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Abstract
Second nearest neighbor modified embedded atom method (2NN-MEAM)
interatomic potentials are developed for the Ni, Re, and Ni—Re binaries. To
construct the potentials, density functional theory (DFT) calculations have been
employed to calculate fundamental physical properties that play a dominant
role in fracture. The potentials are validated to accurately reproduce material
properties that correlate with material’s fracture behavior. The thus constructed
potentials were applied to perform large scale simulations of mode I fracture in
Ni and Ni—Re binaries with low Re content. Substitutional Re did not alter the
ductile nature of crack propagation, though it resulted in a monotonous increase
of the critical stress intensity factor with Re content.

Keywords: MEAM potential, brittle fracture, ductile fracture, Griffith theory,
Rice theory, cohesive zone modeling

(Some figures may appear in colour only in the online journal)
1. Introduction

Ni based superalloys, also known as /v alloys, are characterized by high ductility, improved
creep and fatigue resistance, as well as high melting temperature. Hence they constitute an
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indispensable material system for high temperature gas turbine applications [1, 2]. Creep and
fatigue properties of second and third generation Ni based super alloys could be significantly
improved by the addition of 3 wt% and 6 wt% Re [3—5]. However, the mechanisms governing
this so-called rhenium effect are still under debate (see reference [6] and references therein).
Possible mechanisms include the formation of D), phases which retard the dislocation climb
[71, hinder or delay the coarsening of the 4/ phase due to the low Re diffusion constant.

Several phenomena occur at a crack tip during fracture. These span different length scales
[8—10] and range from bond breaking to lattice trapping in the scale of a few A to long range
elastic strain fields in the sub-pm scale. Therefore, a full on-atomic-scale description of fracture
requires simulation cells consisting of at least a few ten thousand atoms [11]. Although den-
sity functional theory (DFT) calculations are capable to accurately describe both the atomistic
scale mechanisms as well as the long range elastic fields, their computational cost still restricts
them to system sizes containing a few thousand atoms. A widely used methodology applied
in atomic-scale fracture studies is to employ semi-empirical interaction models such as the
embedded atom method (EAM) or the modified embedded atom method (MEAM) potentials
[12, 13]. These approaches allow to treat system sizes of a few million atoms.

For Ni, there is a large number of interatomic potentials reported in the literature [14—17].
Among others, Lee er al [14] developed a Ni interatomic potential in the 2NN MEAM frame-
work to describe the physical properties of Ni. Ko ez a/ [15] developed a Ni potential to describe
martensitic phase transitions in Ni—Ti. Similarly, interatomic potentials were developed in both
the EAM and MEAM framework for Re [18, 19]. The EAM potentials of Re developed by
Bonny et al [18] were trained to predict the properties of the W-Re solid solution whereas
MEAM Re potentials were fitted to reproduce only selected physical properties such as elas-
tic constants, vacancy formation energy, and cohesive energy difference between hep to bee
phase [19].

We tested a large number of existing Ni and Re interatomic potentials to benchmark their
ability to model fracture behavior. Specifically, these potentials were tested against physical
properties known to correlate with the fracture behavior, e.g. surface energies, stacking fault
energies, elastic constants, as well as work of separation and traction separation behavior.
In figure 1 the calculated tensile stress employing the above mentioned potentials is plotted
against the separation displacement for the Ni {112} cleavage plane. All potentials that were
tested show either discontinuous traction separation or unrealistically negative traction separa-
tion. These potentials’ artifacts qualitatively affect crack propagation and show, e.g. unrealistic
crack tip blunting in atomistic simulations [12, 20].

In the present work we parametrize a second nearest neighbor (2NN) MEAM interatomic
potential for Ni, Re, and Ni—Re binary system. These potentials are trained using an extensive
set of materials properties that are collected in a materials’ database. This database includes
elastic constants, surface energies, generalized stacking fault energy surfaces, work of sepa-
rations and structural transition energies. The performance of these potentials is further eval-
uated by calculating the critical stress intensity factor from direct atomistic simulations, and
comparing it to those calculated from Griffith theory [21] and Rice dislocation emission criteria
[22].

Employing these potentials, we investigate and compare the mode I fracture behavior of Ni
with and without Re solute e.g. the opening mode by the application of a tensile load perpen-
dicular to the crack plane. We consider different crack orientations, and our calculations reveal
that the critical stress intensity factor derived from continuum based theory, i.e. linear elastic
fracture mechanics (LEFM), are within 10%-20% to DFT calculated values. Moreover, we
find that with increasing Re concentrations in Ni, the critical stress intensity factor increases.
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Figure 1. Comparison of tensile stress of Ni { 112} as function of the separation displace-
ment among different interatomic potentials and DFT. Ko-MEAM, EAM, B-MEAM
and E-MEAM refers to the potentials 15, 17, 14 and 16 respectively. P-MEAM is the
potential fitted in the present work.

Such increase in critical stress intensity factor of Ni due to the addition of Re is in line with
the enhanced ductility of Ni due to the addition of Re.

The main objective of the paper is to parametrize and evaluate 2NN-MEAM potentials
suitable to study fracture in Ni and Ni—Re alloys. The workflow to achieve this is schemat-
ically shown in figure 2. The paper is organized as follows: in section 2 a brief description
of the fundamentals of linear elastic fracture mechanics (LEFM) of an elastically isotropic
medium is given. Furthermore, the physical parameters that govern fracture are provided. The
parametrization of the potentials is discussed in section 3 together with the details of the DFT
calculations employed to derive the data for the materials’ database. In the same section the cal-
culated material properties that correlate with LEFM and fracture, e.g. the generalized stacking
fault energies (GSFE), the surface energies, the surface traction-separation and the works of
separation are presented. Moreover, the predicted melting temperatures are also provided. In
section 4 the atomistic simulations of fracture at a crack tip in Ni and Ni—Re are presented and
discussed in comparison to the predictions of LEFM. In section 5 we summarize our results.

2. Linear elastic fracture mechanics

The ductile and brittle failure of a material is characterized by the mechanisms occurring at
the crack tip: while dislocation emission is a signature of ductile fracture, bond cleavage is
the underlying mechanism of brittle fracture. The critical stress intensity factor, Kgijc, for a
dislocation to nucleate at a crack tip in mode I fracture was proposed by Rice [22]. Within
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Figure 2. Schematic representation of the workflow to parametrize, evaluate, and apply
the 2NN-MEAM potentials to investigate fracture in Ni and Ni—Re alloys. The construc-
tion of the materials’ database and the parametrization of the potential are provided in
section 3. The LEFM is discussed in section 2 and the large scale atomistic simulations
in section 4.
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Figure 3. Schematic representation of the crack geometry used to compute Kgice. 0 is
the angle between slip plane and crack plane and ¢ is the angle between the crack front
normal and the Burgers vector. The inclined plane indicates the slip plane and the arrow
indicates the Burgers vector.

isotropic elasticity, Kgic. is defined as

Kice = c05°(6/2) sin(6/2)\/ %7 (14 (1 —v)tan? ¢), D

where p and v are the shear modulus and the Poisson ratio, respectively. € and ¢ denote the
angle between the slip plane and crack plane and the angle between the crack front normal and
the Burgers vector, respectively (see figure 3). v, is the unstable stacking fault energy which
is obtained from the generalized stacking fault energy (GSFE) curve [23].

As already mentioned, the brittle fracture of a material is determined by bond cleavage.
Once the surfaces energies and elastic properties are known, the critical stress intensity factor
can be evaluated using Griffith theory. Within Griffith theory and plane strain conditions, the
critical stress intensity factor, Ky, for mode I brittle fracture is defined as

2FE~
Karitin = 4/ . )

where + is the surface energy, and E is the Young modulus.

4



Modelling Simul. Mater. Sci. Eng. 30 (2022) 015002 M Alam et a/

In addition to Griffith criterion, we have also considered the cohesive zone modeling (CZM),
which is known to control the path transformation of brittle fracture. This model is extensively
used in predicting crack growth behavior both at the mesoscale [24, 25] as well as at the atom-
istic scale [12, 26]. Within CZM and for an isotropic homogeneous solid, the critical stress
intensity factor, Kczu, is defined as

Ew
Kean =4/ 1.2 3)

where w is the work of separation.

The aforementioned discussion and equations (1)—(3) indicate that a prerequisite to inves-
tigate fracture in Ni and Ni—Re crystals by large scale atomistic calculations is the availability
of an interatomic potential that is able to accurately describe surfaces energies, GSFE, and
traction separation curves. Additional properties included in the Ni, Re, and Ni—Re materials’
database are the cohesive energy, the heat of formation for the ground state crystal structure as
well as for higher energy structures, lattice and elastic constants, work of separation for low
index surfaces, and vacancy formation energies.

3. Methodology

3.1. Ab-initio calculations

In order to build the aforementioned materials’ database we employ spin polarized density
functional theory (DFT) calculations. The calculations are performed using the Vienna ab-
initio simulation package, VASP [27]. For the bulk calculations, a kinetic energy cutoff of
400 eV is used for the expansion of the plane wave basis set along with 6 x 6 x 6k-points for
the Brillouin zone integration. The generalized gradient approximation (GGA-PBE) is used.
Interactions between core and valence electrons are described by PAW PBE pseudopotentials
with ten and seven valence electrons for Ni and Re, respectively. For the calculation of the
surface energies, we employ a slab geometry with more than ten unit cells along the direction
normal to the surface with at least 40 atoms in the supercell. A vacuum of 10 A is included
in the repeated slab geometry. The atoms are relaxed using the conjugate gradient relaxation
algorithm until the forces on each atom are smaller than 0.01 eV A~!. Similar geometries are
adopted for the calculation of the GSFE. The methodology for the calculations of the elastic
constants, the GSFE, the surface energies, and the traction separation stress are adopted from
previous works [12, 23, 28-30].

3.2. 2NN MEAM potential parametrization

In the 2NN MEAM potential formalism, there are sixteen parameters for the unary system (see
table 1) and thirteen additional parameters for the binary system (see table 2). The potential’s
formalism is given in the appendix. The methodology for fitting the parameters follows our
earlier works [12, 28, 31].

For the unary Ni and Re systems, the cohesive energy, E., and the equilibrium nearest neigh-
bor distances, r., are obtained from existing MEAM potentials [14, 18] considering the fcc
and hcp crystal structures, respectively. The parameter « is proportional to the square root of
the bulk modulus, B. Combinations of the four decay lengths of the partial electron densities
(8), : h = 0-3) and the three scaling factors of the background electron density (7, : & = 1-3)
are used to fit the surface energies, the elastic constants, the GSFE, and the tensile stress curves.
Parameter A is a scaling factor of the embedding function energy. This is used in combination

5
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Table 2. 2NN MEAM potential parameters set for Ni—Re binary. The units of the cohe-
sive energy Ec(Ni, Re) and the first nearest neighbors, cutoff and smoothing distances
are in eV and A, respectively. The reference structure for NiRe is B2(CsCl).

Parameters Values Parameters Values
E.(Ni,Re) 6.165 Crin(Ni, Ni, Re) 2.10
ro(Ni, Re) 2.555 Chax(Ni, Re, Re) 2.85
«(Ni, Re) 5.85 Crin(Ni, Re, Ni) 0.70
Ar 2.0 Cnin(Ni,Re, Re) 1.90
Te 5.5 Cmin(Re, Re, Ni) 1.90
Cnax(Ni, Re, Ni) 3.0 Ciax(Re, Re, Ni) 2.7
Cnax(Ni, Ni, Re) 43

with the parameter 3, to correlate the cohesive energy differences between fcc and bee Ni, and
hcp and fee Re. Two parameters, Cpin and Cpnax, control the screening of the many body inter-
actions and are used to fit the GSFE. The cutoff distance, r., the soothing distance, Ar, and the
parameter § are fit such that the interaction between two cleaved surfaces decays smoothly to
zero at large separation distances.

To fit the parameters for the Ni—Re interactions we consider the CsCl structure as a reference
structure. E (N1, Re), a(Ni, Re), r.(Ni, Re) are fit to the DFT calculated cohesive energy, near-
est neighbor distance, and bulk modulus of NiRe in the reference structure, respectively. The
radial cutoff distance and the smoothing distance for the radial cutoff are set to 5.5 Aand2.0A,
respectively. The remaining eight parameters (Cynin(M;, M j, M}) and Cpox(M;, M ;, M},), where
M, ;. denote Ni and/or Re) control the screening of the many body Ni—Re interactions. They
are used to fit the elastic constants of the CsCl structure and the substitutional and interstitial
formation energies of Re solute in Ni.

3.2.1. Generalized stacking fault energies. The GSFE profiles of Ni are calculated for shear
along (110) and (112) in the {111} glide plane (see figures 4(a) and (b), respectively). In these
figures, we also plot the GSFE profiles obtained from DFT, previous EAM [17] and MEAM
[14] (B-MEAM) potentials. The DFT calculated GSFE profile for shear along (110) is included
in the material’s database. The unstable stacking fault energy (USFE) is obtained at the reduced
displacement u/b = 0.5, where b is the norm of the Burgers vector and u is the displacement.
The present MEAM (P-MEAM) potential underestimates the USFE with respect to the DFT
calculated value, e.g. 47.93 vs 60.2 meV A~2. Nevertheless, such discrepancy is not critical:
perfect dislocations from (110) {111} are expected to dissociate in two partials with Burgers
vectors in the (112) direction. The GSFE profile for shear along (112) in the {111} plane is
plotted in figure 4(b). The P-MEAM potential agrees qualitatively with the DFT calculated
GSFE profile. Quantitatively, the P-MEAM calculated stable and unstable stacking fault ener-
gies are 2.74 and 24.38 meV A2, respectively while the corresponding DFT calculated values
are 9.3 and 16.8 meV A2, respectively.

The P-MEAM calculated GSFE profiles of hep Re for shear along (1210) in the basal plane
and along (1210) in the {IOIO} plane are plotted against DFT and EAM [18] calculations
in figures 5(a) and (b), respectively. The former is included in the material’s database. For the
(1210) {0001} slip system the P-MEAM calculated values of unstable and stable fault energies
are 41.28 and 8.31 meV A2, respectively. The corresponding DFT calculated values are 42.0
and 15.08 meV A2, respectively. In the (1210) {IOIO} slip system there is no stable stacking

fault. The USFE is 83.62 meV A2 which is in good agreement with the DFT calculated value
of 68.69 meV A2,
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Figure 4. GSFE profiles for Ni as function of crystal displacements along (a) (110) and
(b) (112) shear directions in the {111} plane obtained from DFT, P-MEAM potentials,
as well as EAM [17] and B-MEAM [14] potentials.

3.2.2. Surface energies. As can be seen from equation (2), a necessary prerequisite for an
interatomic potential to describe brittle/ductile phenomena is the accurate description of the
surface energies. Therefore, we calculate the surface energies of low index Ni and Re surfaces
that may bound a crack. For fcc Ni, we consider the low index (100), (110), (111), and (112)
surfaces. For Re, the basal plane (0001) as well as the (1100) and (1120) surfaces are con-
sidered. The DFT calculated surface energies of the (100), (110) surfaces of Ni, and (0001)
surface of hcp Re are used to fit the potential. In order to calculate the surface energies we
employ slab geometries consisting of 10 unit cells along the surface normal and | x | surface
unit cells. The slabs are bound by two symmetry equivalent surfaces and a vacuum region of
10 A. The atoms within the top and bottom 4 units are allowed to fully relax while the other
atoms are kept fixed at their bulk-like positions. The surface energy, Ey,q, is defined as

1
Esurf - ﬁ (Eslab - nEbulk) > (4)



Modelling Simul. Mater. Sci. Eng. 30 (2022) 015002 M Alam et a/

0.0 0.2 04 0.6 0.8 1.0

(a) .

N

(@]

o
1

[EY
(9
o
1
|

100 - .

GSFE (meV/A?)

w
o
1
1

“ . : —
1200

1001 (B

[e]
o
L

GSFE (meV/A?)
(o)}
o
1

IS
o
1 "

—— DFT [present]
—— P-MEAM [present]
—e—EAM [18]

N
o
L

o

T T T T T T

. — —
0.0 0.2 04 0.6 0.8 1.0

displacement (u/b)

Figure 5. GSFE profiles for Re as function of crystal displacements along (a) the (1210)
shear direction in the basal plane and (b) the (1210) shear direction in the {1010} plane
obtained from present 2NN MEAM, DFT and EAM [18] potential calculations.

where Eq,p 1s the total energy of the slab consisting of n atoms, and Epyx is the total energy
per atom of bulk. A is the surface area and the factor 2 in the denominator accounts for the two
symmetry equivalent surfaces in the slab geometry.

The calculated energies of Ni and Re surfaces are listed in tables 3 and 4, respectively. P-
MEAM underestimates and overestimates the Ni and Re surface energies, respectively, with
respect to DFT. Nevertheless, there is an overall agreement between P-MEAM and DFT within
18 meV A2 and 30 meV A2 for Ni and Re, respectively. Moreover, P-MEAM provides an
excellent qualitative agreement with DFT: the energy differences to the energetically most
favorable surface, i.e. the (111)Ni and (0001)Re, is within 14 meV A2 and 30 meV A2 in
agreement to DFT.

3.2.3. Work of separation. In order to calculate the work of separation we perform a series of
uniaxial tensile tests along the (100), (110), (111), and (112} directions of fcc Ni, and along
the (0001), (1100), and (1120) directions of hcp Re. The work of separation of the (100) Ni
and (0001) Re planes is included in the materials’ database. The work for separating a surface

9
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Table 3. Calculated physical properties of Ni using the present 2NN MEAM potential as well as previ-
ous the B-MEAM, EAM potentials and experimental data. All the properties are for fcc Ni unless it is
otherwise denoted. The cohesive energy E. of fcc Niis in eV per atom, and AFE are the differences in the
cohesive energy in meV per atom of other Ni crystalline phases. « is the lattice constant in A and ¢/« the
ratio of lattice constants of the hcp structure. The unit of the bulk modulus is GPa. The units of the other
properties are listed in the table. Properties with an asterisk [()] have been included in the materials’
database and employed to fit the potential. The superscript p (p) indicates present DFT calculations.

P-MEAM B-MEAM [14] EAM[17] DFT /experimental

fec Ni WE. 445 —4.45 —4.45  —4.842[15], —4.801°
®a 3.521 3.521 352 3.524 [15], 3.52F
0] 185 170 181 190.9 [15], 185P
B 4.84 4.69 522 5.05P
bee WAE 160 160 112 93 [15], 977
a 2.79 2.79 2.79 2.805P
sc AE 507 660 833 705°
a 2.32 2.35 2.35 2.33P
hep AE 6.78 21 21 26 [15], 24P
a 2.49 2.49 2.48 2.488P
c/a 1.63 1.63 1.63 1.645P
Elastic constant (GPa) My 290 260 247 266 [15]. 272P
MCy, 161 150 148 155 [15], L55P
Iy 101 131 125 129 [15], 132P
Vacancy formation energy (eV) E, 1.18 1.97 1.6 1.41[15], 1.42°
(*)7(100) 130 178 117 15110321, 135P
(*)7(110) 129 176 128 148 [32], 147P
) Yain 106 148 101 125 [32] 120P
Surface energy (meV A~2) Ya12) 124 171 122 142P, 140P
Cohesive strength (GPa) o(100) 32 35 28 20p
0(110) 29 32 29 29p
o 29 33 28 29p
Coritical opening displacement (g((:(];; 03;) 6 0?7 022 6 gir;
(A) Saw)  0.48 0.57 0.56 0.6
dan 0.48 0.48 0.48 0.45P
di12) 0.48 0.56 0.56 0.55°
Work of separation (meV 1&’2) ooy 254 346 270 253P
wW(110) 253 341 286 279P
Wty 210 290 250 230P
W(112) 246 335 282 267°
Melting temperature (K) Txi 1550 2013 1635 1455 [33]

to infinite distance is calculated as following: at first, a simulation box consisting of 10 units
normal to the surface of interest and a 1 x 1 unit cell in the cleavage plane is constructed.
The cell is then divided into two parts across the cleavage plane. The distance between them
is incrementally increased with a step size of 0.08 A. The tensile stress, o, is then calculated
by the first derivative of the total energy, E, with respect to the applied strain, €, using the
following equation

1 dE

g = @E, (5)
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Table 4. Calculated physical properties of Re using the present 2NN MEAM potential as well as the
previous EAM potential and experimental data or DFT data. All the properties are for hcp Re unless it is
otherwise stated. The units are as in table 3. The superscript p (p) indicates present DFT calculations.

P-MEAM EAM [1§] DFT /experimental

hep Re WE, —8.03 —8.03 —7.82P, —8.03 [34]
g 2.765 2.761 2770
cla 1.623 1.614 1.615°
B 373 382 303°
B 5.21 3.08 190

fce MAE 27.26 20.0 63°
g 3.91 3.90 2.58°

bee AE 200 130 315p
a 3.10 3.05 3.11°
sc AE 1617 1944 1365°
a 2.60 2.63 2.58pP
Elastic constant (GPa) e 609 611 613 [35]
™y 286 299 270 [35]
) Cyy 124 159 163 [35]
) Cy3 705 682 683 [35]
)3 208 234 206 [35]
Vacancy (eV) E, 3.22 3.49 3.27°
) (*)7(0001) 188 140 158P
Surface energy (meV A=) Y010y 194 151 184p
Y1210) 213 183 192°
Cohesive strength (GPa) T (0001) 48.17 57.27 38p
T (1010) 47.31 59.19 40p
. T(11210) 45.83 59.36 38°
Critical opening displacement (A) dwoo1) 0.45 0.33 0.55P
d(1010) 0.47 0.34 0.5
. O(1210) 0.53 0.39 0.6°
Work of separation (meV A~2) Swoon 367 318 333p
WioTo) 377 344 361°
WT2T0) 407 397 387°
Melting temperature (K) Tre 4350 4836 3186 [33]

where V(¢) is the volume at strain . The highest stress corresponds to the cohesive strength.
The strain at the cohesive strength is the point where the crack starts to form and corresponds
to the critical opening displacement or the characteristic length of fracture. The area enclosed
under the stress—strain curve is the work of separation w.

In figure 6 the tensile stress as function of the separation displacement calculated by the P-
MEAM potential for the above mentioned cleavage planes in fcc Ni is plotted. For comparison,
stress—displacement profiles calculated by DFT as well as by B-MEAM and EAM interatomic
potentials are also shown. The P-MEAM potential accurately reproduces the DFT stress vs
displacement profiles both in the high tensile region as well as at the tail of the profile. The
calculated cohesive strengths, critical opening displacements and work of separations are listed
in table 3. The cohesive strengths show a weak dependence on the cleavage plane orientation:
P-MEAM predicts cohesive strengths in the range of 29-32 GPa while DFT predictions are in
the range of 28—29 GPa. The P-MEAM calculated works of separation and the critical opening
displacements agree within 40 meV A2 and 0.18 A, respectively, with the respective DFT
results.
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Figure 6. Tensile stress as function of the separation displacement along (a) (100),
(b) (110), (c) (112), and (d) (I11) calculated by the DFT, P-MEAM, B-MEAM [14]
and EAM [17] potentials. The traction separation profile along (100) has been included
in the materials’ database. The other profiles are used to evaluate the P-MEAM potential.

A striking difference between P-MEAM, EAM and B-MEAM in the calculated
stress—displacement profiles is the occurrence of spurious oscillations in the tail region of the
latter potentials. The magnitude of these spurious oscillations is considerably large in the B-
MEAM calculated profiles. For this potential, the oscillations are attributed to discontinuities
in the energy vs displacement curves caused by the abrupt truncation of the pair potential at the
cut-off distance. These oscillations constitute an artifact of the interatomic potential and have
important consequences on the prediction of the brittle/ductile behavior by atomistic simula-
tions. Indeed, Ko et al [20] showed that these oscillations induce an artificial energy barrier
for brittle—ductile transitions and are also responsible for a spurious crack blunting in fracture
simulations.

The tensile stress as function of the separation displacement for three Re planes is shown
in figure 7 alongside DFT and EAM calculations. The calculated cohesive strengths, critical

12
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Figure 7. Tensile stress as function of the separation displacement along (a) (0001),
(b) (1010), and (c) (1120) calculated by DFT, P-MEAM, and EAM [18] potentials. The
traction separation profile along (0001) has been included in the materials’ database.
The other profiles are predictions.

opening displacements and work of separations are listed in table 4. The P-MEAM potential
agrees qualitatively with the DFT data. The P-MEAM calculated cohesive strengths, crit-
ical opening displacements, and work of separations agree within 10.2 GPa, 0.08 A, and
19 meV A2, respectively, with DFT. On the other hand, the EAM potential shows artificial
minima in the tensile stress within the displacements region of 2—3 A. Tt also severely overes-
timates the critical strength, i.e. by 17 GPa or =42 %, for the basal plane and even more for the
(IIOO) and (1120) planes.
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3.2.4. Structural and elastic properties. The elastic constants are computed by applying vol-
ume conserving strain deformations to the fcc Ni and hep Re bulk unit cells [29]. They agree
within 28 and 40 GPa with the experimental elastic constants for Ni and Re, respectively (see
tables 3 and 4). We further evaluate the transferability of the P-MEAM potential by calculat-
ing the equilibrium lattice constants and the energy difference to fcc Ni and hep Re for several
metastable and unstable crystal phases. As can be seen in tables 3 and 4, apart from hcp Ni,
they agree within less than 0.6 A’ with the DFT calculated equilibrium volumes. P-MEAM
as well as B-MEAM and EAM potentials underestimate the equilibrium volume of hep Ni by
more than 40% with respect to DFT. The cohesive energy differences of the aforementioned
metastable crystal structures with the ground state fcc Ni and hcp Re structures are also in
qualitative agreement with DFT.

To calculate the vacancy formation energies in fcc Ni and hep Re we used 4 x 4 x 4 bulk
supercells. The vacancy formation energy, E,, is defined as

E, = El\ (1) — nptouie ©®

where EY, (n) is the total energy of the supercell consisting of n atoms and a vacancy. Lt 1S
the chemical potential in the bulk phase. The P-MEAM calculated E, of both Ni and Re are in
excellentagreementto DFT, i.e. 1.18 vs 1.41 eV for Niand 3.22 vs 3.27 eV for Re, respectively.

3.2.5. Properties ofthe Ni-Re binary. To fit the parameters that describe the Ni—Re interaction
we consider the CsCl structure as reference structure. Further, we include in the materials’
database the lattice as well as elastic constants, the cohesive and mixing enthalpy, and the
formation energies of Re substitutional and interstitial defects in fcc Ni. To evaluate the perfor-
mance of the potential we also calculate the lattice and elastic constants and heat of formation
of NiyRe in the D1, structure, which is the ground state at 20 at.% Re [7].

The substitutional, £L , and interstitial, £L . , formation energies are written as

f bulk
Esubun’mer = EtOl(n) - nEt&lt — URe: (7)

where E(n) is the total energy of the system consisting of n Ni atoms and an interstitial or
substitutional Re. E?U¥ is the total energy per atom of bulk fcc Ni, i.e. the chemical potential
of Ni is fixed to the one of bulk fcc Ni. up. is the chemical potential of Re and is fixed to that
of Re in bulk hcp. The Re substitutionals binding energy Eping 1S

Ebind = Eyqu — 2E; ®)

sub>

where Eb_, is the formation energy of the substitutional pair. The mixing enthalpy is calculated
as

AH = En(NLRe)) — xEioi(Ni) — yEioi(Re), ©)

where E(Ni,Re,), Eio(Ni), and E(Re) are the total energies per atom of Ni,Re,, fcc Ni, and
hcp Re, respectively.

To calculate the binding energy of substitutional Re in Ni we employ a 4 x 4 x 4 bulk
supercell having the equilibrium lattice constant. The properties of Ni,Re, calculated by P-
MEAM and DFT are listed in table 5. As can be seen the P-MEAM calculated cohesive energy
and mixing enthalpy as well as the lattice constant and bulk modulus of NiRe in the CsCl
structure are in excellent agreement with DFT. The mixing enthalpy is positive indicating that
this phase is unstable at 77 = 0 K. Nevertheless, both P-MEAM and DFT calculate negative
mixing enthalpy for NiyRe in the D1, structure. In agreement with DFT, the P-MEAM calcu-
lated Re substitutional formation energy under Re rich conditions is negative. Due to the large

14
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Table 5. Calculated material properties of Ni—Re binaries. The mixing enthalpy, AH ¢ is
ineV/formula unit, cohesive energies, £, are given in eV/atom and the lattice parameters,
a and ¢, in A. The elastic constants are in GPa. Substitutional and interstitial formation
energies and nearest neighbor substitutional binding energies are in eV. Properties with
an asterisk [] are included in the materials’ database (training set). All other quantities
were used to evaluate the transferability of the potentials.

P-MEAM DFT

CsCINiRe (1:1)

WE, —6.165 —6.14
(g 2.95 2.95
B 291 293
B 5.14 4.78
CAH, 0.15 0.67
o 193 186
ICy 342 354
(I Cyy 250 144
DI, NiRe (4:1)
E. —5.17 —5.73
u 5.53 5.67
c 391 3.58
B 243 249
B 5.08 6.28
AHy —0.043 -0.29
Cn 409 359
C, 147 165
Cyy 123 161
Cs3 457 338
Ci3 154 201
[4/mmm NiRe (3:1)
E. —5.31 —5.73
a 3.64 3.56
c 7.30 7.38
B 273 285
B 5.21 5.13
AH¢ 0.14 0.11
Cy 363 328
Cp 250 248
Cyy 255 157
C33 401 365
Ci3 207 192
CuzAu NizRe
E. -5.30 —5.61
a 3.64 3.63
B 274 227
B 4.94 4.35
AHjy 0.17 0.77
Ch 395 239
Cp 215 196
Cu 221 113

(continued on next page)
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Table 5. Continued

P-MEAM DFT

NaCl NiRe (1:1)

E. —5.58 —5.32
a 5.01 4.85
B 201 233
B 5.01 4.72
AH; 131 2.33
Ch 558 428
Ci, 22 133
Cy 10 —54
) Egup 0.03 0.34
(*)Eimer/ocl 7.22 6.93
Ebiuding 0.05 —0.26

size mismatch between Ni and Re atoms, both P-MEAM and DFT predict positive interstitial
formation and substitutional binding energies.

3.2.6. Melting temperatures. Ni based superalloys with Re are used in high tempera-
ture applications. Hence, it is of interest to calculate melting temperatures of Ni, Re, and
Ni—Re binaries with our potential. The melting temperatures are calculated by employing
the moving interface method which eliminates the artifacts of superheating [36]. We employ
200 x 70 x 70 A3 orthogonal supercells consisting of =5 x 10* atoms. A solid—liquid inter-
face is created normal to the x direction of the supercell by melting half of the crystal under zero
pressure while keeping the other half of the crystal to its crystalline state. In the next step, the
velocities of all atoms are reassigned to be equivalent to a temperature, Tgyess, Which is an edu-
cated guess of the melting temperature, T',,. The system is then equilibrated under zero pressure
along the interface normal for a time of 50 ps in the isothermal—isobaric (NPT) ensemble. Next,
the barostat is turned off and the system is allowed to evolve for further 20 ps within the canon-
ical (NVT) ensemble. Then, the thermostat is turned off and the calculation continues within
the microcanonical (NVE) ensemble for another 20 ps. During the latter period the temperature
is monitored. If at the end of the procedure the current temperature is lower (higher) than the
actual melting temperature, the interface moves toward the solid (liquid) phase, respectively.

Based on the aforementioned procedure we calculate the melting temperatures for Ni
and Re to be equal to 1550 £ 10 K and 4350 =+ 20 K, respectively. These values compare well
with the experimental values of 1455, 3186 K, respectively [33]. We also calculate the melting
temperature of Ni—Re alloys. We consider five different Re concentrations in the range ~2—14
at%. The Re atoms are randomly distributed in substitutional sites in the Ni host matrix. The
melting temperature of the binaries with respect to that of Ni is plotted against the Re content
in figure 8.

4. Fracture in Ni and Ni—Re

To investigate fracture in Ni, we evaluate the stress intensity factor by employing LEFM (see
section 2). For the (112){111} slip system, we consider six different crack configurations that
vary with respect to the crack propagation direction and the crack plane. In addition, all possible
dissociations of the Burgers vector in the Thompson tetrahedron are considered. The angles
A and ¢ between the slip and the crack planes, and between the crack front normal and the
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Figure 8. Melting temperature of Ni;_,Re, withrespect to the melting temperature of Ni
(T (Nij_,Re,) /Tiy (Ni,)) as function of Re content x. For x = 1 Re in the hep structure
is considered. For all other contents the fcc structure is considered. The dashed line is a
guide to the eye and connects Ni with Re melting temperatures.

Table 6. Critical stress intensity factors Kricc, Kariftitn, and Kczy obtained from LEFM using DFT and
P-MEAM calculated parameters (see equations (1)—(3)). K. is obtained from atomistic simulations
employing the P-MEAM potential. Six different crack configurations in the (112){111} slip system
are considered. The intensity factors are in MPa m'/2. For each crack configuration the angles 6 and
¢ between the slip and the crack plane and between the crack front normal and the Burgers vector are
listed. The observed behavior in the atomistic simulations, i.e. brittle vs ductile is given in the last column.

DFT P-MEAM Large scale simulations
Crack Observed
direction/plane t ¢ Kczv Kaiitin Krice Kezv Kaiiitn Krice  Kic behavior
[100]/(010) 5473 3526 122 122 097 1.06 1.08 1.06 1.0 Brittle
[1T0)/(111) 90 19.47 1.14 1.14 088 096 097 097 0.90 Brittle
[112]/(111) 61.87 1947 1.14 1.14 0.82 096 097 091 091 Ductile
[110]/(112) 90 0 123 123 084 1.04 105 093 1.0 Ductile
[0101/(101) 54.73 30 125 125 092 1.06 1.07 101 09 Ductile
[110]/(001) 90 14473 122 122 099 1.06 108 1.08 1.0 Brittle

Burgers vector (see equation (1)) are calculated using the Thompson tetrahedron. The list of
all considered crack configurations are given in table 6.

Next, we introduce an atomically sharp crack in an orthogonal parallelepiped with edge
length of about 800 A along x; and x» and 10 A along x3 (see figure 9). Periodic boundary
conditions are applied along x5. This simulation box contains more than 4 x 10° atoms. The
crack tip is placed at the axes origin with the crack propagation direction along x;. The nor-
mal to the crack plane is along x,. The crack is loaded by imposing the displacement field
u = (uy,up) of mode I fracture under plane-strain conditions within linear elastic fracture
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Figure 9. Schematic representation of the simulation box used to model fracture. x; is
the crack propagation direction, x; is the normal to the crack plane, and the crack front
is along x3. The crack tip is placed at the origin.

theory [9]
AK; 6
Uy = TI é cos 5 (1 — 2v -+ sin? g) (10)
AK, o)
MZZTI ésinE(Z—ZV—FCOSZg), (11)

where AK] is the increment in stress intensity factor, and

r=1/x}+x3 (12)

8= tan! <x’> . (13)
X1

The positions of the atoms within a cylinder of radius 300 A are relaxed until the change
in the total energy is less than 10~® eV or the maximum force on the atoms is less than
10712 eV A~!. The atoms in the outer region are kept fixed. We perform the crack load

and
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Figure 10. Critical stress intensity factors Kgice, Kauitm, and Kczy in MPa m'/?
obtained from LEFM and P-MEAM calculated parameters plotted against those obtained
from DFT calculated parameters. The solid black line indicates the ideal correlation
between P-MEAM and DFT calculated values.

quasistatically, e.g. after atomic relaxation we increase the stress intensity factor by 0.005 MPa
m'/2 and impose the displacement field on the relaxed structure. This procedure is repeated
until the stress intensity factor is 50% higher than the critical stress intensity factor derived by
LEFM (see table 6).

Table 6 summarizes the critical stress intensity factors of Ni derived from the four different
approaches: atomistic simulations (K. ), cohesive zone model (K czy ), Griffith theory (Keygim)
and Rice theory (KRice). In figure 10 the critical stress intensity factors calculated by LEFM
using P-MEAM calculated parameters (see equations (1)—(3)) are plotted against those using
DFT calculated parameters. There is an excellent qualitative agreement between P-MEAM and
DFT calculations for Kgic. and a good agreement for (Kczm) and (K gyistirn)-

To get an on-atomic-scale view of the fracture behavior, let us first focus on the [100] /(010)
system. All three analytical models employing P-MEAM calculated parameters predict simi-
lar values of K (1.06—1.08), and hence no clear preference of failure behavior: the P-MEAM
calculated Kgice (1.06 MPa m'/?) is only 2% smaller than the Kgiig (1.08 MPa m'/?) and
it is equal to the Kczv (1.06 MPa m!/ 2). However, the direct atomistic simulations reveal
a value of 1.0 MPa m'/? for the critical stress intensity factor. This small discrepancy is
attributed to the fact that tension shear coupling and the surface tension have not been included
in the calculation of the USFE. Figure 11(a) demonstrates the o, stress around the crack at
K. = 1 MPa m'/2. The propagation of the crack tip is depicted in figures 11(b) and (c). The
advancement of the crack is obtained by cleavage of the crack plane and the absence of any
dislocation activity. Furthermore, as can be clearly seen, the crack tip remains sharp. Therefore,
the [100]/(010) crack system is brittle.

For both DFT and P-MEAM calculated parameters the [112]/(111) system exhibits the
lowest LEFM calculated critical stress intensity factor, i.e. a ductile crack opening behavior is
predicted. Indeed, as can be seen in figure 12(a), the crack propagation is accompanied by the
nucleation of a Shockley partial dislocation with Burgers vector of type b = a/6(112). The
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Figure 11. (a) oy, stress distribution around the [100] /(010) crack tip system at Kio = 1
MPa m'/?. The z-contrast is in GPa. Zoom in of the crack tip region before (b) and after
(c) the crack propagation.
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Figure 12. (a) o, stress distribution around the [112]/(111) crack tip system at Kj. =
0.91 MPa m!/2. The z-contrast is in GPa. The inset in the left-bottom panel is a zoom into
the region around the core of the emitted dislocation. It highlights the characteristics of
an edge type dislocation, i.e. the tensile (red) and compressive (blue) regions. The black
circles denote Ni atoms in the hcp configuration and indicate the stacking fault that is
left behind the glide away of the dislocation from the crack tip. (b) and (c) Zoom into
the crack tip before and after nucleation and emission of the dislocation, respectively.
The green and white disks denote Ni atoms in the fcc bulk-like configuration and at the
surface, respectively.

partial glides away from the crack tip and leaves behind a stacking fault. In figures 12(b) and
(c) the atomic geometries of the crack tip before and after dislocation nucleation are shown,
respectively. As can be seen, the crack opening is accompanied by a blunted crack tip.

The atomic radius of Re is larger than that of Ni. Therefore, Re substitutionals are energeti-
cally more favorable in the tensile strained regions of the host matrix, as at the crack tip region
for mode I fracture (see figures 11(a) and 12(a)). In order to investigate how solute concentra-
tions of Re affect the critical stress intensity factor, we consider the [112]/(111) crack system.
As it has already been mentioned, this system demonstrates the lowest critical stress intensity
factor for Ni and hence it constitutes the most suitable system to investigate enhanced ductil-
ity due to Re. Re substitutionals are introduced randomly in the Ni host matrix using similar
method shown by Zu et al [37]. The concentrations of the solutes is varied from 0.5 at.% to 3.5
at.%. For each Re concentration we construct two different samples. The incorporation of Re is
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Figure 13. (a) Snapshot extracted from the crack opening simulation of the [112]/(111)
system in Ni with 0.6 at.% substitutional Re at Ky. = 0.87 MPa m'/2. (b) and (c) Zoom-
in of the crack tip region at the nucleus of the partial dislocation before and after the
dislocation has glided away from the tip, respectively. Green and blue balls represent
Ni and Re atoms, respectively. Black balls are atoms in the hcp configuration and white
balls are atoms with in a configuration other than fcc, hep, or bee and correspond to
surface or dislocation core atoms.

1.5 T T T
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Re content in Ni,,Re, (% at.)

Figure 14. Ratio of critical stress intensity factor of Nij_ Re, (Knire) to that of Ni
(KRe) for different Re contents for mode I fracture in the [112]/(111) crack system.
Filled/black dots are values derived from the fracture simulations. Open/red dots are the
average values for each Re content. The dashed line is a linear fit to the average values.

followed by a full relaxation of the atomic positions. For the fracture calculations we employ
the same methodology as applied for the Ni host matrix.

Our calculations reveal that the addition of substitutional Re does not alter the nature of the
crack propagation. For all Re contents considered, the crack growth is associated with nucle-
ation and emission of a dislocation, i.e. the crack opening behavior is ductile. Figures 13(a)—(c)
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show a cross sectional view of the crack tip before and after the nucleation and emission of the
dislocation for 0.6 at.% Re content. As can be seen, after the dislocation emission the crack tip
is blunted and the glide away from the dislocation leaves behind a stacking fault. The critical
stress intensity factor as function of the Re content is shown in figure 14. The critical stress
intensity factor increases monotonously with the Re content and is ~35% larger than the crit-
ical value of Ni for 3.5 at.% Re content. Therefore, with the addition of Re, the stress required
to nucleate dislocations becomes higher, hence the value of K increases. The increase of the
critical stress intensity factor with the Re content is consistent with existing theoretical [38, 39]
work, which further validates the performance and suitability of the here constructed P-MEAM
for future studies of Ni—Re alloys.

5. Conclusions

In the present study we have developed 2NN-MEAM potentials for Ni, Re and Ni—Re alloys
with a focus on large scale calculations of fracture. To parametrize the potentials, we employed
density functional theory calculations and calculated cohesive energies, lattice constants for the
ground state and higher energy crystal structures, vacancy formation energies, surface and gen-
eralized stacking fault energies, traction separation profiles, cohesive strengths, critical opening
displacements, and works of separation. Using these properties and elastic constants we built
a materials’ database to fit and evaluate the potentials.

A strong emphasis is given on an accurate description of surface energies, generalized stack-
ing fault energies, works of separation, and traction separation profiles, as these properties play
a dominant role in fracture. Our potentials provide excellent qualitative and quantitative agree-
ment with DFT calculations of these properties. Furthermore, they successfully overcome the
spurious oscillations that show up in the long range tail of traction separation profiles when
using the existing interatomic potentials for Ni—Re alloys.

We evaluated the performance of these potentials by employing large scale atomistic cal-
culations of fracture and crack propagation in the (1 12){111} fcc slip system. We considered
mode I fracture in Ni and NiRe alloy with low Re content. These calculations revealed that
the [112]/(111) crack system in Ni has the lowest critical stress intensity factor considering
Griffith, Rice and CZM formulations. For this system crack propagation proceeds through
nucleation and emission of Shockley partial dislocations, i.e. clearly showing ductile fracture.
Alloying with small amounts of Re did not alter the nature of fracture, i.e. it remains ductile,
but it increases the critical stress intensity factor. Such trend is in line with the aforementioned
Rhenium effect [6] and consistent with DFT calculations showing an increase in the intrinsic
ductility parameter of Ni due to Re [40]. In summary, the potential constructed in this study is
well suited to be employed in large scale fracture simulations of Ni and Ni—Re alloys.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.

Appendix A. Nomenclature

DFT Density functional theory
EAM Embedded atom method
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2NN-MEAM Second nearest neighbor modified embedded atom method

LEFM Linear elastic fracture mechanics
GSFE Generalized stacking fault energy
CZM Cohesive zone model

GGA Generalized gradient approximation
PBE Perdew—Burke—Ernzerhof

PAW Projector augmented wave

USFE Unstable stacking fault energy
fec Face centered cubic

hep Hexagonal closed pack

bec Body centered cubic

sc Simple cubic

Appendix B. MEAM formalism

A detailed review on MEAM potentials for unary and binary systems can be found in the work
of Jelenik et al [41]. The modified embedded atom method (MEAM) potentials [42] constitutes
an extension of the embedded atom method (EAM) developed by Daw et al [43, 44]. In the
EAM potentials, the total energy is written as the sum of the short range pair energy and the
embedding energy. The latter depends on the electron density which has a spherical symmetry.
MEAM potentials further include the angular dependency of the electron density. In MEAM
potentials the total energy is written as: [42],

1
E— Z Fi () + 5_; iy (Rij) | - B
i J7=t

Here, F(p;) is the embedding energy of atom i, which is a function of the background electron
density (p;) atsite i [41, 42]. ¢(R;)) is the pair energy and R;; is the interatomic distance between
atoms 7 and j. The embedding energy is defined as the energy required to place an atom at the
site i having a background electron density p; [41, 42]. This function has the following form

AEL pi n(py), if p; >0
Fi(pi) =

(B2)
—AE! b, otherwise

where E? is the sublimation energy (negative of the cohesive energy) and A; is a fitting param-

eter that depends on the element type of atom i. This can be further considered as equivalent

to the Jellium model where the exchange and correlation energy is a functional of the uniform

electron gas density in space [43, 44]. The background electron density has the following form
P
pi = —5 G(I') (B3)

L

where,

Pi

3 ®\ >
L= 1 (pém) (B4)
k=1
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and

V14T, i > -1
—/]1+T. if T < —1

(k)

The electron densities of different order, i.e. p;* can be calculated from equations (B8)—(B12).

In equation (B3), p! is the reference electron density and given as

Gy = (BS)

P = piZnGIEY), (B6)

where py, is an element dependent electron density scaling. Z;y is the first nearest neighbor
coordination in the reference structure. For fcc and hep crystals the nearest neighbor coordi-
nation is 12. The functional form for the electron density of the reference structure is given as:

1G~
Iy = Z—%Z 195, (B7)
Wk

Here, sgk) is a crystal structure dependent shape factor of atom i. The values of the shape

factor can be used as described by Baskes et al [42]. The partial electron densities in
equations (B3)—(B5) are obtained from the superposition of atomic densities scaled by
screening function §;; as follows,

i = 00 s; (B5)
#i
— 2
a()) Tijo
Wy =2 2 A 9
a | j# Y
_ 2 2
( a(2) TijoTijs 1 a( )
(p2y = Z Z P % S| — 3 Z P4 (ri)Si; (B10)
w3 | i s
2
a3) Tijatij6Fijy
(V) = Z ,0,-( >%Sﬁ — (BI1)
a3y | # Y
2
3 [ ( —|
52 [Z P50 rije)Sis | (B12)
b= ]

Here r;j, is the ath component of the displacement vector. S;; is the screening function
between atoms i and j and it is discussed in the following section. Equations (B8)—(B12) are
background electron densities including higher order terms. In the EAM potentials a linear
superposition of spherical average electron densities is used [42]. In the MEAM formalism
also higher order terms are included. The way the background electron densities are con-
structed in equations (B8)—(B12), can be thought as s, p, d, and f electron densities [42]. In
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equations (B8)—(B12), the unscreened electron density, p;l(k) is given as an exponential decay

function:

. rii ;
pi(k)(ri./') = pio €Xp [—35{ <r_0/ - 1)} : (B13)

L

Here, 79 is the nearest neighbor distance in the reference structure and 3*'

fitting. The weighting factor for the electron density can be given as:

is obtained during

ka0)
A _ 2 jzilo P} Sii

T = g aha (B14)
E.j#,’(l(k),j)zpj(msij

The atomic interactions are screened with the same formalism as the electron density. The
atomic interactions are screened via introducing a screening function in the pair energy term:

Gij(rip) = Gif(rip)Sijs (B15)

where Q_S,- i(rij) has the following form,

. I z; z;
Gijlrip) = - [2E§‘j — I (5%“”(%7)) —F; (Z,JP,»(”’ (E‘j))} : (B16)
ij i i

The energy term Ef(r;;) is taken from the Rose universal equation of state where the binding
energy is represented via an exponential decay function [45]:

Elr) = ~Ei(1 + a e i1, B17)

where aj; is the interatomic distance scaled with respect to the equilibrium lattice spacing. This
parameter is calculated from the following equation:

X Tij
a;;=o| 5 — . (B18)
rij

avis a dimensionless parameter and is related to bulk modulus, cohesive energy and equilibrium
lattice volume in the following way [46]

/9B 510
o= £ )

One of the main differences of the MEAM potentials with respect to other valence force
fields is the use of many body screening. Many body screening in MEAM potentials describes
how interactions between two atoms are screened by neighboring atoms. Let us first consider
the functional form of screening function §;; between atom i and ;. In the MEAM formalism,
the total screening function is written as a product of a radial cutoff function and a three body
term:

S I'e = 1jj
Sy =Sufe(~ 5" ) (B20)
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The smooth cut off function f is defined as:

1 if x> 1
fe()=q —[1 -1 -0, f0>x<1 (B21)
0 ifx<0

and the three body terms are obtained by summing up the function as following,

Si= 115w (B22)
ki j
with
Citj — Crin,ikj
Sikj = . | B23
i fC <Cm'<u<,ik j Cmin,ik j ( )
The functional form of Cy; is,
2Xi' X —X,"—X' 2_]
Cij = (Xij + Xj) — (X ) ’ (B24)

1 — (Xjj — Xp)?

where Xj;, = (R,',;/R,-j)2 and X;; = (Rkj/Rij)z. Cpin and Cpax are the limiting values of C.

In order to provide an intuitive picture of screening in MEAM potentials one can consider
a series of ellipses passing

, Yo
X+ c=1 (B25)

The major axis of the ellipse is along the v direction and the minor x is the line segment connect-
ing atoms i and k. If atom j lies outside the ellipse defined by C = C4« then it does not screen
the interaction between i and , i.e. ;3 = 1.0. However, if atom j lies inside the ellipse defined
by C = Cuin then it completely screens the interaction between i and k and ;. = 0.0. In all
other cases, atom j partially screens the aforementioned interaction and S scales between 0
and 1.

Once the interatomic potentials of the individual elements are ready, the binary inter-
atomic potentials are constructed using the individual element parameters as well as newly
parametrized parameters. In a binary system, the total energy per atoms EJ(R) is written as

1 - 1 .

Here R is the nearest neighbor distance in the binary system. /; and /; are the embedding
energy term for individual elements, Z{’ and Z3/ are the coordinations of first and second nearest
neighbors and « is the ratio of second and first nearest neighbor distances. The pair interaction
between the different types of atoms is calculated as:

1 1
oij(R) = 7 |:2E1['.lf(R) — Fi(p) — Fi(pj) — EZZJSinﬁ(dR) + Sj¢)jj(aR):| (B27)
1
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