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Double extension for commutative n-ary
superalgebras with a skew-symmetric

invariant form

E.G. Vishnyakova

Abstract

The method of double extension, introduced by A. Medina and Ph. Revoy,

is a procedure which decomposes a Lie algebra with an invariant symmet-

ric form into elementary pieces. Such decompositions were developed for

other algebras, for instance for Lie superalgebras and associative algebras,

Filippov n-algebras and Jordan algebras.

The aim of this note is to find a unified approach to such decompositions

using the derived bracket formalism. More precisely, we show that any

commutative n-ary superalgebra with a skew-symmetric invariant form can

be obtained inductively by taking orthogonal sums and generalized double

extensions.

1 Preliminaries

Let a = a0̄ ⊕ a1̄ be a finite dimensional Z2-graded vector space over K, where
we assume for simplicity that K = R or C. We denote by ā ∈ Z2 the parity of
a homogeneous element a ∈ aī. A bilinear form ( , ) on a is called even if the
corresponding linear map a ⊗ a → K is even. A bilinear form is called skew-
symmetric if

(a, b) = −(−1)āb̄(b, a)

for any homogeneous elements a, b ∈ a. From now on we assume that ( , ) is an
even non-degenerate skew-symmetric form on a. This is

• ( , )|a0̄×a0̄
is a non-degenerate skew-symmetric form,

• ( , )|a1̄×a1̄
is a non-degenerate symmetric form,

• ( , )|a0̄×a1̄
= 0.
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Definition 1. • An n-ary superalgebra is a vector space a together with an n-linear
map a× · · · × a −→ a. We denote this map by (a1, . . . , an) 7→ {a1, . . . , an}.

• An n-ary superalgebra is called commutative if

{a1, . . . , ai, ai+1, . . . , an} = (−1)āiāi+1{a1, . . . , ai+1, ai, . . . , an} (1)

for all homogeneous ai, ai+1 ∈ a.

• A commutative n-ary superalgebra is called invariant with respect to the form
( , ) if the following holds:

(a0, {a1, . . . , an}) = (−1)ā0ā1(a1, {a0, a2, . . . , an}) (2)

for all homogeneous ai ∈ a.

We will write a commutative invariant n-ary superalgebra as a shorthand for a
commutative n-ary superalgebra that is invariant with respect to the form ( , ). Let
a be a commutative n-ary superagebra.

Definition 2. • An n-ary subalgebra in a is a vector subspace b ⊂ a such that
{b, . . . , b} ⊂ b. An ideal in a is a vector subspace i ⊂ a such that {a, . . . , a, i} ⊂ i.

• Let a and b be two n-ary algebras. An even linear map φ : a → b is called a
homomorphism of n-ary algebras if

φ({a1, . . . , an}a) = {φ(a1), . . . , φ(an)}b.

The vector space ker φ ⊂ a is an ideal in a.

• A commutative n-ary superalgebra is called simple if it is not trivial one
dimensional and it does not have any proper ideals.

• An invariant commutative n-ary superalgebra is called irreducible if it is not
a direct sum of two non-degenerate ideals. (An ideal i is called non-degenerate if
( , )|i is non-degenerate.)

The main tool that we use in this paper is the derived braket construction. Let
a be a Z2-graded vector space and ( , ) be as above. We denote by Sna the n-th
symmetric power of a and we put S∗a =

⊕

n

Sna. The superspace S∗a possesses

a natural structure [ , ] of a Poisson superalgebra that is defined in the following
way:

[x, y] := (x, y), x, y ∈ a;

[v, w1 · w2] := [v, w1] · w2 + (−1)vw1w1 · [v, w2],

[v, w] = −(−1)vw[w, v],
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where v, w, wi are homogeneous elements in S∗a. The super-Jacobi identity has
the following form:

[v, [w1, w2]] = [[v, w1], w2] + (−1)v̄w̄1[w1, [v, w2]].

Let us take any element µ ∈ Sn+1a. Then we can define an n-ary superalgebra
on a in the following way:

{a1, . . . , an} := [a1, [. . . , [an, µ] . . .]], ai ∈ a. (3)

Clearly, {a1, . . . , an} ∈ a. We will denote the corresponding superalgebra by (a, µ)
and we will call the element µ the derived potential of (a, µ). The n-ary superalge-
bras (a, µ) are commutative and invariant with respect to the form ( , ), see [Vor1]
and [V]. We have the following observation (see [V] for details).

Proposition 1. Any commutative invariant n-ary superalgebras on a can be
obtained by construction (3).

2 Double extension for invariant n-ary superal-

gebras

Let g be an invariant commutative n-ary superalgebra and µ ∈ Sn+1g be its derived
potential. Let h be any commutative n-ary superalgebra with the multiplication
ν ∈ Snh∗ ⊗ h. We can identify the vector spaces Snh∗ ⊗ h with the subspace
Snh∗ · h ⊂ S∗(h ⊕ h∗) and consider ν as a derived potential for the invariant
superalgebra h⊕ h∗. The even non-degenerate skew-symmetric invariant form ( , )
on h⊕ h∗ is given by:

(α, x) := α(x), (x, α) := −(−1)ᾱx̄(α, x),

α ∈ h∗, x ∈ h are homogeneous elements.
Let d = g⊕ h⊕ h∗ be a vector space with the non-degenerate skew-symmetric

bilinear form ( , ) that is the sum of the non-degenerate skew-symmetric bilinear
forms on g and h⊕ h∗.

Definition 3. The commutative invariant n-ary superalgebra d = g⊕h⊕h∗ with
the derived potential

L = µ+ ν +

n+1
∑

i=1

ψi, where µ ∈ Sn+1g,

ν ∈ Snh∗ · h, ψi ∈ Sih∗ · Sn−i+1g

(4)

3



is called a generalized double extension of g by h via ψi, i = 1, . . . , n+ 1.

The main observation of this section is:

Theorem 1. Assume that a is an irreducible but not simple commutative invariant
n-ary superalgebra. Then a is isomorphic to a certain generalized double extension.

Proof. Let us take a maximal non-trivial ideal i of a. Clearly, i⊥ is a minimal ideal
in a. Furthermore, since i⊥ ∩ i is also an ideal and a is irreducible, we see that
i⊥ ⊂ i. Therefore, i⊥ is a minimal isotropic ideal in a. Let us take a subspace h

in a such that h is isotropic, h ∩ i⊥ = {0} and ( , )|h⊕i⊥ is non-degenerate. Since,
( , )|h⊕i⊥ is non-degenerate, we have a = i⊕h. Consider the vector space w = i⊥⊕h.
We have the decompositions a = w⊕w⊥ and i = i⊥ ⊕w⊥.

Denote by λ ∈ Sn+1a the derived potential of a. Since, a = h ⊕ i⊥ ⊕ w⊥, we
have:

Sn+1a =
⊕

i+j+k=n+1

Si(h) · Sj(i⊥) · Sk(w⊥).

Therefore, we have the following decomposition of the derived potential:

λ =
∑

i+j+k=n+1

λijk, where λijk ∈ Si(h) · Sj(i⊥) · Sk(w⊥).

Furthermore, for any b ∈ i⊥ we have

[b, λ] ∈
⊕

i+j+k=n+1

Si−1(h) · Sj(i⊥) · Sk(w⊥).

Since i⊥ is an ideal we have

[a1, . . . , [an−1, [b, λ]]] ∈ i⊥ for ap ∈ a.

Therefore, λijk can be non-trivial only in the following two cases:

• i = 0;

• i = 1 and k = 0.

In other words, we get

λ ∈
(

h · Sn(i⊥)
)

⊕
(

⊕

j+k=n+1

Sj(i⊥) · Sk(w⊥)
)

. (5)

We put
µ := λ0,0,n+1 ∈ Sn+1(w⊥); ν := λ1,n,0 ∈ h · Sn(i⊥);

ψi := λ0,i,n−i+1 ∈ Si(i⊥) · Sn+1−i(w⊥), i = 1, . . . , n+ 1;

g := w⊥.
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We also can identify i⊥ with h∗. We see that (a, λ) is a double extension of (g, µ)
by (h, ν) via ψi. The result follows.�

Proposition 2. The n-ary superalgebra (g, µ) is isomorphic to i/i⊥. Indeed,
assume that ai ∈ i. Then

[a1, . . . , [an, ν]] = 0, [a1, . . . , [an, ψi]] ∈ i⊥.

Hence,
{ã1, . . . , ãn}i/i⊥ = {a1, . . . , an}(g,µ),

where ãi is the image of ai in i/i⊥.

Corollary 1. Assume that a is irreducible and not simple, i is a maximal non-
trivial ideal and h is an isotropic subalgebra in a such that a = i ⊕ h. Then a is
isomorphic to a certain generalized double extension with ψn = ψn+1 = 0. In this
case the generalized double extension is called double extension.

Proof. Consider (5) holds. Let us take xi ∈ h. The result follows from the
following observations:

[x1, . . . , [xn, µ+

n−1
∑

i=1

ψi]] = 0

[x1, . . . , [xn, ν]] ∈ h, [x1, . . . , [xn, ψn]] ∈ g, [x1, . . . , [xn, ψn+1]] ∈ h∗.

Since h is a subalgebra, we have ψn = ψn+1 = 0. The proof is complete.�

Corollary 2. Assume that a is an irreducible but not simple skew-symmetric
invariant n-ary algebra and i is a maximal non-trivial ideal of codimension 1.
Then a is isomorphic to a certain double extension with ν = ψi = 0 for all i 6= 1.

Proof. In this case the statement 5 has the following form:

λ ∈ i⊥ · Sn(w⊥)⊕ Sn+1(w⊥).�

2.1 Lie algebras

In this section we show that our definition coincides with the definitions given in
[MR] in case of Lie algebras.

Definition 4. A derivation of an n-ary algebra (V, µ) is a linear map D : V → V
such that

D({v1, . . . , vn}) =
∑

j

{v1, . . . , D(vj), . . . , vn}.

We denote by IDer(µ) the vector space of all derivations of the algebra (V, µ)
preserving the form ( , ). The following proposition was proven in [V]:
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Proposition 3. Let us take any w ∈ S2(V ) and µ ∈ Sn+1(V ). We have:

IDer(µ) = {w ∈ S2(V ) | adw(µ) = 0}.

In [MR] the following theorem was proven:

Theorem 2. [Medina, Revoy] Let g be a Lie algebra with an invariant symmet-
ric form B. Let us take any Lie algebra h with a homomorphism θ of h to Der(g)
such that θ(h) preserves the form B. Then d = h∗ ⊕ g ⊕ h is a Lie algebra with
respect to the following multiplication:

[(f1, w1, s1), (f2, w2, s2)] =
(ad∗(s2)f1 − ad∗(s1)f2 + ω(w1, w2), [w1, w2] + θ(s1)(w2)− θ(s2)(w1), [s1, s2]).

Here ω(w1, w2)(s) := B(θ(s)w1, w2). The Lie algebra d possesses an invariant
form given by the sum of B and the natural symmetric form on h∗ ⊕ h. (In [MR]
the algebra d is called a double extension of g by h.)

Conversely, any Lie algebra with an invariant symmetric form can be obtained
inductively by direct sums and double extensions.

We can simplify the definition of the double extension from [MR] using the
derived bracket construction. Let g be a Lie algebra with an invariant symmetric
form and µ be its derived potential. Consider a Lie algebra h with the multiplica-
tion ν ∈

∧2
h∗⊗h. We have the non-degenerate symmetric form on h∗⊕h⊕g: it is

the sum of the form on g and the natural non-degenerate symmetric form on h∗⊕h.
As above we denote by [ , ] the corresponding Poisson bracket on S∗(h∗ ⊕ h ⊕ g).
(Again we can consider h∗⊕h⊕g as a pure odd vector space with a non-degenerate
skew-symmetric form.)

There is a one-to-one correspondence between elements ψ ∈ h∗ ⊗
∧2

g and
linear maps θ : h →

∧2
g ≃ so(g). This correspondence is given by ψ 7−→ θψ,

where θψ(x) = [x, ψ].

Theorem 3. Let d = h∗ ⊕ h ⊕ g, and g, h and θ = θψ be a double extension of
g by h via θψ in the sense of Theorem 2. Then in terms of Proposition 1 the Lie
algebra d has the derived potential

µ+ ν + ψ,

and we have
[µ+ ν + ψ, µ+ ν + ψ] = 0. (6)

Conversely, if the condition (6) holds then the Lie algebra h∗⊕h⊕g is a double
extension of g by h via θψ in the sense of Theorem 2.
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Proof. Assume that d is a double extension of g by h via θψ. An easy computation
shows that the derived potential of d is equal to µ+ν+ψ. Since d is a Lie algebra,
we have (6).

Conversely, let us take Lie algebras g and h and an element ψ as above such
that (6) holds. We need to show that θ = θψ is a homomorphism of h to Der(g)
that preserves the form on g. Since g and h⊕h∗ are Lie algebras we have [µ, µ] = 0
and [ν, ν] = 0. Therefore, we also have

[µ+ ν + ψ, µ+ ν + ψ] = 2[µ, ψ] + 2[ψ, ν] + [ψ, ψ] = 0. (7)

Note that [µ, ν] = 0. Since [µ, ψ] ∈ h∗ ⊗
∧3

g and [ψ, ν], [ψ, ψ] ∈
∧2

h∗ ⊗
∧2

g we
see that (7) is equivalent to

[µ, ψ] = 0, 2[ψ, ν] + [ψ, ψ] = 0 (8)

Let us show that

• from [µ, ψ] = 0 it follows that θ(x) is a derivation of g preserving ( , );

• from 2[ψ, ν] + [ψ, ψ] = 0 it follows that the map θ is a homomorphism from
h to Der(g)

We have for any x ∈ h:

0 = [x, [µ, ψ]] = [[x, µ], ψ]− [µ, [x, ψ]] = −[µ, [x, ψ]] = −[µ, θ(x)].

Now we apply Proposition 3.
Let us study the second equation in (8). We need to show that the following

holds:
θ([x, [y, ν]]) = [θ(x), θ(y)] for all x, y ∈ h.

Indeed,

θ([x, [y, ν]]) = [ψ, [x, [y, ν]]] = [[ψ, x], [y, ν]]− [x, [[ψ, y], ν]]+ [x, [y, [ψ, ν]]], x, y ∈ h.

Notice that [ψ, x] ∈
∧2

g. Therefore, [[ψ, x], [y, ν]] = 0. Similarly, [x, [[ψ, y], ν]] =
0. Therefore,

θ([x, [y, ν]]) = [x, [y, [ψ, ν]]], x, y ∈ h.

Our statement follows from the following observation:

−
1

2
[x, [y, [ψ, ψ]]] = [x, [ψ, [y, ψ]]] = [[x, ψ], [y, ψ]] + 0 = [θ(x), θ(y)]. �

Similar idea may be used to define a double extension for other types of
quadratic algebras.
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2.2 Solvable skew-symmetric invariant n-ary algebras

Define by induction the following subalgebras in a.

a(1) := {a, . . . , a}, a(2) := {a(1), . . . , a(1)}, · · ·

By induction, we see that a(k+1) ⊂ a(k) and more precisely that a(k+1) is an ideal
in a(k). We call n-ary superalgebra a solvable if there exists an integer K such that
a(K) = {0}.

Proposition 4. Subalgebras and homomorphic images of a solvable commutative
n-ary superalgebra are solvable.

Proof. Let b be a subalgebra in a solvable n-ary superalgebra a. Then we see

b(1) = {b, . . . , b} ⊂ {a, . . . , a} = a(1).

By induction we have b(k) ⊂ a(k) for all k. Hence, b is solvable.
Let φ : a → h be a homomorphism. Denote by b the image of φ. Then,

b(1) = {φ(a), . . . , φ(a)} = φ({a, . . . , a}) = φ(a(1)).

Again by induction we have b(k) = φ(a(k)). Hence, b is solvable. The proof is
complete.�

In particular, all solvable skew-symmetric n-ary algebras can be obtained in-
ductively by such double extensions.

Clearly, a(1) = {a, . . . , a} is an ideal in a and any proper subspace i in a such
that a(1) ⊂ i is an ideal in a. Hence, there exists a maximal idea of codimension
1. The result follows from Theorem 1.

The second observation follows from g ≃ i/i⊥, hence g is solvable.
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