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Abstract
Shortly before LarryWos passed away, he sent amanuscript for discussion to Sophie Tourret,
the editor of the AAR newsletter. We present excerpts from this final manuscript, put it in its
historic context and explain its relevance for today’s research in automated reasoning.

Keywords History of automated reasoning · Reasoning by instantiation · Set of support ·
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1 Introduction

Larry Wos wrote the president’s column of the AAR Newsletter from its first installment in
March 1983 till #131 in May 2020. The text below was not originally planned for the AAR
newsletter, but was written for a colleague of his, to show a student how such a column can
be written. Larry sent this final manuscript to Sophie Tourret in 2020 asking for feedback,
but passed away before they could even start a discussion about it. We do not know if the
text ever made its way to the intended recipient, but, for sure, it would have made it to a
later issue of the AAR newsletter, had Larry had time to finish it. Thus, we have decided to
publish excerpts from this final manuscript, put them into the historic context, and explain
their relevance to automated reasoning research today.

2 The Column

The typical column by Larry contained at least two elements: anecdotes on the (early) history
of automated reasoning followed by an open problem. Open problems came mainly from
three areas: (finite) group theory, properties of metalogic formulations from the condensed
detachment or equivalential calculus, or logic puzzles.We present three excerpts fromLarry’s
final manuscript: two anecdotes from the early history of automated reasoning—namely on
the relevance of instances and the set of support strategy—and the Candy Puzzle.
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Finding Relevant Instances: A key technique in (refutation-based) automated reasoning is
to identify relevant instances of universally quantified formulas. The unpublished column
contains several remarks by Larry emphasizing the role of finding such instances.

By definition, automated reasoning refers to a field in
which a computer program is written that applies logical
reasoning. A person can reason in a manner that is
unavailable to an automated reasoning program, a way that
is called instantiation. Instantiation is a type of
reasoning in which variables can be replaced with other
variables or with terms.

Instantiation of first-order logic formulas was actually the basis of early attempts to auto-
mated reasoning [12, 24] able to already automatically prove simple valid first-order formulas.
While Gilmore [24] resolved quantifier alternations by so called “multiplications” of ground
instances of the formula, Davis and Putnam [12] already applied Skolemization to existen-
tially quantified variables and instantiated with ground Herbrand terms. Noneveless, citing
Prawitz “themain weakness of the first programs for theorem proving was themanner of gen-
erating substitution instances” [34]. Resolution was seen as—and actually still is—a major
breakthrough, because it does not require guessing ground instances. However, if the set of
ground instances of clauses needed for a proof is small, then explicitely generating these
ground instances is to be preferred over resolving among the clauses. This fact is reflected
by state-of-the-art research where, e.g., InstGen [22] is currently the best single reasoning
approach to first-order problems where a rather small set of ground instances from the input
clause set suffices. InstGen is based on the instantiation of clauses guided by an abstraction of
the first-order clauses to propositional clauses. However, building resolvents on input clauses
can lead to exponentially shorter proofs compared to solely reasoning on instances, even for
decidable fragments and small clause sets with only a few constants as the only function
symbols [20, 33]. For an overview of recent reasoning methods incorporating instantiation,
see [6].

For example, if you are studying groups in which the
square of every element is the identity e,and if you are
employing the function f to mean product, then, with
instantiation, you can obtain f ( f (u, v), f (u, v)) = efrom f (x, x) =
e.Since instantiation is unavailable for an automated
reasoning program, the obtaining of the preceding
equation, f ( f (u, v), f (u, v)) = e,will not occur.

The statement “instantiation is unavailable for an automated reasoning program” by Larry
means that finding the “relevant” instances towards a proof is often as hard as finding the proof
itself. Since validity is not decidable in equational logic, finding the right instances cannot
be decidable as well, in general, hence instantiation by relevant instances is unavailable
for an automated reasoning program. Technically, almost all automated reasoning calculi
enable the addition of instances. The work of [22], see above, was actually an important step
towards finding relevant instances through an abstraction into a decidable fragment, in this
case propositional logic. For an overview on possibilities towards finding relevant instances,
consider again [6]. Reasoning by SMT [32] (Satisfiability Modulo Theories) is built on these
ideas, see below.
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Nevertheless, group theory, and equational reasoning in general is a nice example for the
power of instantiation. Ground equations can always be oriented, e.g., by a Knuth–Bendix
ordering [26], and Knuth–Bendix completion terminates on a set of ground equalities and
disequalities. Oriented equations are rewrite systems that are fundamental for many concepts
in computer science such as the semantics of programming languages and have therefore
obtained a lot of attention [11, 13, 27]. An alternative approach, typically implemented
in SMT [3, 29, 32] solvers, is to decide the satisfiability of a set of ground equations by
congruence closure [31]. Therefore, if a finite set of needed (ground) instances for a refutation
is known in advance, then the problem of whether a conjectured equation is a consequence
of other equations turns from being undecidable, in general, into a decidable problem.

1979 was the year that Veroff began to express an interest
in automated reasoning, and he has remained interested
ever since. In 1996, Veroff introduced his hints strategy
for directing a program’s reasoning in a manner that
proved to be more effective than is weighting.
He introduced his “sketches” in 2001, an approach that
enabled him to answer various open questions.

Veroff introduced hints [42] to direct the proof search, integrated in Otter [28], the role
model of all modern theorem provers, designed by Bill McCune. Otter has a sophisticated
weight system for clauses. In its simplest form, the weight of the clause is the sum of the
weights of its symbols, and clauses with a small weight are preferred for performing infer-
ences during proof search. A clause weighting mechanism is an inherent ingredient of all of
today’s implementations of saturation-based theorem provers [5, 18, 36, 38, 41, 45]. The hint
technique introduced by Veroff adds to the clause weighting mechanism: clauses subsumed
by the hint clause or clauses subsuming the hint clause receive special treatment with respect
to their weight. For example, if certain clauses sharing some abstract structure are thought to
be essential in finding a proof, then a clause representing this abstract structure can be used
as a hint clause. Then any clause that is subsumed, i.e., a superset of an instance of the hint
clause, can be preferred for performing further inferences. In an extreme setting, hints can
simulate the restriction of inferences to certain ground instances. Veroff successfully used the
clause hint technique to find and analyze proofs [43] and combined it with another technique
called proof sketches. A proof sketch is an incomplete, possibly incorrect proof that is then
used to guide the search for a correct proof. A proof sketch may be obtained by an abstraction
of the actual problem, for example by replacing non-variable terms with fresh variables.

This idea of restricting inferences and instantiation to certain patterns plays also an impor-
tant role in SMT solving. Based on ideas from the Nelson-Oppen combination procedure [7,
9, 10, 16, 30], modern SMT solvers are highly efficient decision procedures for the ground
combination of several theories, e.g., ground first-order logic with equality combined with
ground arithmetic—on this topic, see also TheCandy puzzle, page 5. If this approach needs to
consider problems that also contain universally quantified formulas, it does so by consecutive
additions of ground instances of these formulas. The research on this topic started with the
Simplify system [14], where so-called triggers are used to generate ground instances out of
universally quantified formulas. A trigger is a term and only instances of this term are used for
proof search, similar to the concept of hints. Simplify makes additional use of the decidabil-
ity of equational reasoning on the ground level. It builds an explicit model of the generated
congruence and then prefers instances of the trigger that are related to the congruence. This
idea was generalized to consider ground models not only for an equational theory, but also
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for other theories for restricting the generation of ground instances [15, 23]. More recently,
it has turned out that, as a last resort and if done with care, even an enumeration of possible
ground instances can result in an efficient system [35]. In summary, the ideas suggested by
Larry and his collaborators have influenced future research and are still further developed
nowadays, in particular in the areas of first-order theorem proving and SMT solving.
The Set Of Support Strategy: Another anecdote by Larry is on the origin of the set of support
strategy [47].

In a summer visit, Willam F. Miller, Director of the
Applied Mathematics Division at Argonne National
Laboratory, invited John Alan Robinson. Miller introduced
Robinson to Larry Wos and to Dan Carson, an introduction
that had unbelievable consequences for the field that
would eventually be called automated reasoning. While
Robinson was visiting Argonne, he introduced his new
inference rule that he called binary resolution.
The introduction of the inference rule binary resolution
changed the course of history for automated
reasoning forever.
[...]
When Carson, who was a brilliant programmer in IBM
assembly, learned of the new inference rule, he wrote a
mechanical theorem-proving program encoding the rule.
Carson and Wos used his program in an attempt to prove a
trivial theorem in group theory. Carson’s program was
unable to find the sought-after proof. The theorem asserts
that, if the square of every element xin the group is the
identity e, then the group is a commutative group,
f (x, y) = f (y, x)for every element in the group. Carson called
me by phone and said that, if I had nothing to suggest,
we were finished, and he gave me forty-five minutes to
come up with something. After thirty-two minutes had
elapsed, he called again, and I told him about the set of
support strategy. Carson eagerly asked for permission to
extend his program so that the program could apply the new
strategy. The rest is history: with the extended program,
the sought-after proof was found and found in less than
3 CPU-seconds. If Carson had not been so impatient,
the use of some type of strategy would never have occurred.
He is a hero for, without strategy, proofs would almost
never be found with a program that reasons logically.
[...]
Learning about the set of support strategy, Robinson set
about to prove that the strategy is refutation complete.

The encoding of the group theory used at that time by Wos and his collaborators was
the following [46, 47]: the group operation is modeled by a ternary predicate P , where
P(x, y, z) stands for the group multiplication of x and y resulting in z. Using this predicate,
basic properties of a group can be axiomatized. For example, associativity was represented by
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clauses like ¬P(x, y, u)∨ ¬P(y, z, v)∨ ¬P(u, z, w)∨ P(x, v, w) by introducing explicit
result variables for the sub-products. However, a group theory axiomatization solely built on
this predicate P is not complete, in general, because P is a relation and does not represent
that the group operation is a function nor that it is total. For cases where this is needed, e.g.,
proving that a group where the square of each element is the identity is commutative, an
additional binary predicate R for equality was added together with the equivalence relation
axioms for R and the congruence axioms for P and used functions. For example, for the
function f expressing totality by the unit P(x, y, f (x, y)) the congruence axiom¬R(x, x ′)∨
¬R(y, y′) ∨ R( f (x, y), f (x ′, y′)) was added, for the group multiplication the congruence
axiom ¬R(x, x ′)∨ ¬R(y, y′)∨ ¬R(z, z′)∨ ¬P(x, y, z)∨ P(x ′, y′, z′). The motivation for
this encoding was to not expose the group multiplication to full equational reasoning which
turned out to be far more successfull, because Knuth–Bendix completion and equational
reasoning [26, 37]were not yet developed at this time. The problemwas attacked by resolution
through a partial axiomatization of equality, depending on what was needed for the actual
problem at hand. A number of different axiomatizations following this approach can be found
in [46]. Using such a formulation without specific equational reasoning, such problems are
still a challenge to today’s automated reasoning systems. Examples of such encodings are
contained in the TPTP [40], e.g., the above-mentioned problem is called GRP001-1 in the
TPTP.

The set of support strategy consists of dividing an unsatisfiable clause set into two disjoint
sets N and S. Then, any resolution inference is restricted to use at least one clause from S,
the set of support. Newly derived clauses are added to S. Wos together with his collaborators
showed [47] that this restriction of the resolution calculus is complete if N is satisfiable. In
a setting where a conjecture is to be shown from a set of satisfiable axioms, such a setup can
easily be obtained by putting the axiom formulas into N and the (negated) conjecture into S.
Recently, it has been shown that for completeness of the set of support strategy, it is necessary
and sufficient that there exists a resolution refutation with at least one clause from S [25].
The set of support strategy has become an integral part of many approaches to automated
reasoning. It is implemented in all first-order logic resolution-based theorem provers [5, 18,
36, 38, 41, 45]. In case of additional ordering restrictions, it is still complete if the set N is
closed under non-redundant inferences. In the purely equational case, this boils down to the
generation of all critical pairs modulo rewriting and elimination of trivial equations, and in
the case of first-order logic with equality to the generation of all superposition inferences
modulo redundancy [1].

The Candy Puzzle: Puzzles have a long history in motivating automated reasoning research
by showing deficiencies of state-of-the-art reasoning calculi or systems. An early example is
Schubert’s Steamroller problem [39], a puzzle that was not easy to solve without a concept
of typing and, therefore, motivated research in this direction. Larry’s manuscript contained
the following puzzle.

Candy Puzzle
Jane’s Confections is an old-fashioned sweet shop next to
the old post office in Chicago, and sweet-toothed Illinois
residents traveled many a mile to buy chocolate and caram-
els, as they did when they were kids.
This afternoon, four locals, all on their way to collect
their children from a nearby junior high school, have pop-
ped in to buy a bag of something scrumptious. From the clu-
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es, can you say at what time each customer called, and what
weight of what sugary treat Jane sold them?

1. Tobias nipped in later than Sarah and bought one and
a quarter pound more of his chosen sweet than the pur-
chaser of toffee bought of toffee.

2. The customer who bought 3 pounds of creams was not the
customer who came in as the clock struck 3.

3. The second customer of these four bought one and a half
pounds more humbugs than Ursula bought of her favorite
confection.

4. Virgil bought one and a half pounds more of his selected
sweet than did the person who walked into the shop at
3:10 but who did not buy lemondrops.

5. The customers called at 3, 3:05, 3:10, and 3:15.
6. They bought one and three quarter pounds, three pounds,

three pounds and a quarter pound, and four and a half
pounds.

The first exercise is to solve the puzzle with the help of an automated reasoning system:
Challenge:

(1) Formulate the puzzle in logic and let an automated reasoning system find the solution.

Implicitly, the assumption is that allmentioned constants occur exactly once in the solution.
For example, every customer does exactly one purchase, each different sweet is bought exactly
once, etc. Then the puzzle boils down to a finite domain problemwith 44 different possibilities
of a single purchase. It can then be formalized in pure first-order logic—without theories—or
even translated into propositional logic and solved that way. Solving the puzzle amounts to
finding a model for the formalization, a task that is more difficult than finding a refutation
(proof).We did a formalization in first-order logic and both SPASS [45] andVampire [36] find
a solution in less than a second thanks to splitting [44]. Also the grounding of the first-order
formulization can be immediately solved by any SAT solver starting at the performance
of MiniSat [19]. However, these formalizations require the explicit axiomatization of the
needed arithmetic and linear-order concepts and properties involved in the puzzle. A more
natural formulization is possible in a first-order logic over linear arithmetic. We could use a
four-place predicate P where P(u, x, y, z) means that u bought the amount x of y at time
z. For the timing we use the values 300, 305, 310, and 315 and for the amount the values in
quarter pounds, i.e., 7, 12, 13, and 18. Then a complete formalization is as follows. Firstly,
we declare the existence of the four purchases

P(Tobias, at, bt, ct) ∧ P(Sarah, as, bs, cs) ∧
P(Ursula, au, bu, cu) ∧ P(Virgil, av, bv, cv)

where all symbols starting with a, b, or c are constants (existentially quantified variables).
Then, we get from the first clue

1.a P(Tobias, x, y, z) ∧ P(Sarah, x ′, y′, z′) → z > z′
1.b P(Tobias, x, y, z) ∧ P(u, x ′, toffee, z′) → x = x ′ + 5
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where all variables x, y, z, u (with primes) are universally quantified and ∧ binds stronger
than →. The second clue becomes

2 P(c21, 12, creams, c22) ∧ c22 �= 300

where the constants c21 and c22 are finallymapped by the finite domain axioms to the available
timings, and persons. The clues three and four become

3 P(c31, au + 6, humbugs, 305) ∧ c31 �= Ursula
4 P(c41, av − 6, c42, 310) ∧ c41 �= Virgil ∧ c42 �= lemondrops

and the remaining clues are contained in the finite domain axioms.

5 P(u, x, y, z) → (z = 300 ∨ z = 305 ∨ z = 310 ∨ z = 315)
6 P(u, x, y, z) → (x = 7 ∨ x = 12 ∨ x = 13 ∨ x = 18)
7 P(u, x, y, z) → (y = toffee ∨ y = creams ∨ y = humbugs ∨ y = lemondrops)
8 P(u, x, y, z) → (u = Tobias ∨ u = Sarah ∨ u = Ursula ∨ u = Virgil)

Solving the puzzle formulated this way is a challenge. To the best of our knowledge, there
is no automated reasoning tool that can, without further massage, derive a solution from
this formalization. We tried the SMT solvers CVC4 [4] and Z3 [17] without success. Also,
approaches based on resolution-style reasoning over constraint clauses will not succeed as
long as the finite domain axioms do not get special treatment [2, 8]. One reason is the
combination of constants and universally quantified variables over numbers which, together
with first-order predicates, leads to a logic that is no longer compact, in general. Recall that
compactness here means that for every infinite unsatisfiable set of clauses there exists always
finite unsatisfiable subset. For example, the combination of first-order predicates and linear
rational arithmetic already enables the definition of the natural numbers and the introduction
of a single constant can then cause non-compactness [21]. The formulas

Nat(0)
Nat(x) → Nat(x + 1)
x < 0 → ¬Nat(x)
0 < x < 1 → ¬Nat(x)
x > 0 ∧ Nat(x + 1) → Nat(x)

define the natural numbers with respect to a universally quantified variable x ranging over the
rationals using the predicate Nat. Non-compactness arises when this definition is combined
with the four formulas

Nat(a)
P(0)
P(x) → P(x + 1)
¬P(a)

for some constant a. The combination of all the formulas is unsatisfiable; however, every
finite grounding of the formulas has a model. Still the above formulation of the puzzle is
solvable, and even decidable because of the finite domain axioms. Further challenges are the
following:

Challenge:

(2) Is the solution from the clues unique?
(3) If clue six is removed, is it possible to derive automatically the amounts for the purchases?
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Conclusion: The scientific contributions by Larry Wos have shaped automated reasoning.
Even in his later years, his columns continued to offer relevant insight into the past of
automated reasoning and presented challenges that are still relevant to automated reasoners
nowadays. Larry Wos was a founder of automated reasoning. He died on 20 August 2020.
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