
Geometric tilt-to-length coupling in precision

interferometry: mechanisms and analytical

descriptions

Marie-Sophie Hartig, Sönke Schuster, and Gudrun Wanner

Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and

Institute for Gravitational Physics of the Leibniz Universität Hannover, Callinstrasse

38, 30165 Hannover, Germany

E-mail: marie-sophie.hartig@aei.mpg.de, gudrun.wanner@aei.mpg.de

January 2022

Abstract. Tilt-to-length coupling is a technical term for the cross-coupling of

angular or lateral jitter into an interferometric phase signal. It is an important noise

source in precision interferometers and originates either from changes in the optical

path lengths or from wavefront and clipping effects. Within this paper, we focus on

geometric TTL coupling and categorize it into a number of different mechanisms for

which we give analytic expressions. We then show that this geometric description is

not always sufficient to predict the TTL coupling noise within an interferometer. We,

therefore, discuss how understanding the geometric effects allows TTL noise reduction

already by smart design choices. Additionally, they can be used to counteract the total

measured TTL noise in a system. The presented content applies to a large variety of

precision interferometers, including space gravitational wave detectors like LISA.

Keywords : tilt-to-length coupling, optical cross talk, interferometric noise sources, laser

interferometry, space interferometry, LISA, gravitational wave detection

1. Introduction

Precision laser interferometers often share a number of common noise sources, such

as laser frequency noise, electronic readout noise, thermal noise, stray light and cross

talk. There are numerous types of cross-talk since this term generally describes that

a certain signal s is picked up unintentionally by a sensor not built for sensing s. In

this paper, we investigate a particular type of sensing cross-talk: the pickup of angular

and lateral motion of a reflective component within the interferometer by the measured

interferometric phase that is designed to measure longitudinal motion only. To some

extent, also tilt and lateral shifts of the beam’s origin itself are analysed. In principle,

the interferometric phase should only read longitudinal distance variations between two

reference points. Neither lateral motion nor tilts should be sensed by the interferometric

phase. Yet, due to many reasons we discuss below, the motion in any degree of freedom
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usually couples to a certain extent into the phase readout, an effect to which we refer

to as tilt-to-length (TTL) coupling. The TTL coupling is a considerable noise source

in high precision laser interferometry [1, 2, 3, 4, 5, 6, 7]. In LISA Pathfinder, TTL was

visible as a ‘bump’ in the noise spectrum at frequencies between 20 mHz to 200 mHz

[8, 4, 9, 10] and was reduced by realignment and subtraction in data post-processing [11].

In the second generation Gravity Recovery And Climate Experiment (GRACE Follow-

On) [12, 13, 5], TTL coupling was considered as one of the highest noise contributors

after laser frequency noise in the Laser Ranging Interferometer (LRI). In flight, the

TTL noise was then shown to lie within the requirements [5]. Furthermore, TTL

coupling is of particular interest in the future space gravitational wave detector LISA

[14, 15, 16, 17, 6, 7] where it is one of the most significant noise sources, and a variety of

measures are being taken to suppress it optimally. Also, in other space gravitation wave

detectors like Taiji and TianQin [18, 19, 20, 21], TTL coupling will be a considerable

noise source.

Within this paper, we systematically investigate a variety of TTL coupling

mechanisms. We thereby focus on phase changes originating from alterations in the

optical path length (OPL) of a laser beam, i.e. geometric effects. These geometric TTL

effects are categorised, described analytically and then classified as first- or second-order

effects. Besides the geometric TTL, there exists non-geometric TTL, i.e. phase changes

in the interferometric readout due to variations in orthogonal degrees of freedom for

which the OPL does not change. Non-geometric effects originate from wavefront and

detector properties and can be described analytically only in special cases. In this

work, we will demonstrate the relevance of these effects and describe how the full signal

computes on an example. We will discuss these non-geometric TTL effects in detail in

a follow-up paper [22] but discuss here how the knowledge of the geometric TTL can be

used to mitigate also non-geometric TTL effects. The concepts discussed throughout

this paper are fundamental and therefore independent of the application. They can be

used in any laboratory experiment as well as in preparation for space missions such as

LISA.

We introduce in Sec. 2 the different systems we consider and how angular and lateral

jitter cause OPL changes. In Sec. 3 we categorise and model the various geometric TTL

effects and reduce the equation for typical applications to first or second-order effects.

In Sec. 4 we show exemplary systems, where a geometric TTL description is insufficient

and fails to describe the interferometric phase readout. We summarise all effects in

Sec. 5, list them for a typical special case and discuss how well-understood effects can

be used to reduce the total TTL within a system. Finally, we give a conclusion in Sec. 6.

2. TTL in different systems due to angular and lateral jitter

Tilt-to-length coupling can occur in any type of interferometer. Only for initial

illustration purposes, we assume a Michelson interferometer as depicted in Fig. 1.

Here, the incident laser beam is split into two arms, which we call here a reference
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Figure 1. Michelson interferometer to illustrate angular cross-coupling – the

measurement beam is reflected from a tilting mirror, while the reference beam does

not change. This results in a misalignment of the two beams and a phase change of

the measurement beam when impinging on the detector.

arm and a measurement arm. The reference beam, depicted in blue, reflects from a

hypothetically perfectly aligned plane mirror, transmits through the beam splitter and

impinges orthogonally and centred on a photodetector. The measurement beam reflects

on a tiltable mirror, reflects then from the beam splitter and impinges at arbitrary angles

and possibly off-centred on the detector. This image is, however, more complex than

needed for simulations. In particular, for describing geometric effects, we can reduce the

image to only the tiltable mirror and the photodiode, and even suppress the reference

beam since it is constant. The result, including a description of the alignment parameters

and the occurring TTL effects, is depicted in Fig. 2. There the beam nominally impinges

on the mirror with angle β at point P1, is reflected and hits the photodiode at PPD,0.

We thereby assume −90◦ < β < 90◦ to ensure that the beam impinges on the mirror’s

front surface. If the mirror then rotates by an angle ϕ around an arbitrary centre of

rotation, the beam is reflected instead at point P2 and hits the photodiode at PPD.

This alternative beam path has a different path length than in the nominal case, which

means the OPL is angle-dependent. We, therefore, expect that any angular jitter of

the mirror would result in phase noise. This type of effect is the most obvious TTL

contribution: geometric TTL coupling due to angular jitter of a component resulting in

OPL variations.

Also, static mirror tilts can result in OPL changes if the mirror jitters laterally, as

illustrated in Fig. 3. This effect is strongly related to the angular jitter case, as described

in Sec. 3.1 below, such that we also categorise this effect as TTL.
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Figure 2. Geometrical cross-coupling splitting into a ‘lever arm effect’ and ‘piston

effect’. Tilting the mirror yields path length changes due to the rotation of the beams

propagation axis (lever arm, path from P4 to PPD,1) and the displacement of the

reflecting surface (piston, path from P2 to P1 to P3). Thereby, dlong and dlat define

the longitudinal and lateral distance between the point of reflection and the centre

of rotation. Both are positive here. Mirroring them around the nominal mirror

surface (dlong) or orthogonal axis (dlat) respectively, switches their sign and inverts

the corresponding TTL effect. Arrows pointing clockwise indicate negative angles.

One alternative mechanism of TTL coupling is that not a reflecting surface is rotating,

but instead, the receiving system rotates. This can happen, for instance, when a beam

propagates from one optical bench to another, and the entire receiving bench rotates

or is subject to angular jitter. In space interferometry, this occurs when the receiving

spacecraft rotates relative to the incident wavefront (e.g. in the gravity recovery mission
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Figure 3. Sensing cross-talk due to lateral jitter of a mirror. Left: For a perfect

mirror (no surface roughness or defects), the shown mirror motion does not affect the

beam path, and there is no cross-talk. Right: The lateral jitter of the tilted mirror

alters the beam path, resulting in a path length change. The same principle applies to

a tilted receiving system and laterally jittering detector surface.

GRACE Follow-On, or in space gravitational wave detectors such as LISA, Taiji or

TianQin). This scenario is depicted in Fig. 4. We see that a rotation of the system

can move the photodiode position with respect to the beam and therefore change the

beam’s OPL. Like in the case of a reflection from a tilted mirror (see. Fig. 3), lateral

jitter can cause additional TTL coupling even if the angle indicated in Fig. 4 is static.

We will quantify and describe the different kinds of TTL effects below.

x

Figure 4. Geometrical cross-coupling due to angular jitter of the receiving system

(grey open box) with respect to the incoming beam (red trace). In the untilted case,

the beam originating from point P0 hits the detector in point P1. When the receiver

rotates by the angle ϕRS, the beam hits the detector in point P2 instead. The distances

dlong and dlat define the longitudinal and lateral distances between the nominal point

of incidence P1 and the centre of rotation. Both are positive in this figure. Switching

their signs, i.e. placing the centre of rotation behind the photodiode (dlong < 0) and

below the beam axis (dlat < 0), switches also the sign of the path length changes.
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3. Geometric TTL coupling effects

Geometric TTL coupling describes the path length changes of the beams as depicted

in Fig. 2 and 4. In both figures, the nominal beam propagates from point P0 to point

P1, where it hits a non-tilted surface. In Fig. 2, the beam gets further reflected and

propagates to point PPD,0 on the detector surface. In both cases, this nominal path

serves us as a reference. We compare the optical path lengths (OPL) of this reference

case with the optical path length the beam accumulates in the case of a tilted mirror

or setup, respectively. We can then define the optical path length difference (OPD)

as the magnitude of the change computed by the difference of the OPL in the tilted

and the nominal case. We will derive the OPD for the case of a rotating mirror in

Sec. 3.1 and describe the other case of the rotating setup in Sec. 3.2. Furthermore, we

will extend our analysis to a broader set of cases in Sec. 3.4, e.g. we will investigate

OPDs due to transmissive components along the beam path, additional misalignments

and three-dimensional cases. Additionally, we discuss there the relation between the

case of a rotating reflecting surface and a rotating receiving system.

3.1. Geometric TTL coupling effects for a reflection at a mirror

We consider first the setup depicted in Fig 2. Let us first assume that the mirror rotates

by an angle ϕ around the reflection point P1. The beam will then follow the dashed

path and hit the photodiode at PPD,1 instead. In comparison to the reference path, the

beam propagates now an additional distance given by the geometrical distance between

the points P4 and PPD,1. We call this geometric effect the lever arm effect.

If the mirror does not rotate around the reflection point, but around an arbitrary centre

of rotation that differs from the reflection point longitudinally by dlong and laterally by

dlat, the beam reflects instead at point P2 and hits the photodiode at PPD. In this case,

the distance between the points P3 and PPD,1 is identical to the distance between P2

and PPD. Therefore, the only additional path length change is given by the distances

between P2, P1 and P3. We define this additional path length change due to an arbitrary

centre of rotation as piston effect, since the reflecting surface moves in and out of the

beam like a piston.

By assigning a position vector ~pi to each point Pi, we can express the beams

accumulated optical path length between its defined origin P0 and the incidence point

PPD,0 on the photodiode as

OPL(ϕ = 0) = |~p1 − ~p0|+ |~pPD,0 − ~p1| , (1)

likewise the OPL in the rotated case can be expressed by

OPL(ϕ) = |~p2 − ~p0|+ |~pPD − ~p2| . (2)

While Eq. (2) is naturally valid for all angles ϕ including zero, we deliberately define

here Eq. (1) independently for a clearer description of the equations below.
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We are now interested in the optical path length change due to the rotation, so we

compute the optical path length difference (OPD):

OPD = OPL(ϕ)−OPL(ϕ = 0) . (3)

From Fig. 2 we can see that the OPD is the sum of the lever arm and piston effect and

naturally independent of the choice of the starting point P0:

OPD = (|~pPD,1 − ~p4|) + (|~p2 − ~p1|+ |~p3 − ~p1|) (4)

=: OPDlever + OPDpiston . (5)

We use the fact that the distance between P1 and PPD,0 is identical to the distance

between P1 and P4, and find

OPDlever = |~pPD,1 − ~p1| − |~pPD,0 − ~p1| (6)

OPD2D
lever = dlever [sec(2ϕ− ϕPD) cos(ϕPD)− 1] . (7)

For the piston effect, only absolute length changes are described by Eq. (5), however,

the path length can increase or decrease in comparison to the non tilted case ϕ = 0. If

we account for this sign, we find:

OPD2D
piston = 2 sec(2ϕ− ϕPD) cos(β + ϕ− ϕPD)

· {−dlat sin(ϕ) + dlong [1− cos(ϕ)]} . (8)

Here, dlong and dlat are displacements of the centre of rotation from the nominal reflection

point P1 in longitudinal (i.e. here orthogonal to the reflecting surface) and lateral

direction (here parallel to the reflecting surface). As before, dlong is defined to be positive

if the incoming beam passes the centre of rotation first and negative otherwise. Further,

dlat is positive if the beam passes this centre to the left. Given the setup of Fig. 2,

both distances are positive. We assume that the interferometer is set to measure mirror

displacements in the longitudinal direction, while motion in the lateral direction or

angular jitter are by definition cross-talk - and we will focus only on this cross-talk.

So far, we have defined variables without time dependency, but have implicitly

assumed that ϕ = ϕ(t) (i.e. the mirror performs angular jitter), while there is no lateral

motion (i.e. dlat = const.). Likewise, we could assume that the mirror jitters in lateral

direction such that dlat = dlat(t). In the latter case, the piston effect describes now

lateral jitter coupling. Since the very same equation for the piston effect is being used

and only interpreted differently, we do categorize lateral jitter coupling as a TTL effect.

This is particularly visible in Fig. 3 and also Eq. (8). If the mirror was ideally aligned

(ϕ = 0), the lateral jitter would not couple.

Equations (7) and (8) are valid both for small and large angles ϕ. In our typical

applications, we have a very small angular jitter, and the system is also well aligned. A

Taylor series to second-order around zero is therefore useful for many applications:

OPD2D
lever ≈ 2dlever

[
ϕ2 − ϕϕPD

]
(9)

OPD2D
piston ≈ −2dlat [cos(β) + ϕPD sin(β)]ϕ

+ [2dlat sin(β) + dlong cos(β)]ϕ2 . (10)
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Especially for the case of normal incidence or nearly normal incidence (β u 0, ϕPD u 0),

the equations reduce to

OPD2D
lever ≈ 2dleverϕ

2 (11)

OPD2D
piston ≈ −2dlatϕ+ dlongϕ

2 . (12)

In this special case, we find that the lever arm effect is purely second-order, while the

piston effect splits into a first-order due to the lateral displacement and a second-order

due to the longitudinal displacement of the component’s centre of rotation with respect

to the beam reflection point on the component.

This finding is of particular relevance for suppressing TTL in typical optical setups:

Since these two geometric effects are known and well understood as described above,

they can be used to counteract any unknown TTL effect, originating, for instance, from

the non-geometric coupling. We will further discuss this in Sec. 5.

3.2. Geometric TTL coupling effects for rotating systems

Let us now assume a case of a freely propagating laser beam that is perfectly stable

and does not jitter in any degree of freedom. This beam is then incident on a jittering

receiving system, e.g. an optical table in a laboratory setup or a remote satellite in a

space mission like GRACE-FO, LISA, Taiji or TianQin. We now assume the receiving

system (i.e. optical bench or satellite) to jitter relative to the incident beam. In this case,

the reference beam as well as all other possibly existent components such as mirrors,

beamsplitters and photodiodes move perfectly synchronously, such that the OPL of the

reference beam is constant. However, the photodiode then moves in and out of the

received beam, as indicated in Fig. 4, resulting in an OPL change, and therefore a

geometric TTL coupling.

The geometric TTL coupling can easily be calculated by comparing the path lengths

of the beam for the non-rotated and the rotated case. While the OPL for the nominal,

non-rotated case is given by

OPLRS(ϕRS = 0) = |~p1 − ~p0| , (13)

the OPL for the rotated case, i.e. ϕRS 6= 0, is in Fig. 4 shorter, namely

OPLRS(ϕRS = 0) = |~p2 − ~p0| . (14)

The OPD is then given by the difference between the rotated and the non-rotated case,

i.e.

OPDRS = |~p2 − ~p0| − |~p1 − ~p0| . (15)

This OPD can be described analytically by the rotation angle ϕRS, and the distance

between the point of detection and the centre of rotation. The absolute longitudinal

difference, dlong, is in this paper defined by the distance between both points parallel to

the nominal beam propagation axis. Meanwhile, the sign of dlong is positive if the centre

of rotation lies before the point of detection and negative otherwise. Analogously, the
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absolute lateral difference, dlat, is given by the distance between both points along the

axis orthogonal to the beam propagation axis. We define dlat to be positive if the beam

“sees” it at the right-hand side and negative otherwise, e.g. like in the case depicted in

Fig. 4. With this, the OPD is given by

OPD2D
RS = sec(ϕRS) {−dlat sin(ϕRS) + dlong [1− cos(ϕRS)]} , (16)

or, allowing the photodiode to be tilted by an angle ϕPD like in the case of a rotating

mirror (compare Fig. 2), we have

OPD2D
RS = −dlat sec(ϕPD) sec(ϕRS + ϕPD) sin(ϕRS)

+ dlong [cos(ϕPD) sec(ϕRS + ϕPD)− 1]} . (17)

Assuming small rotation angles ϕRS, we can Taylor expand this equation and find

OPD2D
RS ≈ −dlat ϕRS + dlong ϕ

2
RS/2 (18)

or, having a tilted photodiode,

OPD2D
RS ≈ −dlat ϕRS + dlong

(
ϕ2
RS/2 + ϕRSϕPD

)
. (19)

Hence, the lateral distance between the beam axis and the centre of rotation makes a

linear TTL coupling and the longitudinal distance adds a second-order coupling term.

This means that particularly lateral displacements between the centre of rotation and

the beam axis should be avoided. Ideally, the centre of rotation should lie in the

measurement beam incidence point on the photodiode. In that case, the geometric

TTL described here would vanish entirely.

The equations presented for the receiving system have so far been derived for

angular jitter coupling, only. Contrary to the setup with a jittering mirror, lateral jitter

does not couple into the geometric length readout in the receiver case. This is due to the

definition of the lateral jitter axis, which is an axis fixed to the receiving system. In Fig. 4

it is parallel to the detector surface. Thus, the measurement beam would walk along

the detector surface, but its length would stay unchanged. However, if the photodiode

happens to be misaligned by an angle ϕPD with respect to the receiver coordinate system,

we find for lateral receiving system jitter yRS also linear TTL coupling:

OPD2D
RS = yRS

sin(ϕPD)

cos(ϕRS + ϕPD)
(20)

≈ yRS ϕPD . (21)

3.3. Comparison of mirror and system rotation

We now want to compare the geometric TTL coupling in the case of a mirror rotation

featuring a beam of normal incidence at the mirror (Eq. (12)) with the case of a system

rotation (Eq. (18)). The two equations are identical, except for a factor of two. This

is not surprising since in the first case, the rotation of the system effectively causes the

detector surface to move into (or out of) the beam, while in the system rotation case,

the mirror surface moves into (or out of) the beam in the very same way. The factor
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of two is then coming from the fact that the mirror surface reflects the beam, such that

the beam propagates the shortened (or additional) length twice. However, in the case of

the system rotation, the detector absorbs the beam, such that the path length change

is not doubled.

3.4. Extension for broader set of applications

We will now extend the geometric TTL equations introduced above for a wider set of

applications. We will start with the effect of plane-parallel transmissive components

along the beam path in Sec. 3.4.1. Then, we discuss in Sec. 3.4.2 how the equations

need to be adapted if the setup is located in a medium other than vacuum. In Sec. 3.4.3

we describe the effect of initial misalignment and then discuss in Sec. 3.4.4 the relevance

of the photodiode angle ϕPD. Finally, in Sec. 3.4.5 we extend the equations for jitter in

three-dimensional space.

3.4.1. Additional plane-parallel transmissive components For a more complete theory,

we introduce transmissive optical components (tc) with plane-parallel surfaces, e.g.

optical windows, beam splitters or beam combiners, as shown in Fig. 5. For receiver

jitter, we generally need to consider all components along the beam path. However, in

the case of reflection at a jittering mirror, we can ignore all transmissive and reflective

components prior to the mirror because these change only the initial conditions (i.e.

incidence angle β and incidence point P2) of the reference case. Their effect can therefore

be accounted for by a simple adjustment of the parameters β and dlat, which does not

need to be particularly modelled. On the contrary, components along the beam path

after the reflection from the jittering mirror directly affect the TTL coupling.

For all considered components, we assume a thickness tBS,i, a refractive index nBS,i

and that their surface normal in a two-dimensional setup is rotated by an angle ϕBS,i

against the beam direction of the initial beam. Hence, the beams hit the transmissive

component under an angle ϕBS−ϕm, where ϕm defines the orientation of the beam, i.e.

ϕm → 2ϕ in the case of a mirror rotation and ϕm → −ϕRS in the case of a rotating

system. While the beam travels with the speed of light through vacuum, it slows down

when entering the component i. Thus its path length within the component scales with

nBS,i and seen by the photodiode the point of reflection seems to be further away.

Additional to the path length scaling, the direction of the beam changes when it

enters a component as shown in Fig. 5. The new beam direction relative to the surface

normal vector of the component i is given by the angle of refraction

ψBS = arcsin

(
sin(ϕBS,i − ϕm)

nBS,i

)
. (22)

When leaving the component, the beam continues propagating in its original direction.

The additional optical path length by each transmissive component is then given by

OPLtc = nBS |~ptc1′ − ~ptc0|+ |~ptc2′ − ~ptc1′| − |~ptc1 − ~ptc0| , (23)
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Figure 5. Optical path length changes due to a transmissive optical component:

Instead of propagating the distance |~ptc1 − ~ptc0| through vacuum (dashed path) the

beam propagates from Ptc0 to Ptc1′ through the medium of the component and

additionally from Ptc1′ to Ptc2′ through vacuum (solid path). The beam direction

within the medium is defined by the angle ψBS = arcsin(sin(ϕBS,i−ϕm)/nBS,i), where

ϕBS defines the alignment of the component with respect to the nominal beam and

ϕm the additional tilt of the beam, i.e. ϕm → 2ϕ in the case of a mirror rotation and

ϕm → −ϕRS in the case of a rotating receiver.

which is the new path length inside the respective component |~ptc1′ − ~ptc0| scaled with

its refractive index nBS plus the distance between the point Ptc1′ where the beam leaves

the component and the intersection point Ptc2′ between the new beam path and the

line parallel to the detector (which also intersect with the original exit point Ptc1), i.e.

|~ptc2′ − ~ptc1′ |. From that we have to subtract the original path length |~ptc1 − ~ptc0|. We

can evaluate Eq. (23) for N transmissive components

OPL2D
tc =

N∑
i=1

nBS,i |~ptc1′,i − ~ptc0,i| − |~ptc1,i − ~ptc0,i|+ |~ptc2′,i − ~ptc1′,i| (24)

=
N∑
i=1

tBS,i

{
n2
BS,i

[
n2
BS,i − sin2(ϕm − ϕBS,i)

]−1/2 − sec(ϕm − ϕBS,i)

+ sin(ϕBS,i − ϕPD) sec(ϕm − ϕPD)

·
[

sin(ϕm − ϕBS,i)
[
n2
BS,i − sin2(ϕm − ϕBS,i)

]−1/2
− tan(ϕm − ϕBS,i)

]}
(25)

OPD2D
tc ≈

N∑
i=1

tBS,i

2

{
n2
BS,i cos2(ϕBS,i)

[
(n2

BS,i − sin2(ϕBS,i)
]−3/2

− sin2(ϕBS,i)
[
n2
BS,i − sin2(ϕBS,i)

]−1/2
− cos(ϕBS,i)

}(
ϕ2
m − 2ϕm ϕPD

)
. (26)

According to Eq. (26) the optical cross-talk due to transmissive components is a second-
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order effect. For a few thin components and rather small angles ϕBS,i we find it to be

smaller than the lever arm effect. Nevertheless, it should not be neglected when high

accuracy is required.

The geometric TTL effects described above and the OPL change due to transmissive

components, as it was defined in this section, are independent of one another. We,

therefore, get the full geometric coupling by adding OPDtc to the previously found TTL

effects, namely

OPDMRT = OPDlever + OPDpiston + OPDtc , (27)

OPDRST = OPDRS + OPDtc . (28)

3.4.2. Experiments in air or other surrounding medium The above equations of the

lever arm and piston effect, OPLlever and OPLpiston, as well as the analytic description

for rotating systems, describe the changes in the OPL while assuming that the beams

propagate through vacuum. If this is not the case, we need to multiply all found OPLs in

Sec. 3.2 and Sec. 3.1 by the medium’s refractive index n. For transmissive components,

we replace nBS,i in equations (25) and (26) by nBS,i/n and multiply the full path length

change by n. This additional factor originates from the lower speed of light in a medium

than in a vacuum resulting in an increase of the light travelling time in the medium,

which then results in the larger phase change. Therefore, the beam paths appear longer

when detected at the photodiode unless it is accounted for by a dedicated setting or

calibration of the phasemeter.

3.4.3. Additional misalignment In sections 3.1 and 3.4.1 we compared the initial beam

path length with the path length of a beam that got reflected at a misaligned mirror.

In experiments, we often face the case that the mirror Mtilt is nominally misaligned

and we are interested in path length changes to this nominal case. This can be easily

implemented into our formulas by substituting ϕ→ ϕ′ + ϕ0 and dlat → d′lat + y0, where

ϕ0 denotes the nominal tilt and y0 the nominal lateral shift of the mirror. All OPDs are

then defined as the difference of the OPL for an arbitrary angle ϕ′ minus the OPL at a

nominal angle, i.e. at ϕ′ = 0:

OPD = OPL(ϕ′)−OPL(ϕ′ = 0) . (29)

Angular misalignment can likewise happen in the case of a rotating system (see Sec. 3.2).

Due to experimental tolerances, the system is likely slightly misaligned with respect to

the incoming beam. The equations in Sec. 3.2 can then be adapted analogously.

3.4.4. Relevance of the photodiode angle The OPD depends on the photodiode angle

via

OPDMRT(ϕPD)−OPDMRT(ϕPD = 0)

=

{ N∑
i=1

tBS,i

{
n2
BS,i cos2(ϕBS,i)

[
(n2

BS,i − sin2(ϕBS,i)
]−3/2
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− sin2(ϕBS,i)
[
n2
BS,i − sin2(ϕBS,i)

]−1/2 − cos(ϕBS,i)
}

+ dlever + dlat sin(β)

}
(−2ϕϕPD) , (30)

OPDRST(ϕPD)−OPDRST(ϕPD = 0)

=

{ N∑
i=1

tBS,i

{
n2
BS,i cos2(ϕBS,i)

[
(n2

BS,i − sin2(ϕBS,i)
]−3/2

− sin2(ϕBS,i)
[
n2
BS,i − sin2(ϕBS,i)

]−1/2 − cos(ϕBS,i)
}

+ dlong

}
(ϕRS ϕPD) . (31)

This is natural due to the geometric nature of the OPD. However, the tilt of the

detector affects how the wavefronts of both beams, the measurement and reference

beam, are being detected. We will, therefore, show in [22] that the non-geometric

effects contribute further terms that cancel the detector orientation from the total

interferometric readout. All terms containing ϕPD should therefore be handled with

care: they do exist in the OPD but do not affect the total interferometric readout. It

can, therefore, be an advantage to neglect the photodiode angle ϕPD=0 in simulations,

even in cases where the corresponding experiment comprises large angles.

3.4.5. Three-dimensional case So far, we only considered a two-dimensional setup,

which can then be applied in 3D setups for changes in a specific plane. If angular jitter

occurs in two orthogonal planes, one can simply add up the effect of the individual

planes, provided that we have beams with normal incidence and the jitter is small and

therefore describable by a first-order series expansion. If the jitter causing the TTL has

a larger amplitude, effects occurring in one plane also affect the orthogonal plane. This

can, for instance, be seen in the lever arm effect, see Eq. (10). There, a rotation in the

orthogonal plane would affect the length of the now three-dimensional lever arm dlever,

which results in a product term of the involved angles, i.e. ϕ · η.

As illustrated in Fig. 2 and Fig. 4, all equations given so far were describing motion

and alignment in the xy-plane. The angle ϕ (or ϕRS respectively) is, therefore, a yaw

angle originating from a rotation around the z-axis. The orthogonal pitch rotation η

(or ηRS) is then a rotation around the y-axis. The cross-coupling between yaw and

pitch makes the equations significantly more complex. We, therefore, series expand the

expressions for the 3D geometric effects to second-order and find:

OPD3D
lever = dlever

[
2 cos2(βz)(ϕ

2 − ϕϕPD) + 2 cos2(βy)(η
2 − ηηPD)

cos2(βy) + cos2(βz) sin2(βy)

+
sin(2βy) sin(2βz)ϕη

cos2(βy) + cos2(βz) sin2(βy)

]
(32)

OPD3D
piston = 2 (−dlat ϕ+ dvert η)

[
cos(βy) cos(βz)√

cos2(βy) + cos2(βz) sin2(βy)



Geometric tilt-to-length coupling in precision interferometry 14

− sin(βy) cos(βz)(ϕ− ϕPD) + sin(βz) cos(βy)(η − ηPD)√
cos2(βy) + cos2(βz) sin2(βy)

]

+ dlong
cos(βy) cos(βz) (ϕ2 + η2)√
cos2(βy) + cos2(βz) sin2(βy)

(33)

OPD3D
RS = −dlat ϕRS + dvert ηRS + dlong

(
ϕ2
RS + η2RS

2

)
, (34)

where βy, βz are the projection-angles of the incoming beam at the mirror into the xy-

and xz-plane, respectively. The different signs of the dlat- and dvert-terms arise from the

orientations of the pitch and yaw angles.

Photodiode tilts in the xz-plane are indicated by ηPD, and the vertical difference

between the point of incidence and the point of reflection is given by dvert. Naturally,

all three-dimensional equations reduce to their two-dimensional counterparts if the

parameters in the respective orthogonal plane are set to zero.

Another special case arises if the nominal beams hit the test mass orthogonally, i.e.

βy,z = 0. Here, all cross-plane couplings vanish and the resulting signal equals the sum

of the two two-dimensional equations applying the same assumption. We get

OPD3D
lever = dlever

[
2(ϕ2 − ϕϕPD) + 2(η2 − ηηPD)

]
(35)

OPD3D
piston = dlong

(
ϕ2 + η2

)
+ 2 (−dlat ϕ+ dvert η) (36)

Also, transmissive components affect the beam in all degrees of freedom. In a three-

dimensional setup, we can now additionally consider the components to be rotated in

yaw by ϕBS and in pitch by ηBS. Hence their 3D-equations become very long such

that we summarise here only the principle behaviour. In the case of normal incidence

(ϕBS = ηBS = 0), the transmissive components add a second-order effect. For non-

normal incidence, an additional linear effect occurs, see Fig. 6. This linear effect is

typically small, such that the second-order effects stay dominant.

4. Exemplary setups showing limitations of geometrical estimates

The cross-coupling mechanisms explained so far originate from variations of the beam

propagation axis that can be described geometrically. In order to treat these effects

as introduced in Sec. 3.1, we did assume that the laser beams are classical rays. This

assumption, however, is often insufficient since it neglects all wavefront properties. We

will show in the examples below that the expected TTL crosstalk can significantly

deviate from geometrically expected values if the laser light is instead described as

fundamental Gaussian mode.

4.1. Rotation around the centre of curvature

Assume the setup previously published in [23, 24] and illustrated in Fig. 7. There, we

consider two identical Gaussian beams, i.e. with the same intensity distribution and
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Figure 6. Optical path length difference of a beam, that got tilted in pitch (ηRS) and

yaw (ϕRS), passing a transmissive optical component. We set ttc = 10 mm, ntc = 2

and rotated the component with respect to the beam by ϕtc = 0.2π and ηtc = 0.13π.

While the second-order OPD is dominant, the color grid indicates, that the tilt of the

transmissive component also adds linear TTL coupling.

phase fronts. We rotate one of the beams (measurement beam) with respect to the

other around a pivot that has a longitudinal distance to the detector that is equal to the

radius of curvature of the wavefront on the detector. In this setup, a lever arm between

the point of rotation and detector should lead to significant cross-coupling. However, in

this scenario, a tilt of the measurement beam does not change the phase distribution on

the detector since the wavefront is mapped onto itself during the rotation. That means

only the intensity distribution on the detector plane changes during the rotation. If,

however, the reference wavefront curvature equals the measurement wavefront curvature,

then the phase difference is zero in every detector point such that zero TTL coupling

occurs despite the rotation of the beam axis.

To demonstrate that, in fact, no cross-coupling is present in this scenario, we

numerically compute the variations of the longitudinal pathlength sensing (LPS) signal,

i.e. the interferometric phase signal processed by the detector converted to units of

lengths. In the computation of this signal, not only the OPD but also wavefront and

detector properties are being considered (see [24] and [22] for details on the numerical

computation of this signal). This was done using the simulation tool IfoCAD [24, 25].
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Figure 7. A Gaussian beam is tilted around a pivot that coincides with the centre of

the wavefront curvature at the detector position. While the beam is tilted, the phase

distribution on the detector stays unchanged.
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Figure 8. Simulated path length signals (i.e. LPS and OPD) compared to the

expected analytic TTL coupling in the scenario shown in Fig. 7, i.e. the lever arm

coupling if the rotation is induced by a rotating test mass. Hence the beam angle ϕm

depends on the mirror tilt via ϕm = 2ϕ. The expected lever arm TTL coupling cannot

be observed in the simulation due to the special conditions of this scenario (rotation

without change of the wavefront). In this simulation, we assumed identical Gaussian

beams with a waist radius w0 =1 mm, distance from waist at detector z = zR, lever

arm dlever = 2zR, single element photodiode with radius 5 mm.
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Figure 9. Simulated path length signal compared to the expected lever arm TTL

coupling in the scenario with two equal Gaussian beams and a large single element

detector. The beam angle equals two times the mirror tilt. The TTL coupling vanishes

due to symmetric phase cancellations. The simulation parameters were: waist radius

w0 =1 mm, distance from waist at the detector z = 100 mm, lever arm dlever = 100 mm,

detector radius 100 mm.

The obtained LPS signal is shown in Fig. 8. We compare it with the numerically derived

OPD, which corresponds to the analytic expression of the lever arm cross-coupling

Eq. (7). Unlike the geometric description, the simulated LPS signal shows no cross-

coupling, just as expected, demonstrating that the pure geometric description of this

scenario is not sufficient. The resulting TTL coupling can only be correctly estimated

when non-geometric effects are considered as well.

4.2. Identical fundamental Gaussian beams with centre of rotation on the beam axis

The cross-coupling also vanishes for two identical Gaussian beams with one beam tilted

around a pivot that has now an arbitrary longitudinal but no lateral distance to the

detector. In this case, we discover a lever arm effect and not necessarily equal wave-

fronts. However, we find no cross-coupling as illustrated in Fig. 9 and introduced in

[26]. We conclude that a non-geometric cross-coupling mechanism caused by the tilt

dependent beam walk on the detector cancels the expected lever arm cross-coupling.

A general analytic description of the non-geometric effect is given in the next section.

Additionally, an intuitive approach to understand the cancellation is given in Appendix

A.
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5. Summary geometric TTL coupling and TTL mitigation strategies

In this paper, we have introduced different geometric TTL coupling effects and derived

equations that describe whether they add primarily linear, quadratic or mixed terms to

the OPD. All effects are summarized in Tab. 1 for convenience. Lateral jitter coupling

appears as a linear effect only in the case of mirror reflection:

OPD2D
piston,lat(dlat(t)) ≈ −2dlat(t)ϕ , (37)

OPD2D
RS,lat = 0 . (38)

For angular jitter TTL we have the following linear TTL effects:

OPD2D
piston,lat(ϕ(t)) ≈ −2dlat ϕ(t) , (39)

OPD2D
RS,lat(ϕRS(t)) ≈ −dlat ϕRS(t) , (40)

which are caused by lateral displacements of the centre of rotation with respect to the

principle beam axis. Second-order TTL effects are:

OPD2D
lever ≈ 2dlever ϕ

2 , (41)

OPD2D
piston,long ≈ dlong ϕ

2 , (42)

OPD2D
RS,long ≈ 1

2
dlong ϕ

2
RS , (43)

which all originate from longitudinal displacements of the centre of rotation with

respect to either the beam incidence point on the reflecting component (dlong), or

the photodiode (dlong, dlever). An additional second-order TTL effect is caused by

transmissive components:

OPD2D
tc ≈

N∑
i=1

tBS,i

2

{
n2
BS,i cos2(ϕBS,i)

[
(n2

BS,i − sin2(ϕBS,i)
]−3/2

− sin2(ϕBS,i)
[
n2
BS,i − sin2(ϕBS,i)

]−1/2
− cos(ϕBS,i)

}
ϕ2
m , (44)

with ϕm = 2ϕ for components between the mirror and the detector and ϕm = −ϕRS

for components along the beam path inside a receiving system with angular jitter. The

knowledge about these first- and second-order couplings can be used to mitigate the

geometric effects by smart design choices, for instance, by aligning the beam axis to the

centre of rotation (dlat = 0) or by imaging the centre of rotation to the photodiode centre,

resulting in dlong = dlever = 0. Lateral jitter coupling is minimized in the case of a mirror

reflection by an angular adjustment to make ϕ = 0. Moreover, the given equations can

be used to counteract other TTL effects, i.e. the non-geometric TTL effects, which we

will introduce in our follow-up paper [22], that are more difficult to describe or mitigate.

In that case, the total TTL of the system is measured, i.e. the sum of all geometric

and non-geometric effects. The total linear effects can then be minimized by adjusting

either of the lateral alignment parameters, for instance, by adjusting the beam axis.

The sum of all second-order effects is in the next step minimized by adjusting either of
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Table 1. Overview of the different geometric cross coupling mechanisms for a beam

with normal incidence and no photodiode tilt, i.e. β = ϕPD = 0. For each effect we give

a short description and the general behaviour (approximated), like linear, quadratic or

mixed with respect to the tilt angle.

Cross coupling

mechanism

Name General

behaviour

Eq. Sec. Description

la
te

ra
l piston effect OPDpiston linear (37) 3.1 If the mirror is initially rotated, further

lateral shifts generate TTL coupling.

receiver jitter OPDRS zero (38) 3.2 Lateral jitter of the receiver does not

cause geometric TTL coupling.

an
gu

la
r

lever arm

effect

OPDlever quadratic (41) 3.1 Longitudinal offsets between rotation

point and detector lead to variations

in the propagation distance to the

detector.

piston effect OPDpiston 3.1 Offsets between the points of rotation

and reflection at a component’s surface

generate movement of this surface.
− longitudinal quadratic (42)

− lateral linear (39)

setup jitter OPDRS 3.2 Offsets between the points of rotation

and detection generate movement of the

detector surface relative to the beam

axis.

− longit. CoR quadratic (43)

− lateral CoR linear (40)

transmissive

components

OPDtc quadratic (44) 3.4.1 Transmissive optical components be-

tween the mirror and the detector in-

duce a variation of the beams’ optical

path length and a beam displacement

on the detectors surface.

the longitudinal parameters, for instance, by displacing the photodiode longitudinally.

Such mitigation was experimentally used, for instance, in [1, 27].

6. Conclusion

Within this paper, we have discussed how and why angular and lateral jitter causes

phase noise in laser interferometers. This tilt-to-length (TTL) noise can often be

characterized by changes in the optical path length of a beam. These changes can be fully

characterized by geometric effects except for the naturally necessary scaling by refractive

indices. Within this paper, we have focused on these geometric TTL effects. We have

categorized different coupling mechanisms and analytically derived their contribution to

the interferometric path length signal from trigonometric relationships.

We have introduced TTL coupling noise for two different cases: jitter of a mirror

within the interferometer and jitter of the receiving system. Though the described effects

are independent of the context, they apply, for instance, for the LISA mission and other
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space interferometers. In that context, mirror jitter corresponds to the case observed in

test mass interferometers, while receiver jitter corresponds to long arm interferometers

and effectively describes satellite jitter relative to the received wavefront.

Besides the geometric TTL contributions, there exists non-geometric TTL coupling

originating from the wavefront properties of the interfering beams as well as from

detector characteristics. We have presented two examples demonstrating the relevance

of the non-geometric TTL contributions. However, these non-geometric effects are

significantly harder to describe than their geometric counterparts and are the subject

of a follow-up paper [22].

The TTL coupling within a system will always be the sum of all present non-

geometric and geometric TTL contributions. Nevertheless, knowing the properties of

the geometric TTL contributions alone can still help suppress TTL noise in precision

laser interferometers in two different ways.

On the one hand, the geometric effects can a priori be suppressed by smart design

choices. For the suppression of angular jitter coupling, it is, for instance, advisable

to particularly match the lateral position of the centre of rotation and the reflection

point on the jittering mirror (or test mass) with high precision because the residual

offset causes a linear effect (Eq. (39)). Using imaging optics as described in [1, 27]

can significantly reduce the TTL coupling. Such imaging systems image the centre of

rotation to the photodiode centre, which results in dlever = dlong = 0 and minimize the

lever arm effect (Eq. (41) or Eq. (43), respectively). Also, the TTL from lateral jitter

can be reduced by respective design choices. Here, angular misalignments of the mirror

need to be minimized (Eq. (37). Therefore, the effects described here allow for a TTL

suppression by smartly designing the interferometric layout.

On the other hand, the known geometrical TTL mechanism can be used to

counteract the measured TTL noise in an experiment. From experimental data, one

cannot necessarily tell apart the geometric and non-geometric effects. Instead, the total

TTL noise is being measured. In some cases, one can then use Tab. 1 to counteract

the total measured TTL. For instance, one can laterally adjust the reflection point on

the jittering mirror to balance the sum of all existent first-order effects. This could

potentially mean that the lateral piston is then intentionally being increased. Likewise,

if the sum of all second-order effects is sufficiently small and if space in the experimental

layout permits, one can, for instance, shift the detector longitudinally (altering the

magnitude of the lever arm effect) in order to minimize the observed second-order TTL

noise.

In summary, we have introduced and analytically described a variety of geometric

TTL coupling effects. These can add significant noise to the signal of laser

interferometers. The mechanisms described here allow the suppression of TTL noise

by a dedicated design optimization, as well as in the experimental setup by a dedicated

realignment to counteract the observed TTL noise.
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Appendix A. Signal cancellation for two identical Gaussian beams

In Sec 4.2, we have shown a case where the total interferometric longitudinal pathlength

sensing (LPS) signal vanishes despite a considerable OPD response. This setup consisted

of two identical Gaussian beams, with one rotating around a pivot located at an arbitrary

point along the beam axis and a large single element photodiode that detects both

incident beams without clipping. In this section, we show in a small angle approximation

that this LPS signal vanishes due to the symmetry of the interfering wavefronts on the

detector surface. We do this in two steps: In Appendix A.1, we show the symmetry of

the amplitude profile of the interference pattern, in Appendix A.2 the symmetry of the

phase difference of the interfering beams. We thereby show that for every point P1 on

the detector, there exists a point P2 which is found by mirroring P1 on the symmetry

plane. In P2, the interference pattern has the same amplitude as in P1, but an inverse

phase. The LPS signal then vanishes because it is a signal that is integrated over all

detector points.

Appendix A.1. Symmetry of the amplitude profile

In the considered setup, we rotate the measurement beam around a point along its

propagation axis, while the reference beam is not tilted (ϕr = 0). Let the distance

between the point of rotation and the point of incidence, i.e. the point where the ray

describing the beam axis impinges on the detector, be given by dlever. For dlever 6= 0, the

point of incidence gets shifted along the photodiode surface when rotating the beam by

ϕm. Thus the measurement beam’s new point of incidence varies by

xim ≈ −dlever ϕm , (A.1)
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while the reference beam stays constant (xir = 0). The amplitude profile of the

interference pattern A(x, y), defined according to [28] by

A(x, y) =
1

w(zm)w(zr)
exp

(
−r2m(x, y)

w2(zm)

)
exp

(
−r2r(x, y)

w2(zr)

)
, (A.2)

is then symmetric to the plane defined by x = xc. Here, w(zm,r) defines the spot radius of

the measurement and reference beam on the detector surface, and rm,r is the cylindrical

coordinate of the respective beam. Furthermore, xc is the mean value between the

x-coordinates of the two incidence points

xc =
xim − xir

2
≈ −1

2
dlever ϕm . (A.3)

The cylindrical coordinates of the beams when impinging on the detector are given by

r2m = (x− xim)2 cos2(ϕm) + y2 , (A.4)

r2r = x2 + y2 . (A.5)

The coordinate transformation, performed here on the x and y coordinates, naturally

also needs to be performed on the z-coordinate [28], resulting in

zm ≈ z +
1

2
dleverϕ

2
m − (x− xim)ϕm (A.6)

zr = z = const . (A.7)

Substituting accordingly zm,r, rm,r in Eq. (A.2) reveals the symmetry:

A(−1

2
dlever + x, y) = A(−1

2
dlever − x, y) . (A.8)

Appendix A.2. Symmetry of the phase difference and cancellation on the detector

Next, we examine the local phase differences. We will show that this phase difference

is zero at the centre between the points of incidence, while its absolute value increases

and decreases symmetrically with increasing distance from this point. Since the phase

relates to a length l via φ = 2π l/λ, where λ is the wavelength of the beam, we can

analogously investigate length changes here. Therefore, we study the beams’ properties

and geometric relationships further. For simplicity, we can reduce our analysis to the

plane in which the rotation of the measurement beam gets applied. The phase differences

in an orthogonal plane, i.e. for a constant x-value, are in a small angle approximation

constant. First, we investigate the Gaussian beam properties. We know that Gaussian

beams provide the same phase along their wavefronts. For our analysis, we propagate

the beams until their wavefronts hit the point of interest P at the detector, see Fig. A1.

The beams have then propagated a distance dm,r. We compare this distance with the

lever arm dlever, which is the distance the beam axis propagates from the CoR to the

diode if ϕm = 0. We can then show the symmetry of the wavefront using the difference

dm,r − dlever = δm,r. This distance δm,r can also be expressed as function of the radii of

curvature Rm,r and the auxiliary lengths εm,r:

δm,r = Rm,r + εm,r − dlever , (A.9)
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Figure A1. Properties of a tilted measurement and a non-tilted reference beam

whose wavefronts are intersecting a point P at the detector surface. The paths of the

beam rays are described by the solid grey lines. The measurement beam got rotated by

an angle ϕm (negative in this figure) around the centre of rotation (CoR). Left figure:

The beams propagate the distances dm,r from the CoR until their wavefronts hit the

point P . This distance differs from the dlever, i.e. the distance between the CoR and

the detector, by δm,r. Right figure: The propagation distance of the beams can also be

defined via their radii of curvature Rm,r. We additionally define the auxiliary lengths

εm,r as the distances between the CoR and the beam’s centres of wavefront curvature

(CoCm,r). If Rm,r are greater than dlever, the lengths εm,r are negative. For every

investigated point P , there can be found an angle ψ defining its position in relation to

the reference beam axis.

as visible in Fig. A1. We will therefore derive expressions for these quantities (Rm,r and

εm,r) in the following.

The radii of curvature are defined via

Rm,r = zm,r

(
1 +

(
z0
zm,r

)2
)
, (A.10)

where z0 denotes the Rayleigh range. The distances from the waists (zm,r) can be related

to δm,r via

zm,r = z + δm,r , (A.11)

where z is the distance from waist in the nominal non-tilted case, defined for the point

of incidence at the detector. We can now substitute zm,r in Eq. (A.10). Using that

δm,r � 1 holds for the typical cases of interest, the radii of curvature can be series

expanded to

Rm,r ≈ R + δm,r

(
2− R

z

)
. (A.12)
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Figure A2. Investigation of the two beams’ local phase differences in the two points

P1 (left figure) and P2 (right figure). In both figures, the beam rays are shown as solid

grey lines, where the non-tilted right line belongs to the reference and the left line

belongs to the measurements beam. P1 and P2 lie symmetrically around the centre

between the beams’ points of incidence. The points are defined via an angle ψ with

respect to the beams’ axes. The respective radii of curvature are denoted with Ri;m,r

and likewise the auxiliary lengths are tagged εi;m,r.

 

Figure A3. Investigation of the two beams’ local phase differences in the centre

between their points of incidence, i.e. for x = xc. The measurement (red) and the

reference beam (blue) are symmetric with respect to the bisecting line from the centre

of rotation to xc. Therefore, it is Rm = Rr and εm = εr.
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Here,

R = z

(
1 +

(z0
z

)2)
(A.13)

is the radius of curvature at the point of incidence of a non-tilted beam.

In the next step, we define the auxiliary lengths εm,r. As shown in Fig. A1, they

describe the distance between the centre of rotation (CoR) and the respective centre of

wavefront curvature (CoCm,r).

Any point on the detector can be described by an angle ψ in relation to the initial

point of incidence as shown in the right-hand sketch of Fig. A1. There, the point P of

interest, the centre of rotation and the centres of curvature span triangles. By geometric

relations (law of cosines) we then know that

R2
m,r = d2lever sec2(ψ) + ε2m,r

− 2dlever sec(ψ) εm,r cos(ϕm,r − ψ) . (A.14)

We have now derived expressions for Rm,r, εm,r, δm,r (i.e. (A.9),(A.12),(A.14)) and

can solve these for δm,r. In order to show the symmetry of the phase difference of the

interfering beams and the cancellation of the LPS signal, we derive δm,r for points P1 and

P2 that are symmetric around the point xc, see Fig. A2. In the next step, we then argue

that the deviations δm,r are equal in the symmetry point xc, such that the difference is

zero.

We solve the system of equations (A.9),(A.12),(A.14) for δm,r studying two points

on the detector that possess in a good approximation the same distance to the center

of the points of incidence, i.e. ψ1 = ϕm − ψ and ψ2 = ψ. We get

δ1r ≈
d2lever
2R

(ϕm − ψ)2 , (A.15)

δ1m ≈
dlever

2
(ϕ2

m − 2ϕmψ) +
d2lever
2R

ψ2 , (A.16)

δ2r ≈
d2lever
2R

ψ2 , (A.17)

δ2m ≈
dlever(dlever −R)

2R
(ϕ2

m − 2ϕmψ) +
d2lever
2R

ψ2 , (A.18)

and therefore

δ1m − δ1r = −dlever(dlever −R)

2R
(ϕ2

m − 2ϕmψ) (A.19)

= −(δ2m − δ2r) . (A.20)

This shows that the phase differences between measurement and reference beam are

identical in the symmetric points P1 and P2 but with inverse signs.

In the centre point xc, which can be described via ψ = ϕm/2, we find a phase

difference of zero in Eq. (A.20). This special case is additionally visualized in Fig. A3.

In this figure, we see that the line connecting the CoR with xc is (for small angles)

the bisector. For symmetry reasons, the wavefronts that are intersecting along this
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bisecting line must belong to beams having propagated the same distance. It follows

zm = z + δm = z + δr = zr and hence δm − δr = 0.

Taking together our findings, we have now shown that the amplitude profile of the

interference pattern is symmetric to the plane defined by x = xc, where xc is the centre

between the points of incidence along the x-axis. Furthermore, the phase differences

at points symmetrically arranged to this plane have identical magnitude but inverse

signs. In the LPS signal, the amplitude scales the phase difference. Furthermore,

the interferometric LPS signal experimentally originates from the complete detector

surface, which mathematically is described by an integral over all detector points (see

e.g. [24, 28]). Therefore, the shown symmetries result in a cancellation of the LPS

signal.

A detailed mathematical derivation of the LPS signal for the setup described here

and the cancellation in the integral is additionally shown in [22].
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