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ABSTRACT
◥

Immune-modulating systemic therapies are often used to treat
advanced cancer such as metastatic clear cell renal cell carcinoma
(ccRCC).Used alone, sequence-based biomarkers neither accurately
capture patient dynamics nor the tumor immune microenviron-
ment. To better understand the tumor ecology of this immune
microenvironment, we quantified tumor infiltration across three
distinct ccRCC patient tumor cohorts using complementarity deter-
mining region-3 (CDR3) sequence recovery counts in tumor-
infiltrating lymphocytes and a generalized diversity index (GDI)
for CDR3 sequence distributions. GDI can be understood as a curve
over a continuum of diversity scales that allows sensitive charac-
terization of distributions to capture sample richness, evenness, and
subsampling uncertainty, along with other important metrics that
characterize tumor heterogeneity. For example, richness quantified
the total unique sequence count, while evenness quantified simi-
larities across sequence frequencies. Significant differences in recep-
tor sequence diversity across gender and race revealed that patients

with larger and more clinically aggressive tumors had increased
richness of recovered tumoral CDR3 sequences, specifically in those
from T-cell receptor alpha and B-cell immunoglobulin lambda light
chain. The GDI inflection point (IP) allowed for a novel and robust
measure of distribution evenness. High IP values were associated
with improved overall survival, suggesting that normal-like
sequence distributions lead to better outcomes. These results pro-
pose a new quantitative tool that can be used to better characterize
patient-specific differences related to immune cell infiltration, and to
identify unique characteristics of tumor-infiltrating lymphocyte
heterogeneity in ccRCC and other malignancies.

Significance: Assessment of tumor-infiltrating T-cell and B-cell
diversity in renal cell carcinoma advances the understanding
of tumor-immune system interactions, linking tumor immune
ecology with tumor burden, aggressiveness, and patient survival.

See related commentary by Krishna and Hakimi, p. 764

Introduction
Renal cell carcinoma ranks seventh and tenth among the most

diagnosed cancers among men and women in the United States,
respectively, accounting for 3.8% of all cancer cases and 2.5% of all
cancer deaths (1). The most common type of renal cell carcinoma is
clear cell renal cell carcinoma (ccRCC). Historically, metastatic ccRCC
has been one of the first malignancies successfully treated with
immune-modulating systemic therapy, using IL2 and IFNa (2).
Immune checkpoint inhibitors (ICI) such as nivolumab, ipilimumab,
pembrolizumab, and avelumab, have emerged as the first-line therapy
formetastatic ccRCC, typically administered in combinationwith each
other or with a targeted therapeutic agent (3). The arrival of ICIs has
precipitated a tremendous research effort aiming to accurately char-
acterize the tumor immune microenvironment and explore potential
biomarkers to predict ICI response, for which robust markers have
been largely elusive. Most investigations have focused on tumor-
centric variables including somatic mutations and gene expression.
Fewer studies have been focused on host factors that contribute to the
microenvironment or focused on how differences among these factors
may affect clinical or therapeutic outcomes.

Across tumor types, response to ICI has been correlated with higher
frequencies of somatic mutations that are believed to give rise to
tumor-specific neoantigens, and to stimulate a robust antitumor
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immune response (4–6). In contrast, analyses of renal cell carcinomas
have demonstrated a relatively low frequency of somaticmutations, yet
very high levels of immune cell infiltration. These findings suggest that
a high mutational burden is not solely responsible for inducing
immune infiltration in ccRCC (7–11). In addition, recent work has
demonstrated that CD8þ T-cell infiltration alone does not predict
response to ICI. Refinements of characterizing immune cell popula-
tions are needed to understand the microenvironment and the biology
underlying ICI response (12).

To initiate an antitumor immune response, tumor-specific neoanti-
gens first require recognition by a T- or B-cell receptor (TCR, BCR) on
a tumor-infiltrating lymphocyte. The tumor-infiltrating lymphocyte,
complementarity determining region-3 (CDR3) is a highly variable
region in the TCR/BCR that provides a complementary binding
surface for antigens and largely determines the antigen specificity of
the receptor. Investigations have shown the promise of CDR3 features
as prognostic biomarkers for several malignancies (13–16), using
sequencing and bioinformatic pipelines to recover single reads that
represent the CDR3 amino acid sequence. These reads can be quan-
tified as total recovered reads, potentially as a primary metric of
immune infiltration (14–16). However, total count-based measures
of CDR3 variability are unlikely to reflect the underlying complex
biology of host adaptive immune response with the same accuracy as
other measures of receptor diversity (17–19).

We hypothesized that immune cell receptor sequence diversity
recapitulates important features of tumor biology such as origin,
environment-driven evolution, and progression risk. We leverage
properties of a generalized diversity index (GDI; refs. 20–22), a
measure applied in ecology and evolution, to quantify CDR3
diversity, and assess whether this diversity is associated with
important clinicopathologic outcomes in ccRCC. GDI is evaluated
as a continuous function along a range of order of diversity (q)
values (20–22). At low values of q (low-q GDI), the index is a
measure of distribution richness, that is, the count of distinct types,
sequences or clones, while the value at q ¼ 1 is closely related to
Shannon diversity index (23). At high values of q (high-q GDI), the
index approaches a measure of evenness or dominance, that is,
focusing on the dominant clone or sequence and its frequency.
Here, we applied these diversity metrics to ccRCC tumor samples,
and assessed the properties of GDI and their utility to serve as
possible prognostic markers. We assessed tumor-infiltrating lym-
phocyte TCR and BCR CDR3 diversity across the range of q, and for
isolated values that have direct statistical interpretations. We analyzed
three independent cohorts of patients with ccRCC with bulk RNA-
sequencing (RNA-seq) samples; the Moffitt Total Cancer Care (TCC)
cohort (24), the Clinical Proteomic Tumor Analysis Consortium 3
(CPTAC-3) cohort (25), and The Cancer Genome Atlas Kidney Renal
Clear Cell Carcinoma (TCGA-KIRC) cohort (26, 27).

Materials and Methods
Clinical samples

Following Institutional Review Board (IRB) approval (H. Lee
Moffitt Cancer Center’s Total Cancer Care protocol MCC# 14690;
approved by the Institutional Review Board; Advarra IRB
Pro00014441), we retrospectively obtained clinicopathologic and bulk
RNA-seq patient data from electronic medical records, where all
patients had provided written consent under the institutional TCC
Protocol. RNA was prepared using the Qiagen RNAeasy plus mini kit
for RNA (frozen tissue) or the Qiagen All prep FFPE DNA/RNA kit
(formalin-fixed paraffin-embedded tissue). RNA-seq libraries were

prepared using the standard Illumina TruSeq RNA Access kit (now
called TruSeq RNA Exome), according to manufacturer protocols.
RNA-seq libraries were sequenced on an Illumina HiSeq 4000 accord-
ing to manufacturer protocols. RNA-seq reads were aligned to the
human reference genome (hs37d5) in an intron-aware manner with
Spliced Transcripts Alignment to a Reference (STAR; ref. 28). Table 1
shows a summary of the clinical information obtained from indivi-
duals in the Moffitt TCC cohort. Relevant clinical and pathologic
outcomes available from the Moffitt TCC cohort, including ranges of
percentage of tumor with EGFR spice variant alpha are recorded
in Table 1. Summaries of numbers of reads per samples in each of the
cohorts are available in Supplementary Fig. S1.

To further investigate the trends identified in point estimates of
diversity from TCR and B-cell immunoglobulin recoveries the
Moffitt TCC patient bulk RNA-seq, we validated trends identified
in the Moffitt TCC cohort analysis with complementary analysis
with the RNA-seq from the under CPTAC-3 cohort (written
consent had been obtained under CPTAC guidelines). Table 1
shows a summary of the clinical information obtained from indi-
viduals in the CPTAC-3 cohort. TCGA-KIRC cohort RNA-seq–
based TRA and TRB CRD3s were obtained from Thorsson and
colleagues (26, 27) based on the dbGAaP-approved protocol num-
ber 6300. Relevant clinical and pathologic outcomes, aligning with
outcomes available in the Moffitt TCC cohort, that are available in
CPTAC-3 and TCGA-KIRC cohorts are reported in Table 1.

Recovery of immune receptor V(D)J recombination reads from
bulk RNA-seq

Recovery of immune receptor V(D)J recombination reads was
performed in two steps. First, RNA-seq binary alignment map (BAM)
files were searched, as a straight string search, for 10-mer nucleotide
sequences representing the 30 ends of every human V-gene and 50 end
of every human J-gene, for all seven immune receptors. Next, the
resulting reads were aligned to reference V and J regions obtained from
the International Immunogenetics Information System. The quanti-
tative parameters for the pairwise alignment were: (i) nucleotide
match, þ5, (ii) mismatch, �10, (iii) opening gap, �10, and (iv)
extending gap, �10. The threshold for a V or J gene segment match
was a score of ≥65. To ensure V and J read fidelity, only reads with a
20 nucleotide or greater match length for both V and J regions, and
within the 20 nucleotides, a >90% nucleotide match fidelity for both
V and J regions were considered as matches. In addition, and a
productive CDR3 domain, defined as an in-frame junction without
stop codons, was required for recombination read identification.
Code for the method described above can be obtained at: https://
github.com/bchobrut-USF/vdj under “Code Package A.” See also
https://hub.docker.com/r/bchobrut/vdj for a container version of
the code with a README file.

Generalized diversity index for patient quantifying CDR3
receptor diversity

The GDI can be viewed as a continuous, non-increasing function
over a range of values described by the parameter q, called order of
diversity. This parameter allows a consideration of multiple scales of
diversity simultaneously or in combination. GDI is often used in
ecology (20) and was more recently introduced to quantify intratumor
heterogeneity and evolution (29–31). Formally, GDI is calculated as:

D qð Þ ¼
Xn
i¼1

pqi

 ! 1
1�q
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Table 1. Clinical and demographic summary of ccRCC cohorts.

Variables

TCC ccRCC
patients, no. (%)
(n ¼ 105)

CPTAC-3 ccRCC
patients, no. (%)
(n ¼ 110)

TCGA-KIRC ccRCC
patients, no. (%)
(n ¼ 441)

Sex
Female 35 (33.3) 30 (27.3) 153 (34.7)
Male 70 (66.7) 80 (72.7) 288 (65.3)

Race
Asian Indian or Pakistani 2 (1.9) 1 (0.01) 7 (1.6)
Black 3 (2.9) 1 (0.01) 30 (6.8)
Other 7 (6.7) — —

White 93 (88.5) 61 (55.5) 397 (90.0)
Not reported — 47 (42.7) 7 (1.6)

Tumor laterality
Left 62 (59.0) NA NA
Right 43 (41.0) NA NA

Surgery type
Partial nephrectomy 22 (21.0) NA NA
Radical nephrectomy 65 (61.9) NA NA
Radical nephrectomy with thrombectomy 18 (17.1) NA NA

Fuhrman nuclear grade
1 0 7 (6.4) 9 (2.0)
2 30 (28.6) 53 (48.2) 182 (41.3)
3 62 (59.0) 41 (37.3) 179 (40.6)
4 13 (12.4) 9 (8.2) 68 (15.4)
Not reported — — 3 (0.7)

pT
T1 31 (29.5) 52 (47.3) 211 (47.8)
T2 3 (2.9) 13 (11.8) 58 (13.2)
T3þT4 70 (66.7) 45 (40.9) 172 (39.0)
Not reported 1 (1.0) — —

pN
N0 27 (25.7) 16 (14.5) 203 (46.0)
N1 5 (4.8) 4 (3.6) 13 (2.9)
NX 73 (69.5) 89 (81.9) 225 (51.0)

pM
M0 — 34 (30.9) 353 (80.0)
M1 23 (21.9) 3 (2.7) 73 (16.6)
MX 82 (78.1) — 14 (3.2)
Not reported — 73 (66.4) 1 (0.2)

Sarcomatoid status
No 99 (94.3) NA NA
Yes 6 (5.7) NA NA

Vitality
Alive 82 (78.1) 96 (87.3) 118 (83.1)
Dead 23 (21.9) 14 (12.7) 24 (16.9)

Age at surgery (yr) Age at diagnosis (yr) Age at diagnosis (yr)
Median (range) 65 (36–87) 60 (30–89) NA

Pathological tumor size (cm)
Median (range) 6.0 (1.3–17.5) 6.4 (1.0–16.0) NA

% EGFR splice variant alpha
Median (range) 1.01 (0.00–41.33) NA NA

BAP1 mutation
Wild type 61 (58.1) 93 (84.5) 372 (84.4)
Alteration 4 (3.8) 17 (15.5) 47 (10.6)
Not reported 40 (38.1) — 22 (5.0)

KDM5C mutation
Wild type 56 (53.3) 91 (82.7) 389 (88.2)
Alteration 9 (8.6) 19 (17.3) 30 (6.8)
Not reported 40 (38.1) — 22 (5.0)

MTOR mutation
Wild type 62 (59.0) 104 (94.5) 392 (88.9)
Alteration 3 (2.9) 6 (5.5) 27 (6.1)
Not reported 40 (38.1) — 22 (5.0)

(Continued on the following page)
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whereDðqÞ is called the diversity index at the given order of diversity q,
n is the number of unique CDR3 sequences recovered across the entire
cohort, and pi is the relative proportion of i-th CDR3 sequence. We
typically evaluated the diversity score,DðqÞ, for q between 0.01 and 100
numerically for each patient, for each of the receptor and immuno-
globulin types individually, aswell as in biologicallymeaningful groups
(TRAþTRB together, TRGþTRD together, and IGHþIGKþIGL
together). Varying the value of q represents interpolating between
richness and evenness: richness isweightedmore at low values of q, and
evenness is weighted more at higher values of q. High-q GDI scales
inversely with dominance or clonality.

Point estimates derived from patient’s GDI, D(q), can be used for
easy of comparison of sequence distributions across patients and
cohorts. These point estimates of interest include (i) low-q diversity
(Dð0:01Þ), which describes the epitope richness of the patients, (ii)
high-q diversity (Dð100Þ), which describes dominance of the “main
driving” epitope, and (iii) DD, which measures the difference between
low-q and high-q diversity (Dð0:01Þ �Dð100Þ). Furthermore, when
visualizing the continuum of diversity measures D(q) with q in log-
scaling, the continuum of diversity measures appears to have an
inflection point (IP), corresponding to a scale of diversity where small
changes in the key parameter q can have large impact: the higher this
value, the more even we expect a distribution to be, as the IP tends to
infinity for perfectly even distributions (corresponding to n sequences
all at frequency 1/n). Thus, two additional point estimates of interest
that we used are (iv) the value q at which an IP occurs, and (v) the slope
at the IP (denoted as IP slope). All code for calculating CDR3 diversity
and its summarymetrics has been implemented in Julia (version 1.4.0)
and documented in the publicly available package OncoDiversity.jl.

To determine the impact of all five point estimates of diversity, we
ran a correlation analysis and determined that we could reduce our five

point estimates of diversity down to three metrics for comparison
across receptor groups and patients. The Spearman correlation coeffi-
cients were calculated between point-estimate metrics and compar-
isons between low-q diversity, DD diversity, and the IP slope all had
significant and very strong Spearman correlation coefficients of 0.98 or
greater, somoving forward, we just focused on one of thosemetrics as a
measure of species richness diversity (Supplementary Fig. S2). There
was not a strong correlation between high-q diversity and the IP q
metrics and either metric compared with any of the three species
richness diversity metrics (low-q diversity, DD diversity, and IP slope),
so we continue to look at the high-q diversity and IP q separately and in
additional to the single species richness measure.

Assessment of clinical and survival associations with CDR3
features

Clinical associations were evaluated for recoveries in TRA, TRB, TRG,
TRD, IGH, IGK, and IGL separately as well as in combinations of
TRAþTRB, TRGþTRD, and IGHþIGKþIGL. After point estimates of
diversity were calculated for each patient and each receptor subtype/
combination, the clinical parameter values were assessed to identify
whetherCDR3 receptor diversity could discriminate patientswith ccRCC
based on relevant clinical and pathologic outcomes, as well as the percen-
tage of tumor with EGFR spice variant alpha previously found to be
prognostic in ccRCC(32). Largest diameter size and agewere the only two
continuous variables, which were evaluated by dividing the cohort into
above andbelow themedian of the diversity and comparedwith unpaired
t tests. All other categorial data types were divided by categories and the
diversity metric was compared across the categories using unpaired t test
for two categories and ANOVA for three or more categories.

Survival correlations for the above combinations were performed by
separating the cohort into above and below the median based on point

Table 1. Clinical and demographic summary of ccRCC cohorts. (Cont'd )

Variables

TCC ccRCC
patients, no. (%)
(n ¼ 105)

CPTAC-3 ccRCC
patients, no. (%)
(n ¼ 110)

TCGA-KIRC ccRCC
patients, no. (%)
(n ¼ 441)

PBRM1 mutation
Wild type 41 (39.0) 66 (60.0) 258 (58.5)
Alteration 24 (22.9) 44 (40.0) 161 (36.5)
Not reported 40 (38.1) — 22 (5.0)

PTEN mutation
Wild type 60 (57.1) 105 (95.5) 399 (90.5)
Alteration 5 (4.8) 5 (4.5) 20 (4.5)
Not reported 40 (38.1) — 22 (5.0)

SETD2 mutation
Wild type 55 (52.4) 95 (86.4) 360 (81.6)
Alteration 10 (9.5) 15 (13.6) 59 (13.4)
Not reported 40 (38.1) — 22 (5.0)

TP53 mutation
Wild type 61 (58.1) 104 (94.5) 408 (92.5)
Alteration 4 (3.8) 6 (5.5) 11 (2.5)
Not reported 40 (38.1) — 22 (5.0)

VHL mutation
Wild type 18 (17.1) 28 (25.5) 186 (42.2)
Alteration 47 (44.8) 82 (74.5) 233 (52.8)
Not reported 40 (38.1) — 22 (5.0)

Diabetes status
No 76 (72.4) NA NA
Yes 29 (27.6) NA NA
Not reported — 110 441

Abbreviations: ccRCC, clear cell renal cell carcinoma; CPTAC-3, Clinical Proteomic Tumor Analysis Consortium 3; NA, not available; TCC, Total Cancer Care Protocol;
TCGA-KIRC, The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma; yr, years.

Ferrall-Fairbanks et al.

Cancer Res; 82(5) March 1, 2022 CANCER RESEARCH932

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/82/5/929/3187031/929.pdf by guest on 28 O

ctober 2022



estimates of the generalized diversity index. In addition, the max-
imally selected rank statistical analysis was performed to estimate
an optimal cut-off point in the quantitative point estimates as a
binary classification rule regarding overall survival time (33). The
Kaplan–Meier curve method was used to calculate survival prob-
ability and log-rank test was used to compare the above (high
diversity) and below (low diversity) groups. GraphPad Prism
software (version 8) and R version 3.6.1 were used for computing
statistical comparisons and outputting figures.

xCell scores
From bulk RNA-seq for each patient, xCell scores were calculated

for various T-cell and B-cell subtypes as well as the immune score,
stroma score, and microenvironment score. Then for each xCell score
calculated a Spearman correlation was calculated for the total and
unique recoveries identified for TRA receptor, IGL receptor, and
aggregate combination (TRsþIGs).

Patients in the Moffitt TCC cohort had previously undergone bulk
RNA-seq of macrodissected tumor samples using the TruSeq
RNA Exome kit (Illumina) for 50 million 100–bp paired-end reads.
RNA-seq reads were aligned to the human reference genome in a
splice-aware fashion using STAR (28), allowing for accurate align-
ments of sequences across introns. Aligned sequences were assigned to
exonsusing theHTseqpackage (34) to generate initial counts by region.
Normalization, expression modeling, and difference testing were per-
formed using DESeq2 (35). For the CPTAC cohorts, detailed meth-
odology regarding RNA-seq can be found at its source webpage (25).

RNA-seq data were analyzed for cell-type enrichment using the
xCell bioinformatic pipeline (25). xCell uses a compendium of vali-
dated gene expression signatures for 64 individual cell types derived
from thousands of expression profiles. Single-sample gene set enrich-
ment analysis scores were adjusted for spillover compensation to
generate an adjusted enrichment score for each cell type within the
specimen, which is referred to as the xCell score. xCell scores were
generated for each of the 64 cell types for each ccRCC tumor specimen.

Data and code availability
Code for VDJ epitope recoveries from patient sequencing data

(BAM files) is publicly available on Docker at https://hub.docker.
com/r/bchobrut/vdj and GitHub at https://github.com/bchobrut/
vdj_recovery.

The code and documentation describing how to calculate patient
CDR3diversity fromCDR3sequence recoveries andrunourpipeline and
reproduce our results are open-source and publicly available through
the OncoDiversity.jl GitHub repository (https://github.com/mcfefa/
OncoDiversity.jl). A virtualmachineproducing the full diversity environ-
ment is available on Code Ocean (https://codeocean.com/capsule/
9959428/tree/).

Results
GDI quantifies tumor-infiltrating lymphocyte receptor subtype
diversity in the TCC cohort

For each patient, wemeasured individual receptor CDR3 diversities
across the seven human adaptive immune receptor genes (TRA, TRB,
TRG, TRD, IGH, IGK, IGL), as well as common combinations of these
receptor subtypes (TRAþTRB, TRGþTRD, IGHþIGKþIGL, along
with all seven together, denoted at TRsþIGs). In the TCC cohort (n¼
105), CDR3 sequences were recovered from bulk RNA-seq of patient
tumor tissue. GDI was then calculated for each subtype and group of
subtypes (the landscape of recoveries across common groups are

shown in Fig. 1A and B and Supplementary Fig. S3 and distribution
of individual recoveries in Supplementary Fig. S4). The Moffitt TCC
cohort of patients with ccRCC represented a cohort of clinically high-
risk and advanced patients. Over two-thirds of the cohort contains
patients with pathologic stages 3 or 4, including 6% of patients with
highly aggressive sarcomatoid histology (Table 1). To quantify the
GDI, we generated a continuum of diversity measures D(q) for each
patient across values of the order of diversity, q. Then, we were able to
compare clinical variables at specific point estimates of the continuum
of diversity measures, as shown in Fig. 1C. We compared immune
receptor subtype diversity across patients, and found that the point
estimates DD diversity, high-q diversity, and IP of the GDI curve (see
Materials and Methods) were unique summary metrics. The value of
DD summarizes richness (total number of unique sequences) of
receptor subtypes in a patient sample. High-q diversity focuses on
the dominance (frequency of largest sequence) of a receptor subtype
and deemphasizes a rare receptor subtype. IP is a measure of receptor
subtype evenness, with high IP values indicating an overall more level
distribution, largely independent of receptor subtype richness (29–31).

Immune receptor subtype richness is associated with important
pathologic features in the TCC cohort

Across individual receptor subtypes, TRA and IGL receptor diver-
sity consistently showed increased richness (in Fig. 2 exemplified with
DD diversity comparisons) in tumors with larger diameters, higher
grade, sarcomatoid status, and tumors from the left side. TRA receptor
diversity split theMoffitt TCC cohort at themedian ofDD diversity. Of
these, patients with DD values below the cohort median had a mean
largest diameter size of 6.1 cm, compared with those with above the
median who had a mean largest diameter size of 7.6 cm (Fig. 2A, i;
P: 0.0287). This same trendwas reflected in IGL receptor diversity with
the high DD diversity group (Fig. 2B, i; P: 0.0195).

TRA receptor DD diversity in CDR3 amino acid sequences
recovered from tumors with left laterality had an average diversity
score 2.3-fold higher compared with those with right laterality
tumors (Fig. 2A, ii; P: 0.0097), which was also reflected in IGL
receptor DD diversity (Fig. 2B, ii; P: 0.0445). In addition, patients
with high tumor grade had increased TRA receptor DD diversity
(Fig. 2A, iii; P: 0.0227), which was also demonstrated in IGL
receptor DD diversity (Fig. 2B, iii; P: 0.0459).

Overall, Moffitt TCC cohort tumors that were identified with
sarcomatoid histology had increased overall lymphocyte receptor
diversity compared with those individuals who did not have sarco-
matoid histology (demonstrated in Fig. 2A andB, iv; P: 0.0430 in TRA
andP: 0.0152 in IGL). This trend for increased diversity in sarcomatoid
carcinoma tumors was statistically significant in all combinations
except for TRG receptor diversity, which was one of the rarest CDR3
receptor subtypes recovered.

Our observations of increased lymphocyte receptor richness in
larger diameter tumors, higher grade tumors, left laterality tumors,
and sarcomatoid carcinomas were also discovered in other receptor
subtypes, as well as in the combinations (Supplementary Fig. S5 shows
size, laterality, grade, and sarcomatoid status across all combinations of
receptors, Supplementary Fig. S6 shows the Shannon index of TRA
and IGL across size, laterality, grade, and sarcomatoid status and
Supplementary Data S1 contains statistics for all comparison combi-
nations across all clinical features for the Moffitt TCC cohort).

Independent validation of GDI metrics
To validate the findings of increased diversity with poor pathologic

features we first calculated xCell scores (36) for patients in the Moffitt
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Figure 1.

Tumor-infiltrating lymphocyte receptor diversity as amarker in ccRCC.A,Overall workflow schematic of calculating tumor-infiltrating lymphocyte diversity across a
cohort of patients. Patient tumors undergo bulk RNA-sequencing and then CDR3 sequences from TCRs and BCRs are recovered. Then for each patient, CDR3
sequences are segregated by receptor class (TRA, TRB, TRG, TRD, IGH, IGK, and IGL) and patient frequencies across the CDR3 landscape per receptor are calculated
andused toquantify the individual patient’s receptor diversity using the generalizeddiversity index fromecology.B,Receptor recovery distributions across the seven
major receptor types in the Moffitt cohort; written consent was provided under the TCC protocol. C, Patient diversity curves can be distilled down to five point
estimates of diversity: low-q (q ¼ 0.01), high-q (q ¼ 100), DD (D(0.01) � D(100)), IP, and IP slope.
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TCC cohort to confirm that the detected recoveries came from tumor-
infiltrating lymphocytes. TRA receptor total and unique recoveries had
the highest Spearman correlation scores with T-cell subtype xCell
score and were less correlated with the B-cell subtype xCell score
(Fig. 3A and full correlation analysis of all xCell scores with total and
unique recoveries of TRA is shown in Supplementary Fig. S7, with total
and unique recoveries of IGL in shown in Supplementary Fig. S8, and
with total and unique recoveries of all CDR3s recovered is shown in
Supplementary Fig. S9). The strongest correlation associatedwithTRA
receptorwaswithCD8þTcm (r¼ 0.819with total recoveries; r¼ 0.714
with unique recoveries) and CD8þ T cells (r ¼ 0.751 with total
recoveries; r ¼ 0.695 with unique recoveries), while the weakest
correlation was with CD4þ Tcm (r ¼ 0.177 with total recoveries;
r ¼ 0.185 with unique recoveries) and CD4þ na€�ve T cells (r ¼ 0.243

with total recoveries; r¼ 0.097 with unique recoveries). These correla-
tions also held true for IGL receptor recoveries and total (TRsþIGs)
receptor recoveries, but the correlations were moderate in strength
(most Spearman correlation coefficients between 0.2–0.5) compared
with the Spearman correlation coefficient associated with TRA (most
correlation coefficients between 0.3–0.7). Furthermore, the immune
score strongly correlated positively with total and unique recoveries,
compared with the microenvironment score and stroma score, which
both showed weaker Spearman correlation coefficients.

Once we confirmed that the diversity scores, we measured were
attributable to the immune cell infiltration in the tumor with the xCell
scores, we sought to independently validate our findings with a
replicative study, using the ccRCC CPTAC-3 cohort (n ¼ 110). The
CDR3 recovery landscape of CPTAC-3 and Moffitt TCC differed

Figure 2.

Patients with tumors that are larger in diameter, higher grade, left laterality, and sarcomatoid status have increased diversity in TRA and IGL receptors. A, TRA
receptor CDR3 sequence DD diversity across theMoffitt TCC cohort have increased diversity in (i) larger diameter tumors (low diversity hadmean diameter of 6.1 cm
and high diversity had amean diameter for 7.6 cm;P: 0.0287), (ii) left laterality tumors (score of 37.55 vs. 16.39; P: 0.0097), (iii) with higher grade tumors (mean score
from grade 2 was 12.96, mean score from grade 3 was 33.09, and mean score from grade 4 was 42.62; P: 0.0227), and (v) in patients with sarcomatoid status
[sarcomatoid status evaluated as yes (at least 5%) or no, in TRA no had a mean DD diversity score of 26.47 vs. yes with a mean score of 61.32; P 0.0430]. B, IGL
receptor CDR3 sequence DD diversity showed the same trends as TRA receptor CDR3 sequence diversity for (i) size (low diversity had mean diameter of 6.1 cm and
high diversity had amean diameter of 7.6 cm: P: 0.0195), (ii) laterality (score of 331.1 vs. 141.3; P: 0.0445), (iii) grade (mean score from grade 2was 93.99, mean score
from grade 3 was 281.4, and mean score from grade 4 was 465.5; P: 0.0459), and (iv) sarcomatoid status (no had a mean score of 223.9 vs. yes with a mean score of
704.4; P: 0.0152). Unpaired t tests were used to compare two group data and ANOVA was used to compare grade, three group data. � , P < 0.05; �� , P < 0.01.
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Figure 3.

CDR3 sequence diversity trends were validated using xCell scores and a secondary RCC CPTAC3 cohort. A, Spearman correlation coefficient, r, was calculated
between the total and unique number of TRA, IGL, and total (TRsþIGs) recoveries and the xCell scores for various T-cell and B-cell subtypes, immune score, stroma
score, and microenvironment score. B,Grade, largest diameter size, and stage (pT) trends in TRA receptor and IGL receptor DD diversity in the CPTAC-3 cohort. For
TRA recoveries, patients (n¼ 108) had increasedDDdiversity in (i) higher grade (mean score fromgrade 1was 8.558,mean score fromgrade 2was 27.94,mean score
from grade 3 was 38.60, and mean score from grade 4 was 15.92; P: 0.0212), (ii) a higher mean DD diversity score in tumors with diameters greater than or equal to
7 cm (mean score in diameters ≥ 7 cmwas 37.91, mean score in diameters < 7 cmwas 28.12; P: 0.1850), and (iii) in more advanced pT stage (mean score from T1 was
25.01, mean score fromT2was 51.07, mean score fromT3was 29.24,mean score fromT4was 5.32; P: 0.0368). Similarly, for IGL recoveries, patients had increasedDD
diversity in (iv) higher grade (mean score fromgrade 1was 50.14,mean score fromgrade 2was 160.6, mean score fromgrade 3was 156.9, andmean score fromgrade
4was 84.79;P: 0.5268), (v) a highermeanDD diversity score in tumorswith diameters greater than or equal to 7 cm (mean score in diameters≥ 7 cmwas 235.6, mean
score in diameters< 7 cmwas 126.6;P: 0.0545), and (vi) inmore advanced pT stage (mean score fromT1was 147.0,mean score fromT2was 291.1, mean score fromT3
was 97.58, mean score from T4 was 120.5; P: 0.0637). C, Grade and stage (pT) trends in TRA receptor DD diversity in the TCGA-KIRC cohort. Patients (n ¼ 390)
had increased DD diversity in (i) higher grade (mean score from grade 1 was 10.28, mean score from grade 2was 16.62, mean score from grade 3was 22.49, andmean
score from grade 4 was 28.32; P: 0.0008), and (ii) in more advanced pT stage (mean score from T1 was 16.64, mean score from T2 was 24.25, mean score from T3
was 24.78, mean score from T4 was 17.90; P: 0.0027). Unpaired t tests were used to compare two group data and ANOVA was used to compare grade, three group
data. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001.
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slightly. CPTAC-3 had more recoveries from T cells; B cells accounted
for an average of only 78.96%. However, we did not identify any
significant trend of differences between the proportions of T cells
and B cells recovered on the basis of stage (CPTAC-3 recovery
landscape is shown in Supplementary Fig. S10 and fraction of BCRs
and TCRs recovered per patient grouped by stage is detailed in
Supplementary Fig. S11). Laterality and sarcomatoid status could not
be evaluated, as these are not available in CPTAC-3.

We confirmed the observation that higher grade and larger size of
tumors are associated with increases in TRA and IGL receptor DD
diversity in the CPTAC-3 cohort (Fig. 3B compared with Supple-
mentary Fig. S12, and Supplementary Data S2 contains statistics for all
comparisons across all clinical features for the CPTAC-3 cohort)—
which independently validated that rich, but rather uneven receptor
subtype distribution is associated with larger and high-grade tumors.
TRA receptorDD diversity was significantly different between low and

Figure 4.

Novel measures of diversity and overall survival. A and B, Tumor samples have increased TRsþIGs (all receptor combination) species richness (A) and evenness (B)
of CDR3 receptor sequences comparedwith patient-matched normal tissue.C,However, tumor samples have reduced TRsþIGs IP q diversity comparedwith normal
tissue (mean of normal 1.602 vs. mean of tumor 1.465; P 0.0857).D, Individuals in the Moffitt TCC cohort with larger TRA distribution IP (see Materials and Methods)
had significantly improved overall survival (HR: 0.526, Cox P: 0.036), with a median survival of 115 months compared with those with lower IP. E, TCGA-KIRC overall
survival supports the trend of lower IP has reducedmedian survival (92.13months comparedwith undefined in high IP group; log-rankP: 0.6104).F–H, Four examples
of patients of theMoffitt TCC cohortwith fundamentally different characteristics.WhileDD assessesmainly sequence richness, the inflection IP, clearly visible inG, is a
robust measure of evenness; high IP distributions are more even. �� , P < 0.01; ��� , P < 0.001.
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high grade (Fig. 3B, i; P: 0.0212) and pT stages (Fig. 3B, iii; P: 0.0368).
In both TRA and IGL receptor distributions, the DD diversity score
showed that large tumors (described pathologically as tumors with the
largest diameter of 7 cm or greater) have increased receptor subtype
diversity compared with smaller tumors (those with largest diameters
below 7 cm). Of note, the CPTAC-3 had a significantly different
distribution of tumor sizes, with many small tumors (largest diameter
< 7 cm), compared with the Moffitt TCC cohort (Fig. 3B, ii and v;
Supplementary Fig. S13 compares the Moffitt TCC and CPTAC-3
cohorts based on distribution of tumor sizes).

Furthermore, the differences in grade and stage (size data not
available) could be replicated in the TRA recoveries from previously
obtained TCR CDR3s (26, 27) from TCGA-KIRC Cohort. As dem-
onstrated in the Moffitt TCC cohort (Fig. 2A, iii; Supplementary
Fig. S12A, iii) and CPTAC-3 cohort (Fig. 3B, i and iii, TCGA-KIRC
cohort patients with higher grade (Fig. 3C, i; P: 0.0008) and higher pT
stage (Fig. 3C, ii; P: 0.0027) had significantly higher TRA receptor DD
diversity.

In addition to tumor sample differences, CPTAC-3 cohort had a
subset of 75 patients with matched normal tissue samples (matched
normal tissue recovery landscape described in Supplementary
Fig. S14). Lymphocyte receptor richness was increased in tumor
samples compared with normal tissue, which was observed across all
receptor subtypes and combinations (Fig. 4A; Supplementary Fig. S15;
Supplementary Data S2). In the TRsþIGs combination, tumor tissues
had on average, at least 2.6-fold increase in richness of CDR3
sequences recovered, compared with the matched patient’s normal
tissue (mean score of 144.0 in normal tissue compared with a mean
score of 377.1 in matched tumor). Furthermore, sequence dominance
(measured by low values of high-q diversity) was decreased in all
receptor subtypes except for the IGL receptor and IGHþIGKþIGL
receptor combination (Fig. 4B; Supplementary Fig. S15; Supplemen-
tary Data S2). In the TRsþIGs combination, the tumor tissue had on
average, at least 1.3-fold increase in high-q diversity compared with
normal tissue, which indicates that the most abundance CDR3
sequence in the sample was about 2% lower, thus less dominant, in
the tumor (mean score of 14.27 in the normal tissue compared with a
mean score of 19.17 in the tumor tissue). Analyzing the IP q-metric of
evenness in TRsþIGs combinations in the normal-tumor matched
patients showed that normal samples have an almost 10% mean
increase evenness compared with their matched tumor samples
(Fig. 4C; P 0.0857). These data supported the hypothesis that normal
tissues are expected to show very even CDR3 sequence distributions,
and that better outcomes are to be expected in tumors that appearmore
normal in this context.

Immune receptor subtype evenness, measured by IP, is
associated with survival

We first analyzed associations between immune receptors and
overall survival in theMoffitt TCC cohort. Each of our chosen diversity
metrics (Materials and Methods) was compared for each of the seven
immune receptor types.We used themaximally selected rank statistics
(maxstat) approach (Materials andMethods), with a cut-off point that
yielded amaximal survival difference, together with amultivariate Cox
regression analysis. We found larger TRA sequence distribution IP,
which measures distribution evenness, was significantly associated
with longer overall survival (Fig. 4D). The IP value of the cut-off point
in the cohort that yielded a maximal survival difference was 0.826.
Using this optimal cut-off point resulted in a HR of 0.526 (log-rank
P: 0.049, Cox P: 0.036) with the low IP group (IP < 0.826, n ¼ 15)
having a median overall survival of 80 months, and the high diversity

group (IP > 0.826, n ¼ 88) having a median overall survival of
115 months. This trend could not be confirmed with the CPTAC-3
cohort due to the lack of survival information, that is, overall survival
data information was censored for 85 of the 98 CPTAC-3 cases
(Supplementary Fig. S16). This trend was supported (although not
statistically significantly) with the TCGA-KIRC cohort with individual
with IP above themedian produced a low IP group (IP < 2.86, n¼ 192)
having amedian overall survival of 92.1months, and the high IP group
(IP> 2.86,n¼ 197) having an undefinedmedian overall survival due to
survival fraction not falling below 50% in this group, which is likely due
to this cohort also being comprised of lower grade and stage tumors
compared with the Moffitt TCC cohort (Fig. 4E; log-rank P: 0.6104).

To further illustrate the utility of our diversity metrics for receptor
subtype heterogeneity estimation, we show in Fig. 4F–H four Moffitt
TCC cohort examples of characteristic differences in richness versus
evenness space. In both examples of low evenness, dominance (low
high-q diversity) is high (Fig. 4G). Interestingly, the survival difference
unveiled by IP distribution evenness comparison does not necessarily
coincide with tumor size, as size rather correlated with richness
(DD, Fig. 4H). Taken together, these findings highlight the ability of
these metrics to assess immune sequence distribution heterogeneity
via GDI-derived point estimates.

Demographic and aberrant splicing differences in tumor-
infiltrating lymphocyte receptor diversity

In addition to capturing differences in tumor pathology and
survival, the GDI was also able to discriminate patients based on
demographic differences. BCR high-q diversity is an estimate of
dominance by the most abundant sequence: the lower this value, the
more dominant the most abundant sequence. High-q diversity
demonstrated differences in immune infiltration of White versus
non-White patients with ccRCC in the TCC cohort (Supplementary
Fig. S17). IGH and IGL receptor high-q diversity alone, as well as
the IGHþIGKþIGL and total recovery (TRsþIGs) showed at least a
2.1-fold increase in non-White patients compared with White
patients (Supplementary Fig. S17A and S17B; P < 0.01). This trend
was also observed in the IGK receptor high-q diversity, but only
with a 1.6-fold increase in non-White individuals (Supplementary
Fig. S17C; P: 0.0561).

Furthermore, diversity metrics from TCRs TRG and TRD discrim-
inate patients based on gender differences in the TCC cohort. TRG and
TRD receptor IP q was at least 1.7-fold higher in female patients
comparedwithmale patients (TRG: score of 2.503 in females vs. a score
of 1.442 inmales,P: 0.0033; TRD: score of 2.883 in females vs. a score of
1.454 in males, P: 0.0003; Supplementary Fig. S18). Moreover, when
high-q diversity (dominance of the most abundant sequence) was
compared between female and male patients with respect to TRG and
TRD diversity, in both theMoffitt TCC and CPTAC-3 cohorts, female
patients had increased high-q diversity compared with male patients
(Supplementary Fig. S19).

We evaluated association of GDI with a recently described aberrant
EGFR splice variant in ccRCC (36). TheMoffitt TCC cohort of patients
were profiled for the presence of this EGFR variant (reported as %
EGFR variant), and we found a positive correlation between the
percentage of tumors expressing the EGFR variant and the evenness
(IP q) scores from BCRs (Supplementary Fig. S20). This correlation
was most significant in IGL receptor diversity, with a Spearman
correlation coefficient of r ¼ 0.3430 (P: 0.004, BCR IP vs. EGFR
variant correlation analysis is demonstrated in Supplementary Fig. S20
and TCR IP vs. EGFR variant correlation analysis is demonstrated in
Supplementary Fig. S21), indicating more even (high IP) distributions
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Figure 5.

Associations of diversity metrics with mutational landscape in ccRCC. A, Number of mutations were negatively correlated with CDR3 recovery richness. Spearman
correlation coefficients between number of mutations and DD diversity were calculated for the (i) Moffitt TCC total (TRsþIGs) recoveries (Spearman r:�0.3007, P:
0.0167; ANOVA, P: 0.0025); CPTAC-3 total recoveries (Spearman r: �0.2452, P: 0.0098; ANOVA, P: 0.0213), and (iii) TCGA-KIRC total available (TRAþTRB)
recoveries (Spearman r:�0.07348, P: 0.1332; ANOVA,P: 0.3905).B, IGL recoveries had reduced richness in CPTAC-3 patientswith (i)KDM5Cmutations (mean score
of wild type was 167.9 and mutant was 44.41; P: 0.0298), (ii) PBRM1 mutations (mean score of wild type was 182.2 and mutant was 92.06; P: 0.0421), and (iii) VHL
mutations (mean score ofwild typewas 247.7 andmutantwas 115.0;P: 0.0094) and increased evenness in patientswith (iv)PTENmutations (mean score ofwild type
was 10.61 and mutant was 35.35; P: 0.0001). C, IGL recoveries had reduced richness in Moffitt TCC patients with (i) KDM5Cmutations (mean score of wild type was
248.1 and mutant was 42.96; P: 0.0906), (ii) PBRM1mutations (mean score of wild type was 259.8 and mutant was 156.4; P: 0.2200), and (iii) VHLmutations (mean
score of wild typewas 307.7 andmutant was 190.4; P: 0.1993) and increased evenness in patients with (iv) PTENmutations (mean score of wild typewas 0.7323 and
mutant was 1.427; P: 0.0083). D, TRA receptor richness was (i) not different in Moffitt TCC patients with PBRM1mutations (mean score of wild type was 32.03 and
mutantwas 24.59;P: 0.5397), (ii) decreased inCPTAC-3patientswithPBRM1mutations (mean score ofwild typewas33.63 andmutantwas 22.53;P: 0.0470), and (iii)
decreased in TCGA-KIRCpatientswithPBRM1mutations (mean score ofwild typewas 23.84 andmutantwas 17.06;P: 0.0032). Unpaired t testswere used to compare
two group data and ANOVA was used to compare grade, three group data. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001.
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have higher proportion of cells with that EGFR variant. This positive
correlation between IP and percentage of EGFR variant was not as
strong nor significant in the TCRs (Supplementary Fig. S21).

To determine whether preexisting host inflammatory environment
contributed to differences in patient CDR3 sequence diversity, we
identified patients in theMoffitt TCC cohort who were diagnosed with
diabetes and investigate whether there were any associations with the
diversity metrics and diabetes status. We found that none of the 11
receptor combinations explored had a significant difference in any of
the metrics of CDR3 diversity (individual comparisons are reported in
Supplementary Data S1 and TRA, IGL, and TRsþIGs DD and IP
comparisons are demonstrated in Supplementary Fig. S22).

Finally, we evaluated associations of GDI across the mutational
landscape across all three cohorts. For each of the cohorts, we had
mutational status on a subset of patients for common driver mutations
in ccRCC including: BAP1, SETD2, KDM5C, MTOR, PBRM1, PTEN,
TP53, and VHL. Across all three cohorts, the number of mutations in
this shortlist of driver mutations was negatively correlated with
richness (Fig. 5A). Interestingly, the Moffitt TCC cohort, generally
considered the more aggressive cohort, had the fewest number of
associations between diversity metrics and mutation status, while the
CPTAC-3 and TCGA-KIRC cohorts hadmore significant associations
(detailed for CPTAC-3 in Supplementary Data S2 and TCGA-KIRC in
Supplementary Data S3). Furthermore, BCRs (IGH, IGK, IGL) had
more significant associations with mutational status than TCRs
(TRA, TRB, TRG, TRD; compared between the Moffitt TCC cohort
described in Supplementary Data S1 and CPTAC-3 cohort in
Supplementary Data S2). Specifically, with IGL recoveries in the
CPTAC-3 cohort in patients with mutations in KDM5C, PBRM1,
and VHL all had reduced richness (Fig. 5B, i–iii) and mutation in
PTEN was associated with increased evenness (Fig. 5B, iv). These
trends were confirmed in the total (TRsþIGs) recoveries from the
CPTAC-3 cohort (Supplementary Fig. S23A) and the trends were
supported by the Moffitt TCC cohort in direction, however they
were not statistically significant (Fig. 5C for IGL trends and
Supplementary Fig. S23B for TRsþIGs trends). In T-cell recoveries,
both the CPTAC-3 and TCGA-KIRC cohorts showed reduced
richness was associated with a mutation in PBRM1 (Fig. 5D);
however, this trend was not observed in the Moffitt TCC cohort.

Discussion
Here, we demonstrate how a GDI, often used in ecology and

evolution (31, 37, 38), can be applied to quantitatively characterize
tumor-infiltrating lymphocyte receptor subtype diversity in ccRCC.
We identified point estimates of this index that are associated with
important differences in patient demographics, tumor pathology,
and survival. These metrics can help objectively characterize host
differences in immune receptor subtypes in patients with ccRCC.
These novel objective metrics can provide insight into underlying
tumor and host immune relationships by defining differences
within and across patients. We used bulk sequencing data from
ccRCC tumors to better understand these differences in patient
immune receptor subtypes and these metrics can be replicated in
other similar cohorts with available sequencing data. These host
diversity metrics could be especially helpful in elucidating the ideal
tumor microenvironment for response to immunotherapy agents in
patients with metastatic ccRCC (39).

The recovery of adaptive immune receptor recombination reads
from RNA-seq files is obtained via PCR amplification of adaptive
immune receptors. This procedure is also called the immune

repertoire approach (40). Our work here strongly indicates the
specific value of the TRA and IGL GDI, discussed in more detail
below. Thus, it has made sense to apply the immune repertoire
approach to increase the number of recombination reads for all
adaptive immune receptors. We expect that other immune receptor
genes may have prognostic value, with more recombination reads to
evaluate. Immune repertoire approaches, particularly when applied
to cancer samples, often result in a majority of reads that represent
relatively few clonotypes. In addition, human aging substantially
reduces clonotype diversity (41, 42), particularly Fig. 2C and D
therein. Thus “sampling of the repertoire,” by mining genomics files
over large patient databases, can generate conclusions regarding
clonotype associations with clinical features. More recent prepara-
tions of RNA-seq files, including those we use here, have become
much more robust over the last several years, both in terms of read
quantity and lengths (27). Recovery of adaptive immune receptors
from those files also has become more robust. In summary, our
results from adaptive immune receptor read recoveries from the
RNA-seq files are informative. Further studies using the immune
repertoire approach, representing a more comprehensive clonotype
collection, should be applied in the future.

Our findings suggest that individuals with more advanced disease
have increased richness in tumor recovered CDR3 sequences. In the
Moffitt TCC cohort, we detected statistically significant differences in
TRA and IGL diversity with increased richness in tumors with larger
diameter and higher grade. Furthermore, we identified tumors with
sarcomatoid carcinoma pathology that represent a rare and aggressive
histology and showed significant increases in different diversity
metrics and receptor subtypes, in particular increased CDR3 sequence
richness. The immune receptor profiles of these tumors are particu-
larly interesting because sarcomatoid histology has also been associ-
ated with very favorable response to checkpoint inhibitors. We pos-
tulate that a similar immune receptor profile in other patient tumors
may portend a favorable response to checkpoint inhibition. Also, we
found a significant increase in richness in left-sided tumors. This
difference may explain some of the host-related factors associated with
left-sided tumors that have a poorer clinical outcome than right-sided
tumors (43). Many of these associations were able to be validated in
similar comparisons with the CPTAC-3 cohort studies.

In theTCC cohort, BCRswith IGLhad themost recoveries andTRA
had the most T-cell CDR3 sequences recovered (Supplementary
Fig. S3). It should be noted that point estimates of diversity or
heterogeneity are only comparable within the subtype of interest,
within a cohort. However, trends can be compared between point
estimates and patient cohorts. Furthermore, different cohorts based on
their clinical context may show differences in immune cell infiltrates,
even when considering simple cell marker differences between T cells
and B cells. Interestingly, B-cell CDR3 recoveries dominated in the
TCC cohort, accounting for an average of 93.41% (ranging from at
least 53.24% to 99.95%). This contrasted with the CPTAC-3 renal cell
carcinoma cohort, which contains generally less aggressive tumors,
with only 40.9% of the cohort respectively comprised of stage 3 or 4
tumors.

Our results demonstrate that increased richness is indicative of
larger and more advanced ccRCC tumors, which may be related to
differences in underlying tumor biology. Evenness, as measured by the
IP q, segregated patients based on survival. In a cross-validation cut-off
point analysis, patients with higher TRA evenness had a significantly
improved overall survival compared with individuals with lower TRA
evenness. These results indicate that patients’ TRA evenness, not
richness, may be a possible prognostic biomarker and could have
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direct therapeutic consequences for response to systemic agents that
elicit their effect in the tumor microenvironment (39). Furthermore,
this evenness metric could be extended to other solid tumor types, as a
quantitative metric of host contributions to immune infiltration that is
a result of tumor evolution. These characterizations might become
especially interesting in the context of terminally exhausted CD8þ

T cells, which were recently shown to be enriched in advanced renal
cell carcinoma, interacting with M2-like tumor-associated macro-
phages, leading to immune dysfunction and poorer prognosis (44).

We identified demographic differences based on theCDR3 diversity
of BCRs, both individually and in combination, showing increased
high-q diversity. This amounted to decreased dominance of the most
abundant sequence, in non-White individuals compared with White
individuals in the Moffitt TCC cohort. However, in this cohort, 88.5%
of the patients were White (Table 1) and we were unable to confirm
these results in the CPTAC-3 cohort due tomissing data. Nevertheless,
previously found race-related differences in BCRpathway activation in
AfricanAmericans comparedwith EuropeanAmericans lends support
toourfinding indifferences inBCRdominance/clonality diversity (45).
Furthermore, high-q diversity/sequence dominance may reveal gen-
der-based differences in the ccRCCmicroenvironment.We found that
females had higher clonality compared with male patients, which
persists in the CPTAC-3 cohort. These demographic differences need
to be further investigated, but our results suggest underlying race and
gender differences in the heterogeneity of ccRCC microenvironments
as reflected in tumor immune infiltration differences.

Biodiversity has historically been summarized into: alpha-diversity,
which measures a single community’s diversity; beta-diversity, which
quantifies the relative change of species between communities; and
gamma diversity, which measures the total diversity in ecology (46).
Diversity at the individual receptor subtype level relates closest to
alpha-diversity, which is then compared across the patients in a cohort.
In a beta-diversity context, we see that many of the trends hold true
between theMoffitt TCC and CPTAC-3 cohorts. Themost commonly
used diversity measures applied to cancer systems have been
Shannon and Simpson indices (47, 48), which are special cases of
the GDI at intermediate values of the parameter q (49, 50). Our
analysis found that it is at the extremes of the continuum of
diversity measures (low-q and high-q values) that we can stratify
patients in clinically meaningful ways (e.g., Fig. 2 vs. Supplemen-
tary Fig. S6). In this sense, novel properties of the GDI that are
discussed here may allow a more nuanced, and thus more clinically
comprehensive characterization of sequence heterogeneity. These
novel objective diversity scales could have important applications
for other systems in which tumor heterogeneity with its ecological
and evolutionary impact is quantified.

Different point estimates based on generalized diversity give unique
information about the tumor. Increased richness in TRA and IGL
diversity informs the size and aggressiveness of a tumor. Dominance of
the most abundant sequence segregates patients based on prognosis.
We identified a novel measure of evenness among immune receptor
subtypes that could accurately classify patients’ overall survival. We
also found important differences in receptor subtype contributions

based on patient demographics such as race and gender. Using these
diversity metrics, we identify a new statistical approach to stratify
ccRCC patients based on differences in immune infiltration diversity
and further guide precision oncology.
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