

tee the profitability of the plant. However, as mentioned before, the

dynamics of biological systems can be affected by many factors, rang-

ing from intrinsic stochasticity in gene expression to several process-

related variables. To counteract these, often a priori unknown effects,

4 of 13 ESPINEL-RÍOS ET AL.



we propose to re-evaluate the optimal control problem during the run

of the process. Specifically, we propose to use a shrinking horizon

MPC formulation of ATP turnover for dealing with uncertain biologi-

cal systems.

Basically, MPC is the repeated application/solution of an opti-

mal controller, where the open-loop optimal input is applied only

partially. After a certain time, the control action is re-evaluated,

considering updated process plants, thus accounting for distur-

bances and process plant mismatch. Repeated solution of the opti-

mal control problem thus leads to closing the loop and provides the

desired feedback.28 Consequently, the manipulated variable trajec-

tory adapts in time, and can thereby reduce the effect of short-

term unknown disturbances, model-plant mismatch, and uncer-

tainties. For the ATP turnover application, we considered the fol-

lowing optimal control problem to be solved at the sampling times

tk , where k is the sampling time. We assume for simplicity that tk ¼ kh,

k¼0,…,n�1, that is, equidistant sampling times, where h is the sam-

pling distance. Note that one could allow for non-equal sampling,

which is avoided here for simplicity of presentation. For simplicity we

also consider that the prediction horizon in the MPC problem spans

to the final process time tf , leading to a shrinking MPC horizon span-

ning from tk to tf , which guarantees in the nominal case:

max
VATPasek

�ð Þ
J xð Þ

s:t: max
V �ð Þ

ðtdeFBA

tk

bTpk tð Þdt

s:t: Eqs: 2ð Þ� 6ð Þ:

ð10Þ

Figure 2 summarizes the resulting shrinking horizon optimal control

strategy considering ATP turnover as the manipulated variable. The

optimal control problem is solved and the first control action from the

predicted optimal trajectory is applied to the plant through a suitable

actuator system. Then, state and parameter estimates based on mea-

surements of the process such as biomass dry weight eB and extracel-

lular metabolite concentrations ez are used at each control (sampling)

instance to resolve the optimal control problem. We consider the use

of an observer or state estimator for the intracellular components bp

from the measured states. This cycle is repeated over a shrinking time

horizon.

5 | APPLICATION EXAMPLE: LACTATE
FERMENTATION

We consider the lactate synthesis by E. coli, which is coupled with

ATP formation under anaerobic conditions making it amenable for the

ATP wasting strategy. During the fermentation, ATP is not produced

directly along the product pathway (pyruvate to lactate), but rather

via glycolysis (glucose to pyruvate). We focus on E. coli KBM10111,

which is an engineered strain that has undergone gene deletions of

adhE (aldehyde-alcohol dehydrogenase), ackA (acetate kinase), and pta

(phosphate acetyltransferase), blocking synthesis of alternative fer-

mentation products. With these modifications, the pathway from glu-

cose to lactate becomes essential to regenerate the redox cofactors

required in the glycolysis, thus product formation is necessary for ATP

synthesis. Using glucose as substrate, this strain can produce lactate

as the main fermentation product under anaerobic conditions, while

by-product formation (ethanol, formate, acetate, and succinate) is very

low or fully blocked.14 The good performance of the strain makes it

favorable from an application point of view. Although the original

study14 used an ATP futile cycle to enforce high ATP turnover, we

consider herein the F1-part of the ATPase as the most direct ATP

wasting mechanism.15–17,19,20

5.1 | Modeling

The deFBA framework requires a suitable resource allocation model

that encompasses both a metabolic and a biomass-producing part

(Table 1). The model derivation for the lactate fermentation followed

a similar protocol as suggested by Reference 44; therefore, only the

specific assumptions or details will be mentioned. First, a reduced

metabolic network of the fermentation was constructed; in this case,

using the NetworkReducer algorithm.45 The E. coli genome-scale model

ECGS46 and the phenotype of the strain (growth and extracellular

F IGURE 2 Model predictive control
strategy of the adenosine triphosphate
(ATP) turnover
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TABLE 1 Reactions of the resource allocation model and relevant parameters for the lactate fermentation case study

Metabolic part Biomass-producing parta

No. Reaction Enzyme(s)b
kcat
(min�1) No. Reaction

b
(g/mmol)

kcat
(min�1)

1 GLC + PEP ! G6P + PYR ptsGHI_crr 12,600 17 2358 AA + 9432 ATP ! 9432 ADP

+ ptsGHI_crr

255.85 0.31

2 G6P ! F6P pgi 84,600 18 1098 AA + 4392 ATP ! 4392 ADP

+ pgi

123.06 0.66

3 ATP + F6P ! ADP + DHAP + G3P pfkA_fbaA 630 19 1998 AA + 7992 ATP ! 7992 ADP

+ pfkA_fbaA

217.66 0.36

4 DHAP ! G3P tpiA 49,002 20 510 AA + 2040 ATP ! 2040 ADP

+ tpiA

53.94 1.41

5 ADP + G3P + NAD ! 3PG + ATP

+ NADH

gapA_pgk 3120 21 1711 AA + 6844 ATP ! 6844 ADP

+ gapA_pgk

183.25 0.42

6 3PG ! PEP gpmA_eno 1500 22 1364 AA + 5456 ATP ! 5456 ADP

+ gpmA_eno

148.42 0.53

7 ADP + PEP ! ATP + PYR pykF 7920 23 1880 AA + 7520 ATP ! 7520 ADP

+ pykF

202.92 0.38

8 NADH + PYR ! LAC + NAD ldhA 83,520 24 1316 AA + 5264 ATP ! 5264 ADP

+ ldhA

146.14 0.55

9 ATP ! ADP atpAGD 612 25 3206 AA + 12,824 ATP ! 12,824 ADP

+ atpAGD

348.22 0.22

10 CO2 + PEP ! OAA ppc 32,400 26 3532 AA + 14,128 ADP ! 14,128 ADP

+ ppc

396.25 0.2

11 CoA + PYR ! AcCoA + FOR pflB 714 27 1520 AA + 6080 ATP ! 6080 ADP

+ pflB

170.71 0.47

12 AcCoA + NAD + OAA ! AKG

+ CO2 + CoA + NADH

gltA_acnB_icd 192 28 5124 AA + 20,496 ATP ! 20,496 ADP

+ gltA_acnB_icd

566.6 0.14

13 AKG + ATP + NADH ! AA + ADP

+ NAD

gdhA_glnA 3000 29 8310 AA + 33,240 ATP ! 33,240 ADP

+ gdhA_glnA

914.33 0.09

14 NADH + OAA ! MAL + NAD mdh 17,328 30 624 AA + 2496 ATP ! 2496 ADP

+ mdh

64.67 1.15

15 MAL ! FUM fumB 444 31 1096 AA + 4384 ATP ! 4384 ADP

+ fumB

120.21 0.66

16 FUM + NADH ! NAD + SUCC frdABCD 14,400 32 1096 AA + 4384 ATP ! 4384 ADP

+ frdABCD

121.22 0.66

33 7459 AA + 29,836 ATP ! 29,836 ADP

+ R

2500.00 0.1

34 2.5 3PG + 10.7 AA + 5.6 AcCoA

+ 150.9 ATP + 0.2 DHAP + 0.7 F6P

+ 1.7 FOR + 0.5 G3P + 0.9 G6P

+ 10.2 NADH + 4.4 OAA + 1.2 PEP

+ 4.4 PYR ! 150.9 ADP + 11.1 AKG

+ 5.1 CO2 + 5.6 CoA + 1.1 FUM

+ 0.0003 MAL + 10.2 NAD + 0.5

SUCC + Q

1.00c 66

Note: Species contained in z: CO2, FOR, GLC, LAC, SUCC. Species contained in p: all listed enzymes, Q, R. Species contained in m: 3PG, AA, AcCoA, ADP,

AKG, ATP, CoA, DHAP, F6P, FUM, G3P, G6P, MAL, NAD, NADH, OAA, PEP, PYR. φQ = 0.67.

Abbreviations: 3PG, 3-phospho-D-glycerate; AA, amino acid; AcCoA, acetyl-CoA; ADP, adenosine diphosphate; AKG, alpha-ketoglutarate; ATP, adenosine

triphosphate; CO2, carbon dioxide; CoA, coenzyme A; DHAP, dihydroxyacetone phosphate; F6P, fructose 6-phosphate; FOR, formate; FUM, fumarate;

G3P, glyceraldehyde 3-phosphate; G6P, glucose 6-phosphate; GLC, glucose; LAC, lactate; MAL, malate; NAD, nicotinamide adenine dinucleotide; NADH,

NAD-reduced; OAA, oxaloacetic acid; PEP, phosphoenolpyruvate; PYR, pyruvate; Q, quota; R, ribosome; SUCC, succinate.
aIt is assumed for Equation (4) that ribosomes catalyze all biomass-producing reactions.
bGene IDs used for referring to the enzymes. Underscore symbols are used to indicate which enzymes have been lumped in the model.
cReaction 34 already given in terms of g=L of Q; therefore, bQ ¼1 for simplification purposes.
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glucose and lactate rates)14 were given as main inputs for the network

reduction. This resulted in the reactions listed under the metabolic

part of the model which are also depicted in Figure 3. Note that a

reaction for amino acid (AA) production is present since AAs are

needed as reactants in the biomass-producing section. Glutamine was

taken as a reference AA for the sake of simplicity. Additionally, a reac-

tion (no. 9) to simulate the ATP-hydrolyzing activity of the ATPase

enzyme (F1-subunit) was explicitly included. Catalytic constants were

established with information from BRENDA47 and SABIO-RK48 data-

bases. In general, kcats were estimated as median values from the

available data. Some corrections were introduced in the catalytic con-

stants of certain enzymes (namely, ptsGHI_crr, pfkA_fbaA, gapA_pgk,

gpmA_eno, ppc, and gdhA_glnA) to improve the model fitting. For

these enzymes, instead of taking the median value, we selected indi-

vidual kcat entries from the databases that in our opinion fitted well

the experimental data.

To derive the quota reaction, it was roughly estimated from the

BioNumbers database49 that 67% of biomass dry weight was made up

of quota elements (DNA, lipids, carbohydrates, non-catalytic proteins

plus other small molecules), while the remaining 33% corresponded to

catalytic enzymes and ribosomes. Thus, φQ was set to 0.67 in

Equation (6). Catalytic constants for biomass-producing reactions

were calculated based on the rate of translation by ribosomes

(12AAs/s).49 Mass values of gene products to build the b vector were

retrieved from UniProt.50

The deFBA model for the lactate fermentation was validated

using experimental data (Figure 4). One should note that the validated

scenario does not cover enforced ATP wasting. We used resource bal-

ance analysis (RBA)32 to estimate the initial p 0ð Þ vector from the

known initial biomass dry weight concentration. RBA is based on cel-

lular resource allocation theory.51 It works by maximizing biomass

growth while allocating the biomass components accordingly, assum-

ing that the metabolism is in a quasi-steady state for each eB value.

Overall, the glucose profile predicted by the deFBA model shows

good agreement with the experimental data. Lactate and biomass con-

centrations are also well-described, especially at the beginning and

end of the fermentation, although the model shows a slight over-

estimation during the mid-term of the process. Taking into account

the reported standard deviations, the model fitting shows sufficient

good performance and is used to analyze the effect of the dynamic

manipulation of cellular ATP wasting.

5.2 | Open-loop maximization of the fermentation
efficiency in terms of the ATP turnover

In a first step, we maximized the fermentation efficiency via the open-

loop optimal control problem as outlined in Section 3 to explore the

properties of ATP wasting.

The objective function considered for the optimal control prob-

lem was the maximization of the final lactate titer, J xð Þ¼ zLAC tfð Þ. To
solve the bilevel dynamic optimization problem we used collocation

based on Lagrange interpolation polynomials.38 The inner-level prob-

lem was considered as optimistic and integrated via the resulting

Karush-Kuhn-Tucker conditions into an overall mathematical program

with complementarity constraints.52 To do so, CasADi53 and IPOPT54

were used. The time course of the batch was discretized given a step

size h so that h¼ tf=n. Since the predictive horizon of the optimal con-

trol problem spans until tf , we expect that the controller will try to

consume all substrate available to maximize lactate concentration in

the given time frame. For simplicity, we used tdeFBA ¼ tf so that the

deFBA model would avoid covering time frames (beyond tf ) with sub-

strate starvation for which, as mentioned before, the biomass integral

objective function is not deemed reliable. Eight control actions were

considered (n¼8), which turned out to be sufficiently fine discretized.

5.2.1 | Effect of the batch duration time on the
average product yield and volumetric productivity

We first examine the influence of the fermentation time, which has a

direct effect over the volumetric productivity in batch processes. For

a certain final product concentration (amount per volume, e.g., mM),

the longer the fermentation takes to reach that concentration, the

lower the product volumetric productivity (concentration per time, e.

g., mM/h) will be. Additionally, we know that the ATP wasting mecha-

nism increases the product yield at the expense of biomass yield,

thereby decreasing the volumetric productivity in batch

F IGURE 3 Pathway representation of the metabolic reactions
considered in the resource allocation model for the lactate
fermentation. Biomass-producing reactions are not shown. Refer to
Table 1 for nomenclature
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fermentations. Therefore, one should expect that the optimal control

problem would predict ATP wasting policies such that any increase in

product yield would still allow for sufficient biomass accumulation and

efficient substrate conversion towards maximizing the final product

concentration in a given batch time. Due to the outlined reasons, dif-

ferent batch times were used to solve the open-loop optimal control

problem to find a “palette” of process trade-offs between average

product yield (YPS,batch), biomass yield (YXS,batch), and product volumet-

ric productivity (rP,batch). This resulted in various sets of YPS,batch,

YXS,batch, and rP,batch for selected tf values (Figure 5). Note that the fer-

mentations metrics were calculated as average estimates for the

entire batch and should not be confused with temporal values

throughout the process. As expected, all time scenarios presented in

Figure 5 corresponded to fermentations with 100% substrate con-

sumption efficiencies. Remark that RBA32 was used to estimate the

initial p 0ð Þ vector from the given initial biomass concentration in the

open-loop optimizations.

Not surprisingly, the maximum volumetric productivity possible

was predicted for the scenario with no enforced ATP wasting

(VATPase ¼0 at all control action instances). This is indicated in orange

in Figure 5. Further tf increments allowed obtaining different non-zero

VATPase sequence actions (as will be shown in later examples) that pro-

jected higher batch product yields at the expense of biomass yield

and hence volumetric productivity. As was foreseeable, the predicted

product yield tended to the maximum theoretical value of 2 mol lac-

tate per mol glucose with increasing tf , matching the non-growth sce-

nario whereby all substrate flux is directed towards the product

pathway. In other words, the longer the batch time, the less critical

biomass concentration becomes to achieve maximum lactate titer

since the low fermentation rates are compensated by higher product

yields. Overall, these results highlight the fact that using the ATP turn-

over as manipulated variable allows obtaining different trade-offs

between product yield and volumetric productivity, thus providing

flexibility and adaptability to the fermentation operation.

5.2.2 | Fermentation dynamics under enforced ATP
wasting

Now, we take a deeper look at the fermentation dynamics under the

effect of enforced ATP wasting. For exemplification let us first analyze

the scenario for a batch time of 16 h (Figure 6). Later in Section 5.3,

we will show the open-loop dynamics for a batch time of 13 h for

comparison purposes. The corresponding fermentation metrics for

tf ¼16h are YPS,batch ¼1:90mol=mol, rP,batch ¼16:5mM=h, and

YXS,batch ¼4:9g=mol. Compared to the VATPase OFF scenario

(i.e., VATPase ¼0 at all control instances), optimal manipulation of

VATPase in the batch process of 16 h represented, as expected, an 11%

enhancement in the process product yield at the expense of about

48% drop in volumetric productivity. Furthermore, the optimization

predicted gradual increments of VATPase over time. Due to the ATP

wasting effect, this led to increasing and decreasing temporal values

of YPS and YXS, which becomes evident when analyzing the biomass

and product concentration profiles. For example, biomass had a higher

growth rate at the beginning compared to later stages of the fermen-

tation, hence the loss in volumetric productivity. On the other hand,

the product concentration surpassed the maximum possible achiev-

able with the VATPase OFF scenario (for the same initial conditions) as

a result of the enforced ATP turnover rates. In summary, the optimizer

F IGURE 4 Simulation of the dynamic
enzyme-cost flux balance analysis
(deFBA) against experimental data14 of
glucose, lactate, and biomass
concentrations. Initial conditions:
B 0ð Þ¼0:05g=L; zGLC 0ð Þ¼20:8mM;
zLAC 0ð Þ¼0mM. Batch time: tdeFBA ¼9:7h

F IGURE 5 Effect of different batch times (tf ) on the average
batch yields (YPS,batch, YXS,batch) and product volumetric productivity
(rP,batch). Predictions from open-loop optimizations (no model-plant
mismatch); 100% substrate consumption. Orange: non-ATP-wasting
scenario. Initial conditions: B 0ð Þ¼0:59g=L;
zGLC 0ð Þ¼139mM; zLAC 0ð Þ¼0mM
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was able to find a good balance between temporal improvements in

product yield and reductions in biomass yield to drive metabolism

towards the maximization of lactate titer.

It is worth stressing that the optimization predicted a gradual

increase of VATPase instead of a two-stage fermentation scenario with

a fully OFF-ATP wasting (growth-dominant) followed by a fully ON-

ATP wasting (production-dominant) phase. We modified the optimal

control problem in order to force the controller to apply a step-like

(OFF–ON) VATPase trajectory aimed at comparing the performance

against a gradual VATPase increase. However, doing so always led to

infeasible solutions. Such a two-stage scenario is infeasible with the

deFBA framework because the cell cannot instantaneously reallocate

resources to allow the required ATPase enzyme accumulation needed

to enable the desired VATPase flux values during the VATPase ON-stage.

In contrast, we think that more gradual VATPase increments, as

predicted by the controller, were feasible because the cell can slowly

produce and accumulate the required ATPase enzyme without

compromising resources for the production of other vital enzymes

and biomass components.

To support the previous argument, we plot in Figure 7 the change

in enzyme distribution as a percentage of biomass over time for the

open-loop scenario presented in Figure 6. One can clearly observe the

gradual accumulation of the ATPase enzyme needed to enable the

predicted VATPase fluxes by the controller. Furthermore, using the case

with no enforced ATP wasting as a reference, we can see how the

enzyme pool of the cells with manipulated VATPase changes compara-

tively different over time. This happens because the cells need to

dynamically reallocate resources from other enzymes so that they can

F IGURE 6 Open-loop optimization (OLO) results for a batch time
tf ¼16h against the case with no manipulation of VATPase (NC: no
control, i.e., VATPase ¼0 at all control instances). The dotted lines
extend the end-points of the NC fermentation for ease of
comparison. Initial conditions: B 0ð Þ¼0:59g=L; zGLC 0ð Þ¼139mM;
zLAC 0ð Þ¼0mM. No model-plant mismatch

F IGURE 7 Enzyme allocation dynamics for the scenarios
presented in Figure 6. Refer to Table 1 for nomenclature
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cope with the required ATPase production. For example, the concen-

trations of enzymes such as pfkA_fbaA and gpmA_eno decrease con-

siderably with increasing accumulation of the ATPase enzyme.

Mathematically speaking, the flux values in the deFBA model have an

upper bound dictated by the product of the enzyme concentrations

and the catalytic constants (Equation (4)). Therefore, one cannot

demand that the cells reach a sudden high VATPase flux right after a

fully OFF-ATP wasting stage, as would be the ideal concept with a

two-stage fermentation, because there would not be sufficient

enzyme present to catalyze the subsequent fully ON-ATP wasting

phase. In other words, enzyme allocation is a dynamic rather than an

instantaneous phenomenon. In a future work, we will focus on how

exactly one can fine-tune the expression and thus the amounts of cat-

alytic enzymes in the cell to reach the predicted flux values for

dynamic metabolic control applications.

5.3 | Closed-loop maximization of fermentation
efficiency using shrinking horizon predictive control
cases

The outlined shrinking horizon MPC strategy allows accounting for

model-plant mismatch and disturbances, which is not possible if the

optimal input is applied open-loop. To evaluate the scheme,

we consider three scenarios. For all MPC simulations, a batch time

tf ¼13h is used which, according to the open-loop optimal control

analysis in Figure 5, corresponds to YPS,batch ¼1:87mol=mol,

rP,batch ¼20mM=h, and YXS,batch ¼6:3g=mol. This underlines the flexi-

bility of the proposed approach as it allows one to select a priori

trade-offs between product yield and volumetric productivity under

different economic contexts. Note that RBA32 was used to estimate

the p 0ð Þ vector from the corresponding biomass concentration to ini-

tialize all control cases.

5.3.1 | Scenario 1 nominal case

We first assumed that there is no model-plant mismatch, that is, that

the model exactly describes the fermentation, and that states are

known during the complete process. As expected, in this case, the

optimal VATPase sequence trajectory resulting from the open-loop opti-

mization matches the closed-loop MPC one as we use a shrinking

horizon approach, following Bellman's principle of optimality.55 The

fermentation dynamics is shown in Figure 8.

In the context of these new results, it is worth highlighting that

the predicted optimal VATPase changes with different selected batch

times to maximize lactate titer; for example, compare the open-loop

predictions in Figure 6 (batch time of 16 h) and Figure 8 (batch time of

13 h). The observed trends are more or less similar; however, the

delivered VATPase for the process with tf ¼13h is, for example, com-

paratively less intense at the beginning which allows for more growth.

This means that the process with tf ¼16h discussed in Section 5.2

can favor production sooner via enforced ATP turnover because the

resulting lower biomass accumulation, and thus slower fermentation

rates, can be compensated by the allowed longer process time.

5.3.2 | Scenario 2 model-plant mismatch

The deFBA model assumes that enzymes are working under substrate

saturation conditions. That is why, as captured by Equation (4), meta-

bolic fluxes can be modeled based on the product of the catalytic con-

stants and the enzyme amounts. However, if this assumption does

not hold for certain enzymes, the controller might choose suboptimal

control actions. To introduce model-plant mismatch due to, for exam-

ple, substrate-unsaturated enzymes, kcats for reactions 3, 5, 6, 12, and

13 were scaled-down by a factor of 0.75. Furthermore, the minimum

quota fraction requirement by the cell was increased to φQ ¼0:69.

Overall, this slows down the fermentation rates but does not affect

the model stoichiometry. While the controller uses the nominal

parameters as listed in Table 1, the plant simulation includes the modi-

fied parameters which, for simplicity, are fixed during the full process

F IGURE 8 Performance of the MPC scenario 1 (S1). VATPase

sequence profile for both MPC S1 and the open-loop system (OLO);
and concentrations of glucose, lactate, and biomass for MPC S1.

Trends of the OLO system were identical. Initial conditions:
B 0ð Þ¼0:59g=L; zGLC 0ð Þ¼139mM; zLAC 0ð Þ¼0mM. Batch time:
tf ¼13h. No model-plant mismatch
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duration. Figure 9 shows the performance of the MPC subject to the

model-plant mismatch assuming full state information during the

operation (scenario 2). In real applications, however, having online

measurements of the intracellular biomass composition is not an easy

task with the current state-of-the-art technologies.

5.3.3 | Scenario 3 model-plant mismatch and state
estimation

Having the samemodel-plant mismatch as in scenario 2, we estimate the

biomass composition using RBA32 as state estimator. It requires

themeasured biomass concentration and appliedVATPase. The estimated

p vector is used as the initial condition p tkð Þ for the MPC shrinking

horizon. Note that other estimators, such as moving horizon estima-

tion56 can be used. The results are shown in Figure 9, scenario 3.

The MPC schemes in scenarios 2 and 3 were able to account for

the introduced slower growth rate by delivering a less intense but still

increasing VATPase sequence trajectory in relation to the open-loop

system. As already outlined, higher ATPase fluxes are linked to higher

product yields and lower biomass yields. Therefore, we see more bio-

mass accumulation in the middle-to-end term of the batch due to the

less intense ATP wasting strength applied. Because of the presence of

more biocatalyst in the processes with MPC, all glucose in the medium

was consumed. On the contrary, there was only 90% glucose con-

sumption efficiency with the open-loop system (i.e., without applying

corrective actions to address model-plant mismatch). Alternatively

stated, the increased product yields with the open-loop system did

not compensate for the decreased biocatalyst concentration. The RBA

estimation in scenario 3 caused the controller to choose a less intense

VATPase sequence trajectory compared to scenario 2. As a conse-

quence, there was more biomass accumulation and slightly less prod-

uct formation.

In summary, MPC showed potential for feedback control of the cel-

lular ATP turnover and provides additional robustness with respect to

model uncertainty. One option to make the metabolic model more accu-

rate could be to use kinetic relations57 that describe metabolic fluxes

based on the change in intracellular metabolite concentrations over time

m tð Þ. This would allow, for example, covering different substrate satu-

ration levels for the catalytic enzymes. However, this would also come

at the expense of introducing non-linearities and increasing the com-

plexity of the model due to the introduced kinetic functions and the

need for an explicit description of the m-dynamics which currently the

deFBA assumes for simplicity to be in quasi-steady-state conditions.

Moreover, the computational cost of solving the optimal control prob-

lem could increase considerably, thus hindering its applicability.

6 | CONCLUSION

We presented an optimal and predictive control strategy for the

dynamic manipulation of the cellular ATP turnover. As manipulated

variable for the control problem, the metabolic flux through an ATP-

consuming mechanism was considered. Constraint-based modeling,

namely deFBA, was used to describe the fermentation dynamics,

while model-plant mismatch was handled employing a shrinking

F IGURE 9 Performance of the MPC scenarios 2 (S2) and
3 (S3) against the open-loop system (OLO). VATPase sequence profile;
and concentrations of glucose, lactate, and biomass. Initial conditions:
B 0ð Þ¼0:59g=L; zGLC 0ð Þ¼139mM; zLAC 0ð Þ¼0mM. Batch time:
tf ¼13h. Model-plant mismatch considered
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horizon MPC approach. Lactate fermentation from glucose by E. coli

underlines, as an industrially relevant case study, the performance and

properties of the approach.

Unlike static metabolic engineering, considering ATP wasting in a

model-based optimal control formulation allows one to consider trade-offs

between product yield and volumetric productivity. We believe that the

outlined approach can contribute tomaking industrial biotechnologymore

flexible and adaptable. Furthermore, metabolic coupling of product and

biomass synthesis (e.g., by balancing energy cofactors) is a widely adopted

design principle ofmicrobial cell factories. For such cases, our control strat-

egy of ATP wasting should be applicable. For these reasons, optimal

dynamic manipulation of cellular ATP turnover may become a powerful

add-in tool for the bioprocess andmetabolic engineering sectors.

Future work focuses on kinetic and constraint-based modeling

frameworks that consider the dynamics of tunable gene expression sys-

tems for the control of regulated enzymes such as the ATPase. This

allows one to directly consider the enzyme expression which in turn

changes the target metabolic flux. Similarly, we are exploring continuous

and fed-batch configurations for the dynamic control of the ATP turn-

over. Finally, we are interested in the design of an observer for the bio-

mass composition with improved performance compared to the RBA.
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