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Limitations of empirical supercell extrapolation for calculations of point defects
in bulk, at surfaces, and in two-dimensional materials
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The commonly employed supercell approach for defects in crystalline materials may introduce spurious inter-
actions between the defect and its periodic images. A rich literature is available on how the interaction energies
can be estimated, reduced, or corrected. A simple and seemingly straightforward approach is to extrapolate
from a series of finite supercell sizes to the infinite-size limit, assuming a smooth polynomial dependence of
the energy on inverse supercell size. In this work, we demonstrate by means of explict density-functional theory
supercell calculations and simplified models that wave-function overlap and electrostatic interactions lead to
more complex dependencies on supercell size than commonly assumed. We show that this complexity cannot be
captured by the simple extrapolation approaches and that suitable correction schemes should be employed.
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I. INTRODUCTION

Electronic-structure theory, notably within the context of
density-functional theory (DFT), has become an indispens-
able tool to understand and improve modern materials at the
atomic scale [1]. For the purpose of using well-established
computer codes, single defects in crystalline materials are
often modeled with the supercell approach [2-6]. For this,
the defect of interest and a small region of bulklike material
surrounding the defect are placed in a supercell and subject
to periodic-boundary conditions [2,3]. This approach replaces
the single defect by a periodic array of defects and has several
important advantages: Periodic-boundary DFT codes have
been in use for decades and been shown to be accurate, re-
liable, and efficient; the unperturbed crystalline host material
is described very accurately; periodic-boundary conditions
avoid the appearance of artificial surfaces that may interact
with the defect in unwanted ways, not least by truncating the
host materials’ screening response for electronic, electrostatic,
and elastic interactions. By making the surrounding bulk re-
gion and hence the supercell sufficiently large, the limit of an
isolated defect can, in principle, be recovered. In practice, one
is most often limited to supercell sizes where the defect-defect
interactions are still significant. A rich literature is available
on how the interaction energies can be estimated, reduced, or
corrected for (see, e.g., Refs. [4,7-26] as a certainly incom-
plete set of examples).
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Despite recent progress in correcting the immediate results
from a DFT supercell calculation by an estimate of the domi-
nant contributions extracted from simplified models [9,15,19—
26], it seems still common practice and very appealing to
simply compute the formation energy in several different
supercells, plot them as a function of the inverse cell size
(typically the linear dimension L, the volume ~L* is used
occasionally), and extrapolate to 1/L — 0 using a low-order
polynomial [10,12,27]. This is motivated by the observation
that Coulomb interactions in a homogeneous system asymp-
totically scale like L~! for nominally charged systems [8] and
like L= for dipolar electrostatic [8] or elastic interactions
[26] as well as for the alignment term of charged defects
[9,15]. A systematic expansion in powers of L~' is therefore
asymptotically correct.

In this work, we demonstrate that this type of extrapolation
can be misleading when additional finite-size effects come
into play. We consider two of these in particular. The first as-
pect is the ubiquitous quantum-mechanical coupling of defect
wave functions, which shows the typical exponential decay of
electronic effects in insulating materials (e=7%). This is ob-
viously good for brute-force supercell convergence, but very
bad for extrapolation in inverse powers of L. We investigate
in some detail the underlying mechanism via a tight-binding
model (Secs. Il A-III C) in order to identity the key factors
that determine the magnitude of formation energy errors.
Then, we demonstrate that the mechanistic insights explain
the scaling trend in DFT calculations, taking substitutional
defects in bulk diamond as an example (Sec. III D).

The second aspect we consider are electrostatic inter-
actions in inhomogeneous systems. This aspect becomes
relevant in repeated slab systems employed for defects at
surfaces, interfaces, and in two-dimensional (2D) materials
[19-23]. In Sec. IV, we therefore investigate the key aspects
using a simplified model based on electrostatic continuum
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theory. We show how the interplay of slab thickness, cell
aspect ratio, and positioning of the charge within the slab gives
rise to a surprisingly rich phenomenology that often evades
uniform cell-size scaling.

Last, we show that both aspects occur simultaneously when
studying 2D materials. We show in Sec. V that when ap-
plying charged-defect corrections, size converged results can
be obtained at supercell sizes that can be directly computed.
These corrections thus remove any need for extrapolation
approaches.

II. COMPUTATIONAL DETAILS

A. One-dimensional tight-binding model

To develop a mechanistic understanding of formation en-
ergy errors due to wave-function overlap in Secs. III B and
III C, we have studied a one-dimensional (1D) tight-binding
model that highlights the key mechanisms of defect state
formation, band dispersion, and sampling errors. For a defect
state in the band gap, the spatial decay of the electronic wave
function away from its center is dictated mostly by the ener-
getic vicinity to the nearest band edge. Therefore, our model
focuses exclusively on the interplay of a single defect state
with a single bulk band. For example, think of an empty defect
state slightly above the valence band, where we entirely ignore
the presence of a conduction band at much higher energies.

The model is described in detail in Appendix A. In this
model, we consider a periodic chain of sites with a single
orbital per site. Each orbital couples to its immediate neigh-
bors. All but one site are identical: These represent the bulk.
A single “defect” site has a different onsite energy and a
different coupling to its neighbors. As shown in the Appendix,
this model is able to produce a defect state outside the bulk
band that decays exponentially away from the defect site.
The implementation is available as an add-on (sx1dtb) in the
SPHINX package [28].

B. DFT calculations

The DFT calculations discussed in Secs. IIID and V are
performed in the local-density approximation (LDA) with a
plane-wave basis set and norm-conserving pseudopotentials
as implemented in the SPHINX code [29]. The usual approach
for obtaining formation energies from supercell setups was
followed (see Ref. [4]).

For defects in diamond (see Sec. III D) a plane-wave cut-
off of 40 Ry was used. Supercells are based on the cubic
8-atom conventional unit cell. For the diamond supercells,
an off-center 3 x 3 x 3 k-point sampling was used, with an
off-center shift of (%, %, %). Substitutional defects and the
vacancy are located at the origin, enforcing the full local
tetrahedral symmetry. Atomic geometries are not relaxed to
exclude elastic interactions and Jahn-Teller distortions.

For the substitutional oxygen impurity Og in h-BN (see
Sec. V), the cutoff energy was 50 Ry. The k-point sampling
was adapted to the supercell size, but equivalent to at least a
16 x 16 sampling in the 2-atom hexagonal unit cell, with a
relative offset of % in the plane and }‘ out of plane to minimize
coupling across different slabs. The total cell height was kept
at 40 bohrs, but we tested that other vacuum thicknesses do

FIG. 1. Sketch of the repeated-slab approach to model charged
defects (green blob), visualized as a continuum model. The dashed
lines indicate the supercells. Key system parameters are the slab
thickness d, the vacuum thickness v, and the lateral lattice cons-
tant a.

not give different results after charge correction. For the h-BN
calculations, atomic positions were fully relaxed to include
ionic screening, while the lateral lattice constant was kept
at its theoretical value for defect-free sheets of 4.67 bohrs.
Formation energies for Og in h-BN are calculated with re-
spect to the Ny-rich, O-rich limit [un = %,LL(NQ@T = 0K),
uo = % w(O,@T = 0K)], with the Fermi level at the valence
band maximum of the defect-free system.

C. Electrostatic interactions in repeated-slab systems

For electrostatic interactions in repeated-slab systems, we
use a continuum model with a z-dependent permittivity €(z)
as implemented in the sxdefectalign2d tool [22]. The as-
sociated Poisson equation is solved with the image-charge
method, and allows the use of three-dimensional (3D) periodic
boundary conditions or open boundary conditions on the same
footing (similar to Refs. [21,23]). The difference in energy
between the system under the two boundary conditions corre-
sponds to the finite-size error of the repeated-slab approach.
The dielectric model is sketched in Fig. 1. It consists of a
slab of thickness d and permittivity € inside a periodic su-
percell. Inside the slab, or at its surface, there is a Gaussian
charge (¢="'/?#" with B = 0.5 bohrs). The key parameters
of the supercell are the vacuum thickness v and the lateral
supercell size a. At fixed (v + d)/a ratio, the supercell size is
characterized by a single size parameter.

For all calculations in Sec. IV, the charge was set to +1
atomic charge units and the permittivity to € = 10, a typi-
cal magnitude for semiconductors [e.g., Si: 11.7, GaN: 8.9,
SiC: 9.6-10 (depending on allotrope), GaAs: 12.9]. The slab
thickness was varied as indicated below. The charge was either
located in the center of the slab, or at the nominal slab surface
(top position). The cutoff for plane-wave expansion was set to
30 Ry.
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The sxdefectalign2d tool was also used for the defect
corrections in Sec. V. As the long-range Coulomb field of
a localized charge is dominated by the monopole, the pre-
cise distribution of charge within a localized defect does not
need to be modeled very accurately. It is therefore com-
mon and recommended practice to use a narrow Gaussian
as a charge model (standard approach), even though defect-
adapted models can be used to model non-Gaussian [9] or
strongly anisotropic distributions [22]. If nuclear charges do
not play a role, a charge distribution model can also be directly
extracted from DFT electron densities [16]. As we will show
in Sec. V, the use of such nonstandard, adapted models can
qualitatively change the post-correction scaling behavior in
2D materials.

III. SCALING BEHAVIOR OF WAVE-FUNCTION
OVERLAP ERRORS

A. Defect states from a tight-binding perspective

The unavoidable quantum-mechanical coupling of a defect
with its periodic image via wave-function overlap leads to
systematic errors in the computed defect formation energy at
finite supercell size. As we will show, upon increasing the su-
percell size N, the errors reduce approximately exponentially
(like ¢=*V), and hence are not well captured by commonly
employed empirical “scaling laws,” which are polynomials
inN—!.

The defect formation energy error is intimately linked to
the band dispersion of defect-related states in the band gap.
Such states are partially localized on the defect site, but ex-
hibit tails that arise from the coupling of the bulklike bands
with localized defect orbitals. In the limit of an isolated defect
(infinite supercell size), each such state has a well-defined
energy. For finite supercells, however, this single state devel-
ops into a dispersive band, i.e., the energy varies with the k
point within the irreducible Brillouin zone of the supercell.
Not surprisingly, the magnitude of the formation energy error
depends on the k-point sampling scheme and, if the band is
partially occupied, also on the occupation scheme (Fermi-
Dirac smearing vs constant occupations).

The defect energy modifications do not directly result
from the coupling of the defect states per se, but occupa-
tion differences play an essential role. Think of the standard
textbook model of quantum mechanical bond formation from
the overlap of two orbitals at energies €4 and €p. Let us
assume they have initial occupations f4 and fp, respec-
tively, which can be empty (f = 0) or filled (f = 1). When
brought into contact, the orbitals form a bonding combi-
nation at €; = 3% — AE and an antibonding combination
at e = @t L AF (with AE > 0). The electronic energy
E = fie) + fre; generally differs from the one for separate
orbitals (fi€4 + fpep) unless all occupations are the same,
ie., fi = f» = fa = fp. Thus, the mere coupling of either
empty or filled defect states would not change the energy in
this simple picture. For partially filled states, however, there
is a primary overlap effect if the electrons are redistributed
according to a Fermi-Dirac distribution or any other smearing
scheme (such as Gaussian, Methfessel-Paxton, ...). Without
countermeasures or corrections, the formation energies from

smeared occupations strongly vary with k-point sampling and
supercell size [4]. Obviously, the primary overlap effect can
be suppressed easily by setting the occupations of the de-
fect band to a constant value throughout the Brillouin zone.
Yet, there is also a secondary overlap effect that cannot be
suppressed and occurs even for completely empty or filled
defect states: If the localized defect orbital (occupation fy)
couples to a bulk band with a different occupation f, # f;
(i-e., an empty defect state to the filled valence band, or a
filled defect state to the empty conduction band), the over-
lap of defect wave-function tails may modify the coupling
between bulk state and defect orbitals, and hence also the
total energy.

To develop the argument, we will first study this for a
one-dimensional (1D) tight-binding model that highlights the
key mechanisms of defect state formation, band dispersion,
and sampling errors. Later, in Sec. III D, we will also present
DFT calculations for neutral defects in diamond, demon-
strating that the insights from the tight-binding model are
transferable to 3D bulk supercells. The 1D model described in
Appendix A has an analytic solution for the isolated limit.
This analytic solution is the main reason why we restrict
ourselves to a one-dimensional model. A generalization of
the supercell model to three dimensions, i.e., on a cu-
bic lattice, is straightforward, but we were unable to find
an analytic solution for the isolated limit in this case.
When studying the numerical behavior of the 3D analog
of the tight-binding model (not presented here), we also
observed a more complex e <TAMIV gealing behavior
of the supercell dispersion, where AA(N) < A, rapidly
and monotonously goes down to zero. In other words,
the true scaling behavior in three dimensions is rapid, yet
only approximately exponential for supercell sizes accessible
within DFT.

B. Defect band dispersion

Coming back to the one-dimensional version, it is the
energetic position of the defect state relative to the bulk
band edge that directly determines the spatial decay of the
wave function, and hence also how quickly the defect band
dispersion becomes smaller with respect to supercell size.
Yet, the magnitude of dispersion also depends on the cou-
pling strength between the defect site and its neighbors.
Figure 2 shows a zoom-in of the defect band for three dif-
ferent coupling strengths #; at N = 5. In the isolated-defect
limit, all three cases show the same energy E; = 0.2¢eV,
and the corresponding wave-function decay rate y in the
isolated limit is the same. However, since the weight of the
tail region increases with coupling strength, the strong cou-
pling case also shows a significantly enhanced defect-defect
interaction compared to the weakly coupling case. In con-
sequence, the position of the defect state within the band
gap alone does not suffice to estimate the amplitude of band
dispersion.

One can also clearly see that the dispersion is not sym-
metric around the isolated defect energy, but enhanced for
energies below it. Also, the defect band crosses the iso-
lated limit not at the Brillouin zone center (k = ’37), but
where cos k &~ ¢ 7" (This condition arises from perturbation
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FIG. 2. Defect band dispersion in the tight-binding model (N =
5. 1,=1eV, E; =0.2eV) for three coupling strengths: t; = 2eV
(red), t; = 1eV (blue), and t; = 0.5eV (green). The inset shows an
overview over the entire energy range. The energy range of the bulk
host band is shown in gray. For the crossing point with the isolated
limit, see text.

theory.!) The band dispersion asymmetry arises from the de-
pendence of the spatial decay constant on distance from the
band edge: For energies closer to the band edge, the defect
state decays more slowly and hence couples more strongly
to its periodic images. In consequence, the average defect
band energy is systematically below its isolated limit. We will
investigate in the next section how this effect translates to
errors in the calculated formation energies.

C. Finite-size errors for different k-point sampling schemes

The error in total energies is closely related to the error
in the occupation-weighted average defect state energy (see
Appendix B). This average depends, in an actual defect calcu-
lation, on the Brillouin zone sampling and defect state occupa-
tion scheme. The finite-size error in the defect formation en-
ergy arising from the electronic band energy is [cf. Eq. (B5)]

AES = Z wk (fax — fy)(€ax — Eq), )
Kk

where wy, is the integration weight, and fyx and €4 are the
occupation and defect state eigenvalue for each k point,
respectively. E; is the defect state energy in the isolated
limit. Additional density-related terms are expected to show

'Tf one constructs the periodic wave function by a phase-adapted
superposition of the isolated states, one can estimate the energy to be
given by

00
E(k) — Ed +Heﬁ Ze—(yl\t'+ik)/z + e—(yN—ik)n ,

n=1

where H ¢ parametrizes the perturbation energy of the defect tail due
to the presence of the other defect sites at chain position nN, where
the corresponding decay and phase factors appear in the sum. The
sum can be evaluated analytically (geometric series), and setting it to
zero yields the condition mentioned in the text.
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FIG. 3. Absolute errors in defect band energy of the tight-binding
model (z; = 1eV) with different k-point summation schemes: Spe-
cial k points at O, %, and 7, converged averages (100 & points) for
constant occupation. All but one error have negative sign (¢ below
E,), the exception is k = 0 (maximum of the defect band).

an exponential convergence as the defect-induced density
is coupled to the exponentially decaying defect states. For
constant occupation (fyx = fz), the equation simplifies to

AET = (f5— f») Z wg(eqx — Eq). 2
k

We will therefore focus on different k-point samplings in
the following. Makov et al. proposed to use special k points
to minimize defect-defect interactions [7]. In our case, this
would correspond to k = %71. At this point, the contribution
from the direct images at i =2 £ N vanishes, but those
of the images at i =2+ 2N lead to a small systematic
underestimation. In Fig. 3, we compare the convergence of
different Brillouin zone sampling schemes with supercell
size. These are the defect band energy at k = 0, Z, and 7 as
well as the Brillouin zone average (100 k points) with equal
weights. The model parameters are as before (f, =t; = l eV,
E; =0.2¢eV).

All k-point samplings show a band energy error that decays
approximately exponentially with increasing supercell size.
The most striking difference is in the slope in the logarithmic
plot: While the k = 0 and k& = 7 cases pick up the contribu-
tion from the nearest images, these contributions cancel for
the dense k-point mesh and the k = 7 case. Therefore, these
latter cases converge about twice as quickly compared to the
former ones. We note in passing that £ = 0 corresponds to I'-
only sampling, which is a particularly bad choice for avoiding
wave-function overlap related errors even for large supercells
[4]. The best option for this simple model is the k = 7 special
point, followed by the constant occupation scheme, which,
other than k = 7, picks up the entire dispersion asymmetry
throughout the Brillouin zone. Thus, special k-point sampling
that avoids the extrema of the defect band is expected to be
superior when feasible, but of course restricts the K-point
sampling of the host material to a supercell-specific sampling
mesh. In general, it is best to employ a homogeneous, suffi-
ciently dense k-point sampling and use constant occupations
to largely average out the band dispersion.
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FIG. 4. Estimated supercell errors |E/(N) — E/(oc0)| for charge-
neutral defects in diamond from DFT-LDA N x N x N supercells.
The lines are guides to the eye. Solid lines and circles: E/(co) ~
Ef(N =5). Dashed lines and empty squares: E/(co) from extrapo-
lated value from exponential fit [see Eq. (3)].

The key insights of the tight-binding model can be sum-
marized as follows. Defect states in the band gap may arise
from the coupling of localized defect orbitals with the host
bands. Their spatial decay is dictated by the energetic differ-
ence from the band edge, and this qualitatively determines an
approximately exponential decay of band dispersion effects
with increasing supercell size. The magnitude of dispersion,
however, depends not only on the defect state’s energy, but
also on the coupling strength between the defect orbital and
its neighbors. If the defect band is occupied differently than
the host band it couples to, wave-function overlap effects
cause errors in the formation energy that scale with the oc-
cupation difference. Band dispersion is asymmetric and can
therefore not completely be removed by using a constant oc-
cupation scheme and special or systematic k-point sampling.
Yet, schemes that aim at reducing the dispersion effects by
cancellation are helpful and significantly increase the speed
of convergence.

D. Finite-size errors from wave-function overlap: DFT results

Before we come to the consequences for 1/N supercell
extrapolation, we shall briefly compare the qualitative model
predictions with real DFT calculations. For this, we compare
in Fig. 4 the convergence behavior of the formation energy of
four point defects in diamond: The charge-neutral Mg, Al, and
Si substitutional impurities, and the vacancy. To exclude strain
effects, atomic geometries were not relaxed. For simplicity,
spin was not considered explicitly, so the occupation numbers
include the spin multiplicity and can vary between 0 (empty)
and 2 (fully occupied). These defects exhibit a threefold defect
band at varying depth in the band gap, which was occupied
equally with f; = % (vacancy), % (Al), ; Mg), and 2 (Si),
respectively. While the Si state merges with the bulklike bands
for all supercells used here, the other cases have a defect band
at~0.03eV (Al) < 0.4eV (Mg) < 1.5 eV (vacancy) above the
valence band maximum of bulk diamond. Correspondingly,

_ B6x6x6~5x5x5 4x4x4 3x3x3 2x2x2_
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0.10F _ 3
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FIG. 5. 1/N plot of estimated supercell errors (N x N x N) for

charge-neutral defects in diamond from DFT-LDA. The solid lines
are fits with N~! and N~ terms. For Mg, and the vacancy, the N =
5 result was taken as the converged value. For Alc, the converged
value was estimated from an exponential fit (see text). Exponential
fits (dashed lines) are shown for comparison. Black crosses show
control calculations performed for a 6 x 6 x 6 supercell.

the defect spatial decay constant increases. For Si, we do
not expect a significant error from wave-function overlap as
fi = fp- Indeed the calculated formation energies of Sic for
all supercell sizes agree to within 1 meV. The defects with
partially occupied states show an approximately exponential
convergence [E (00), A, A are fitting parameters)]

E(N) ~ E(c0) + Ae™, 3

with a varying convergence rate A (slope), as expected from
the tight-binding model.

What happens if we extrapolate these errors to infinite size
using polynomials in N~!? Figure 5 shows the same data as
in Fig. 4, but plotted against 1/N together with least-square
fits (solid lines) to the physically inappropriate, but Coulomb-
inspired form

AE =Co+CN'+ N3 (4)

for all but Sic which has errors <0.001eV within our nu-
merical noise limit. For Mg~ and the vacancy, we have used
the N = 5 result as an estimate for the converged values. For
Alc, we have used, based on the insight that the error scales
approximately exponentially, a fit to Eq. (3) to estimate the re-
maining error beyond the 5 x 5 x 5 supercell, which suggests
that the converged value lies 0.007 eV below the N = 5 value
(cf. green squares in Fig. 4). Control calculations for N = 6,
that were not used for the fitting, are shown as black crosses.
The quality of the fits looks very convincing. When ignor-
ing the physical background, it would appear plausible that
they describe well the supercell dependence of the error. In
the usual extrapolation schemes the fitted functions are used
to estimate the isolated-defect limit via the value at 1/N — 0
(which should be zero in our plot). Figure 5 clearly demon-
strates that the extrapolation errors are significant compared to
the errors of all input data; in all three cases the second-worst
N = 3 value without further extrapolation is about as accurate
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as the N~' + N3 extrapolated one. That is, extrapolating
makes the accuracy much worse than just taking the value
from the largest supercell. We have also tested other polyno-
mial forms, for instance, including an unphysical N=2 term,
or focusing exclusively on the N~! term. These alternative
expressions lead to different numbers, but similar magnitudes
(not shown). For the present case, this poor performance
comes not as a surprise [there is no justification for using
Eq. (4), and therefore, one cannot expect the fit to be helpful].
However, and that is the main point of this entire discus-
sion, wave-function overlap related errors with an exponential
convergence behavior are ubiquitous in defect calculations,
namely, whenever the occupation of a defect-related state in
the band gap differs from that of the host band that mediates
the defect band dispersion. Supercell extrapolation aiming
at Coulomb interactions and other functional dependencies
will systematically magnify the wave-function overlap related
€ITors.

IV. SCALING OF ELECTROSTATIC INTERACTIONS IN
REPEATED-SLAB SYSTEMS FROM A DIELECTRIC
CONTINUUM MODEL

Electrostatic interactions introduce significant artifacts in
the calculation of formation energies of charged defects at
surfaces or in 2D materials within the repeated-slab approach.
This is not only due to the reduced screening in vacuum, but
also because the lateral size (area of the surface unit cell)
and the surface-normal direction show a qualitatively different
convergence behavior. If the surface unit cell is kept fixed,
an increase in the vacuum spacing leads to an asymptotically
linear increase in the formation energy due to the capacitor
effect [22,30]. At fixed vacuum thickness, on the other hand,
an increase of the surface unit cell leads to a logarithmic
divergence [31,32]. Only increasing all dimensions simultane-
ously guarantees convergence.” Of course, additive correction
schemes are available as a practical and, in our view, better
alternative [20,22,23]. Interestingly, scaling and extrapolation
are still ingredients of schemes that lack a direct calculation
of the isolated case [20], and these extrapolations can be
misleading [33]. The purpose of this section is to demonstrate
that the phenomenology of scaling may be surprisingly com-
plex, and that it is not well captured by the commonly used
low-order polynomials in the inverse scaling parameter.

To this end, we computed the uniform supercell scal-
ing behavior within dielectric continuum theory using the
sxdefectalign2d tool [22]. We consider a number of pro-
totypical cases with a tetragonal a x a x c repeated-slab cell.
These cases differ in

(1) the slab thickness d (this remains unscaled),

(2) the position of the defect within the slab [center (c) or
surface (t = top)],

2A simple argument for the scaling behavior is this: In the recipro-
cal space formulation for a D-dimensional scaling, the decisive term
has the form j;f’“'“‘ dg g>~", which must be evaluated at a boundary
8ew & 1/L, yielding scalings of L, In(L), and L~! for D =1, 2, and
3, respectively.
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FIG. 6. Supercell geometries for slabs. (a) Scaling of supercell,
but not of the slab thickness. (b) Supercell and slab geometries used
in Fig. 7. § = small slab thickness, M = medium slab thickness, L =
large slab thickness. Defect position within the slab is “¢” (top) or
“c” (centered). Special cases +lat = laterally extended, and +vac =
extra vacuum.

(3) the vacuum thickness v = ¢ — d in the smallest cell,
and

(4) the aspect ratio c/a of the repeated-slab cell.

Upon scaling, the lateral size and the total cell height (vac-
uum + slab) are increased by the same factor o, while the slab
thickness is kept constant [see Fig. 6(a)]. In practice, lateral
scaling must be commensurate to the underlying lattice. In
addition to integer numbers, we also include V2 (as realized
inac2 x 2 cell), V/5 [as realized in a (1,2)x (2, —1) cell], and
242 (a ¢4 x 4 cell) to fill the gaps at low scaling factors.
The different supercell and slab geometries are depicted in
Fig. 6(b). Three possible slab thicknesses were considered:
d =5 bohrs (small, denoted by S), d = 10 bohrs (medium,
denoted by M), and d = 20 bohrs (large, denoted by L). The
defect’s position with respect to the dielectric slab can either
be in the center, denoted by “c,” or at the surface, denoted by
“t” (top). The initial cell size is a x a x ¢ with a = 20 bohrs
(except for “Lt + lat” with a = 40 bohrs), and ¢ = 40 bohrs
(except for “Lt 4+ vac” with ¢ = 60 bohrs).

The results are shown in Fig. 7, plotted as a function of the
inverse of the scaling factor «. It is obvious that the scaling
behavior can exhibit local minima and maxima and cannot be
described well by a low-order polynomial fitted to a small-«
range, as highlighted in Fig. 8.

At small scales up to o = 4, the position of the charge
within the slab has an important influence. Charges at the
surface tend to show a stronger artificial stabilization (i.e.,
lower formation energies) than charges in the center. The sta-
bilization has its root in that the Coulomb attraction between
the defect charge and the implicit compensating background
is larger than the repulsive interaction between the localized
charge and its likewise localized periodic images. The charges
in the center experience less of this due to the stronger screen-
ing inside the slab. When the lateral distance becomes large
compared to the slab thickness, this influence of the charge
position within the slab vanishes (see Sc vs St and Mc vs Mt).
The thicker the slab, on the other hand, the more pronounced
the center vs surface position effect becomes. These intraslab
interactions compete with the interslab capacitor effect, that
depends mostly on the aspect ratio of the total cell and on
the dielectric image-charge effect at small vacuum distances
[34]. The total competition can lead to an almost perfect linear
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FIG. 7. Scaling behavior of electrostatic energies in slab systems
from the dielectric continuum model upon uniform scaling («) of
cell dimensions. The formation energy of the isolated case (¢« — ©0)
has been set to zero. Slab thickness is encoded by capital letter S (5
bohrs), M (10 bohrs), and L (20 bohrs) [cf. Fig. 6(b)]. The charge’s
position is encoded by lowercase letter ¢ (center of slab) or ¢ (top of
slab, i.e., at the surface). Tetragonal cells (¢a x aa x ac) are used,
with typically a = 20 bohrs (except for Lt 4-lat: a = 40 bohrs) and
¢ = 40 bohrs (except for Lt 4 vac: ¢ = 60 bohrs).

behavior over a wide range of 1/«, e.g., in the “Ls + lat”
case, that “suddenly” turns up at 1/ &~ 0.18 to approach
the asymptotic limit. In other cases, rather flat regions or
pronounced up-and-down behavior may occur.

The key insight of this exercise is to demonstrate that
even a seemingly simple scenario can lead to rather complex
global scaling behavior that is difficult to characterize from
a limited o range assuming a global low-order polynomial
shape. Extrapolation from a restricted view can therefore
be highly misleading. In all cases shown above, low-order
polynomial extrapolation is very sensitive to the considered
range, and can lead to severe mispredictions. To illustrate
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- | _
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. Limit I -
2 0.1 | typically computable —
; B i within DFT i
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g 00'_ __| _.—MQ—E——— ]
5] - I".O\_\,E—E -~
=] K/ _ ,:—EE ®.e 1
2 7~ o =" 1 =3
g -0.1 :‘> z : S~ ! S ]
5] B TT== :i:! =< B » 7
- ® —Se g — — — _ _
TR N
L : e - \\ o Lt A
203 ! LtHat ~~<~ _|
: 1111 I 1111 I 1111 | 1111 I 1111 I 1111 I 1111 I 1111 I 1111 I 1 Iﬁ"
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l/o

FIG. 8. Same data as Fig. 7 for o« < 3 (1/a > 0.33), with third-
order polynomials fit to the values. Low-order polynomial fits in this
region completely fail to anticipate the true asymptotic behavior (cf.
Fig. 7). The formation energy of the isolated case (1/o¢ — 0) has
been set to zero.

FIG. 9. Amplitude of the empty defect state of O in h-BN,
overlayed with the atomic structure (red: Oxygen, blue: Nitrogen,
dark green: Boron).

this, Fig. 8 shows third-order polynomials in 1/« that were
fitted to the small supercell data (@ < 3) via regression. Not
only do these fits systematically fail to reflect the asymptotic
behavior, they also predict limiting values at 1/o — O that
deviate significantly from the true value of zero. Therefore,
for slab systems absolute correction schemes that directly treat
the isolated-defect limit with appropriate boundary conditions
should be preferred over scaling-based approaches. Such cor-
rection schemes are freely available [22,23,35].

V. POST-CORRECTION EXTRAPOLATION

As a last example, we want to demonstrate here that even
after applying corrections to the leading Coulomb errors,
extrapolation is not a reliable tool to assess the importance
of “further” effects, or their scaling behavior. For this we
consider a charged defect in a 2D system, namely, the relaxed
Og substitutional defect in a h-BN monolayer in its 4| charge
state and study the convergence of the formation energy from
DFT calculations. The defect was selected because it shows
both electrostatic and exponential tail effects. For the latter,
the defect provides an empty defect state slightly above the
valence band edge. It is derived from s and p orbitals lying
in the BN plane and can couple to the corresponding o -type
bonding orbitals inside the BN valence band (see Fig. 9).
In addition, there is an occupied defect state dominated by
the out-of-plane oxygen 2p orbital that hybridizes with the
occupied N 2p valence band edge (not shown). In the absence
of the O defect, however, the empty boron 2p. orbital at this
site would contribute mostly to the conduction band. The pres-
ence of this state therefore induces a coupling of p,-derived
occupied valence and empty conduction band states.

Without charge corrections, the computed values strongly
depend on the supercell size [see the uncorrected values
(magenta) in Fig. 10]. After applying standard 2D charge
corrections [22] with a narrow Gaussian (8 = 0.5 bohrs) as
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FIG. 10. Formation energies of the +1 Og defect in single-sheet
h-BN, obtained from various supercells. Magenta circles: Uncor-
rected values. Magenta dotted line: Polynomial fit with N~ and
N~2 terms (unphysical). Green dots: Values including a standard
2D correction (Gaussian width 0.5 bohrs). The green dashed line
shows a linear fit to the apparent 1/N? behavior. The red dashed
line represents the value extracted from an improved procedure (see
Fig. 12).

charge model, the results show a rapid convergence with re-
spect to the vacuum size (not shown here). We therefore focus
on convergence with respect to lateral size. Figure 10 shows
the formation energies with and without correction for N x N
lateral size from 4 x 4 (32 atoms) to 16 x 16 (512 atoms),
plotted against the inverse of the unit-cell size N>.

The uncorrected values can be easily fitted to a simple form
in N~!, leading to an extrapolated value of 4.64 eV. As we
know that lateral scaling should exhibit a logarithmic diver-
gence, this uncorrected extrapolation is misleading despite the
very good fit in the accessible range.

But even after correction, there is a systematic trend: It is
very apparent that the corrected formation energies carry an
error that seems to scale like 1/N2. There are several effects
that should scale like 1 /N2 in a 2D material, such as elas-
tic stress (see Appendix C). Likewise, defect-related excess
contributions to macroscopic system properties (permittivity,
bulk moduli) scale inversely with concentration, which could
modify the system’s long-range response to the presence of
the defect. It is highly tempting to capture them all by extrap-
olating to 1/N? — 0. Doing so, the converged value would be
estimated to be 4.785 eV.

Such a reasoning about the origin of the remaining 1 /N>
scaling trend would usually not arouse doubts, but turns out
to be wrong and misleading. We presented this speculation
here only to demonstrate how easy it is to rationalize simple-
looking trends. What went wrong is this: While the charge
corrections with the strongly localized Gaussian charge (8 =
0.5 bohrs) indeed remove the leading Coulomb error and
the vacuum dependence, a careful analysis shows that they
do overestimate the lateral screening. The reason is that the
defect charge smears out laterally to the neighbor nitrogen
atoms (cf. the shape of the emptied defect state in Fig. 9),
and thus is much less localized than the default parame-

008 T I T I T I T T I T I T I T 008
BH =4 bohr b
0.06 —0.06
S 0.04 —0.04
2 _
Z 002 10x10 —0.02
/o |
=} |
£ 0.00 SN ~0.00
-0.02 -0.02
-0.04 ' 4'0 L 6'0 10,04
X (bohr) X (bohr)

FIG. 11. Line scan of the post-correction short-range potential at
7 = 10 bohrs in the vacuum above the BN slab along the x direction.
Left: Narrow Gaussian charge (8 = 0.5 bohrs). Right: Improved
charge model (8, = 4 bohrs). Three different cell sizes are shown:
6 x 6 (black), 10 x 10 (red), and 16 x 16 (red). Each scan starts
above the defect at x = 0, and ends above its periodic image (vertical
dashed line).

ter assumes. This electrostatic origin leaves its traces in the
corrected potential. A perfectly modeled charge distribution
would yield an extended plateau in the short-range potential
used in the correction scheme [9]. Different supercells beyond
a certain threshold size should further agree on the shape of
this short-range potential near the defect. When the potential
is inspected in a full xy plane within the vacuum rather than
only its xy-averaged profile along the z axis, a significant
lateral variation becomes visible when the default parameters
are employed (see left side of Fig. 11).

This can be fixed by adapting the lateral broadening of the
model charge. When the lateral extent of the model charge
is properly chosen, the lateral variation of the potential no
longer increases with lateral cell size, but provides an ex-
tended plateau (right side of Fig. 11). Likewise, all cell sizes
then provide similar, well-aligned shapes of the short-range
potential in the vicinity of the defect. Using such an improved
model with 8 = 4 bohrs for the correction, we recomputed
the formation energies and show them in Fig. 12. All of a
sudden, the previously striking 1/N? trend has made room
to rapid convergence, that probably reflects the exponential
decay of the defect states. A fit to an exponential behavior
Ey = Eo + Ae™N shows indeed an excellent agreement (see
violet line in Fig. 12), which can be taken as a hint, but not
a proof of the wave-function origin of the trend. Beyond the
6 x 6 cell, all results now agree to within less than 5 meV.
We note in passing that we cannot expect much better results
by going for even larger cells: The largest 16 x 16 cell has
512 atoms; to achieve a 5-meV accuracy in the formation
energy from the energy difference of two 512-atom calcula-
tions requires to keep the unavoidable numerical noise in each
separate calculation to within 0.01 meV per atom.

Additional evidence for an electronic origin of the re-
maining deviations for small cells comes from the excellent
correlation (within 2 meV) between the energy level of the
empty defect state (averaged over k points, including charge
corrections) and the corrected formation energy (see the

014103-8



LIMITATIONS OF EMPIRICAL SUPERCELL ...

PHYSICAL REVIEW B 105, 014103 (2022)

E, vs. g correlation

g 4.80 UL AL B R
2 NN T T T T
% \o\fpe < estimated trend from —4.95
8 479~ 05 " electrostatic correctio: _
° -2meV S~ e :‘f 2 lme\/ error only PR _
8 478 TN 1 >
: 78 - J49072
b >
£ 477 1 5
=
T [
—_ 4.85 S
E 5]
exponential fit §
_________________ —4.80<
- X5 T ———— 1
[16x16 10x10 ox5 4x4]
| | | | | | 475
0 0.01 0.02 0.03 0.04 0.05 0.06

FIG. 12. Formation energies of the +1 Op defect in single-sheet
h-BN, obtained from various supercells using an improved electro-
static correction (see text). The green dashed line represents the trend
of Fig. 10. The violet dashed line is an exponential fit of the improved
data (see text). The red dashed line depicts the estimated converged
value. The blue line (triangles) depicts the estimated trend if there
was only the correction error from the insufficient correction used for
Fig. 10. The inset demonstrates the correlation between the average
defect level and the formation energy.

inset of Fig. 12). This is in qualitative agreement with the
discussions of Appendix B. Yet, the quantitative correlation
(—0.28) is much smaller than expected for a simple coupling
of one defect orbital to a single-orbital valence band which
would yield f; — f, = —2. As multiple defect orbitals couple
to different bulk bands, and as not all defect states appear in
the band gap and can be quantitatively analyzed, we refrain
from attempting quantitative corrections for the exponential
tail effects.

In this particular case, the 1/N* extrapolated value from
Fig. 10 using a narrow Gaussian (green dashed line) agrees
to within 0.01 eV with the value extracted from the improved
charge model. Indeed, the fast-decaying nonelectrostatic er-
rors and the errors arising from an inefficient electrostatic
correction happen to produce an almost perfect 1 /N> behavior
in the practically accessible region. To shed some more light
on this, we estimated the electrostatic correction error of the
standard scheme beyond the range accessible by DFT. For
this, we compared electrostatic model predictions of the tuned
lateral broadened setting with those of the default ones, and
added them to our converged value of 4.79 eV to predict how
the plot would develop for larger cell sizes up to 200 x 200
(blue line). It clearly shows a nonlinear behavior in N2,
making it problematic to extrapolate from only a few values.
While the magnitude of the extrapolation error is very small in
this case (~5 meV) and even within the numerical noise limit,
we again observe that there is no improvement compared to
using one of the rather small cells (here: 6 x 6) in combination
with a proper physical modeling.

VI. CONCLUSIONS

In summary, we have shown for two simple prototypical
scenarios, namely, the ubiquitous wave-function overlap re-

lated errors and charged-defect interactions in slab systems,
that finite-size errors do not generally exhibit a simple global
polynomial behavior as a function of the inverse supercell
size. This does not really come as a surprise in view of the
physical background of these effects. In consequence, scaling
extrapolation does not systematically improve the accuracy of
the results beyond the best explicitly calculated value if the
underlying physical mechanism is not taken into consideration
or not even clear.

Taking a charged defect in a 2D material for illustration,
we have then shown that the combined nonlinear effects may
sometimes produce simple-looking linear trends. By tracing
the physical origin of the dominant error to an insufficient
modeling of anisotropic charge distributions, accurate results
could be obtained from much smaller cell sizes.

Our findings question the implicit assumption underlying
“supercell extrapolation,” that it would be an efficient “poor-
man’s solution” to estimate finite-size errors of unspecified
origin. Our results highlight that the good quality of the fits
obtained from typical supercell ranges has no significance for
the accuracy of the extrapolated value, and that there are cases
where extrapolation magnifies errors that show an inherently
different scaling behavior than implicitly assumed. Whenever
possible, physically motivated correction schemes should be
preferred.

APPENDIX A: ONE-DIMENSIONAL
TIGHT-BINDING MODEL

To demonstrate the supercell size dependence of defect
states, we work with a simple tight-binding model in one
dimension and periodic boundary conditions with a single
band in the unit cell. The host “bulk” material is characterized
by an onsite energy €, and a hopping-matrix element #,. The
model Hamiltonian matrix of a periodic supercell of N sites
(N > 3) will then read as

Hil,(i = €b, (Ala)
Hfyy =1, ifl <ix1<N, (Alb)
Hf y = ", (Alc)
Hy | =ne N (A1d)

for the nonzero matrix elements (i=1...N), and H;; =0
otherwise. Here, k£ is the one-dimensional Bloch ‘“vector,’
that characterizes the phase relation upon translations. The
eigenvalues of this bulk Hamiltonian are (n = 1...N)

€(k) = € + 2t cos [|k] + Ak, (A2)
within the first Brillouin zone (=% < k < §) where
Aky = 2 [(=1Y"'Cn— 1) — 1] (A3)
"7 2N '

This corresponds to the backfolded band structure of the
single-site case (N = 1)
(k) = Hlk1 =€, + t;,eik + t;,e_ik =¢,+ 2t,cosk . (A4)

The full bandwidth is 4¢,. We note in passing that changing
the sign of the hopping matrix corresponds to a trivial phase
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shift in the band structure
ey (k) = €, (k +71)

which does not affect the subsequent conclusions. We will
therefore assume 7, > 0. Moreover, since €, trivially shifts the
entire band structure, we set €, = —21,, such that the top of the
bulk band is at energy zero.

To introduce a defect at site i = 2, we modify the onsite
matrix element as

(AS)

Hy,=¢q (A6)

and the hopping matrix elements as
H{fz = HZA:] =t, and (A7a)
HYy=H{,=t]. (A7b)

The ratio t; /t; can be used to tune the symmetry of the
defect, but we restrict ourselves here to the symmetric case
=1 =14.

In the limit N — o0, and given suitably chosen parameters,
this modification introduces a defect state at £; > 0 given
implicitly by

2

t
E;=¢€;+ “dey (A8)
Ip
and
E;—¢,
hy = —— A9
coshy T (A9)

In practice, we choose the isolated defect state energy E; > 0
to get

E;—¢

= acosh , A10
Y s (A10)
and then obtain €, from Eq. (AS).
The defect state ¢ resulting from
Hek = EXc* (A1)

in the isolated-defect limit (N — oo, k — 0, and site index
[ = —00...00) is exponentially localized, and decays like
e 71=2l away from the defect site, specifically,

&, o= =2) ~
=2 e
The wave function at the defect site i = 2 is
= ;—:Ez (A13)
and & is given from the normalization condition as
2w g7V
& = [m + 2} . (Al14)

This explicit eigenvector also sheds light on the qualitative
role of the ratio t;/#;: In the limit 7; — 0, the defect state gets
fully localized on the defective site at i = 2, giving vanishing
weight to the defect tails. If #; gets large, most of the weight
of the defect state above the host band (E; > 0) will be in
the exponential tails. For sufficiently large couplings 7, =
(Eq +21t)/ \/E, a second defect-related deep state develops
near €5 < —4|t,| below the host band with most weight on the
defect site itself.

APPENDIX B: WAVE-FUNCTION OVERLAP
ERRORS FROM TIGHT BINDING

The connection between the band dispersion, the k-point
sampling, and the total energy in DFT can be estimated to
first order from the Harris-Foulkes functional [36,37]

E® = wifucem + Eac: (B1)
nk

Here, f,x is the occupation number of band 7 at some k point,
€,k the corresponding energy, wy the corresponding Brillouin
zone summation weight, and E4. the double-counting cor-
rection which depends on the electron density in the DFT
formalism. The defect formation energy in our model then
becomes

’ - bulk-+dett - _bulk
Ef = Zwk(fnkenﬁ +defect _]Lbenﬁ )
nk

+ Eé)éllk + defect __ Ecllaéllk . (B2)

=E/

f» s the occupation number of the bulk bands. Equation (B2)
can be simplified as follows. The sum of all eigenvalues is the
trace of the Hamiltonian matrix H¥, which is Ne,, for the pure
bulk with N sites in the supercell. For the defect,

Zenk =tuH = Nep + (€4 — €p) (B3)

is independent of k. We will further assume that all bands
except for the differently occupied defect band n = d have
full bulk occupation (if this is not the case, significant errors
must be expected). With this background, Eq. (B2) can be
rewritten as

Ef = Edfc 4 Z wic(fux — fh)ert;llilk-‘rdefem
k

n

bulk+defect bulk

+ E wkfb(fnk " )
nk

bulk—+defe
=) wi(fax — fodegpitoe
k

+ Eji + foleq — €p). (B4)

The finite-size error in the defect formation energy then is

AE" = " wn(fax — fo)(€ax — Eq) + AE},.  (B5)
k

where AE({C denotes the error in the double-counting term.

Equation (BS5) implies that supercell errors arising from
wave-function overlap must be expected whenever a defect
band couples to a bulk band with a different occupation fy #
f», and when the occupation-weighted average of the defect
state energy over the Brillouin zone does not correspond to
the isolated defect state’s energy. While this isolated value is
generally not known in actual DFT calculations, our model al-
lows us to discuss qualitatively the impact of different choices
for the k-point sampling and occupation scheme. Independent
of these choices, as shown in Sec. IIIC, the error decays
exponentially with supercell size.
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The density-related term in Eq. (B5), AE({C, probably
shows an exponential convergence by itself because the
defect-induced density is coupled to the exponentially decay-
ing defect states. However, we failed to verify this numerically
because the double-counting term in DFT depends on the po-
tential alignment (equivalent to affecting both €, and ¢,), and
even small uncertainties in the alignment (AV, on the order of
afew 0.01 eV) produce very large uncertainties in the double-
counting energy differences AE;. = N, AV of large supercells
with several hundred electrons (&, ). In lack of further insight
into this term, we will not discuss this contribution any further,
but expect that it does not compensate systematically for the
€qk-related convergence.

APPENDIX C: SCALING OF ELASTIC INTERACTIONS

Elastic interactions between point defects in bulk super-
cells are known to scale as L~ [4,38]. The scaling in 2D
materials has to our knowledge not been discussed before, but
can easily be shown to be L2 as follows.

The displacement u(s, R) of an atom at site s in lattice
cell R induced by a defect can be obtained from the Kanzaki
forces f(s'. R') at site 5" in cell R’ via [38,39]

(s, R) =Y G (R =R f(s, R))
s\ B

(CDH

using the bulk’s elastic Green’s function g;sﬂ Fourier trans-
formation to reciprocal space yields

U (5.K) =Y G () fy(s'. K). (C2)
The elastic energy is then given by [39]
1
N *
ENe = “an > ut(s. k) - £(s, k), (C3)

5.k=£0

where the sum over k runs over the nonzero reciprocal lattice
vectors of the supercell that are inside the Brillouin zone of
the underlying bulk lattice. Nk is the number of all supercell

lattice vectors inside the Brillouin zone of the underlying
lattice, and hence equivalent to the number of unit cells in the
supercell N;.. The omission of the k = 0 term corresponds
imposing zero strain, i.e., using the supercell with the bulk
lattice constants.

In the limit of large supercells, the sum transforms into the
integral

= : / dPku* (k) - £(k). (C4)
BZ

2Qpz
Here, Q27 denotes the “volume™ of the bulk lattices Brillouin
zone in D dimensions (i.e., an area for D = 2). The integrand
is a smooth function except at k = 0, where it is nonana-
Iytic. For this, note that f(k) ~ |k|, G(k) ~ 1/|k|2, and hence
u(k) ~ 1/|k| independent of the dimensionality [39,40]. In
consequence, the integrand remains finite near k = 0, but it
may vary with the direction k =k/k|, ie., u(k)- f(k) —
n(k).

The leading error when comparing the integral with the
finite sum arises from entirely omitting the k = 0 term in the
finite sum. A better approximation would be to replace it by
the analytic integral over the Brillouin zone of the supercell
(scB7),

AFEy—o(scBZ) ~ / dPk n(k/|k|).

scBZ

(C5)

As the integrand does not depend on the length scale, the
integral factorizes into a volume factor Q4pz and an angular
factor A that depends on the ratio of the superlattice vectors
a} 1 a3 : a¥ of the supercell and the intrinsic orientational
dependence of 7. Hence, for a given superlattice ratio,

1
AEx—o(BZ, sc) ~ EQSCBZA(aic :a¥ 1 af.n)

A(al® - af af,n).  (CO)

For a uniform scaling of a D-dimensional supercell (e.g., N x
N xNforD=3,NxNforD=2,NforD =1, and Ny. =
NP), this is equivalent to a L= scaling since Ly = NL,.
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