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Abstract

There has been a surge of interest in effective non-Lorentzian theories of excitations with

restricted mobility, known as fractons. Examples include defects in elastic materials, vor-

tex lattices or spin liquids. In the effective theory novel coordinate-dependent symmetries

emerge that shape the properties of fractons. In this review we will discuss these symme-

tries, cover the effective description of gapless fractons via elastic duality, and discuss their

hydrodynamics.
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1 Introduction

Fractons are usually identified with excitations of a system that are immobile or have restricted

mobility - they can propagate along some spatial directions but not along others. In a pair of

groundbreaking papers [1,2], Pretko demonstrated how the simultaneous conservation of charge

and dipole moment (and even a particular component of the quadrupole moment) naturally

leads to fractons, and he pioneered the study of symmetric tensor gauge theories as models

containing gapless fractonic excitations. The gapless nature of the fractonic excitations in these

symmetric tensor gauge theories contrasts against the gapped fractonic models that had been

studied previously in lattice models (e.g., the Haah code [3] and the X-cube model [4]). Later

on, Gromov initiated a systematic classification of fracton phases of matter based on symmetry

principles privileging the charge and dipole symmetries and their higher-order generalizations –

the multipole algebra [5]. He noted that the multipole algebra for a scalar field theory was on-

the-nose the same as the so-called polynomial shift symmetries that had been studied previously

by Griffin, Grosvenor, Hořava and Yan (GGHY) in the context of technical naturalness in non-

relativistic quantum field theories [6, 7]. We will review how symmetric tensor theories emerge

from the point of view of the realization of these symmetries, and discuss some physical systems

where they appear.

In Sec. 2, we shall discuss how the polynomial shift symmetries came about and how they

are related to fractons. Our approach is based on symmetry principles and as such complements

existing reviews on various aspects of fractons from a condensed matter perspective [8, 9]. This

program has been established only recently and is far from complete. The best understood ex-

ample consist of the symmetric tensor gauge theories, whose geometric nature can be understood

in terms of the Heisenberg symmetry group and the associated group manifold. We present this

in Sec 3. This formalism should be viewed as a starting point for a more detailed analysis of

low-energy theories containing fractons. In Sec. 4 we discuss examples of such theories, which

include the theory of elasticity and its generalizations. Following Pretko and Radzihovsky we

show that symmetric elasticity in two spatial dimensions can be mapped via a duality transfor-

mation to the symmetric tensor gauge theories, whose geometric structure corresponds precisely

to the Heisenberg group. We also show two examples of more general elastic theories that can be

mapped to dual gauge theories with fractons: elasticity of quasi-crystals and Cosserat elasticity

with internal, rotational degrees of freedom. A common feature of these theories is that fractons

serve as charges. Finally, in Sec. 5 we discuss some of the existing proposals to describe the

collective dynamics of fractons in a low energy effective theory.

2 Fractons from polynomial shift symmetries

In this section, we will discuss the story behind the polynomial shift symmetries, their moti-

vations and history, some of their consequences, and their link to fractons. These symmetries

grew out of the work of GGHY on technical naturalness in non-relativistic quantum field the-

ory. These authors conceived of these polynomial shift symmetries as allowing the existence

of degrees of freedom (Nambu-Goldstone Bosons, in this case) with dispersion relations that
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were higher-order than linear or quadratic, which were the standards prior to that work [10,11].

While these authors were clearly fishing for condensed matter realizations of these degrees of

freedom, their fractonic nature, that is, their restricted mobility, was not recognized at the time.

The principle of technical naturalness is simply the conviction that the macroscopic behavior

of systems follow from the equations governing their microscopic constituents. Even if it were

impossible in practice to trace this relationship exactly from short distances, or high energies, to

large distances, or low energies, it should nevertheless be possible as a matter of principle. The

equations that govern this tracing from high to low energies are the celebrated renormalization

group (RG) equations. Equations with parameters that are not finely tuned to be extremely

small or large do not exhibit solutions that themselves contain finely tuned parameters. As

articulated in ’t Hooft’s 1979 paper [12], only when there is a symmetry of the system whose

exact preservation would forbid the existence of a certain parameter can that parameter be

reasonably expected to take on such a small value. The classic example is the electron mass,

which, at me = 0.511 MeV, is much smaller than the electroweak symmetry breaking scale,

v = 246 GeV. This does not constitute fine tuning because chiral symmetry, namely the separate

conservation of left- and right-chiral electrons, would forbid a nonzero electron mass entirely. In

contrast, no such enhancement of symmetry occurs when the mass of a fundamental scalar field

is set to 0, which is why we would not expect a fundamental scalar field to be very light and why

it is puzzling that the Higgs mass should be so much smaller than the Planck scale. Naturalness

questions are not restricted to particle physics, either. A famous example of a naturalness

puzzle in condensed matter physics is the linear resistivity of strange metals: over a large

range of temperatures above their critical temperature, the resistivity of high-Tc superconductors

scales linearly with the temperature [13]. Symmetry arguments for effective field theories that

could describe the electrons and their interactions with themselves and their environment would

lead one to expect scalings of the form T 0 (electron-impurity scattering), T 2 (electron-electron

scattering), and T 5 (electron-phonon scattering). These symmetries are traced through the

RG equations: a theory that enjoys a certain symmetry will not generate interactions under

renormalization that break that symmetry. Put differently, the RG flows, or beta functions, of

symmetry-breaking parameters vanish when these parameters themselves vanish.

Indeed, GGHY did not just cook up polynomial shift symmetries and then build theories

based on them. The discovery went quite the other way round: they were studying the RG of

the z = 2 Lifshitz linear and non-linear O(N) sigma models and noticed that the RG equations

themselves protected the smallness of the z = 1 kinetic term. For example, consider an O(N)

vector of scalar fields, φ, in (3 + 1) dimensions, with quadratic terms given by

L0 =
1

2
φ · Oφ, O = −∂20 − ∂4 + c2∂2 −m4, (2.1)

where ∂i, i = 1, . . . , d denotes a derivative with respect to spatial coordinates, with ∂2 ≡ ∂i∂i

and ∂4 = (∂2)2, and where we keep all relevant and marginal O(N)-invariant local interaction

terms. The most relevant interaction is the quartic coupling

Lint = −
λ

4

(

φ · φ
)2
. (2.2)

The leading one-loop correction to c2 in the unbroken phase, in which φ · φ has zero vacuum
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expectation value (vev), comes from the two-loop diagram and scales as δc2 ∼ λ2/m4.

Now, the constant shift symmetry φ → φ + a, where a is a constant vector, can force λ and

m4 (the parameters that appear in the action) to be simultaneously small, say, λ ∼ εµ3 and

m4 ∼ εµ4, where ε≪ 1 and µ absorbs the dimensions of these parameters and sets the scale of

naturalness. Plugging these scalings into δc2 gives

δc2 ∼
λ2

m4
∼
ε2µ6

εµ4
= εµ2, (2.3)

which immediately raises the question of why the correction to the speed term should be small

even though it is not killed by the constant shift symmetry. The answer is clear: there must

be another symmetry at work that kills all three terms λ, m4, and c2 simultaneously. This is

the quadratic shift symmetry, in which the shift parameter a is promoted from a constant to

a general quadratic polynomial of the spatial coordinates, a = aijx
ixj + aix

i + a0. Thus, the

polynomial shift symmetries were discovered.

This rather innocuous looking observation has some deep and surprising consequences. For

example, the prevailing wisdom at the time was that Nambu-Goldstone bosons (NGBs) arising

from spontaneous symmetry breaking could only stably exist with linear and quadratic disper-

sion relations [10, 11]. In contrast, the polynomial shift symmetries allowed for the existence of

NGBs with higher-order dispersion relations. Furthermore, complicated patterns of symmetry

breaking lead to hierarchies of different powers of dispersion along the RG flow from high to low

energies [14]. This latter observation leads to an extension of the celebrated Coleman-Hohenberg-

Mermin-Wagner (CHMW) theorem, which forbids the spontaneous breaking of continuous in-

ternal symmetries in equilibrium field theories and their corresponding NGBs in dimensions one

and two [15–17] (see also Halperin’s discussion of the history of this theorem as well as its limi-

tations [18]). In condensed matter, this famously kills long-ranged order (e.g., of ferromagnetic

or anti-ferromagnetic kind) in lattice systems of dimension one or two. This extends to NGBs

whose kinetic term is quadratic in time derivatives (so-called Type-A NGBs), which cannot

exist as stable objects in spatial dimensions d ≤ z, where z is the dynamical critical exponent

appearing in the dispersion relation ω2 ∝ (k · k)z. On the other hand, Type-B NGBs, whose

kinetic term is linear in time derivatives, are immune from the CHMW theorem and can exist

in any dimension [14].

Another intriguing consequence of these symmetries was found when Gromov made the

link between polynomial shift symmetries and the restricted mobility of fractons [5]. A simple

example of this is a scalar field theory with a Lagrangian that is a functional of ∂0φ and ∂i∂jφ

(see [19] for the more general case when the Lagrangian depends on ∂iφ as well as higher spatial

derivatives of φ). Such a theory enjoys the linear shift symmetry in the spatial coordinate

φ→ φ+ α+ βix
i, where α and βi are constants. The Noether currents of these symmetries are

given by

J0
α ≡ ρ =

∂L

∂(∂0φ)
, J i

α = −∂j
∂L

∂(∂i∂jφ)
≡ ∂jJ

ij , (2.4a)

J i0
β = ρxi, J ij

β = xiJj
α − J ij . (2.4b)

The conservation equation ∂µJ
iµ
β = 0 follows directly from the conservation equation ∂µJ

µ
α = 0,
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which itself is simply the Euler-Lagrange equation of motion and reads

∂0ρ+ ∂i∂jJ
ij = 0. (2.5)

A direct consequence of this is, of course, the conservation of the total charge and dipole moment:

Q ≡

∫

Σ

ρ, Qi ≡

∫

Σ

ρxi, (2.6)

where Σ is any spatial slice in spacetime. That is, dQ
dt = 0 and dQi

dt = 0. These conservation laws

prohibit the motion of solitary particles, but allows for the motion of composite particles, for

example a solitary dipole made of one positive and one negative charge. Higher-order polynomial

shifts lead to conservation laws for higher order multipoles and more intricate restrictions on the

mobility of the degrees of freedom. This is how polynomial shift symmetries lead to fractonic

excitations and this realization has promoted these symmetries to one of the guiding principles

behind many of the recent studies in fractons.

3 Polynomial shift symmetry and the Heisenberg Algebra

As was discussed in the previous section, polynomial shift symmetries can be associated with

the conservation of a set of multipole charges in the corresponding system. In fact, it has been

argued that this class of theories show fractonic behavior. More precisely, they fit within the

gapless phases [1, 2, 20–23].

The simplest case corresponds with the conservation of a charge Q and its dipole Qi, which

in d space dimensions, at the macroscopic level, can be formulated in terms of a charge density

ρ as

dQ

dt
=

d

dt

∫

ddx ρ = 0 , (3.7)

dQi

dt
=

d

dt

∫

ddxxiρ = 0 . (3.8)

In a system with such conservation law, charges are immobile, whereas dipoles can freely move.

In fact, similarly to what happens with momentum and angular momentum, both charges are

conserved once the single (generalized) continuity equation

∂0ρ+ ∂i∂jJ
ij = 0 , i, j = 1, 2, . . . , d , (3.9)

is satisfied. The distinguishing feature in these class of systems is that charge is relaxed via a

tensorial current. An immediate consequence of such conservation law, is that a gauged version

of the symmetry would require the presence of gauge fields A0, Aij with the transformation rule

A0 → A0 − ∂0α, and Aij → Aij + ∂i∂jα, and the ’gauge fields’ coupling to the fractonic matter

as follows

S = S0[A0, Aij ] +

∫

dd+1x
(

ρA0 + J ijAij

)

. (3.10)

Such type of theories have been proposed as a generalization to electrodynamics [2,24]. However,

due to the unusual transformation law of the fields, it is not clear in what sense they are gauge
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theories. In addition, from this perspective, is not obvious whether it is possible to put the theory

on a curved manifold without spoiling the gauge symmetry [25]. In the recent paper [26], it was

pointed out that fracton gauge transformations are actually spacetime transformations and in

order to properly implement them, they must be treated as such. To illustrate this fact, let us

suppose a translational invariant system with monopole and dipole conservation. In a classical

low energy regime the Poisson brackets between the charge ρ and momentum pa densities are

[pi(x), ρ(y)] = −ρ(x)∂xiδ(x− y) , (3.11a)

[pi(x), pj(y)] = −[pj(x)∂xi + pi(y)∂xj ]δ(x− y) , (3.11b)

which imply the following non-vanishing bracket between the dipole charge and momentum

[Pi, Q
j ] = δjiQ , (3.12)

where Pi is the generator of spatial translations. The non-vanishing of Eq. (3.12) implies the

fractonic transformations and space translations form a non-Abelian group. This fact will have

important consequences in how the symmetry is realized, and the amount of Nambu-Goldstone

bosons when the fracton symmetry is spontaneously broken. Actually, after carefully analyzing

Eq. (3.12) we notice the similarity with the canonical commutation relation in quantum mechan-

ics between position and momentum. This algebra has been extensively studied in mathemat-

ics, and operators satisfying such commutation relation generates a Lie group called Heisenberg

group [27,28]. Below we will discuss some important properties of such a group and its relevance

in the context of monople-dipole-momentum preserving theories.

3.1 Heisenberg group

The Heisenberg group is a Lie group generated by exponentiation of elements of the Lie algebra

Eq. (3.12). For example, given an element X = x · P + z · Q + φQ of the algebra, a generic

element of the group can be written as

GX = ex·P ez·QeφQ . (3.13)

With this parametrization the left action of the group Gξ ·GX = GX′ , with ξ = ζ ·P +β ·Q+αQ,

produces a new element with coordinates

X ′ = (x + ζ) ·P + (z + β) ·Q + (φ+ α− β · x)Q . (3.14)

The Maurer-Cartan form can be written as Θ = Ω−1dΩ = vQ + eiPi + ωiQ
i with

v = dφ+ z · dx , ei = dxi , ωi = dzi . (3.15)

In fact, notice that the one-forms ei, ωi, v are invariant under the left action of the group. The

Maurer-Cartan equations imply

dv = ωi ∧ e
i , dei = 0 , dωi = 0 . (3.16)
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This parametrization of the group is usually known in the mathematics literature as polarized

Heisenberg group. This group has a unitary representation which acts projectively in the Hilbert

space, given a non-zero real number q the group acts as

πq[Gξ]ψ(t,x) = eiqαeiβ·xψ(t,x + ζ) , (3.17)

where q can be interpreted as the elementary fracton charge, α,β parametrizing the generalized

U(1) fracton global transformation, and ζ a space translation respectively.

Since the group is a Lie group, it can be identified with a differential manifold that we denote

as N2d+1 with coordinates (xi, zi, φ). In addition, the manifold posses the non-commutative

operation

(xi, zi, φ) → (xi + ζi, zi + βi, φ+ α− βix
i) , (3.18)

as isometry group. Given this property, we can define the invariant basis

Pi =
∂

∂xi
− zi

∂

∂φ
, ei = dxi , (3.19)

Qi =
∂

∂zi
, ωi = dzi , (3.20)

Q =
∂

∂φ
, v = dφ+ z · dx . (3.21)

These vector fields satisfy the Lie bracket

[Pi,Q
j] = J (Pi,Q

j)Q = δjiQ , (3.22)

which agrees with the Lie algebra Eq. (3.12). Notice that in the previous formula we have

introduced the ‘symplectic’ form J = −dv which can be written as

J = ei ∧ ωi . (3.23)

Therefore, the symplectic form encodes the non-trivial part of the Maurer-Cartan equation (see

Eq. (3.16)) which accounts for the infinitesimal properties of the Heisenberg group. From this

perspective, it is not surprising that the Lie bracket between the basis vector fields is given by

J .

3.2 From the Heisenberg space to the fractonic system

In contrast to the usual case of internal symmetries, the actual physical space is non-trivially

connected with the ‘internal’ space of fracton transformations. Therefore we will assume that the

physical spacetime is embedded into the Heisenberg space. To do so, we first extend N2d+1 →

N2d+1 ×R, assuming the extra coordinate is the time, which we refer to here as x0, and include

time translations into the isometry group of spacetime.

After such extension, we have the extra basis vector and co-vector H = ∂/∂x0, and τ = dx0

respectively, and can define the invariant metric1

Ḡ = sτ2 + eiei + ωiωi + v2 , (3.24)

1In this section we will assume rotational invariance.
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with s a sign that will be fixed below.

Notice that the extended Heisenberg space must be understood as an abstract space contain-

ing both the physical spacetime with coordinates (x0, xi), and the internal ‘generalized U(1)’

directions (zi, φ). Therefore, when the symmetry is not spontaneously broken, the points in the

‘internal’ directions should be identified as zi ∼ zi + βi, and φ ∼ φ+α− βix
i, implying that the

physical spacetime metric is

G = sτ2 + eiei . (3.25)

On the other hand, when the internal symmetry is spontaneously broken, the internal direc-

tions become fields depending on the spacetime coordinates, and receive the interpretation of

the Nambu-Goldstone bosons [26]. In fact, within our geometric interpretation, such a phase

could be seen as having the physical spacetime embedded into the larger Heisenberg space with

coordinates (xµ, za(xµ), φ(xµ)), where the greek index µ refers to spacetime coordinates and

takes values 0, 1, . . . , d. However, using Eq. (3.23) and the fact that J [Pi,Pj ] = 0, we then

conclude that v on the physical spacetime has to have the form v = ∂0φ τ , and the embedding

of zi must satisfy the constraint zi = −∂iφ. After imposing these constraints we obtain

ωi = −∂0∂iφτ − ∂i∂jφe
j . (3.26)

Actually, this reduction in the number of Nambu-Goldstone bosons is generically common when

spacetime symmetries are spontaneously broken, and it is known as the inverse Higgs constraint

[29–31].

In this case, the induced metric on the physical space differs from the metric Gµν of a flat

space by an extra symmetric tensor Bµν depending on derivatives of the Nambu-Goldstone boson

B = (∂0φdx
0)2 + (∂0∂iφdx

0 + ∂i∂jφdx
j)2 , (3.27)

and we refer to it as the fracton metric. This allows us to interpret the Goldstone mode as the

breathing mode of the spacetime in the larger Heisenberg space.

Since we have constructed the proper invariants of the system, a generic low-energy effective

action for the spontaneously broken phase must have the form

SSSB =

∫

dd+1xL
(

v0, (ω0i)
2, (ωij)

2
)

. (3.28)

In general, the form of the effective Lagrangian would depend on the precise microscopic system

we consider. However, we notice that the Born-Infield action

SSSB = −

∫

dd+1x
√

|G+B| , (3.29)

corresponding with the volume of spacetime in the Heisenberg space will guarantee a geodesic

embedding. Using the derivative expansion ∂0 ∼ ∇2, and expanding Eq. (3.29) up to a quadratic

order we obtain

SSSB ≈ −

∫

dd+1x
√

|G|

(

1 +
s

2
(∂0φ)2 +

1

2
(∂i∂jφ)2 + . . .

)

, (3.30)

notice that to guarantee a positive definite energy in this theory we must fix s = −1.
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This construction allows us to give a geometric interpretation to the Nambu-Goldstone boson

associated to the spontaneous symmetry breaking in systems with monopole and dipole charge

conservation, and naturally predicts the linear shift transformations of the gapless low energy

mode φ. Notice also that in [32], Geng, Kachru, Karch, Nally and Rayhaun studied fracton

theories from brane constructions. Nonetheless, there is no obvious relation between their models

and the Heisenberg space picture discussed here.

So far we have discussed the case of a global symmetry. However, certain spin liquids [2,22,

23], and elastic fields [5,33–35] contain a gauged version of the symmetry discussed here. In fact,

a generalization of electrodynamics [2] to account for systems with the class of conservation laws

discussed here has been constructed. In particular the monopole-dipole-momentum conserving

case is described with gauge fields A0, Aij with gauge transformations

δA0 = −∂0α , δAij = ∂i∂jα . (3.31)

Nonetheless, if we were to allow the gauge fields to propagate in curved space, the gauge principle

seems to enter in conflict with diffeomorphism transformations [5,36]. In [25] Slagle, Prem, and

Pretko argued that in two space dimensions the fracton gauge invariance will not be broken

as long as the space is an Einstein manifold, and more recently [34, 35] the fractonic gauge

symmetry has been extended to volume preserving diffeomorphisms and connected to the lowest

Landau level.

In fact, by considering the structure of Heisenberg space Peña-Beńıtez in [26] used standard

techniques to gauge spacetime symmetries [37–40] and managed to obtain a fully diffeomorphism-

and gauge-invariant action for monopole-dipole-momentum conserving systems. One interesting

prediction of these analysis is that generically the monopole-dipole-momentum symmetry group

will be spontaneously broken once the system lives on an arbitrary curved spacetime.

Given a torsionless spacetime with frame fields τ, ei satisfying

dτ = 0 , dei − ωij ∧ ej = 0 , (3.32)

where ωij is the spin connection, and the metric is G = −τ2 + eiei the fracton field strength

must be defined as

Fi = Dω̃i , (3.33)

where D is the rotational covariant exterior derivative, defined as Dsi = dsi − ωij ∧ sj. The

1−form ω̃i is related to the scalar and symmetric gauge fields via the relation

ω̃i = −iPi
dA0τ +Aije

j . (3.34)

Fracton gauge transformations act on this field as δω̃i = DiPi
dα. However, if the Riemann

curvature tensor does not vanish, the non-Abelian structure of the symmetry group implies

δFi 6= 0. Therefore, in order to get a fully invariant theory it is necessary to introduce a

Stueckelberg field φ transforming as δφ = α, and construct the invariant combination

Ti = Fi − iPj
dφRj

i , (3.35)
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with Rj
i the curvature 2−form. After allowing for the spontaneous breaking of the symmetry,

and defining the volume form ∗1 = dd+1x
√

|G|, the following action can be constructed

S = −
1

2

∫

⋆Ti ∧ Ti + SSSB[DiPi
dφ− ω̃i, iHdφ+A0] . (3.36)

This theory satisfactorily reduces to the generalized electrodynamics theory of [2] in the flat

space limit

S =

∫

dd+1x

[

F0ijF0ij −
1

2
FijkFijk

]

. (3.37)

In particular, in two space dimensions we can dualize the magnetic field and define electric and

magnetic fields Eij = F0ij , and Bk = 1
2ǫ

ijFijk respectively. The electromagnetic fields written

in terms of the gauge potentials are

Eij = ∂0Aij + ∂i∂jA0 , Bk = ǫij∂iAjk , (3.38)

and the flat space gauge transformations are given by Eqs. (3.31), as expected. In the next

section we will study the relevance of this class of ’gauge theories’ in the context of elasticity via

the so-called Fracton-Elasticity duality.

4 Fractons in elastic duals

We have seen how tensor gauge fields appear naturally in the context of theories with polyno-

mial shift symmetries. In the following we will discuss the physical relevance of these theories,

with a view on condensed matter systems where these kind of ideas have had a larger impact.

Experimental platforms of gapped type I fractons, with restricted mobility, has been suggested

in [41–43] and a proposal to realize immobile type II fractons has been put forward in [44]. A

step towards a physical system with gapless fractons has been achieved when Pretko and Radzi-

hovsky realized that a tensor gauge theory in two dimensions can be mapped to a familiar theory

of elasticity where the fractonic excitations correspond to topological defects [33]. This discovery

has been based on the earlier works of Kleinert that pioneered the field of elastic dualities in the

1980s, although with a different focus [45, 46] (for a review see [47, 48]). More recently various

extensions of the original elastic dualities have been proposed. These include Cosserat elasticity

with antisymmetric degrees of freedom [49–52], elasticity with smectic anisotropy [53], vortex

lattices [34], elasticity of quasicrystals [54] and elasticity with underlying moiré lattices [55]. In

addition, folding and tearing can have an interpretation as being fractonic [56].

4.1 Cauchy elasticity

In its simplest incarnation the theory of elasticity consists of one displacement field ui that

corresponds to the distortion of the underlying lattice. In general this field can have singularities

that correspond to plastic deformations, generated by the underpinning topological defects.

Our starting point is to construct an effective field theory that captures the dynamics of the

displacement field ui. In order to construct an action functional we note that the macroscopic
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field originates from the expectation value of the spontaneously broken translation symmetries

represented by the position of the atoms in the lattice. Therefore the effective field theory shall

not depend on the field itself but only its gradients. To the quadratic order in the fields we can

write

S[ui] ≡

∫

dtd2xL[ui] =

∫

dtd2x
[

u̇iu̇i −
1

2
Cijkluijukl

]

, (4.39)

where Cijkl is a tensor of elastic moduli and we introduce the symmetric strain tensor uij =

∂iuj + ∂jui. We employ the Einstein summation convention. The resulting partition function is

given by

Z =

∫

DuieS[ui] . (4.40)

This is the starting point of the fracton-elasticity duality. Next we change the elastic fields in

favour of new collective bosonic fields by means of suitable Hubbard-Stratonovich transforma-

tions. Such transformations take the following form for given sets of fields φ and ψ

exp

[

1

2
ψMψ

]

=
1

N

∫

Dφ exp

[

−1

2
φM−1φ+ ψφ

]

. (4.41)

In order to perform the Hubbard-Stratonovich transformation for elasticity it is natural to choose

the canonically conjugate fields that correspond to momentum P i = T i0 and the stress tensor

T ij . The stress tensor is given by

T ij = −
δL

δukl
= Cijklukl (4.42)

One can express the original fields uij in terms of the stress variables by inverting the four tensor

Cijkl . In the stress variables the action takes the following form

S[P i, T ij, ui] =

∫

dtd2x
[

PiP
i + CijklT

ijT kl + 2ui(∂µT
iµ)
]

, (4.43)

where we have introduced an inverse tensor of elastic coefficients Cklmn such that CijklCklmn =

Idijmn = δimδjn. The Hubbard-Stratonovich transformation doubles the degrees of freedom in

the partition function. In the next step we want to remedy this by integrating out original fields

ui.

Z =

∫

DP iDT ijDuieiS[P i,T ij ,ui] =

∫

DP iDT ijeiS[P i,T ij ]δ
(

∂µT
iµ
)

, (4.44)

The Greek indices include both time and space coordinates. The delta function gives us a

constraint that we would like to resolve by an appropriate choice of T ij. This can be done by

using gauge fields. However, T ij is a two-index object so we cannot resolve the delta function

with the U(1) gauge fields. We need fields Aij with two indices, dubbed tensor gauge fields.

They are symmetric with respect to the permutations of indices. In terms of this gauge fields

the stress tensor reads

T iµ = ǫµνρ∂νA
i
ρ . (4.45)

Due to the antisymmetry of the Levi-Civita symbol the condition ∂µT
iµ is always satisfied. In

analogy with Maxwell electrodynamics we can define electric and magnetic fields

Bi = ǫkl∂kA
i
l , Ei

j = ǫik(−∂0A
k
j + ∂j∂kA0) . (4.46)
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This allows one to write the dual theory (4.44) in a gauge invariant manner

Sdual =

∫

dtd2x
1

2

[

BiB
i + Eij C̃

ijklEkl

]

. (4.47)

Tilde denotes index rotations, e.g. C̃ijkl = ǫii′ǫjj′ǫkk′ǫll′C
i′j′k′l′ . Fields Bi and Ekl are invariant

under the following gauge transformations

δAij = ∂i∂jα , δA0 = ∂0α . (4.48)

We have shown that the theory of elasticity is in fact a tensor gauge theory. A natural question

that emerges is what are the sources in this gauge theory, that we can introduce through a

minimal coupling

δS =

∫

dtd2x
[

ρδA0 + J ijδAij

]

(4.49)

Since the gauge fields correspond to stresses in elasticity we know that they are generated by

topological defects. As a result it is natural to expect that the topological defects are mapped

to charges in the gauge theory. In order to see this mapping explicitely one can decompose the

phonon into regular and singular parts ui = uireg + uising. Phonon displacement singularities

couple to the conservation of the stress tensor

δS =

∫

dtd2x
[

uising∂µT
iµ
]

. (4.50)

Comparing (4.49) and (4.50) one can use Eq. (4.45) and after integration by parts the mapping

between defects and charges can be made explicit ρ = ∂iρi, ρ
i = ǫijǫ

kl∂k∂lu
j
sing and J ij =

ǫikǫ
µνj∂µ∂νu

k
sing. The charge ρ is mapped to the disclination density

ρdisc =
1

2
ǫklǫ

ij∂i∂j∂ku
l
sing . (4.51)

This concludes the basic features of elastic dualities. The main feature consists of the fact

that elastic theories can be reformulated as gauge theories, whose charges are elastic defects. The

duality introduced in this section constitutes the simplest example of a symmetric elasticity dual

to a symmetric tensor gauge theory. Several more general theories of elasticity exist, constructed

in order to describe systems with additional degrees of freedom. We will briefly discuss some of

such extensions, in which the dual fractonic theories have been constructed.

4.2 Quasicrystal elasticity

Symmetric elasticity introduced in the previous section is a macroscopic description of atoms

localised periodically in space. This means that a discrete translation of the whole lattice is a

symmetry of the system. The breaking of translation symmetry can be achieved in two different

ways: either the localization of atoms becomes random or it preserves a quasi-periodic pattern.

Quasicrystals are precisely crystals, in which the position of atoms is not arbitrary but the

translation symmetry is broken [57–59]. In order to understand the elastic description of such

crystals we consider a one-dimensional line of atoms parameterized by two sublattices a and b.

ρ(x) =
∑

na,nb

[mδ(x− nala) +mδ(x− nblb)], (4.52)
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where we have chosen the origin at x = 0 and fixed la and lb to be the averege separations of

two lattices, whose ratio la/lb is an irrational number. ρ(x) is a microscopic fluctuating field,

whose average 〈ρ(x)〉 can be expressed as a discrete Fourier transform

〈ρ(x)〉 =
∑

p,q

〈ρpq(x)〉 exp(ipkax+ iqkbx) ≡
∑

G

〈ρG(x)〉 exp(iGax+ iGbx), (4.53)

where the reciprocal lattice spanned byGa andGb is parameterized by ka = 2π/la and kb = 2π/lb

with p, q ∈ Z. In analogy with the periodic case 〈ρG(x)〉 is a complex number with space-

dependent amplitude and a phase

〈ρG(x)〉 = |〈ρG(x)〉| exp[iGaua(x) + iGbub(x) + iφo(x)] ≡ |〈ρG(x)〉| exp[iφG(x)]. (4.54)

ua and ub describe displacements of the two sublattices. We can introduce new variables ua =

u − w/2 and ub = u + w/2. u = (ua + ub)/2 corresponds to the phonon displacement and

w = ub − ua is known as the phason displacement that describes relative displacement of the

two sublattices.

One can generalize the above argument to higher dimensions leading to d component dis-

placements vectors ui and wi, where d is the dimension of the lattice. In order to construct the

elastic duality corresponding to quasi-crystals we focus on d = 2. Our first step is to provide

the action of the elastic fields in a quasi-crystal [60]. The exact form is in general complicated

but we can expand it in the fields ui and wi. We note that the uniform displacements do not

change the energy so the first terms in the expansion will be gradients of the fields. The phonon

displacement leads to the symmetric strain tensor uij = uji, where uij = 1
2 (∂iuj + ∂jui). The

antisymmetric part corresponds to the rigid rotations of sub-lattices, which are not physically

relevant. Contrary to the phonon field uij the phason displacement tensor wij = ∂iwj is not

symmetric wij 6= wji. Physically the antisymmetric part is a consequence of the relative rota-

tions of sub-lattices that cannot be neglected. The action can be written as a sum of the kinetic

and potential energies S[ui, wi] = Skin[ui, wi] + Spot[ui, wi], where the kinetic energy reads

Skin[ui, wi] =

∫

dtd2x
[

u̇iu̇i + ẇiẇi

]

, (4.55)

and the potential energy is given by

Spot[ui, wi] = −
1

2

∫

dtd2x
[(

Cijkluijukl

)

+
(

Kijklwijwkl

)

+
(

Rijklwijukl +R′ijklwijukl

)]

≡ −
1

2

∫

dtd2x
[

(uij wij)

(

Cijkl Rijkl

R′
ijkl Kijkl

)(

ukl

wkl

)

]

, (4.56)

where R′
klij = Rijkl. This action can be written in the dual form, introducing the stress fields by

varying the Lagrangian with respect to the stresses T̃ij = − ∂L
∂uij

, Hij = − ∂L
∂wij

, and subsequently

rewriting them using gauge potentials T̃ iµ = ǫµνρ∂νA
i
ρ , Hiµ = ǫµνρ∂νA

i
ρ , and the corresponding

electric and magnetic fields

Sdual =

∫

dtd2x
1

2

[

BiB
i + BiB

i + (Eij Eij)

(

C̃ijkl R̃ijkl

R̃′
ijkl K̃ijkl

)(

Ekl

Ekl

)]

.
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The fields are defined in the following way

Bi = ǫkl∂kA
i
l , Ei

j = ǫik(−∂0A
k
j + ∂j∂kA0) . (4.57)

Bi = ǫkl∂kA
i
l , E i

j = ǫik(−∂0A
k
j + ∂jA

k
0) . (4.58)

These fields are invariant under the following gauge transformations

δAij = ∂i∂jα , δA0 = ∂0α , (4.59)

δAij = ∂jβi , δAi0 = ∂0βi . (4.60)

We can now source the gauge fields by appropriate sources

Lsources = A0ρ+AijJij + Ai0̺i + AijJij . (4.61)

In addition to the dislocation defects that we already saw in the symmetric elasticity a new type

of defects can appear in quasi-crystals - matching or stacking faults. These are singularities in

the phason field leading to a non-zero charge density

̺i = ǫijǫ
kl∂k∂lw

j
sing (4.62)

and the current

J ij = ǫinǫ
µνj∂µ∂νw

n
sing. (4.63)

We can now identify the duality mapping between charges and defects for phasons. Vector

charges in the dual theory map to the rotated matching faults ǫij̺
j .

4.3 Cosserat elasticity

Symmetric elasticity assumes that the solid constituents have no internal structure. However,

in complex materials, composed from elongated bodies this assumption is not valid and one

has to consider rotational degrees of freedom, again generalizing the macroscopic description

of a solid [61–63]. We want to write the effective action describing such a solid. In the first

step we need to identify the degrees of freedom. In two dimensions the displacement vector ui is

supplemented with an orientation angle θ. In the second step we require that the effective action

is invariant under translations and rotations. Translations require that under the transformation

ui → ui + bi, where bi is a constant vector the action remains invariant. Rotations by a constant

angle θ0 are implemented by two simultaneous transformations θ → θ + θ0, ui → ui + ǫijxjθ0.

We note that gradients of the displacement field are invariant under translations but not under

rotations. It is, however, possible to construct a combination

γij = ∂iuj − ǫijθ , (4.64)

that is invariant both under translations and rotations. Using this invariant one can write down

the quadratic form of the effective action

S[ui, θ] =

∫

dtd2x
[

θ̇θ̇ + u̇iu̇i − Cijklγijγkl + ζτiτ
i
]

, (4.65)
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where Cijkl and ζ denote elastic coefficients in the theory and τi = ∂iθ. By writing the action

in terms of ui and θ we can immediately conclude that we have massive modes in the theory.

As a result orientational modes are not massless Goldstone modes. This is a general feature of

the spontaneous breaking of spacetime symmetries that leads to a smaller amount of massless

modes than the symmetries. This also leads to a complication in order to directly implement

the duality transformation. Performing the Hubbard-Stratonovich transformation

S =

∫

dtd2x
[

PiP
i + (L0)2 + ζ−1LiL

i + CijklT
ijT kl + ui

(

∂µT
iµ
)

+ θ
(

∂µL
µ − ǫijTij

)]

, (4.66)

and integrating out the smooth part of θ and ui leads to the following constraints

∂µT
iµ = 0 , ∂µL

µ − ǫijTij = 0 . (4.67)

The second constraint does not have a form of a conservation law. Therefore we need to first

resolve the first constraint as in (4.45), express Tij as a gradient and only then resolve it the

second constraint using an ordinary U(1) gauge field

L0 + ǫijAij = ǫij∂iaj = b , Li + ǫijAj0 = ǫij(∂ia0 − ∂0ai) = ǫijej , (4.68)

The action for the dual gauge fields takes form

S =

∫

dtd2x
[

C̃ijklEijEkl +BiB
i + ζ−1(b + ǫijAij)

2 + (ei −Ai
0)(ei − Ai0)

]

. (4.69)

It is invariant under the following set of transformations

δaµ = ∂µλ (4.70)

δAi0 = ∂0αi , δAij = ∂jαi , δai = −αi , δa0 = 0. (4.71)

In the final step we show the charges of the dual theory that again correspond to defects in

Cosserat elasticity

Lsources = ρirotAi0+J ij
rotAij+a0ρθ+aiji =

[

(ρi+2ǫij∂jθsing)Ai0+(J ij+2θ̇singǫ
ij)Aij+a0ρθ+aiji

]

,

(4.72)

where ρθ = ǫik∂k∂iθsing, ji = ǫik (∂k∂0 − ∂0∂k) θsing . We note that the dislocation density have

contributions from singularities of both the displacement and orientation fields. As such, in order

to correctly account for fractonic behavior of defects, in Cosserat theory both contributions have

to be taken into account.

5 Effective theories and fracton hydrodynamics

We have seen how tensor gauge theories emerge in the context of elasticity and couple to fracton

excitations corresponding to lattice defects. However, the dynamics of the fracton themselves

is not captured by the tensor fields. Developing effective field theories of fractons is interesting

both for conceptual reasons and for their possible application to the description of the collective

behavior of fractons. An instance relevant for physical systems is the quantum melting of solids,

where the transition is produced by the formation of a fracton condensate [34, 64–66].
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An early proposal for a fracton effective theory was given in the context of the X-cube model

of fracton topological order by Slagle and Kim [67]. This was generalized by Pretko taking a

global vector symmetry as guiding principle [68], and further generalizations by Seiberg followed

up a bit later [69]. Fracton condensation is only mentioned in passing in Pretko’s work. More

detailed studies of the properties of phases with a fracton condensate (“fracton superfluids”) have

been made by Chen, Ye and Yuan [70, 71], that also generalized Pretko’s action by including

anisotropic terms.

The main idea is simple. A collective system of spinless bosons may be described by a complex

scalar ψ with a global U(1) symmetry that corresponds to the conserved particle number. The

U(1) transformation of the field is the usual one

ψ → eiαψ. (5.73)

If instead of ordinary bosons one has a system of fractons with conserved dipole charge, then

the U(1) symmetry is enhanced to a global vector symmetry

ψ → eiβ·xψ, (5.74)

where β is a constant vector along the spatial directions x. Imposing this symmetry constrains

the action of the scalar field, in particular it forbids an ordinary kinetic term with spatial

derivatives. A possible Lagrangian density to quartic order in the field is [68, 69]

L =|∂0ψ|
2 −m2|ψ|2 −

λ

4
(|ψ|2)2

− c1∂i|ψ|
2∂i|ψ|

2 − c2|ψ∂i∂jψ − ∂iψ∂jψ|
2 − c3

[

(ψ∗)2
(

ψ∂2ψ − ∂iψ∂iψ
)

+ h.c.
]

.

(5.75)

The gauging of this theory has been considered by Banerjee [72, 73]. Remarkably, imposing a

vector global symmetry in this way introduces an emergent subsystem symmetry [68] around the

trivial vacuum ψ = 0. Indeed, the quadratic action for a perturbation around the trivial vacuum

is

L ≃ |∂0δψ|
2 −m2|δψ|2. (5.76)

The mass term is removed by a field redefinition δψ = eimtϕ,

L ≃ |∂0ϕ|
2 − im (ϕ∗∂0ϕ− ∂0ϕ

∗ϕ) . (5.77)

In this form, the quadratic Lagrangian changes by a total derivative under the subsystem trans-

formations

δϕ = α(x) ⇒ δL = −im∂0 (α∗ϕ− ϕ∗α) . (5.78)

The emergent subsystem symmetry implies that excitations around the trivial vacuum are im-

mobile, they would also be gapless if the mass vanishes m = 0. Note that quantum corrections

may modify the gap, but as long as the vector global symmetry is not anomalous, they would

not introduce a kinetic term, so that excitations remain immobile. It should be noted that

emergent subsystem symmetries and fractonic dispersion relations are not limited to theories

with a global vector symmetry (or other polynomial shift symmetries), they may also appear

in other situations, such as the model with spontaneously broken translation invariance studied
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by Argurio, Hoyos, Musso and Naegels [74]. Exact subsystem symmetries can be realized in a

variety of continuum theories [75–85] (see [32] for a nice summary).

By tuning the potential to m2 < 0, it is possible to change the ground state to a non-trivial

vacuum ψ = ψ0. This corresponds to a phase were fractons have condensed, or in other words

a fracton superfluid. There is a gapless degree of freedom corresponding to the phase of the

condensate, which can be identified as a Nambu-Goldstone mode

ψ = ψ0e
iφ. (5.79)

In contrast to the fluctuations around the trivial vacuum, the action for fluctuations of the

Nambu-Goldstone mode includes terms with spatial derivatives in the quadratic action

L ≃ |ψ0|
2(∂0φ)2 − c2(|ψ0|

2)2(∂i∂jφ)2 − c3(|ψ0|
2)2(∂2φ)2. (5.80)

In this case the global vector symmetry is realized as a polynomial shift symmetry

δφ = β · x, (5.81)

but there is no emergent subsystem symmetry, so there are no immobile fluctuations in the

condensed fractonic phase. The same is true in more involved cases [70, 71]. One should note

that (5.80) just captures the semiclassical description of the fracton superfluid, the robustness

of the superfluid state to fluctuations has been studied by Stahl, Lake and Nandkishore [86].

Instead of a fracton condensate one might consider a state with thermally excited fractons.

Let us assume that the system reaches thermal equilibrium and can be well approximated by a

homogeneous state in the effective theory description. After the state is perturbed, the late time

relaxation to the equilibrated state should be captured by hydrodynamics, in the general sense

of a theory describing transport of conserved charges at long wavelengths. A first proposal of

a transport theory in the hydrodynamic regime with a conserved charge density was made by

Gromov, Lucas and Nandkishore [87].

In fractonic systems we expect to either have dipole or higher moment conserved charges

and/or subsystem symmetries. Let us assume that moments up to order n are conserved.

Denoting ρ as the fracton number density, the associated charges in a d+ 1-dimensional theory

are

Q(k)[a] =

∫

ddxai1···ikx
i1 · · ·xik ρ. (5.82)

For instance, an often discussed case that we will keep as an example in the discussion is when the

dipole moment is conserved in any direction and the second “trace” moment ∼ x2 is conserved

as well.

Conservation of the fracton number, dipole and higher moment charges can be achieved if

the density satisfies a conservation law of the following form

∂0ρ+ ∂i1 · · · ∂in+1
J i1···in+1 = 0. (5.83)

Here J i1···in+1 is a completely symmetric tensor current. In some cases the conservation equation

may involve a lower number of spatial derivatives as long as the tensor current satisfies some
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algebraic conditions. For instance, in the example we are considering, the dipole and second

moment current are conserved for

∂0ρ+ ∂i∂jJ
ij = 0, J i

i = 0. (5.84)

In this case there are two rather than three spatial derivatives in the conservation equation, but

the second moment is conserved thanks to the tracelessness condition that the current satisfies.

In general, we expect that the number of spatial derivatives in the conservation equation will

be determined by the highest irreducible representation (the highest multipole) under spatial

rotations among the conserved charges.

In the most general situation, spatial momentum may not be conserved and the hydrody-

namic equations reduce to the continuity equation for the fracton density and energy conser-

vation. In the hydrodynamic effective description the only dynamical degrees of freedom are

the conserved charges. The currents are determined by the densities through the constitutive

relations, if the n-multipole is the highest conserved, the current must take the form

J i1···in+1 =
D

N
∂i1 · · · ∂in+1ρ− (all traces). (5.85)

Where by N we have denoted the number of all possible terms in the constitutive relation. This

leads to an equation for the density

∂0ρ+D
(

∂2
)n+1

ρ = 0. (5.86)

Therefore, the system is diffusive but compared to ordinary diffusion where the spatial width of

a distribution increases as a square root of time ∆x ∼ t1/2, the conservation of higher multipole

charges slows down the process to ∆x ∼ t1/(n+1), i.e. it is subdiffusive [87–94].

If rotational invariance is broken, then the higher moment symmetries can be further en-

hanced to subsystem symmetries where the fracton density multiplied by an arbitrary function

of some of the coordinates corresponds to a conserved charge. A simple example is a two-tensor

current that along one direction has only off-diagonal components, say J11 = 0. Then, the

following charges are conserved

Q1[f ] =

∫

ddxf(x1)ρ. (5.87)

This implies a degeneracy in the continuity equation that leads to degeneracy in the dispersion

relations and fractonic behaviour. In our example the current must take the form J1i = J i1 =

−D1∂1∂iρ, J ij = −D2∂i∂jρ, i, j 6= 1. Then, solving the equation using a Fourier transform, one

finds the subdiffusive mode

ω = −ik2
⊥(2D1k

2
1 +D2k

2
⊥), k2

⊥ =
∑

i6=1

k2i . (5.88)

The dispersion relation vanishes along the k1 direction at the origin of the transverse space

k2
⊥ = 0.

The effective theory (5.75) is invariant under translations, so that, in addition to the dipole

charge, spatial momentum is conserved. Ideal fracton hydrodynamics with dipole and spatial

momentum conservation was introduced by Grosvenor, Hoyos, Peña-Benitez and Surówka [19]
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and, in the work of Glorioso, Guo, Rodriguez-Nieva, Lucas [95], dissipative terms were also taken

into account, introducing the characteristic subdiffusive behavior2. At the ideal level there are

gapless propagating modes with quadratic dispersion relation, in contrast to the linear dispersion

of ordinary phonons, and quite similar to the Nambu-Goldstone modes of (5.80). A more

involved case with a chiral fluid and subsystem symmetry was also studied, but its behaviour

does not follow this simple picture. Nevertheless, in both cases it was shown that hydrodynamic

equations are essentially the same as those of an ordinary fluid, with the higher moment or

subsystem charge conservation following from the constitutive relations of the particle number

current. This is reminiscent of other coordinate-dependent symmetries like scale or conformal

invariance.

6 Conclusions

Motivated by the exotic properties of fractons, a rich set of theories has been uncovered, many

of them realized in lattices and other condensed matter systems. Multipole and other symme-

tries with transformations depending on spatial coordinates may serve as a guiding principle to

construct and classify these novel theories in the continuum limit, as we have tried to emphasize

in this short overview.

Many questions remain pertaining the significance of gauge symmetries of tensor fields. Em-

inently, it is unclear whether they should be treated on equal footing with ordinary or higher

form gauge symmetries, or rather physical states do not need to be gauge invariant under

tensor symmetries. The difference between form and tensor gauge symmetries is highlighted

when attempting to couple each type of theory to a curved background geometry. While form

gauge transformations remain metric-independent and are trivially maintained (barring quan-

tum anomalies), this is not obviously so for tensor symmetries where in principle covariant

derivatives would appear in the gauge transformation 3. The Heisenberg group construction

that allowed a consistent coupling of dipole symmetric theories to a background geometry [26]

could be used as guidance for more general coordinate-dependent symmetries.

Other aspect that has been not explored in detail beyond lattice models is the dynamics

of fracton excitations, either individual or collective. In the paradigmatic example of elasticity,

fractons are defects in the crystal lattice, and from this point of view they correspond to singular

configurations of displacement fields, and perhaps not amenable to treatment in a continuum

theory. An analog of this situation is that of vortices in a superfluid, which are singular con-

figurations of the phase of the condensate. Nevertheless, a collective description of superfluid

vortices can be captured by a continuum effective theory (see e.g. [99,100]) and possibly similar

derivations could be obtained for theories with fractonic excitations beyond the simple examples

shown here.

Summarizing, this is a rapidly evolving field with many open avenues where we expect to

witness significant progress in the near future.

2See also the more recent work [96].
3Recently, this was addressed in [97, 98] using Aristotelian geometry.
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[7] T. Griffin, K. T. Grosvenor, P. Hořava, and Z. Yan, “Scalar Field Theories with

Polynomial Shift Symmetries,” Commun. Math. Phys. 340 (2015) 985, 1412.1046.

https://arxiv.org/pdf/1412.1046.pdf.

[8] R. M. Nandkishore and M. Hermele, “Fractons,”

Ann. Rev. Condensed Matter Phys. 10 (2019) 295–313,

arXiv:1803.11196 [cond-mat.str-el].

[9] M. Pretko, X. Chen, and Y. You, “Fracton Phases of Matter,”

Int. J. Mod. Phys. A 35 no. 06, (2020) 2030003,

arXiv:2001.01722 [cond-mat.str-el].

20

http://dx.doi.org/10.1103/PhysRevB.95.115139
http://arxiv.org/abs/1604.05329
http://dx.doi.org/10.1103/PhysRevB.96.035119
http://arxiv.org/abs/1606.08857
http://dx.doi.org/10.1103/PhysRevA.83.042330
https://link.aps.org/doi/10.1103/PhysRevA.83.042330
http://dx.doi.org/10.1103/PhysRevB.94.235157
http://dx.doi.org/10.1103/PhysRevX.9.031035
http://dx.doi.org/10.1103/PhysRevD.88.101701
http://arxiv.org/abs/1308.5967
https://arxiv.org/pdf/1308.5967.pdf
http://dx.doi.org/10.1007/s00220-015-2461-2
http://arxiv.org/abs/1412.1046
https://arxiv.org/pdf/1412.1046.pdf
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013604
http://arxiv.org/abs/1803.11196
http://dx.doi.org/10.1142/S0217751X20300033
http://arxiv.org/abs/2001.01722


[10] H. Watanabe and H. Murayama, “Unified Description of Nambu-Goldstone Bosons

without Lorentz Invariance,” Physical Review Letters 108 no. 25, (Jun, 2012) .

https://doi.org/10.1103%2Fphysrevlett.108.251602.

[11] H. Watanabe and H. Murayama, “Redundancies in Nambu-Goldstone Bosons,”

Physical Review Letters 110 no. 18, (May, 2013) .

https://doi.org/10.1103%2Fphysrevlett.110.181601.

[12] G. ’t Hooft , “Naturalness, chiral symmetry, and spontaneous chiral symmetry

breaking,” NATO Adv. Study Inst. Ser. B Phys. 59 (1979) 135.

[13] J. Polchinski, “Effective field theory and the Fermi surface,” in Theoretical Advanced

Study Institute (TASI 92): From Black Holes and Strings to Particles, pp. 0235–276. 6,

1992. arXiv:hep-th/9210046.
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