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Abstract

®

CrossMark

Tilt-to-length (TTL) coupling is a technical term for the cross-coupling of angular or lateral
jitter into an interferometric phase signal. It is an important noise source in precision
interferometers and originates either from changes in the optical path lengths or from wavefront
and clipping effects. Within this paper, we focus on geometric TTL coupling and categorise it
into a number of different mechanisms for which we give analytic expressions. We then show
that this geometric description is not always sufficient to predict the TTL coupling noise within
an interferometer. We, therefore, discuss how understanding the geometric effects allows TTL
noise reduction already by smart design choices. Additionally, they can be used to counteract
the total measured TTL noise in a system. The presented content applies to a large variety of
precision interferometers, including space gravitational wave detectors like LISA.

Keywords: tilt-to-length coupling, optical cross talk, interferometric noise sources,
laser interferometry, space interferometry, LISA, gravitational wave detection

(Some figures may appear in colour only in the online journal)

1. Introduction

Precision laser interferometers often share a number of com-
mon noise sources, such as laser frequency noise, electronic
readout noise, thermal noise, stray light and cross-talk. There
are numerous types of cross-talk since this term generally
describes that a certain signal s is picked up unintentionally
by a sensor not built for sensing s. We extend this common
definition slightly: Let e be an event describing changes in a
degree of freedom (i.e. shifts or tilts). We speak of cross-talk
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or cross-coupling if e leaks into a sensor readout that is not
intended to detect e.

In the case of the interferometric phase, which should only
read longitudinal distance variations between two reference
points, any coupling of angular or lateral motion is therefore
considered as cross-talk. We refer to this cross-talk as tilt-to-
length (TTL) coupling.

The TTL coupling is a considerable noise source in high
precision laser interferometry [1-7]. In LISA Pathfinder, TTL
coupling was visible as a ‘bump’ in the noise spectrum at fre-
quencies between 20 and 200 mHz [4, 8—10] and was reduced
by realignment and subtraction in data post-processing [11]. In
the second generation Gravity Recovery And Climate Exper-
iment (GRACE Follow-On) [5, 12, 13], TTL coupling was
considered as one of the highest noise contributors after laser
frequency noise in the laser ranging interferometer (LRI).
In flight, the TTL noise was then shown to lie within the
requirements [5]. Furthermore, TTL coupling is of particular

© 2022 The Author(s). Published by IOP Publishing Ltd
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interest in the future space gravitational wave detector LISA
[6,7, 14-17] where it is one of the most significant noise
sources, and a variety of measures are being taken to suppress
it optimally. Also, in other space gravitation wave detectors
like Taiji and TianQin [18-21], TTL coupling will be a con-
siderable noise source.

Within this paper, we systematically investigate a variety
of TTL coupling mechanisms. We thereby focus on phase
changes originating from alterations in the optical path length
(OPL) of a laser beam, which can be described by trigono-
metric relationships. Therefore, we refer to these changes in
the OPL as geometric TTL coupling. These geometric TTL
effects are categorised, described analytically and then classi-
fied as first- or second-order effects.

The total TTL coupling noise in a system is not described by
OPL changes alone. We call any additional coupling contribu-
tion non-geometric TTL effects. These originate mostly from
the properties of the interfering wavefronts as well as detector
properties. In this paper, we only demonstrate the relevance
of the non-geometric effects and describe on one example
how the full TTL signal (i.e. geometric 4+ non-geometric) is
computed. Additionally, we discuss here how the knowledge
of the geometric TTL coupling can be used to mitigate also
non-geometric TTL effects. A detailed discussion of the non-
geometric TTL effects is given in a follow-up paper [22]. The
concepts discussed throughout this paper are fundamental and
therefore independent of the application. They can be used in
any laboratory experiment as well as in preparation for space
missions such as LISA.

We introduce in section 2 the different systems we con-
sider and how angular and lateral jitter cause OPL changes. In
section 3 we categorise and model the various geometric TTL
effects and reduce the equation for typical applications to first-
or second-order effects. In section 4 we show exemplary sys-
tems, where a geometric TTL description is insufficient and
fails to describe the interferometric phase readout. We sum-
marise all effects in section 5, list them for a typical special
case and discuss how well-understood effects can be used to
reduce the total TTL coupling within a system. Finally, we
give a conclusion in section 6.

2. TTL coupling in different systems due to angular
and lateral jitter

TTL coupling can occur in any type of interferometer. Only for
initial illustration purposes, we assume a Michelson interfer-
ometer as depicted in figure 1. Here, the incident laser beam
is split into two arms, which we call a reference arm and a
measurement arm. The reference beam, depicted in blue, is
reflected from a hypothetically perfectly aligned plane mirror,
transmits through the beam splitter and impinges orthogonally
and centred on a photodetector. All components from which
the reference beam reflects or through which it transmits are
assumed to be static, which makes the reference beam equally
static. The measurement beam is reflected first from a tiltable
mirror Miiger, and then from the beam splitter and impinges
at an arbitrary angle and possibly off-centred on the detector.

|

reference

£
©
Q
o]

>

measurement D
beam

IVljitter

Laser

detector

Figure 1. Michelson interferometer to illustrate angular
cross-coupling—the measurement beam is reflected from a tilting
mirror Mjiger, while the reference beam does not change. This
results in a misalignment of the two beams and a phase change of
the measurement beam when impinging on the detector.

Both beams interfere at their common path in between the
beam combiner and the detector. Distance variations in the
interferometer are then observed by reading the interferomet-
ric phase signal, which is often converted into units of lengths.
We refer to this signal as the longitudinal path length sensing
(LPS) signal. The LPS signal obtained without tilt (nominal
case):

LPSnom = OPLm,nom - OPLr,nom + LPSng,nom; (1)
and for a tilted mirror
LPSgiit = OPL,, it — OPL, gi¢ + LPSyg it ()

contain each the difference of the OPLs of the measurement
(m) and reference beam (7), so their optical path length dif-
ference (OPD). Additionally, the LPS signal contains a non-
geometric contribution (LPS,,) originating from the wavefront
and detector properties. The reference beam is unaffected by
the mirror jitter as visible in figure 1 such that its OPL does not
change: OPL, ;om = OPL, 4. The TTL effect due to the mir-
ror tilt is then found by comparing the tilted with the nominal
case:

LPStr. = LPSi — LPSpom 3

= OPLm,till - OPLm,nom + LPSng,till - LPSng,n0m~
4)

= OPD + LPS;¢ 1L &)

The geometric TTL effect is therefore entirely obtained from
OPL changes of the measurement beam, and no information of
the reference beam or its propagation path through the inter-
ferometer is needed. The OPD discussed within this paper thus
always refers to the difference of the measurement beam’s
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Figure 2. Geometrical cross-coupling splitting into a ‘lever arm effect’ and ‘piston effect’. Left figure—the lever arm effect: a beam
impinges at a mirror at an angle [3, is reflected in the point P;, and then propagates the distance djever until hitting the detector surface in the
point Ppp o. The detector surface normal is tilted by an angle @pp with respect to the nominal beam axis. Tilting the mirror by an angle ¢
around the beam’s point of reflection P, yields a beam axis rotation of 2¢ and causes the path length to increase by the distance from Py to
Ppp, 1. We call this path length change the lever arm effect. Right figure—the piston effect: If the mirror rotates around a centre that is
shifted laterally by dj,. and longitudinally by djong against Py, diverts the beam from the dashed to the solid red axis. Thereby, the beam’s
OPL reduces by the distance P, to P; to P3 due to a shift of the mirror surface into (or out of) the beam path. This path length change is
called the piston effect and is negative in this figure. The beam’s point of incidence at the detector changes to Ppp. Arrows pointing

clockwise indicate negative angles.

OPLs in a tilted (or shifted) and in the nominal case. As stated
above, we focus in this paper on the contribution of the OPL
changes, while the non-geometric effects (LPS,; trr) are dis-
cussed separately in [22].

We now revisit the setup depicted in figure 1 which is more
complex than needed for TTL estimation. As we have seen,
the reference path is of no relevance for TTL computations.
Furthermore, the path of the measurement beam can be sim-
plified. Any reflection of the measurement beam from static
flat components (i.e. planar mirrors or reflecting beam split-
ters) can be neglected since it only changes the beam path but
not its path length. Hence, we unfold the reflected measure-
ment beam in this reflection point. The detector is then placed
into the unfolded beam path at the distance of its nominal path
length from the tilted mirror. This reduces the setup to only
the tiltable mirror and the photodiode, as shown in figure 2.

This reduction of the setup significantly simplifies TTL
investigations. Moreover, it implies that the TTL estimation
is independent of the interferometer type (Michelson, Mach—
Zehnder, or others), because these are distinguished by the dif-
ferent routings of the measurement and reference beam.

The result, including a description of the alignment para-
meters and the occurring TTL effects, is depicted in figure 2.
There, the beam nominally impinges on the mirror with angle
B at point Py, is reflected and hits the photodiode at Ppp .
Thereby, we assume —90° < 8 < 90° to ensure that the beam
impinges on the mirror’s front surface. If the mirror then
rotates by an angle ¢ around an arbitrary centre of rotation,

the beam is reflected instead at point P, and hits the photodi-
ode at Ppp. The mechanisms leading to this beam path change
are denoted as lever arm and piston effect. The lever arm effect
describes the path length change due to the rotation of the
reflected beam axis, while the piston effect accounts for the
additional changes due to the rotation of the reflective surface
into or out of the beam path. We will analyse both effects in
more detail in the following section.

The beam path after the rotation has a different path length
than before, which means the OPL is angle-dependent. There-
fore, we expect that any angular jitter of the mirror would res-
ult in phase noise. This type of effect is the most obvious TTL
contribution: geometric TTL coupling due to angular jitter of
a component resulting in OPL variations.

Also, lateral jitter can cause OPL changes, as depicted in
figure 3. Since this effect occurs only if the mirror is tilted, we
likewise call this effect a “TTL’ coupling effect. However, in
this case, the tilt is assumed to be static. This effect is related
to the angular jitter case, particularly the piston effect, as we
will show in section 3.1 below.

Besides mirror jitter, there is another important jitter caus-
ing TTL coupling, which we refer to as receiving system jit-
ter and discuss as a second application throughout this doc-
ument. We speak of receiving system jitter (or receiver jit-
ter) when the measurement beam propagates from one optical
bench to another, and the entire receiving bench jitters. This
is, for instance, the case when a beam is sent from one space-
craft to another, and the receiving spacecraft jitters relative to
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Figure 3. Sensing cross-talk due to lateral jitter of a mirror. Left:
for a perfect mirror (no surface roughness or defects), the shown
mirror motion does not affect the beam path, and there is no
cross-talk. Right: the lateral jitter of the tilted mirror alters the beam
path, resulting in a path length change that closely relates to the
piston effect (see figure 2).

the arriving wavefront. It occurs, for example, in the gravity
recovery mission GRACE Follow-On or in space gravitational
wave detectors such as LISA, Taiji or TianQin.

Please note that the term ‘receiver’ refers to the entire
receiving system (e.g. spacecraft) in this work, not to a
photoreceiver, which we call photodiodes here. We assume
in this scenario that all components of the receiver system
are rigidly connected to the jittering optical bench and there-
fore jitter with the optical bench but not with respect to each
other. The reference beam is assumed to originate from a fibre
injector located on the jittering bench or it is directly gener-
ated on the jittering bench. Thereby, the reference beam moves
synchronously with all local components and impinges on the
receiving photodiode always at the same angle and incidence
point and with the same OPL. We can, therefore, neglect the
reference beam with all its properties from TTL computations
(compare equations (1)—(5)).

Like in the case of mirror jitter, we can neglect all reflective
planar components and unfold the measurement beam’s path.
This is possible since these components divert the beam but do
not affect the OPL. Thereby, the receiver system reduces to a
photodiode which is jittering synchronously with the receiving
system and relative to the incident beam.

This scenario is depicted in figure 4. We see that a rotation
of the system can move the photodiode position with respect
to the beam and therefore change the beam’s OPL. Like in
the case of a reflection from a tilted mirror (see figure 3), lat-
eral receiver jitter can cause additional TTL coupling even if
the angle indicated in figure 4 is static. We will quantify and
describe the different kinds of TTL effects below.

3. Geometric TTL coupling effects

Geometric TTL coupling describes the path length changes
of the beams as depicted in figures 2 and 4. We compare in
this section the OPL of the nominal measurement beam with
the OPL the beam accumulates in the case of a jitter of the
mirror or setup, respectively. We will derive the OPD for the
case of a rotating mirror in section 3.1 and describe the other
case of the rotating setup in section 3.2. Both will be com-
pared in section 3.3. Furthermore, we will extend our analysis
to a broader set of cases in section 3.4, e.g. we will investigate

YRS

center of rotation

P PR x 1)
Edlat \
dlong beam

path

Figure 4. Geometrical cross-coupling due to angular jitter of the
receiving system (grey open box) with respect to the incoming beam
(red trace). In the untilted case, the beam originating from point Py
hits the detector in point P;. When the receiver rotates by the angle
©rs, the beam hits the detector in point P instead. The distances
diong and di,; define the longitudinal and lateral distances between
the nominal point of incidence P; and the centre of rotation. Both
are positive in this figure. Switching their signs, i.e. placing the
centre of rotation behind the photodiode (djong < 0) and below the
beam axis (djy < 0), switches also the sign of the path length
changes.

OPDs due to transmissive components along the beam path,
additional misalignments and three-dimensional cases.

3.1 Geometric TTL coupling effects for a reflection at a mirror

We consider first the setup depicted in figure 2. In the left
part of this figure, the mirror rotates by an angle ¢ around the
reflection point P;. As described in section 2, the beam then
propagates an additional distance given by the geometrical dis-
tance between the points P, and Ppp ;. We call this geometric
effect the lever arm effect.

If the mirror does not rotate around the reflection point but
around an arbitrary centre of rotation the beam reflects instead
at point P, and hits the photodiode at Ppp. We thereby assume
that the centre of rotation is shifted longitudinally by diong
and laterally by dj,; against the nominal reflection point P;.
In this case, the distance between the points P3 and Ppp ; is
identical to the distance between P, and Ppp. Therefore, the
only additional path length change is given by the distances
between P,, P; and P;. We define this additional path length
change due to an arbitrary centre of rotation as piston effect
since the reflecting surface moves in and out of the beam like
a piston.

By assigning a position vector p; to each point P;, we can
express the beams accumulated OPL between its defined ori-
gin Py and the incidence point Ppp o on the photodiode as:

OPL(p =0) = [p1 — po| + [Pep.0 — P1l, (6)
likewise the OPL in the rotated case can be expressed by:
OPL(¢) = |p> — Pol + [Prp — P2|- (M

While equation (7) is naturally valid for all angles  including
zero, we deliberately define here equation (6) independently
for a clearer description of the equations below.
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We are now interested in the OPL change due to the rota-
tion, so we compute the OPD:

OPD = OPL(y) — OPL(p = 0). (8)

From figure 2 we can see that the OPD is the sum of the lever
arm and piston effect and naturally independent of the choice
of the starting point Py:

OPD = (|ppp,1 — pal) + (IP2 —p1l + 13 —p1l) ~ (9)

=: OPDyeyer + OPDpiston~ (10)
We use the fact that the distance between P; and Ppp is
identical to the distance between P; and P,4, and find:

OPDiever = |Ppp,1 — P1| — |PPD,0 — D1 (11

OPD?2. = diever [sec(2 o — wpp) cos(pp) — 1] . (12)
Equation (12) holds for two-dimensional investigations of this
effect. Here and in the following, the index ‘2D’ will denote
the coupling in two-dimensional planes while the index ‘3D’
refers to coupling in three dimensions.

For the piston effect, only absolute length changes are
described by equation (10), however, the path length can
increase or decrease in comparison to the non tilted case ¢ = 0.
If we account for this sign, we find:

OPD.2,, =2 sec(2 ¢ — @pp) cos(3 + ¢ — ©pp)

{—dwsin(p) + diong [1 —cos(p)]}. (13)

Here, diong and dy,; are displacements of the centre of rotation
from the nominal reflection point P; in longitudinal (i.e. here
orthogonal to the reflecting surface) and lateral direction (here
parallel to the reflecting surface). As before, diong is defined
to be positive if the incoming beam passes the centre of rota-
tion first and negative otherwise. Further, d, is positive if the
beam passes this centre to the left. Given the setup of figure 2,
both distances are positive. We assume that the interferometer
is set to measure mirror displacements in the longitudinal dir-
ection, while motion in the lateral direction or angular jitter
are by definition cross-talk—and we will focus only on this
cross-talk.

So far, we have defined variables without time depend-
ency, but have implicitly assumed that ¢ = ¢(¢) (i.e. the mirror
performs angular jitter), while there is no lateral motion (i.e.
diy = const.). Likewise, we could assume that the mirror jit-
ters in lateral direction such that dj,, = djy((?). In the latter case,
the piston effect describes now lateral jitter coupling. Since the
very same equation for the piston effect is being used and only
interpreted differently, we do categorise lateral jitter coupling
as a TTL effect. This is particularly visible in figure 3 and also
equation (13). If the mirror was ideally aligned (¢ = 0), the
lateral jitter would not couple.

Equations (12) and (13) are valid both for small and large
angles . In our typical applications, we have a very small

angular jitter, and the system is also well aligned. A Taylor
series to second-order around zero is therefore useful for many
applications:

OPDlzeDver ~ 2diever [‘Pz - W@PD} ) (14)
OPD[%Eton ~ —2d\n [COS(ﬂ) + ©pD Sln(ﬂ)] ¥
+ [2di1q 5in(B) + diong c0s(B)] 7. (15)

Especially for the case of normal incidence or nearly normal
incidence (5 = 0, ppp & 0), the equations reduce to:

OPDlzeDver ~ 2diever 802 s (16)

OPDgi[Zton ~ —2da 0 + dlonggoz. 17)

In this special case, we find that the lever arm effect is purely
second-order, while the piston effect splits into a first-order
due to the lateral displacement and a second-order due to the
longitudinal displacement of the component’s centre of rota-
tion with respect to the beam reflection point on the compon-
ent.

This finding is of particular relevance for suppressing TTL
coupling in typical optical setups: Since these two geomet-
ric effects are known and well understood as described above,
they can be used to counteract any unknown TTL effect, ori-
ginating, for instance, from the non-geometric coupling. We
will further discuss this in section 5.

3.2. Geometric TTL coupling effects for rotating systems

Let us now assume a case of a freely propagating laser beam
that is perfectly stable and does not jitter in any degree of free-
dom. This beam is then incident on a jittering receiving sys-
tem, e.g. an optical table in a laboratory setup or a remote satel-
lite in a space mission like GRACE-FO, LISA, Taiji or Tian-
Qin. We now assume the receiving system (i.e. optical bench
or satellite) to jitter relative to the incident beam. In this case,
the reference beam as well as all other possibly existent com-
ponents such as mirrors, beam splitters and photodiodes move
perfectly synchronously, such that the OPL of the reference
beam is constant. However, the photodiode then moves in and
out of the received beam, as indicated in figure 4, resulting in
an OPL change, and therefore a geometric TTL coupling.
The geometric TTL coupling can easily be calculated by
comparing the path lengths of the beam for the non-rotated and
the rotated case. While the OPL for the nominal, non-rotated
case is given by:
OPLgs(prs =0) = |1 — o |, (18)

the OPL for the rotated case, i.e. @rs # 0, is in figure 4 shorter,
namely

OPLgs(¢rs = 0) = [p2 — po |- (19)

The OPD is then given by the difference between the rotated
and the non-rotated case, i.e.:
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OPDgs = |p> —po | — [P1 —Po |- (20)
This OPD can be described analytically by the rotation angle
rs, and the distance between the point of detection and the
centre of rotation. The absolute longitudinal difference, diong,
is in this paper defined by the distance between both points
parallel to the nominal beam propagation axis. Meanwhile,
the sign of djong is positive if the centre of rotation lies before
the point of detection and negative otherwise. Analogously,
the absolute lateral difference, dj,, is given by the distance
between both points along the axis orthogonal to the beam
propagation axis. We define dj,, to be positive if the beam
‘sees’ it at the right-hand side and negative otherwise, e.g. like
in the case depicted in figure 4. With this, the OPD is given by:

OPDR? = sec(iors) {—dia Sin(prs) + diong [1 — cos(¢rs)]}
21

or, allowing the photodiode to be tilted by an angle wpp like in
the case of a rotating mirror (compare figure 2), we have:

OPDZR% = —dy sec(ppp) sec(prs + ¢pp) sin(@rs)

+ diong [cOs(pp) sec(grs + wpp) — 1]}, (22)

Assuming small rotation angles (rs, we can Taylor expand
this equation and find:

OPDR; ~ —diapks + diong PR/ 25 (23)
or, having a tilted photodiode,
OPD3 & —diu grs + diong (PRs/2+ Prsrn) - (24)

Hence, the lateral distance between the beam axis and the
centre of rotation makes a linear TTL coupling and the longit-
udinal distance adds a second-order coupling term. This means
that particularly lateral displacements between the centre of
rotation and the beam axis should be avoided. Ideally, the
centre of rotation should lie in the measurement beam incid-
ence point on the photodiode. In that case, the geometric TTL
coupling described here would vanish entirely.

The equations presented for the receiving system have so
far been derived for angular jitter coupling, only. Contrary to
the setup with a jittering mirror, lateral jitter does not couple
into the geometric length readout in the receiver case. This
is due to the definition of the lateral jitter axis, which is an
axis fixed to the receiving system. In figure 4 it is parallel
to the detector surface. Thus, the measurement beam would
walk along the detector surface, but its length would stay
unchanged. However, if the photodiode happens to be mis-
aligned by an angle pp with respect to the receiver coordinate
system, we find for lateral receiving system jitter yrs also lin-
ear TTL coupling:

sin ((ppD )

OPDZR = RS ———
RS RS Cos(prs + pp)

(25)

A2 YRS PPD- (26)

3.3. Comparison of mirror and system rotation

We now want to compare the geometric TTL coupling in the
case of a mirror rotation featuring a beam of normal incidence
at the mirror (equation (17)) with the case of a system rotation
(equation (23)). The two equations are identical, except for a
factor of two. This is not surprising since in the first case, the
rotation of the system effectively causes the detector surface
to move into (or out of) the beam, while in the system rotation
case, the mirror surface moves into (or out of) the beam in the
very same way. The factor of two is then coming from the fact
that the mirror surface reflects the beam, such that the beam
propagates the shortened (or additional) length twice. How-
ever, in the case of the system rotation, the detector absorbs
the beam, such that the path length change is not doubled.

3.4. Extension for broader set of applications

We will now extend the geometric TTL equations introduced
above for a wider set of applications. We will start with the
effect of plane-parallel transmissive components along the
beam path in section 3.4.1. Then, we discuss in section 3.4.2
how the equations need to be adapted if the setup is loc-
ated in a medium other than vacuum. In section 3.4.3 we
describe the effect of initial misalignment and then discuss
in section 3.4.4 the relevance of the photodiode angle @pp.
Finally, in section 3.4.5 we extend the equations for jitter in
three-dimensional space.

3.4.1. Additional plane-parallel transmissive components.
For a more complete theory, we introduce transmissive optical
components (tc) with plane-parallel surfaces, e.g. optical win-
dows, beam splitters or beam combiners, as shown in figure 5.
For receiver jitter, we generally need to consider all compon-
ents along the beam path. However, in the case of reflection at
a jittering mirror, we can ignore all transmissive and reflective
components prior to the mirror because these change only the
initial conditions (i.e. incidence angle 3 and incidence point
P») of the reference case. Their effect can therefore be accoun-
ted for by a simple adjustment of the parameters 3 and djy,
which does not need to be particularly modelled. On the con-
trary, components along the beam path after the reflection from
the jittering mirror directly affect the TTL coupling.

For all considered components, we assume a thickness #gs ;,
a refractive index ngs; and that their surface normal in a two-
dimensional setup is rotated by an angle (ps; against the
beam direction of the initial beam. Hence, the beams hit the
transmissive component under an angle ¢gs — ¢, Where @,
defines the orientation of the beam, i.e. ,, — 2¢ in the case
of a mirror rotation and ¢,, — —gs in the case of a rotating
system. While the beam travels with the speed of light through
vacuum, it slows down when entering the component i. Thus
its path length within the component scales with ngs ; and seen
by the photodiode the point of reflection seems to be further
away.

Additional to the path length scaling, the direction of the
beam changes when it enters a component as shown in figure 5.
The new beam direction relative to the surface normal vector
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line parallel to
PD surface

tBs

refractive index ngg

\ ¥BS — Pm

Figure 5. Optical path length changes due to a transmissive optical
component: instead of propagating the distance |Pic1 — Pico| through
vacuum (dashed path) the beam propagates from Pico to Py
through the medium of the component and additionally from Py to
Py through vacuum (solid path). The beam direction within the
medium is defined by the angle ¢ps = arcsin(sin(eps,i — ©m)/
nps,i), where pgs defines the alignment of the component with
respect to the nominal beam and ¢,, the additional tilt of the beam,
i.e. om — 2¢ in the case of a mirror rotation and ¢, — —¢rs in the
case of a rotating receiver.

of the component i is given by the angle of refraction:

27

1hps = arcsin <Sin(¢Bs7i _ <pm)> }

nps,i

When leaving the component, the beam continues propagat-
ing in its original direction. The additional OPL by each trans-
missive component is then given by:

OPL,. = nps |ﬁtc]’ _ﬁtcO| + |ﬁt02’ _ﬁtcl’| - |ﬁtcl _ﬁtco‘v
(28)

which is the new path length inside the respective component
|Pre1” — Preo| scaled with its refractive index ngg plus the dis-
tance between the point Py.;- where the beam leaves the com-
ponent and the intersection point Py, between the new beam
path and the line parallel to the detector (which also intersect
with the original exit point Pyp), i.e. |Picar — Pie17|. From that
we have to subtract the original path length |p; — Pico|- We
can evaluate equation (28) for N transmissive components:

N
OPL[ZCD = ZnBs,i |Pect i — Preo,il — |Pret,i — Preo, il
i—1

+ |ﬁt02',i _ﬁtcl',i| (29)

N

_ 2 2 . 2 -12

= IBs,i "Bs,i |MBs,i — SIN (om — ©Bs,i)
i=1

— sec(m — ¢Bs,i) + sin(yss,i — ¢pp) sec(Ym — ©pD)
. _ —1/2
: [Sm(@m — ©Bs,i) [nzss,i — sin”(om — SOBS,i)}

— tan(pm — @Bs,,-)} }, (30)

N
1Bs.i ] -3/2
OPD;? ~ Z BZS’I {”1235,1' cos” (ms.) [nzBS,[ - Slnz(ths,i)]
i=1
. . —1/2
— sin’(¢ps,) [’llzss,i - sz(%s,i)}
—cos(pus.) | (¢n—2¢mem). ()

According to equation (31) the optical cross-talk due to trans-
missive components is a second-order effect. For a few thin
components and rather small angles @ps ; we find it to be smal-
ler than the lever arm effect. Nevertheless, it should not be
neglected when high accuracy is required.

The geometric TTL effects described above and the OPL
change due to transmissive components, as it was defined in
this section, are independent of one another. We, therefore, get
the full geometric coupling by adding OPDy. to the previously
found TTL effects, namely:

OPDMRT = OPDlever + OPDpiston + OPDtC 5 (32)
OPDRST = OPDRS + OPD[C . (33)
3.4.2. Experiments in air or other surrounding medium.  The

above equations of the lever arm and piston effect, OPLjeye,
and OPL0n, as well as the analytic description for rotating
systems, describe the changes in the OPL while assuming that
the beams propagate through vacuum. If this is not the case,
we need to multiply all found OPLs in sections 3.2 and 3.1 by
the medium’s refractive index ». For transmissive components,
we replace nps ; in equations (30) and (31) by nps ;/n and mul-
tiply the full path length change by n. This additional factor
originates from the lower speed of light in a medium than in
a vacuum resulting in an increase of the light travelling time
in the medium, which then results in the larger phase change.
Therefore, the beam paths appear longer when detected at the
photodiode unless the refractive index is known and accounted
for in the conversion of the phase into the LPS signal.

3.4.3. Additional misalignment. Insections 3.1 and 3.4.1 we
compared the initial beam path length with the path length of a
beam that got reflected at a misaligned mirror. In experiments,
we often face the case that the mirror My, is nominally mis-
aligned and we are interested in path length changes to this
nominal case. This can be easily implemented into our formu-
las by substituting ¢ — ¢’ + @ and diye — d},, + yo, Where ¢
denotes the nominal tilt and y, the nominal lateral shift of the
mirror. All OPDs are then defined as the difference of the OPL
for an arbitrary angle ¢’ minus the OPL at a nominal angle,
ie.atp’ =0:

OPD = OPL(¢’) —OPL(p’ =0) . (34)
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Angular misalignment can likewise happen in the case of a
rotating system (see section 3.2). Due to experimental toler-
ances, the system is likely slightly misaligned with respect to
the incoming beam. The equations in section 3.2 can then be
adapted analogously.

3.4.4. Relevance of the photodiode angle. The OPD

depends on the photodiode angle via:

OPDwirr(¢pp) — OPDyMrT (0P = 0)

i=1

N
. -3/2
= { Z’Bs,i{"zss,i cos® (ioBsi) [(nhs ; — sin® (s, )]

. . 71/2
— sin’(ggs,i) [nhs,; — sin*(¢Bs,i)]

— COS(SOBs,i)} + diever + diat Siﬂ(ﬂ)} (—2¢ppp),

(35)
OPDgst(¢pp) — OPDgs1(90pp = 0)
u 2 2 2 ) -3/2
= {Zst,i{”Bs,i cos”(Bs,i) [(nBS,i —Ssm (‘PBS,i)]
i—1

. . ~1/2
— sin®(¢pps,i) [nhs,; — sin® (s, )]

_ cos(sﬁBs,i)} + dlong} (Prs ¥PD) - (36)

This is natural due to the geometric nature of the OPD. How-
ever, the tilt of the detector affects how the wavefronts of both

2¢0s2(B.) (¢* — pipp) + 2c0s(By) (n* — nmpp)

beams, the measurement and reference beam, are being detec-
ted. We will, therefore, show in [22] that the non-geometric
effects contribute further terms that cancel the detector ori-
entation from the total interferometric readout. All terms con-
taining pp should then be handled with care: they do exist in
the OPD but do not affect the total interferometric readout. It
can be an advantage to neglect the photodiode angle wpp = 0
in simulations, even in cases where the corresponding experi-
ment comprises large angles.

3.4.5. Three-dimensional case.  So far, we only considered
a two-dimensional setup, which can then be applied in 3D
setups for changes in a specific plane. If angular jitter occurs
in two orthogonal planes, one can simply add up the effect of
the individual planes, provided that we have beams with nor-
mal incidence and the jitter is small and therefore describable
by a first-order series expansion. If the jitter causing the TTL
coupling has a larger amplitude, effects occurring in one plane
also affect the orthogonal plane. This can, for instance, be seen
in the lever arm effect, see equation (15). There, a rotation in
the orthogonal plane would affect the length of the now three-
dimensional lever arm djever, Which results in a product term
of the involved angles, i.e. ¢ - 7.

As illustrated in figures 2 and 4, all equations given so far
were describing motion and alignment in the xy-plane. The
angle ¢ (or @gs respectively) is, therefore, a yaw angle origin-
ating from a rotation around the z-axis. The orthogonal pitch
rotation 7 (or nrs) is then a rotation around the y-axis. The
cross-coupling between yaw and pitch makes the equations
significantly more complex. We, therefore, series expand the
expressions for the 3D geometric effects to second-order and
find:

sin(23,) sin(263;) ¢

OPD?SDver = dlever [

cos(f3y) cos(f:)

cos?(3,) +cos?(,) sin*(3,)

cos?(y) + cos?(;) sinz(ﬁy) ’ 7

_sin(y) cos(;)( — ppp) + sin(B;) cos(By) (n — 7pp)

OPDggton =2 <_dlal P+ dyert 77)

cos(By)cos(B.) (> +n?)

+ don
e \/cosz(ﬁy) + cos?(3;) sin* (3y)

)

3D Prs T TR
OPDi{s = —dja ©rs + dyert nNrs + dlong (RSZRS> , (39
where (3, (3, are the projection-angles of the incoming beam at
the mirror into the xy- and xz-plane, respectively. The different
signs of the dj,- and dye-terms arise from the orientations of
the pitch and yaw angles.

Photodiode tilts in the xz-plane are indicated by 7pp, and the
vertical difference between the point of incidence and the point
of reflection is given by dy. Naturally, all three-dimensional
equations reduce to their two-dimensional counterparts if the
parameters in the respective orthogonal plane are set to zero.

\/0052(6),) +cos?(B,) sin*(53,)

\/cosz([i’y) +cos?(8;) Sinz(ﬂy)

(38)

Another special case arises if the nominal beams hit the test
mass orthogonally, i.e. 3, .= 0. Here, all cross-plane coup-
lings vanish and the resulting signal equals the sum of the two
two-dimensional equations applying the same assumption. We
get

OPD?C?/er = diever [2(992 - SOQOPD) + 2(7]2 - 7777PD)] ) (40)
OPDR0n = diong (9> +17°) +2 (—di 0 +dvenny) . (41)
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Figure 6. Optical path length difference of a beam, that got tilted in
pitch (nrs) and yaw (prs), passing a transmissive optical
component. We set #, = 10mm, n, = 2 and rotated the component
with respect to the beam by ¢ = 0.2 7 and 1 = 0.13 7. While the
second-order OPD is dominant, the colour grid indicates, that the tilt
of the transmissive component also adds linear TTL coupling.

Also, transmissive components affect the beam in all degrees
of freedom. In a three-dimensional setup, we can now addi-
tionally consider the components to be rotated in yaw by
wps and in pitch by nps. Hence their 3D-equations become
very long such that we summarise here only the principle
behaviour. In the case of normal incidence (pgs = ngs = 0),
the transmissive components add a second-order effect. For
non-normal incidence, an additional linear effect occurs, see
figure 6. This linear effect is typically small, such that the
second-order effects stay dominant.

4. Exemplary setups showing limitations of
geometrical estimates

The cross-coupling mechanisms explained so far originate
from variations of the beam propagation axis that can be
described geometrically. In order to treat these effects as intro-
duced in section 3.1, we did assume that the laser beams are
classical rays. This assumption, however, is often insufficient
since it neglects all wavefront properties. We will show in the
examples below that the expected TTL cross-talk can signific-
antly deviate from geometrically expected values if the laser
light is instead described as fundamental Gaussian mode.

4.1. Rotation around the centre of curvature

Assume the setup previously published in [23, 24] and illus-
trated in figure 7. There, we consider two identical Gaus-
sian beams, i.e. with the same intensity distribution and phase
fronts. We rotate one of the beams (measurement beam) with
respect to the other around a pivot that has a longitudinal dis-
tance to the detector that is equal to the radius of curvature
of the wavefront on the detector. In this setup, a lever arm
between the point of rotation and the detector should lead to
significant cross-coupling. However, in this scenario, a tilt of
the measurement beam does not change the phase distribu-
tion on the detector since the wavefront is mapped onto itself
during the rotation. That means only the intensity distribution

Figure 7. A Gaussian beam is tilted around a pivot that coincides
with the centre of the wavefront curvature at the detector position.
While the beam is tilted, the phase distribution on the detector stays
unchanged.
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Figure 8. Simulated path length signals (i.e. LPS and OPD)
compared to the expected analytic TTL coupling in the scenario
shown in figure 7, i.e. the lever arm coupling if the rotation is
induced by a rotating test mass. Hence the beam angle ¢,, depends
on the mirror tilt via ¢,, = 2¢. The analytically derived TTL
coupling (black, dashed) and the simulated OPD (yellow) are
non-zero and coincide. However, this lever arm TTL coupling
cannot be observed in the simulation (purple) due to the special
conditions of this scenario (rotation without change of the
wavefront). In this simulation, we assumed identical Gaussian
beams with a waist radius wo =1 mm, distance from waist at
detector z = zg, lever arm djever = 2zg, single element photodiode
with radius 5 mm.

on the detector plane changes during the rotation. If, how-
ever, the reference wavefront curvature equals the measure-
ment wavefront curvature, then the phase difference is zero in
every detector point such that zero TTL coupling occurs des-
pite the rotation of the beam axis.

To demonstrate that, in fact, no cross-coupling is present in
this scenario, we numerically compute the variations of the
longitudinal path LPS signal, i.e. the interferometric phase
signal processed by the detector converted to units of lengths.
In the computation of this signal, not only the OPD but also
wavefront and detector properties are being considered (see
[22, 24] for details on the numerical computation of this sig-
nal). This was done using the simulation tool IfoCAD [24, 25].
The obtained LPS signal is shown in figure 8. We com-
pare it with the numerically derived OPD, which corresponds
to the analytic expression of the lever arm cross-coupling
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Figure 9. Simulated path length signal compared to the expected
lever arm TTL coupling in the scenario with two equal Gaussian
beams and a large single element detector. The beam angle equals
two times the mirror tilt. The TTL coupling vanishes due to
symmetric phase cancellations. The simulation parameters were:
waist radius wyg =1 mm, distance from waist at the detector

z = 100mm, lever arm djever = 100mm, detector radius 100 mm.

equation (12). Unlike the geometric description, the simu-
lated LPS signal shows no cross-coupling, just as expected,
demonstrating that the pure geometric description of this scen-
ario is not sufficient. The resulting TTL coupling can only be
correctly estimated when non-geometric effects are considered
as well.

4.2. Identical fundamental Gaussian beams with centre of
rotation on the beam axis

The cross-coupling also vanishes for two identical Gaussian
beams with one beam tilted around a pivot that has now an
arbitrary longitudinal but no lateral distance to the detector.
In this case, we discover a lever arm effect and not neces-
sarily equal wavefronts. However, we find no cross-coupling
as illustrated in figure 9 and introduced in [26]. We conclude
that a non-geometric cross-coupling mechanism caused by the
tilt dependent beam walk on the detector cancels the expec-
ted lever arm cross-coupling on a sufficiently large detector.
A general analytic description of the non-geometric effect is
given in the next section. Additionally, an intuitive approach
to understand the cancellation is given in appendix.

5. Summary geometric TTL coupling and TTL
mitigation strategies

In this paper, we have introduced different geometric TTL
coupling effects and derived equations that describe whether
they add primarily linear, quadratic or mixed terms to the OPD.
All effects are summarised in table 1 for convenience. Lateral
jitter coupling appears as a linear effect only in the case of
mirror reflection:
OPD’>

piston,lat

(dhat (1)) m —2dha (1) i, (42)

OPDZ3 1, = 0. (43)

10

For angular jitter TTL coupling we have the following linear
TTL effects:

OPD2R o 1ot (©(1)) = =241 (1), (44)

OPDR? 1 (¢rs (1)) & —dia rs (1), (45)

which are caused by lateral displacements of the centre of rota-
tion with respect to the principle beam axis. Second-order TTL
effects are:

OPDIZeBer ~ 2dieyer 9027 (46)

OPD;EtonJong ~ dlong 5027 (47)
» 1 2

OPDRS,long ~ Edlong ¥RS> (48)

which all originate from longitudinal displacements of the
centre of rotation with respect to either the beam incidence
point on the reflecting component (djong), or the photodiode
(diong» diever). An additional second-order TTL effect is caused
by transmissive components:

2D IBS,i [ 2 2 2 .2 —3/2
OPD;” ~ > d {nBs,i cos” (s, i) ["Bs,ﬁsm (SDBSJ)}
i1
—1)2
) 2 .2
— sin”(¢Bs, ;) [nBs,i*SHl (‘PBS,i)}
2
— cos(¢ws.) | ¢ (49)

with ¢,, =2¢ for components between the mirror and the
detector and ,, = —pgs for components along the beam path
inside a receiving system with angular jitter. The knowledge
about these first- and second-order couplings can be used to
mitigate the geometric effects by smart design choices, for
instance, by aligning the beam axis to the centre of rotation
(diac = 0) or by imaging the centre of rotation to the photodiode
centre, resulting in diong = diever = 0. Lateral jitter coupling
is minimised in the case of a mirror reflection by an angular
adjustment to make ¢ = 0. Moreover, the given equations can
be used to minimise the total TTL coupling (see equation (5)).
In that case, the geometric TTL is manipulated to counter-
act the non-geometric TTL effects (LPSye trr.). These non-
geometric effects are more difficult to describe or mitigate,
which will be discussed in detail in our follow-up paper [22].
For such mitigation, the total TTL of the system is measured,
i.e. the sum of all geometric and non-geometric effects. The
total linear effects can then be minimised by adjusting the lat-
eral alignment parameter dj,, for instance, by adjusting the
beam axis. The sum of all second-order effects is in the next
step minimised by adjusting either of the longitudinal para-
meters (diong, diever), fOr instance, by displacing the photodiode
longitudinally. Such mitigation was experimentally used, for
instance, in [1, 27].

It should be noted, that this type of TTL noise suppression
is only successful if the applied changes affect the geometric
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Table 1. Overview of the different geometric cross-coupling mechanisms for a beam with normal incidence and no photodiode tilt, i.e.
B = wpp = 0. For each effect we give a short description and the general behaviour (approximated), like linear, quadratic or mixed with

respect to the tilt angle.

Cross-coupling General
mechanism Name behaviour Equation Section Description
Lateral Piston effect OPDyiston Linear 42) 3.1 If the mirror is initially rotated, further
lateral shifts generate TTL coupling.
Receiver jitter OPDgs Zero 43) 32 Lateral jitter of the receiver does not
cause geometric TTL coupling.
Angular Lever arm effect OPDever Quadratic (46) 3.1 Longitudinal offsets between rotation
point and detector lead to variations in
the propagation distance to the
detector.
Piston effect OPDyision 3.1 Offsets between the points of rotation
e Longitudinal Quadratic a7 and reflection at a component’s surface
e Lateral Linear 44) generate movement of this surface.
Setup jitter OPDgs 3.2 Offsets between the points of rotation
e Longit. CoR Quadratic (48) and detection generate movement of
e Lateral CoR Linear (45) the detector surface relative to the
beam axis.
Transmissive OPDy, Quadratic 49) 34.1 Transmissive optical components
components between the mirror and the detector

induce a variation of the beams’
optical path length and a beam
displacement on the detectors surface.

TTL coupling more than the non-geometric TTL effects. This
is discussed further in [22].

6. Conclusion

Within this paper, we have discussed how and why angular and
lateral jitter causes phase noise in laser interferometers. This
TTL noise is often dominated by length changes of the beam
axis, i.e. geometric effects, which are the focus of this paper.
We have categorised different coupling mechanisms and ana-
Iytically derived their contribution to the interferometric path
length signal from trigonometric relationships.

We have introduced TTL coupling noise for two different
cases: jitter of a mirror within the interferometer and jitter of
the receiving system. Though the described effects are inde-
pendent of the context, they apply, for instance, for the LISA
mission and other space interferometers. In that context, mir-
ror jitter corresponds to the case observed in test mass interfer-
ometers, while receiver jitter corresponds to long arm interfer-
ometers and effectively describes satellite jitter relative to the
received wavefront.

Besides the geometric TTL contributions, there exists non-
geometric TTL coupling originating from the wavefront prop-
erties of the interfering beams as well as from detector char-
acteristics. We have presented two examples demonstrating
the relevance of the non-geometric TTL contributions. How-
ever, these non-geometric effects are significantly harder to
describe than their geometric counterparts and are the subject
of a follow-up paper [22].

The TTL coupling within a system will always be the sum
of all present non-geometric and geometric TTL contributions.

Nevertheless, knowing the properties of the geometric TTL
contributions alone can still help suppress TTL noise in preci-
sion laser interferometers in two different ways.

On the one hand, the geometric effects can a priori be
suppressed by smart design choices. For the suppression of
angular jitter coupling, it is, for instance, advisable to par-
ticularly match the lateral position of the centre of rotation
and the reflection point on the jittering mirror (or test mass)
with high precision because the residual offset causes a lin-
ear effect (equation (44)). Using imaging optics as described
in [1, 27] can significantly reduce the TTL coupling. Such
imaging systems image the centre of rotation to the photo-
diode centre, which results in djever = diong = 0 and minim-
ise the lever arm effect (equation (46) or (48), respectively).
Also, the TTL coupling from lateral jitter can be reduced by
respective design choices. Here, angular misalignments of the
mirror need to be minimised (equation (42)). Therefore, the
effects described here allow for a TTL coupling suppression
by smartly designing the interferometric layout.

On the other hand, the known geometrical TTL mechan-
ism can be used to counteract the measured TTL noise in an
experiment. From experimental data, one cannot necessarily
tell apart the geometric and non-geometric effects. Instead, the
total TTL noise is being measured. In some cases, one can
then use table 1 to counteract the total measured TTL. For
instance, one can laterally adjust the reflection point on the
jittering mirror to balance the sum of all existent first-order
effects. This could potentially mean that the lateral piston is
then intentionally being increased. Likewise, if the sum of all
second-order effects is sufficiently small and if space in the
experimental layout permits, one can, for instance, shift the
detector longitudinally (altering the magnitude of the lever
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arm effect) in order to minimise the observed second-order
TTL noise.

In summary, we have introduced and analytically described
a variety of geometric TTL coupling effects. These can add
significant noise to the signal of laser interferometers. The
mechanisms described here allow the suppression of TTL
noise by a dedicated design optimisation, as well as in the
experimental setup by a dedicated realignment to counteract
the observed TTL noise.
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Appendix. Signal cancellation for two identical
Gaussian beams

In section 4.2, we have shown a case where the total interfer-
ometric longitudinal path LPS signal vanishes despite a con-
siderable OPD response. This setup consisted of two identical
Gaussian beams, with one rotating around a pivot located at
an arbitrary point along the beam axis and a large single ele-
ment photodiode that detects both incident beams without clip-
ping. In this section, we show in a small angle approximation
that this LPS signal vanishes due to the symmetry of the inter-
fering wavefronts on the detector surface. We do this in two
steps: In ‘Symmetry of the amplitude profile’, we show the
symmetry of the amplitude profile of the interference pattern,
in ‘Symmetry of the phase difference and cancellation on the
detector’ the symmetry of the phase difference of the inter-
fering beams. We thereby show that for every point P on the
detector, there exists a point P, which is found by mirroring P,
on the symmetry plane. In P,, the interference pattern has the

same amplitude as in Py, but an inverse phase. The LPS signal
then vanishes because it is a signal that is integrated over all
detector points.

Symmetry of the amplitude profile

In the considered setup, we rotate the measurement beam
around a point along its propagation axis, while the reference
beam is not tilted (¢, = 0). Let the distance between the point
of rotation and the point of incidence, i.e. the point where
the ray describing the beam axis impinges on the detector,
be given by diever- FoOr diever # 0, the point of incidence gets
shifted along the photodiode surface when rotating the beam
by .. Thus the measurement beam’s new point of incidence
varies by:

Xim R —diever P> (A.1)
while the reference beam stays constant (x;, = 0). The amp-
litude profile of the interference pattern A(x,y), defined

(x,5)

according to [28] by:
w2(z,) ’

1 exp < B r§1 (x )Y )
, w

(A.2)
is then symmetric to the plane defined by x = x,.. Here, w(z, ;)
defines the spot radius of the measurement and reference beam
on the detector surface, and r,, , is the cylindrical coordin-
ate of the respective beam. Furthermore, x, is the mean value
between the x-coordinates of the two incidence points:

A()C,y) =

Xim — Xir

2

1
R — = diever Pm- (A3)

2

Xe =

The cylindrical coordinates of the beams when impinging on
the detector are given by:

P

m

= (x — Xim) > cos* (@) +7, (A.4)

P =x> 4y (A.5)
The coordinate transformation, performed here on the x and
y coordinates, naturally also needs to be performed on the z-
coordinate [28], resulting in:

1
Im R+ Edlever@i - (x - xim) Pm (A.6)

Zr = 7 = const. (A7)

Substituting accordingly z,, ., 7:n,» in equation (A.2) reveals the
symmetry:

1
A <2dlever +x,y> =A (

(A.8)

1
*7dever7 ) .
L xy)
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Symmetry of the phase difference and cancellation on the
detector

Next, we examine the local phase differences. We will show
that this phase difference is zero at the centre between the
points of incidence, while its absolute value increases and
decreases symmetrically with increasing distance from this
point. Since the phase relates to a length [ via ¢ =2wl/),
where A is the wavelength of the beam, we can analog-
ously investigate length changes here. Therefore, we study
the beams’ properties and geometric relationships further. For
simplicity, we can reduce our analysis to the plane in which
the rotation of the measurement beam gets applied. The phase
differences in an orthogonal plane, i.e. for a constant x-value,
are in a small angle approximation constant. First, we invest-
igate the Gaussian beam properties. We know that Gaussian
beams provide the same phase along their wavefronts. For our
analysis, we propagate the beams until their wavefronts hit the
point of interest P at the detector, see figure Al.

The beams have then propagated a distance d,, .. We com-
pare this distance with the lever arm djeyer, Which is the dis-
tance the beam axis propagates from the CoR to the diode
if ¢,, = 0. We can then show the symmetry of the wavefront
using the difference d, , — diever = Oy, . This distance J,, » can
also be expressed as function of the radii of curvature R,, , and
the auxiliary lengths g, ,:

6m,r = Rm,r + Em,r — dlevera (A9)
as visible in figure Al. We will therefore derive expressions
for these quantities (R, , and €,,,,) in the following.

The radii of curvature are defined via:

2
Rm,r = Zm,r (1 + ( ) > )

where z denotes the Rayleigh range. The distances from the
waists (z,,,-) can be related to d,, , via:

2 (A.10)

Zm,r

Zm,r = Z+5m,r7 (All)
where z is the distance from waist in the nominal non-tilted
case, defined for the point of incidence at the detector. We
can now substitute z,, , in equation (A.10). Using that 6, , < 1
holds for the typical cases of interest, the radii of curvature can
be series expanded to:

R
Ry ~ R+ 6, <2— ) : (A.12)
Z
Here,
z 2
R—Z(H—(O) ) (A.13)
Z

is the radius of curvature at the point of incidence of a non-
tilted beam.

In the next step, we define the auxiliary lengths &,, . As
shown in figure Al, they describe the distance between the

CoR
dlm er dr dlever
Oy |__PD surface

Figure A1. Properties of a tilted measurement and a non-tilted
reference beam whose wavefronts are intersecting a point P at the
detector surface. The paths of the beam rays are described by the
solid grey lines. The measurement beam got rotated by an angle ¢,
(negative in this figure) around the centre of rotation (CoR). Left
figure: the beams propagate the distances d,,,- from the CoR until
their wavefronts hit the point P. This distance differs from the diever,
i.e. the distance between the CoR and the detector, by ,, . Right
figure: the propagation distance of the beams can also be defined via
their radii of curvature R, ,. We additionally define the auxiliary
lengths €, as the distances between the CoR and the beam’s
centres of wavefront curvature (CoCyy,). If Ry, are greater than
diever, the lengths €,, , are negative. For every investigated point P,
there can be found an angle 1) defining its position in relation to the
reference beam axis.

centre of rotation (CoR) and the respective centre of wavefront
curvature (CoC,, ;).

Any point on the detector can be described by an angle v in
relation to the initial point of incidence as shown in the right-
hand sketch of figure Al. There, the point P of interest, the
centre of rotation and the centres of curvature span triangles.
By geometric relations (law of cosines) we then know that:

2 2 2 2
Rm,r = d]ever sec (1/)) + 6m,r

— 2diever S€C(1)) €, COS (P, r — V). (A.14)

We have now derived expressions for Ry, », €, r, O, (i-€. (A.9),
(A.12), (A.14)) and can solve these for §,, . In order to show
the symmetry of the phase difference of the interfering beams
and the cancellation of the LPS signal, we derive 9,,, for
points P; and P, that are symmetric around the point x., see
figure A2. In the next step, we then argue that the deviations
Om,» are equal in the symmetry point x,, such that the difference
is zero.

We solve the system of equations (A.9), (A.12), (A.14) for
Om,» studying two points on the detector that possess in a good
approximation the same distance to the center of the points of
incidence, i.e. ¢, = ¢, — ¢ and ¥, = . We get:

d2
81y A —ver (o, qh)? A.15
diever >
Oim ™ =5 (03— 2pmth) + 7, (A.16)
IS leeverw (A.17)
r 2R b .
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Ear

¢
dlever

PD surface

Figure A2. Investigation of the two beams’ local phase differences
in the two points P; (left figure) and P, (right figure). In both
figures, the beam rays are shown as solid grey lines, where the
non-tilted right line belongs to the reference and the left line belongs
to the measurements beam. Py and P, lie symmetrically around the
centre between the beams’ points of incidence. The points are
defined via an angle 1) with respect to the beams’ axes. The
respective radii of curvature are denoted with R;,, - and likewise the
auxiliary lengths are tagged ;..

Er
dlever

R,

|

| Y

" PD surface

Figure A3. Investigation of the two beams’ local phase differences
in the centre between their points of incidence, i.e. for x = x.. The
measurement (red) and the reference beam (blue) are symmetric
with respect to the bisecting line from the centre of rotation to x..
Therefore, itis R, = R- and €, = ¢,

Nm——

w leever wZ

Som = 2 20m Al
2 >R (@ = 2om?) + =0 (A.18)
and therefore
—R
61m - (Slr = - dlCVCr(dzlz\:f ) (cprzn - Z@mw) (Alg)
= —(Gam — 020). (A.20)

This shows that the phase differences between measurement
and reference beam are identical in the symmetric points P;
and P, but with inverse signs.

In the centre point x., which can be described
via ¢ =,/2, we find a phase difference of zero in
equation (A.20). This special case is additionally visualised
in figure A3. In this figure, we see that the line connecting
the CoR with x, is (for small angles) the bisector. For sym-
metry reasons, the wavefronts that are intersecting along this
bisecting line must belong to beams having propagated the
same distance. It follows z,, = z+ 6,, = z+ J, = z, and hence
Om — 0, =0.

Taking together our findings, we have now shown that the
amplitude profile of the interference pattern is symmetric to
the plane defined by x = x., where x, is the centre between the
points of incidence along the x-axis. Furthermore, the phase
differences at points symmetrically arranged to this plane
have identical magnitude but inverse signs. In the LPS signal,
the amplitude scales the phase difference. Furthermore, the
interferometric LPS signal experimentally originates from the
complete detector surface, which mathematically is described
by an integral over all detector points (see e.g. [24, 28]). There-
fore, the shown symmetries result in a cancellation of the LPS
signal.

A detailed mathematical derivation of the LPS signal for
the setup described here and the cancellation in the integral is
additionally shown in [22].
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