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NEW MODULI COMPONENTS OF RANK 2 BUNDLES ON
PROJECTIVE SPACE

CHARLES ALMEIDA, MARCOS JARDIM, ALEXANDER TIKHOMIROV,

AND SERGEY TIKHOMIROV

Abstract. We present a new family of monads whose cohomology is a stable rank two

vector bundle on P3. We also study the irreducibility and smoothness together with

a geometrical description of some of these families. Such facts are used to prove that

the moduli space of stable rank two vector bundles with trivial determinant and second

Chern class equal to 5 has exactly three irreducible components.
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1. Introduction

In [24] Maruyama proved that the rank r stable vector bundles on a projective

variety X with fixed Chern classes c1, ..., cr can be parametrized by an algebraic quasi-

projective variety, denoted by BX(r, c1, ..., cr). Although this result has been known for

almost 40 years, there are just a few concrete examples and established facts about such

varieties, even for cases like X = P3 and r = 2. For instance, BP3(2, 0, 1) was studied

by Barth in [2], BP3(2, 0, 2) was described by Harthorne in [12], BP3(2,−1, 2) studied by

Harthorne and Sols in [15] and by Manolache in [23], while BP3(2,−1, 4) was described by

Banica and Manolache in [1]. This probably happened due to the fact that the questions

of irreducibility (solved in [27] and [28]), and smoothness (answered in [20]) of the so-called

instanton component of the moduli space BP3(2, 0, c2) remained opened until 2014.

In this paper, we continue the study of the moduli space BP3(2, 0, n), which we will

simply denote by B(n) from now on, with the goal of providing new examples of families of

vector bundles, and understanding their geometry. It is more or less clear from the table

in [14, Section 5.3] that B(1) and B(2) should be irreducible, while B(3) and B(4) should

have exactly two irreducible components; see [11] and [7], respectively, for the proof of the

statements about B(3) and B(4). For n ≥ 5, two families of irreducible components have

been studied, namely the instanton components, whose generic point corresponds to an

instanton bundle, and the Ein components, whose generic point corresponds to a bundle
1
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given as cohomology of a monad of the form

0→ OP3(−c)→ OP3(−b)⊕OP3(−a)⊕OP3(a)⊕OP3(b)→ OP3(c)→ 0

where b ≥ a ≥ 0 and c > a + b. All of the components of B(n) for n ≤ 4 are of either of

these types; here we focus on a new family of bundles that appear as soon as n ≥ 5.

More precisely, we study the family of vector bundles in B(a2 + k) for each a ≥ 2

and k ≥ 1 which arise as cohomologies of monads of the form:

0→ OP3(−a)⊕ k · OP3(−1)→ (4 + 2k) · OP3 → k · OP3(1)⊕OP3(a)→ 0

which will be denoted by G(a, k). We provide a bijection between such monads and

monads of the form:

0→ OP3(−a)
σ−→ Ẽ

τ−→ OP3(a)→ 0

where Ẽ is a rank 4 instanton bundle of charge k. When k = 1 these facts, are used to

prove our first main result.

Main Theorem 1. For each a ≥ 2 not equal to 3, G(a, 1) is a nonsingular open subset

of an irreducible component of B(a2 + 1) of dimension

4 ·
(
a+ 3

3

)
− a− 1.

Our second main result provides a complete description of all the irreducible com-

ponents of B(5).

Main Theorem 2. The moduli space B(5) has exactly 3 irreducible components, namely:

(i) the instanton component, of dimension 37, which consists of those bundles given

as cohomology of monads of the form

(1) 0→ 5 · OP3(−1)→ 12 · OP3 → 5 · OP3(1)→ 0, and

(2) 0→ 2 · OP3(−2)→ 3 · OP3(−1)⊕ 3 · OP3(1)→ 2 · OP3(2)→ 0;

(ii) the Ein component, of dimension 40, which consists of those bundles given as

cohomology of monads of the form

(3) 0→ OP3(−3)→ OP3(−2)⊕ 2 · OP3 ⊕OP3(2)→ OP3(3)→ 0;
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iii) the closure of the family G(2, 1), of dimension 37, which consists of those bundles

given as cohomology of monads of the form

(4) 0→ OP3(−2)⊕OP3(−1)→ 6 · OP3 → OP3(1)⊕OP3(2)→ 0 and

(5) 0→ OP3(−2)⊕2 ·OP3(−1)→ OP3(−1)⊕6 ·OP3⊕OP3(1)→ 2 ·OP3(1)⊕OP3(2)→ 0.

Indeed, Hartshorne and Rao proved in [14] that every stable rank 2 bundle on P3

with Chern classes c1(E) = 0 and c1(E) = 5 is the cohomology of one of the monads

listed above. Rao showed in [26] that bundles given as cohomology of monads of the form

(2) lie in the closure of the family of instanton bundles of charge 5, which was shown to

be irreducible firstly by Coanda, Tikhomirov and Trautmann in [8]; see also [27]. The

irreducibility of the family of bundles which arise as cohomology of monads of the form

(3) was established by Ein in [10].

Finally, our first main result yields the third component, and we also show that

the family of bundles given by the monads of the form (5) lies in the closure of the family

G(2, 1).
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Notation and Conventions. In this work, K is an algebraically closed field of

zero characteristic; P3 := Proj(K[x, y, z, w]). We will not make any distinction between

vector bundles and locally free sheaves, and H i(F ) will denote the i-th cohomology group

of the sheaf F on P3. Since we are working with rank 2 vector bundles on P3, and Gieseker

stability is equivalent to µ−stability, we will not make any distinction between these two

concepts. If V is a vector space over K, we will denote by G(k, V ) the grassmannian

variety of k-dimensional subspaces of V .
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2. Monads

Recall that a monad is a complex of vector bundles of the form:

(6) A
α
// B

β
// C

such that α is injective, and β is surjective. We call the sheaf E := ker β/ imα the

cohomology of the monad (6). When α is locally left invertible, then E is a vector

bundle.

The notion of monad is important in the study of vector bundles on P3 because

Horrocks proved in [16] that every vector bundle on P3 is cohomology of a monad of the

form (6) with A, B and C being sums of line bundles.

For completeness, we include in this section some useful results about monads that

will be required in this work. The following lemma gives a relation between isomorphism

classes of monads and its cohomology vector bundles; a proof can be found in [25, Lemma

4.1.3].

Lemma 1. Let E and E ′ be, respectively, cohomology of the following monads:

(7) M : A
a
// B

b
// C

(8) M ′ : A′
a′
// B′

b′
// C ′

If one has that Hom(B,A′) = Hom(C,B′) = H1(X,C∨ ⊗ A′) = H1(X,B∨ ⊗ A′) =

H1(X,C∨ ⊗ B′) = H2(X,C∨ ⊗ A′) = 0 then there exists a bijection between the set of all

morphisms from E to E ′ and the set of all morphisms of monads from (7) to (8).

The following important corollary will be used several times in what follows, and

a proof can also be found in [25, Lemma 4.1.3, Corollary 2].

Corollary 2. Consider the monad

M : A
a
// B

b
// C

and its dual monad:

M∨ : C∨
b∨
// B∨

a∨
// A∨.

If these monads satisfy the hypothesis of Lemma 1, and there exists an isomorphism f :

E → E∨ between its cohomology bundles such that f∨ = −f , then there are isomorphisms

h : C → A∨, and q : B → B∨, such that q∨ = −q, and h ◦ b = a∨ ◦ q.
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Recall that every locally free sheaf E on P3 is the cohomology of a monad of the

form [16]:

(9) 0→ ⊕ri=1OP3(ai)→ ⊕sj=1OP3(bj)→ ⊕tk=1OP3(ck)→ 0

In this work we will be interested in rank 2 locally free sheaves with vanishing first

Chern class. Under these conditions, we have E∨ ' E, thus the monad (9) is self dual,

which implies that t = r, s = 2r + 2, and {ai} = {−ck}. In addition, the middle entry of

the monad is also self dual, so that (9) reduces to

0→ ⊕ri=1OP3(ai)→ ⊕r+1
j=1 (OP3(bj)⊕OP3(−bj))→ ⊕ri=1OP3(−ai)→ 0.

Finally, recall also that r coincides with the number of generators of H1
∗(E) =

⊕
p∈Z H1(E(p))

as a graded module over the ring of homogeneous polynomials in four variables, while ai

are the degrees of these generators, cf. [19, Theorem 2.3].

3. Symplectic instanton bundles

Instanton bundles are a particularly important class of stable rank 2 vector bun-

dles due to their many remarkable properties and applications in mathematical physics.

Besides this, instanton bundles form the only known irreducible component of the moduli

space B(c) for every c ∈ N.

We will now present the main results concerning instanton sheaves that will be

used below. We start by recalling the definition of instanton sheaves on P3, cf. [17,

Introduction] for further information on these objects.

Definition 3. An instanton sheaf on P3 is a torsion free coherent sheaf E with c1(E) = 0

satisfying the following cohomological conditions:

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

The integer n := c2(E) is called the charge of E. When E is locally free, we say that E

is an instanton bundle.

Recall also that a locally free sheaf E is symplectic if it admits a symplectic struc-

ture, that is, there exists an isomorphism ϕ : E → E∨, such that ϕ∨ = −ϕ. A symplectic

instanton bundle is a pair (E,ϕ) consisting of an instanton bundle E together with a

symplectic structure ϕ on it; two symplectic instanton bundles (E,ϕ) and (E ′, ϕ′) are

isomorphic if there exists a bundle isomorphism g : E
∼→ E ′ such that ϕ = g∨ ◦ ϕ′ ◦ g.
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The cokernel N of any monomorphism of sheaves OP3(−1) → Ω1
P3(1) is called a

null correlation sheaf. Such sheaves are precisely the rank 2 instanton sheaves of charge

1, and are parametrized by the projective space PH0(Ω1
P3(2)) ' P5. If N is locally free,

we say that N is a null correlation bundle.

For the purposes of this paper, it is important to study rank 4 instanton bundles

of charge 1. Some of the following facts might be well known, but for lack of a reference

we include proofs here.

Lemma 4. (i) Every rank 4 instanton bundle E of charge 1 over P3 fits into an exact

sequence:

(10) 0→ 2 · OP3
µ−→ E

ν−→ N → 0

where N is a null correlation sheaf fitting into an exact triple:

(11) 0→ OP3(−1)
s−→ Ω1

P3(1)→ N → 0.

(ii) In addition, if N is locally free, then it is a null correlation bundle, and the triple (10)

splits: E ' N ⊕ 2 · OP3. Respectively, if N is not locally free, then it fits into an exact

triple

(12) 0→ N → 2 · OP3 → Ol(1)→ 0,

where l is some projective line in P3.

(iii) There are exact triples induced by (10) and (11):

(13) 0→ 3 ·OP3
S2µ−−→ S2E → coker(S2µ)→ 0, 0→ 2 ·N → coker(S2µ)→ S2N → 0,

(14) 0→ ∧2Ω1
P3(2)

ζ−→ Ω1
P3(1)⊗N η−→ S2N → 0.

Proof. From Definition 3 and Beilinson spectral sequence [25, Ch. II] it follows that E is

the cohomology sheaf of a monad of the type

(15) 0→ OP3(−1)
α−→ 6 · OP3

β−→ OP3(1)→ 0.

Since ker(H0(β) : K6 � K4) = K2 and ker(4 · OP3 � OP3(1)) = Ω1
P3(1), (15) yields an

exact triple of bundles

(16) 0→ 2 · OP3
λ−→ ker β

θ−→ Ω1
P3(1)→ 0
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which together with the triple 0 → 2OP3(−1)
i−→ ker β

θ−→ E → 0 also coming from the

monad (15) leads to the exact triples (10) and (11) in which µ = δ ◦ λ, N = cokerµ and

s = θ ◦ i.

Next, the morphism s in (14) as a section s ∈ H0(Ω1
P3(2)) ' ∧2V ∨, where V :=

(H0(OP3(1)))∨, can be considered as a skew-symmetric homomorphism ]s : V → V ∨, thus

leading to a commutative diagram

OP3(−1)
s
//

j1
��

Ω1
P3(1)

j2
��

V ⊗OP3

]s
// V ∨ ⊗OP3 ,

where j1 and j2 are natural maps. Extending the vertical morphisms in this diagram to

the corresponding Euler exact sequences, we see that the whole diagram then extends to

a commutative diagram with these Euler exact sequences as columns. In case when ]s is

an isomorphism the sheaf N is locally free; respectively, in case when ]s has rank 2, the

leftmost column of the extended diagram is just the triple (12).

Next, remark that the exactness of the two triples (13), in case when N is locally

free, follows from (10) by standard linear algebra. Respectively, in case when N is locally

free, (13) again follows from (10) and (16) by linear algebra and standard diagram chasing.

(Here we take into account that N is torsion free.)

As for the triple (14), the morphisms ζ and η in it are well defined on P3. The

exactness of (14) on P3 \ l again follows from (11) by linear algebra. Besides, standard

diagram chasing shows that ζ is injective and η is surjective as morphisms of OP3-sheaves,

and that η ◦ ζ = 0. Whence, the sheaf F = ker η
im ζ

is either 0 or supported in the line l. In

the last case we have an extension of OP3-sheaves 0→ ∧2Ω1
P3(2)

ζ−→ ker η → F → 0. Now

one easily checks that, since ∧2Ω1
P3(2) is a locally free sheaf and codim SuppF = 2, the

last triple splits, so that a torsion free OP3-sheaf Ω1
P3(1)⊗N has a torsion subsheaf F , a

contradiction. Hence, F = 0 and the triple (14) is exact. �

Corollary 5. In the conditions of Lemma 4, h0(S2E) = 3, h1(S2E) = 5, h2(S2E) = 0.

Proof. Tensoring the triple (12) with Ω1
P3(1) we obtain an exact triple 0 → Ω1

P3(1) ⊗

N → 2 · Ω1
P3(1) → 2 · Ol(1) ⊕ Ol → 0, whence h0(Ω1

P3(1) ⊗ N) = h2(Ω1
P3(1) ⊗ N) =

0, h1(Ω1
P3(1) ⊗ N) = 5. This together with the isomorphism ∧2Ω1

P3(2) ' TP3(−2), the

equalities hi(TP3(−2)) = 0, i ≥ 0, and the triple (14) yields h0(S2N) = h2(S2N) =
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0, h1(S2N) = 5. On the other hand, from (11) we obtain hi(N) = 0, i ≥ 0. The last

equalities together with both triples (13) lead to the assertion of Corollary. �

Fix a projective line l ⊂ P3, and let Nl denote the non locally free null correlation

sheaf associted with l, as given in sequence (12). Note that

dim Ext1(Nl, 2 · OP3) = 2 · h2(Nl(−4)) = 2 · h1(Ol(−3)) = 4,

so we must understand how many locally free extensions of Nl by 2 · OP3 do exist.

Lemma 6. For each line l ⊂ P3, the corresponding non locally free null correlation sheaf

Nl admits a unique, up to isomorphism, locally free extension by 2 · OP3.

Proof. Without loss of generality, choose homogeneous coordinates [x : y : z : w] in P3,

and assume that l is the projective line given by {x = y = 0}, so that Nl is the cohomology

of the following monad:

(17) 0→ OP3(−1)
αl−→ 4 · OP3

β−→ OP3(1)→ 0,

where

β :=
(
x y z w

)
and αl :=


y

−x

0

0

 .

An extension of Nl by 2 · OP3 will be the cohomology of a monad given as an

extension of the monad (17) by the monad 0 → 0 → 2 · OP3 → 0 → 0; such extension is

of the form

(18) 0→ OP3(−1)
α̃−→ 6 · OP3

β̃−→ OP3(1)→ 0,

where

β̃ :=
(
x y z w 0 0

)
and α̃ :=



y

−x

0

0

σ1

σ2


,
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with σ1, σ2 ∈ H0(OP3(1)); this pair can be written, as a column vector, in the following

form  σ1

σ2

 = v1 · x+ v2 · y + v3 · z + v4 · w,

where vj ∈ K2, for j = 1, . . . , 4.

Let Ã be the 6× 6 matrix

Ã :=

 14 0

0 A

 ,

where 14 is the 4 × 4 identity matrix, and A is an invertible 2 × 2 matrix. Note that

β̃Ã−1 = β̃, while

Ãα̃ =



y

−x

0

0

σ′1

σ′2


,

where  σ′1

σ′2

 = Av1 · x+ Av2 · y + Av3 · z + Av4 · w.

We claim that the cohomology of (18) is locally free if and only if the vectors v3

and v4 are linearly independent. Indeed, if v3 and v4 are linearly independent, then there

exists a 2× 2 matrix A such that

Av3 =

 1

0

 , and Av4 =

 0

1

 .

It follows that we have an isomorphism of monads

(19) 0 // OP3(−1)
α̃
// 6 · OP3

β̃
//

Ã
��

OP3(1) // 0

0 // OP3(−1)
α̃′
// 6 · OP3

β̃
// OP3(1) // 0,
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where

α̃′ =



y

−x

0

0

σ′′1 + z

σ′′2 + w


,

with σ′′1 and σ′′2 depending only on x, y. It is then easy to see that the cohomology of the

monad in the lower line of diagram (19) is locally free.

For the converse statement, there are 3 cases to be considered.

(1) If either v3 = λ ·v4 with v4 6= 0, then choose the 2×2 matrix A such that Av4 = (1, 0);

the morphism α̃′ in the lower line of diagram (19) is then given by

α̃′ =



y

−x

0

0

σ′′1 + λz + w

σ′′2


,

with σ′′1 and σ′′2 depending only on x, y, hence the cohomology of this monad is reflexive,

with a singularity at the point [0 : 0 : 1 : −λ].

(2) If v3 6= 0 and v4 = 0, then choose the 2 × 2 matrix A such that Av3 = (1, 0); the

morphism α̃′ in the lower line of diagram (19) is then given by

α̃′ =



y

−x

0

0

σ′′1 + z

σ′′2


,

with σ′′1 and σ′′2 depending only on x, y, hence the cohomology of this monad is reflexive,

with a singularity at the point [0 : 0 : 0 : 1].
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(3) Finally, if v3 = v4 = 0, then choose the 2 × 2 matrix A such that Av3 = (1, 0); the

morphism α̃′ in the lower line of diagram (19) is then given by

α̃′ =



y

−x

0

0

σ′′1

σ′′2


,

with σ′′1 and σ′′2 depending only on x, y, hence the cohomology of this monad is torsion

free with a singularity on the line l (in fact, it is isomorphic to Nl ⊕ 2 · OP3).

To prove that the uniqueness of the locally free extension, simply note that a

monad of the form

0→ OP3(−1)
α−→ 6 · OP3

β−→ OP3(1)→ 0

with morphisms given by

β :=
(
x y z w 0 0

)
and α :=



y

−x

0

0

ax+ by + z

cx+ dy + w


,

is isomorphic to a monad with α of the form

α :=



y

−x

0

0

z

w


,

and β given as above. �

We conclude that the moduli space of rank 4 instanton bundles of charge 1, denoted

I(4, 1), is isomorphic to P5. Indeed, let G ⊂ P5 denote the Grassmanian of lines in P3;

the points in the complement U := P5 \G correspond to the split instantons, of the form

N ⊕ 2 · OP3 ; the points l ∈ G correspond to the unique extention of Nl by 2 · OP3 .
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Lemma 7. If E is a rank 4 instanton bundle of charge 1, then h0(End(E)) = 5 and

Aut(E) ' K∗ ×GL(2).

Proof. Twist sequence (10) by E∨ and pass to cohomology to obtain

(20) 0→ H0(E∨)⊕2 → H0(End(E))→ H0(N ⊗ E∨)→ 0,

since H1(E∨) = 0 as E∨ is also a rank 4 instanton bundle of charge 1.

Next, twisting (10) by N and passing to cohomology yields h0(N ⊗E∨) = h0(N ⊗

N) = 1, because N is simple and h0(N) = h1(N) = 0. Since h0(E∨) = 2, sequence (20)

implies that

h0(End(E)) = h0(N ⊗ E∨) + 2 · h0(E∨) = 5.

Given an isomorphism g : E
∼−→ E, its composition with the monomorphism

ρ : 2 · OP3 → E must factor through 2 · OP3 , since h0(N) = 0. Thus there exists

M ∈ GL(2) such that the left square of the diagram

0 // 2 · OP3

ρ
//

M
��

E //

g

��

N

��

// 0

0 // 2 · OP3

ρ
// E // N // 0

commutes. The isomorphism N
∼→ N obtained by completing the previous diagram must

be a multiple of the identity, since N is simple. Therefore, we have constructed a map

from Aut(E) to K∗ ×GL(2).

Conversely, given (λ,M) ∈ K∗ × GL(2), we obtain an isomorphism g ∈ Aut(E)

just by completing the diagram

0 // 2 · OP3

ρ
//

M
��

E //

��

N

λ·1N

��

// 0

0 // 2 · OP3

ρ
// E // N // 0.

�

In particular, since End(E) = Λ2E ⊕S2E, it follows from Corollary 5 and Lemma

7 that h0(Λ2E) = 2.

In fact, one can show that every rank 4 instanton bundle of charge 1 is naturally

isomorphic to its dual. Indeed, this is clear for the split instantons E = N ⊕ 2 · OP3 .
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Otherwise, let E be given by (10) with a non locally free null correlation sheafNl; dualizing

(10), we obtain:

0→ 2 · OP3 → E∨ → 2 · OP3 → Ext1(Nl,OP3)→ 0.

Since, by sequence (12), Ext1(Nl,OP3) ' Ol(1), the kernel of the last morphism coincides

with Nl itself, and the first part of the previous exact sequence yields:

0→ 2 · OP3 → E∨ → Nl → 0.

implying, by Lemma 6, that E∨ ' E.

Lemma 8. Every rank 4 instanton bundle E of charge 1 admits a unique symplectic

structure, up to isomorphism.

Proof. If E = N ⊕ 2 · OP3 , the claim is clear: a symplectic form on E is the sum of the

(unique) symplectic structure on N plus a symplectic structure on 2 · OP3 , and the latter

can be transformed into the standard symplectic form, given by the matrix

 0 1

−1 0

 .

If E is non split, we can assume, following the proof of Lemma 6, that E is the

cohomology of a monad of the form

0→ OP3(−1)
α−→ 6 · OP3

β−→ OP3(1)→ 0

with morphisms given by

β :=
(
x y z w 0 0

)
and α :=



y

−x

0

0

z

w


.
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One can check that the following skew-symmetric matrix

J :=



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 1 0

0 0 −1 0 0 1

0 0 −1 0 0 0

0 0 0 −1 0 0


induces a symplectic structure on E which is unique up to change of bases. �

The exact sequence (10) yields an exact sequence in cohomology for every a ≥ 1:

0→ H0(OP3(a))⊕2 → H0(E(a))→ H0(N(a))→ 0.

It follows that

(21) H0(E(a)) ' H0(N(a))⊕H0(OP3(a))⊕2,

so every section σ ∈ H0(E(a)) can be represented as a triple (σN , σ1, σ2) with σN ∈

H0(N(a)) and σ1, σ2 ∈ H0(OP3(a)). In this representation, the action of Aut(E) on

H0(E(a)) is given by

(22) (λ,M) · (σN , σ1, σ2) = (λ · σN , σ′1, σ′2), where

 σ′1

σ′2

 = M

 σ1

σ2

 .

4. Modified instanton monads

We will now study monads of the following form, with a ≥ 2 and k ≥ 1:

(23) 0→ OP3(−a)⊕ k · OP3(−1)
α−→ (4 + 2k) · OP3

β−→ OP3(a)⊕ k · OP3(1)→ 0,

which we call modified instanton monads. The family of isomorphism classes of bundles

arising as cohomology of such monads will be denoted by G(a, k). Note that, by now,

G(a, k) could possibly be empty.

Proposition 9. For each a ≥ 2 and k ≥ 1, the family G(a, k) is non-empty and contains

stable bundles, while every E ∈ G(a, k) is µ-semistable. In addition, every E ∈ G(a, 1) is

stable.
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Proof. Let F be an rank 2 instanton bundle of charge k. Let a ≥ 2 and take σ ∈ H0(F (2a))

and (σ)0 = X (such σ always exists if F is a ’t Hooft instanton bundle, for instance). Let

Y be a complete intersection of two surfaces of degree a and X∩Y = ∅. According to [14,

Lemma 4.8], there exists a bundle E and a section τ ∈ H0(E(a)) such that (τ)0 = Y ∪X

which is given as cohomology of a monad of the form (23). In addition, since F is stable,

X is not contained in any surface of degree a, hence neither is Y ∪X, and E is also stable.

It is straightforward to check that every E ∈ G(a, k) satisfies h0(E(−1)) = 0, thus

E is µ-semistable.

Now fix k = 1, and assume that there is E ∈ G(a, 1) satisfying h0(E) 6= 0. Setting

K := ker β, it follows that h0(K) 6= 0, hence the quotient K ′ := K/OP3 fits into the

following exact sequence

0→ K ′ → 5 · OP3
β′
−→ OP3(1)⊕OP3(a)→ 0.

By [5, Theorem 2.7]K ′ is µ-stable. However, the monomorphism α : OP3(−a)⊕OP3(−1)→

K induces a monomorphism OP3(−1)→ K ′; by the µ-stability of K ′, we should have

−1 < µ(K ′) = −a+ 1

3
=⇒ a < 2,

providing the desired contradiction. �

Next, we provide a cohomological characterization for modified instanton bundles.

Proposition 10. A vector bundle E on P3 is the cohomology of a monad of the form

(23) if and only if H1
∗(E) has one generator in degree −a and k generators in degree −1,

and its Chern classes are c1(E) = 0, and c2(E) = a2 + k.

Proof. The “only if” part is straightforward. If E is a self dual vector bundle on P3 with

one generator in degree −a and k generators in degree −1, then by [19, Theorem 2.3], E

is cohomology of a monad of the type:

0→ OP3(−a)⊕ k · OP3(−1)
α−→ ⊕2k+4

i=1 OP3(ki)
β−→ OP3(a)⊕ k · OP3(1)→ 0.

Computing the Chern class give us c2(E) = a2 +k−
∑6

i=1 k
2
i , since c2(E) = a2 +k,

we have ki = 0 for all i. �

The modified instanton bundles are also related to usual instanton bundles of

higher rank in a very important way. The precise relationship is outlined in the next

couple of lemmas, and then summarized in Proposition 14 below.



16 C. ALMEIDA, M. JARDIM, A. TIKHOMIROV, AND S. TIKHOMIROV

Lemma 11. Given a vector bundle E ∈ G(a, k), there exists a rank 4 instanton bundle

Ẽ of charge k, and sections σ ∈ H0(Ẽ(a)), τ ∈ H0(Ẽ∨(a)) such that the complex:

(24) 0→ OP3(−a)
σ−→ Ẽ

τ−→ OP3(a)→ 0

is a monad whose cohomology is isomorphic to E.

Proof. Define α̃ = α ◦ i and β̃ = π ◦ β where i : k · OP3(−1) → OP3(−a) ⊕ k · OP3(−1) is the

inclusion and π : OP3(−a) ⊕ k · OP3(−1) → k · OP3(−1) is the projection. It is clear that α̃ is

injective and β̃ is surjective. We then get the following monad, whose cohomology is a rank 4

instanton Ẽ of charge k:

(25) 0→ k · OP3(−1)
α̃−→ (4 + 2k) · OP3

β̃−→ k · OP3(1)→ 0.

Now we need to construct the morphisms σ and τ . It is straightforward to check that

the chain of inclusions: im α̃ ⊆ imα ⊆ kerβ ⊆ ker β̃ holds. For this reason, we have:

0

��

OP3(a)

��

0 // kerβ //

f1
��

(4 + 2k) · OP3 //

��

OP3(a)⊕ k · OP3(1) //

��

0

0 // ker β̃
i
// (4 + 2k) · OP3 //

��

k · OP3(1) //

��

0

0 0,

where f1 is the inclusion. It follows that coker f1 ' OP3(a). In addition, we also obtain the

following commutative diagram:

0

��

0 // im α̃
i
// kerβ //

f1
��

//

��

kerβ/ im α̃ //

ω
��

0

0 // im α̃
i
// ker β̃ //

��

Ẽ // 0

OP3(a)

��

0,
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where ω is the inclusion. Thus cokerω ' OP3(a), and we obtain an epimorphism τ : Ẽ → OP3(a).

Now, by the isomorphism theorem we have
kerβ

imα
'

kerβ
im α̃
imα
im α̃

, so there exists an epimorphism

f2 : kerβ/ im α̃→ E fitting into the following commutative diagram:

0

��

0 // k · OP3(−1)
α̃

//

��

kerβ // kerβ/ im α̃ //

f2
��

0

0 // k · OP3(−1)⊕OP3(−a) //

��

kerβ // E //

��

0

OP3(−a)

��

0

0.

It follows that ker f2 ' OP3(−a), so there exists a monomorphism σ′ : OP3(−a) →

kerβ/ im α̃. Composing it with ω, we obtain a monomorphism σ := ω ◦ σ′ : OP3(−a)→ Ẽ. An

epimorphism τ is constructed in a similar way. We have therefore constructed the monad:

0→ OP3(−a)
σ−→ Ẽ

τ−→ OP3(a)→ 0,

whose cohomology is precisely the bundle E. �

Lemma 12. If a bundle E is the cohomology of a monad of the form (24), then E is also

isomorphic to the cohomology of a monad of the form (23), i.e. E ∈ G(a, k).

Proof. Let Ẽ be an rank 4 instanton bundle of charge k over P3, so that Ẽ is cohomology

of a monad of the type:

0→ k · OP3(−1)
α̃−→ (4 + 2k) · OP3

β̃−→ k · OP3(1)→ 0.

Take τ, σ ∈ H0(Ẽ(a)) satisfying τ ◦ σ = 0. We thus have the following exacts sequences:

0→ ker β̃ → (4 + 2k) · OP3
β̃−→ k · OP3(1)→ 0,

0→ k · OP3(−1)
α̃−→ ker β̃ → Ẽ → 0,

0→ ker τ → Ẽ
τ−→ OP3(a)→ 0,

0→ OP3(−a)
σ−→ ker τ → E → 0,

where E ' ker τ/ imσ.

First, define a morphism f2 : ker τ ⊕ k · OP3(−1) → ker β̃ as follows: given x and

y local sections of ker τ and k · OP3(−1), repectively, we set f2(x, y) := x + α̃(y), where
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x in the right hand side of the equality is regarded as a local section of Ẽ ' ker β̃/ im α̃.

We thus obtain the following commutative diagram:

0 // k · OP3(−1) // ker τ ⊕ k · OP3(−1)

f2
��

// ker τ //

��

0

0 // k · OP3(−1)
α̃

// ker β̃ // Ẽ // 0,

from which we obtain the exact sequence:

0→ ker τ ⊕ k · OP3(−1)
f2−→ ker β̃ → OP3(a)→ 0.

We can then compose f2 with the inclusion ker β̃ ⊆ (4 + 2k) · OP3 , obtaining a

monomorphism f̃2 fitting into the diagram below:

0

��

0

��

ker τ ⊕ k · OP3(−1)

f2
��

ker τ ⊕ k · OP3(−1)

f̃2
��

0 // ker β̃
i

//

��

(4 + 2k) · OP3

β̃
//

��

k · OP3(1) // 0

0 // OP3(a) //

��

coker f̃2
//

��

k · OP3(1) //

��

0

0 0 0

with the third line obtained via the Snake Lemma; it follows that coker f̃2 ' OP3(a)⊕ k ·

OP3(1).

Let β : (4 + 2k) ·OP3 → OP3(a)⊕ k ·OP3(1) denote the natural quotient morphism.

Making

α := f̃2 ◦ (σ,1k·OP3 (−1)) : OP3(−a)⊕ k · OP3(−1)→ (4 + 2k) · OP3 ,

we get the monad:

0→ OP3(−a)⊕ k · OP3(−1)
α−→ (4 + 2k) · OP3

β−→ OP3(a)⊕ k · OP3(1)→ 0,

whose cohomology is isomorphic to E. �

Next, we argue that the instanton bundle Ẽ obtained in Proposition 11 is sym-

plectic.
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Lemma 13. If Ẽ is a rank 4 instanton bundle of charge k that fits in a monad of the form

(24), such that the cohomology is a vector bundle, then Ẽ admits a symplectic structure,

and τ is determined by σ.

Proof. Since E is a rank 2 vector bundle with c1(E) = 0, there is a (unique up to scale)

symplectic isomorphism ϕ : E
'−→ E∨. By Corollary 2, there is an isomorphism of monads:

0 // OP3(−a)
σ
//

g'
��

Ẽ
τ
//

ϕ'
��

OP3(a) //

h'
��

0

0 // OP3(−a)
τ∨
// Ẽ∨

σ∨
// OP3(a) // 0

such that ϕ∨ = −ϕ, so (Ẽ, ϕ) is a symplectic instanton bundle, and τ = σ∨ ◦ ϕ. �

Putting Lemmas 11, 12 and 13 together, we obtain the following statement.

Proposition 14. A rank 2 bundle E is the cohomology of a monad of the form:

0→ OP3(−a)⊕ k · OP3(−1)
α−→ (4 + 2k) · OP3

β−→ OP3(a)⊕ k · OP3(1)→ 0

if and only if it is also the cohomology of a monad of the form:

0→ OP3(−a)
σ−→ Ẽ

σ∨◦ϕ−−−→ OP3(a)→ 0

where (Ẽ, ϕ) is a rank 4 symplectic instanton bundle of charge k.

As a first application of Proposition 14 we provide an alternative, more manageable

description of the set G(a, k).

In order to fix the notation, note that every automorphism f ∈ Aut(OP3(−a)⊕ k ·

OP3(−1)) can be represented by a (k + 1)× (k + 1) matrix :

f =


f1,1 0 · · · 0

f2,1 f2,2 · · · f2,k+1

...
...

. . .
...

fk+1,1 fk+1,2 · · · fk+1,k+1


where each fj,1 ∈ H0(OP3(a − 1)) with j = 2, . . . , k + 1, and f1, 1 and fl,m are constants

for l,m = 2, 3, . . . , (k + 1) such that:

f1,1 · det


f2,2 · · · f2,k+1

...
. . .

...

fk+1,2 · · · fk+1,k+1

 6= 0.
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We will denote:

f̃ =


f2,2 · · · f2,k+1

...
. . .

...

fk+1,2 · · · fk+1,k+1

 ;

clearly, f̃ ∈ Aut(k · OP3(−1)).

Similarly, every h ∈ Aut(k·OP3(1)⊕OP3(a)) can be represented by a (k+1)×(k+1)

matrix:

h =


h1,1 · · · h1,k 0

h2,1 · · · h2,k 0
...

...
. . .

...

hk+1,1 hk+1,2 · · · hk+1,k+1


where each hk+1,j ∈ H0(OP3(a− 1)) for j = 1, . . . , k, and hk+1,k+1 and hl,m are constants

for l,m = 1, 2, . . . , k, such that:

hk+1,k+1 · det


h1,1 · · · h1,k

...
. . .

...

hk,1 · · · hk,k

 6= 0.

We will denote:

h̃ =


h1,1 · · · h1,k

...
. . .

...

hk,1 · · · hk,k

 .

Clearly, h̃ ∈ Aut(k · OP3(1)).

Now let P(a, k) be the set of pairs ((Ẽ, ϕ), σ) consisting of a rank 4 symplectic

instanton bundle (Ẽ, ϕ) of charge k, and a nowhere vanishing section σ ∈ H0(Ẽ(a)),

equipped with the following equivalence relation: ((Ẽ, ϕ), σ) ∼ ((Ẽ ′, ϕ′), σ′) if and only

if there are an isomorphism of symplectic bundles g : (Ẽ, ϕ)
∼→ (Ẽ ′, ϕ′), and a constant

λ ∈ K∗ such that g ◦ σ = λσ. We will denote each equivalence class in P(a, k) by

[(Ẽ, ϕ), σ].

Theorem 15. There exists a bijection between G(a, k) and P(a, k).

Proof. From each pair ((Ẽ, ϕ), σ) we build the monad

0→ OP3(−a)
σ−→ Ẽ

σ∨◦ϕ−−−→ OP3(a)→ 0,
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whose cohomology, by Proposition 14, yields an element [E] ∈ G(a, k). Two equivalent

pairs ((Ẽ, ϕ), σ) and ((Ẽ ′, ϕ′), σ′) yield isomorphic monads

0 // OP3(−a)
σ

//

λ

��

Ẽ
σ∨◦ϕ

//

g

��

OP3(a) //

λ

��

0

0 // OP3(−a)
σ′

// Ẽ ′
σ′∨◦ϕ′

// OP3(a) // 0,

thus [E] = [E ′].

Conversely, any [E] ∈ G(a, k) is the cohomology of a monad of the form (23),

from which we can obtain, via Proposition 14, a pair ((Ẽ, ϕ), σ). Any two monads whose

cohomologies are isomorphic to E are also isomorphic, by Lemma 1; since E is rank 2

vector bundle with zero first Chern class, then Corollary 2 implies the existence of a skew

symmetric isomorphism of monads:

0 // OP3(−a)⊕ k · OP3(−1)

f

��

α
// (4 + 2k) · OP3

g

��

β
// OP3(a)⊕ k · OP3(1) //

h
��

0

0 // OP3(−a)⊕ k · OP3(−1)
α′
// (4 + 2k) · OP3

β′
// OP3(a)⊕ k · OP3(1) // 0.

It then follows that the following diagram

0 // k · OP3(−1)

f̃
��

α̃
// (4 + 2k) · OP3

g

��

β̃
// k · OP3(1)

h̃
��

// 0

0 // k · OP3(−1)
α̃′
// (4 + 2k) · OP3

β̃′
// k · OP3(1) // 0

provides an isomorphism of monads, since f̃ , g, h̃ are isomorphisms, which in turn induces

an isomorphism g : Ẽ
∼→ Ẽ ′.

In addition, we also have the following isomorphism of monads

(26) 0 // OP3(−a)
σ

//

f1,1

��

Ẽ
τ
//

g

��

OP3(a) //

hk+1,k+1

��

0

0 // OP3(−a)
σ′

// Ẽ ′
τ ′
// OP3(a) // 0,

which implies that gσ = f1,1 · σ′.

Corollary 2 tells us that Ẽ and Ẽ ′ admit symplectic structures ϕ and ϕ′, respec-

tively, and it only remains for us to show that (Ẽ, ϕ) and (Ẽ ′, ϕ′) are isomorphic as sym-

plectic bundles. By Lemma 13, one can take τ = σ∨◦ϕ and τ ′ = σ′∨◦ϕ′ in equation (26), so

that the commutation of the right square in that diagram yields σ′∨◦ϕ′ = hk+1,k+1 ·σ∨◦ϕ.

Since σ′∨ = f−1
1,1 ·σ∨◦g∨, we conclude that f1,1 = hk+1,k+1 and g∨◦ϕ′◦g = ϕ, as desired. �
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For our second application of Proposition 14, we focus our attention on the case

k = 1 to obtain the following important formula for the case k = 1.

Lemma 16. For every E ∈ G(a, 1) with a ≥ 2, it holds

h1(End(E)) = 4 ·
(
a+ 3

3

)
− a− 1 + ε(a),

where ε(a) = 1 when a = 3, and ε(a) = 0 when a 6= 3.

Proof. Since E is a self dual rank 2 bundle, we have End(E) ' S2E⊕Λ2E = S2E⊕OP3 ,

thus h1(End(E)) = h1(S2E). We will compute the latter.

Take E ∈ G(a, 1) and consider a monad of the form (24) whose cohomology sheaf is

isomorphic to E as a complex M• with terms M−1 = OP3(−a), M0 = Ẽ, M1 = OP3(a).

Proceed to the double complex M• ⊗M•, and to its total complex T •. The last complex

naturally decomposes into its symmetric and antisymmetric parts; the symmetric part is

the complex

(27) 0→ Ẽ(−a)→ S2Ẽ ⊕OP3 → Ẽ(a)→ 0,

whose middle cohomology sheaf is isomorphic to S2E. Therefore the monad (27) can be

broken into two short exact sequences

0→ K → S2Ẽ ⊕OP3 → Ẽ(a)→ 0 and 0→ Ẽ(−a)→ K → S2E → 0.

Since h0(Ẽ(−a)) = h0(S2E) = 0, it follows that h0(K) = 0; in addition, h1(Ẽ(a)) =

h2(S2Ẽ ⊕OP3) = 0 (use Corollary 5) implies that h2(K) = 0. It then follows that

(28) h1(S2E) = h1(K) + h2(Ẽ(−a)) = h1(K) + ε(a),

since h1(Ẽ(−a)) = 0 for a ≥ 2.

To complete our calculation, consider the exact sequence

0→ H0(S2Ẽ ⊕OP3)→ H0(Ẽ(a))→ H1(K)→ H1(S2Ẽ ⊕OP3)→ 0.

Since h0(S2Ẽ ⊕OP3) = 4 and h1(S2Ẽ ⊕OP3) = 5 by Corollary 5, we conclude that

h1(K) = h0(Ẽ(a)) + 1 = h0(N(a)) + 2 · h0(OP3(a)) + 1,

which, together with the equality in equation (28), yields the desired formula. �

It is interesting to observe that the right hand side of the formula in Lemma 16

yields the expected value when a = 2 and a = 3, respectively 37 and 77; when a ≥ 4, one

can check that 4 ·
(
a+3

3

)
− a− 1 > 8(a2 + 1)− 3.
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5. The structure of P(a, 1)

Motivated by Lemma 16, we now aim at showing that the set P(a, 1) has the

structure of an irreducible, nonsingular, quasi-projective variety whose dimension matches

the formula in the statement of the lemma. We will not make any distinction between a

vector bundle E and its class of isomorphisms [E] and we will denote both of them by

the letter E without the brackets.

Recall that a null correlation bundle is, by definition, the cokernel of a nonzero

morphism η ∈ Hom(OP3(−1),ΩP3(1)) up to a scalar factor, so that the moduli space of

null correlation sheaves can be identified with P(H0(ΩP3(2))) ' P5. Denoting by Nη the

null correlation sheaf defined by η ∈ P(H0(ΩP3(2))), we have the following exact sequence:

0 // OP3(a− 1))
η
// ΩP3(a+ 1) // Nη(a) // 0.

Therefore, by the long exact sequence of cohomology, there exists a natural isomorphism

of H0(Nη(a)) with the quotient vector space H0(ΩP3(a+ 1))/H0(OP3(a− 1)).

Setting V := P(H0(ΩP3(2))), consider the morphism

H0(OP3(a− 1))⊗OV (−1)
η̃

// H0(ΩP3(a+ 1))⊗OV

given by multiplication by the coordinates. This is clearly injective, and its cokernel is a

vector bundle over V , denoted by Na, whose fibre over η ∈ V is

H0(coker η(a)) ' H0(Nη(a)).

From Lemmas 4 and 6, we know that each rank 4 instanton bundle Ẽ of charge 1

corresponds to a unique null correlation sheaf N := Ẽ/2 · OP3 . Since Ẽ admits a unique

symplectic structure, the splitting in cohomology given in equation (21) implies that any

pair ((Ẽ, ϕ), σ), consisting of a sympectic rank 4 instanton bundle of charge 1 and a

section σ ∈ H0(Ẽ(a)), can be regarded as a point of the product Na × H0(OP3(a))⊕2,

namely ((N, σN), (σ1, σ2)) in the notation of equation (22).

What is more, equation (22) also implies that two equivalent pairs ((Ẽ, ϕ), σ) and

((Ẽ ′, ϕ′), σ′) will correspond to points ((N, σN), (σ1, σ2)) and ((N, λσN), (σ′1, σ
′
2)), respec-

tively, where

λ

 σ′1

σ′2

 = M

 σ1

σ2

 ;

here, (λ,M) is the pair representing the symplectic isomorphism (Ẽ, ϕ)
∼→ (Ẽ ′, ϕ′) under

the isomorphism of Lemma 7. In other words, an equivalence class [(Ẽ, ϕ), σ] ∈ P(a, 1)
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defines a unique point in the Grassmanian G(2,H0(OP3(a))) of 2-dimensional subspaces

of H0(OP3(a)).

Proposition 17. P(a, 1) is an irreducible, rational, nonsingular quasi-projective variety

of dimension

5 + h0(N(a)) + 2 · (h0(OP3(a))− 2) = 4 ·
(
a+ 3

3

)
− a− 1.

Proof. We start by defining the following map, using the notation of the previous para-

graph:

π : P(a, 1)→ P5 ×G(2, h0(OP3(a)))

[(Ẽ, ϕ), σ] 7→ (Ẽ/2 · OP3 , 〈σ1, σ2〉).

This is clearly well defined, and we check that it is surjective. Given a null correlation

sheaf N ∈ P5, let Ẽ be the unique locally free extension of N by 2 · OP3 , and let ϕ be its

unique symplectic structure.

Next, take 〈σ1, σ2〉 ∈ G(2, H0(OP3(a))), and note that the set {σ1 = σ2 = 0}

is a complete intersection curve C (of degree a2) in P3. One can find a section σN ∈

H0(N(a)) whose zero locus, being a curve of degree a2 + 1, does not intersect C. The

triple (σN , σ1, σ2) thus obtained defines a nowhere vanishing section σ ∈ H0(Ẽ(a)).

Clearly, the set π−1(N, 〈σ1, σ2〉) consists of all those sections σN ∈ H0(N(a))

which do not vanish along the curve C := {σ1 = σ2 = 0}, so it is an open subset

of H0(N(a)). It follows that P(a, 1) can be regarded as an open subset of the product

Na×G(2, H0(OP3(a))), showing that P(a, 1) is an irreducible, nonsingular quasi-projective

variety of the given dimension.

Finally, note that Na is rational, since it is the total space of a vector bundle over

P5. Hence the product Na ×G(2, H0(OP3(a))) is rational, and so is P(a, 1). �

Noting that the dimension of P(a, 1) matches h1(End(E)) for a = 2 and a ≥ 4, as

calculated in Lemma 16, we have therefore completed the proof of the first main result of

this paper.

Theorem 18. For a = 2 and a ≥ 4, the rank 2 bundles given as cohomology of monads

of the form

0→ OP3(−a)⊕OP3(−1)→ 6 · OP3 → OP3(1)⊕OP3(a)→ 0
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fill out an open subset of an irreducible component of B(a2 + 1) of dimension

4 ·
(
a+ 3

3

)
− a− 1.

In particular, for the case a = 2, we conclude that rank 2 bundles given as coho-

mology of monads of the form (4) yield an open subset of an irreducible component of

B(5) with expected dimension 37.

6. Monads of the form (5)

We finally tackle the set

H = {[E] ∈ B(5) | E is cohomology of a monad of the form (5)}.

We prove:

Proposition 19. The set H satisfies the condition

(29) dim(H \ (G(a, 1) ∩H)) ≤ 36.

Proof. Let E be the cohomology bundle of the following monad:

(30) 0→ OP3(−2)⊕2 ·OP3(−1)
α−→ OP3(−1)⊕6 ·OP3⊕OP3(1)

β−→ 2 ·OP3(1)⊕OP3(2)→ 0.

Since the bundle 2 · OP3(−1) is a uniquely defined subbundle of the bundle

OP3(−2) ⊕ 2 · OP3(−1) (respectively, OP3(−1) is a uniquely defined quotient bundle of

OP3(−1)⊕ 6 · OP3 ⊕OP3(1)), there is a well-defined morphism

(31) α̃ : 2 ·OP3(−1) ↪→ OP3(−2)⊕2 ·OP3(−1)
α→ OP3(−1)⊕6 ·OP3⊕OP3(1) � OP3(−1).

Consider first the case

(32) α̃ 6= 0.

It follows that α̃ is a surjection, hence the kernel of the composition map is isomorphic to

OP3(−1). In this case we obtain a morphism α1 = α|ker α̃ : OP3(−1) → 6 · OP3 ⊕ OP3(1).

Thus similar to (31) there is a well-defined morphism

α′ : OP3(−1)
α1→ 6 · OP3 ⊕OP3(1) � 6 · OP3 ,

together with its dual morphism β′ as in (25) with k = 1, so that, eventually, we obtain

the anti self dual monads (25) with k = 1 and (24) with Ẽ being a rank 4 instanton
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bundle of charge 1, which implies that E ∈ G(2, 1). This means that the condition (32)

is equivalent to [E] ∈ H ∩ G(2, 1), that is:

[E] ∈ H \ (H ∩ G(2, 1)) ⇐⇒ α̃ = 0.

We therefore proceed to the case

α̃ = 0.

This condition implies that im(α0) ⊂ 6 · OP3 ⊕OP3(1), where α0 := α|2·OP3 (−1). Moreover,

since α is a subbundle morphism, it follows that im(α0) 6⊂ OP3(1), so that there is a

well-defined injective morphism

ᾱ : 2 · OP3(−1)
α0→ 6 · OP3 ⊕OP3(1) � 6 · OP3 .

Again similar to the anti self dual monads (25) and (24) we obtain the anti self dual

monads

0→ 2 · OP3(−1)
α0→ OP3(−1)⊕ 6 · OP3 ⊕OP3(1)

α∨
0→ 2 · OP3(1)→ 0,

E1 := kerα∨0 /imα0,

(33) 0→ OP3(−2)
γ→ E1

γ∨→ OP3(2)→ 0, E = ker γ∨/imγ,

(34) 0→ 2 · OP3(−1)
ᾱ→ 6OP3

ᾱ∨
→ 2 · OP3(1)→ 0, E2 := ker ᾱ∨/imᾱ,

(35) 0→ OP3(1)
δ→ E1

δ∨→ OP3(−1)→ 0, E2 ' ker δ∨/imδ,

where γ and δ are the induced morphisms and E2 is a rank 2 bundle with c1(E2) = 0 and

c2(E2) = 2.

The monad (33) induces an exact triple

(36) 0→ E → F
ε→ OP3(2)→ 0.

where F := coker γ and ε is the induced morphism. Consider the composite morphisms

δ′ : OP3(1)
δ→ E1 � F, E ′ := coker δ′,

and

δ′′ : OP3(1)
δ′→ F

ε
� OP3(2).

Here δ′′ 6= 0, since otherwise by (36) h0(E(−1)) 6= 0, contrary to the stability of E. Hence,

coker δ′′ = OP2
a
(2)
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for some projective plane P2
a in P3, and we have an induced exact triple:

(37) 0→ E → E ′ → OP2
a
(2)→ 0.

Besides, (33) and (35) yield exact sequences

(38) 0→ OP3(−2)
γ′→ E3

λ→ E ′ → 0,

0→ E2
µ→ E3

ν→ OP3(−1)→ 0.

where E3 := coker δ and γ′, λ, µ, ν are the induced morphisms. Note that (35) implies that

h0(E2(−2)) = 0, hence by (38) the composition λ ◦ µ is a nonzero morphism. Moreover,

one easily sees that this morphism is injective. Therefore, since E ′ is a rank 2 sheaf, it

follows that the composition ν ◦ γ′ : OP3(−2) → OP3(−1) is a nonzero morphism and

coker(ν ◦ γ′) = OP2
b
(−1) for some projective plane P2

b in P3. We thus obtain an exact

triple

(39) 0→ E2
λ◦µ→ E ′

θ→ OP2
b
(−1)→ 0,

where θ is the induced morphism. Now remark that the triple (37) does not split, since

otherwise, as E2 is locally free, the composition OP2
a
(2) ↪→ E ′

θ→ OP2
b
(−1) is nonzero

which is impossible. Thus P2
a = P2

b =: P2 and the triple (37) as an extension is given by

a nonzero element

s ∈ Ext1(OP2(2), E) ' H0(Ext1(OP2(2), E)) ' H0(E|P2(−1)).

Remind that, since E is cohomology of (30) by [14, Table 5.3, page 804] it has spectrum

(−1, 0, 0, 0, 1) and then follows that

(40) h1(E(−3)) = 0, h1(E(−2)) = 1.

The zero-scheme Z = (s)0 of this section s is 0-dimensional. Indeed, otherwise

h0(E|P2(−2)) 6= 0, which contradicts to the cohomology sequence of the exact triple

0 → E(−3) → E(−2) → E|P2(−2) → 0 as h0(E(−2)) = 0 by the stability of E and

the first equalty in (40). Besides, the cohomology sequence of the last triple twisted by

OP3(1) in view of the stability of E and the second equalty in (40) yields:

(41) h0(E|P2(−1)) = 1.

Furthermore, applying the functor − ⊗ OP2 to the triple (37) we obtain an exact

sequence

0→ OP2(1)
s→ E|P2 → E ′|P2 → OP2(2)→ 0.
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By (41), the leftmost morphism s here is the above section of E|P2(−1), so that coker(s) '

IZ,P2(−1), and the last sequence yields an exact triple

0→ IZ,P2(−1)→ E ′|P2 → OP2(2)→ 0.

Apply to this sequence the functor Hom(−,OP2(2)). Since dimZ = 0, it follows that

Hom(IZ,P2(−1),OP2(2)) ' OP2(3), and we obtain an exact triple

0→ OP2 → Hom(E ′|P2 ,OP2(2))→ OP2(3)→ 0.

Hence, dim Hom(E ′,OP2(2)) = h0(Hom(E ′|P2 ,OP2(2))) = 11 and therefore

P(Hom(E ′,OP2(2))) ' P10.

This equality will be used below.

We now proceed to the study of the sheaf E2 defined in (34). The results obtained

here will complete the proof of Proposition 19.

Consider the space Π = P(Hom(4 · OP3 , 2 · OP3(1))) and its first determinantal

subvariety ∆ = {kϕ ∈ Π | ϕ : 4 · OP3 → 2 · OP3(1) is not surjective}. It is known that

(42) codimΠ ∆ = rk(4 · OP3)− rk(2 · OP3(1)) + 1 = 3.

Consider the monad (34), and suppose that the homomorphism

h0(ᾱ∨) : H0(6 · OP3)→ H0(2 · OP3(1))

has rank at most 4. This means that the morphism ᾱ∨ factors through a morphism

ϕ : 4·OP3 → 2·OP3(1). By the universal property of the space Π, we obtain an embedding

i : P3 ↪→ Π such that, by (42), ∅ 6= i−1(i(P3) ∩ ∆) = {x ∈ P3 | ᾱ∨|x is not surjective}.

This contradicts to the surjectivity of ᾱ∨. Hence, h0(ᾱ∨) has rank at least 5, and the

monad (34) implies that

h0(E2) ≤ 1.

We now analyze both cases, namely: (i) h0(E2) = 1; (ii) h0(E2) = 0.

(i) h0(E2) = 1. Since E2 is a rank 2 bundle with c1(E2) = 0 and c2(E2) = 2 (see

(34)), it follows that the zero scheme of the section 0 6= s ∈ H0(E2) is a projective line,

say, l in P3 with some locally complete intersection (shortly: l.c.i.) double structure l(2)

on it satisfying the triple

(43) 0→ Ol(2)→ Ol(2) → Ol → 0.
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We thus obtain an exact triple

(44) 0→ OP3
s→ E2 → Il(2) → 0.

Note that the set of l.c.i. double structures on a given line l ∈ G(2, 4) is the set

of epimorphisms ψ : N∨l,P3 ' 2Ol(−1) � Ol(2) (here, Nl,P3 denotes the normal bundle of

l), understood up to scalar multiple, i.e. an open dense subset Ul of the projective space

P(Hom(2 · Ol(−1),Ol(2))) ' P7, hence dimUl = 7. Thus space D of all possible l.c.i.

double structures l(2) on lines in P3 has a projection ρ : D → G(2, 4), l(2) 7→ l with fibre

ρ−1(l) = Ul, so that

dimD = dimG(2, 4) + dimUl = 11.

Next, for a given l(2) ∈ D the set of isomorphim classes of locally free sheaves E2

defined as extensions (44) constitutes an open dense subset Vl(2) of the projective space

P(Ext1(Il(2) ,OP3)) ' P3. To compute this space, apply to the triple

(45) 0→ Il(2) → OP3 → Ol(2) → 0

the functor Hom(−,OP3). We obtain Ext1(Il(2) ,OP3) ' Ext2(Ol(2) ,OP3), and therefore

(46) Ext1(Il(2) ,OP3) ' H0(Ext1(Il(2) ,OP3)) ' H0(Ext2(Ol(2) ,OP3)).

Applying the same functor to (43) and using the isomorphisms Ext2(Ol,OP3) ' Ol(2),

and Ext2(Ol(2),OP3) ' Ol, we obtain an exact triple

0→ Ol(2)→ Ext2(Ol(2) ,OP3)→ Ol → 0

which together with (46) yields P(Ext1(Il(2) ,OP3)) ' P3, hence dimVl(2) = 3. Now,

denoting by B the space of isomorphism classes of locally free sheaves E2 defined as

extensions (44), we obtain a well defined morphism τ : B → D, [E2] 7→ l(2) = (s)0 for

0 6= s ∈ H0(E2) with fibre τ−1(l(2)) = Vl(2) . Hence,

(47) dimB = dimD + dimVl(2) = 3 + 11 = 14.

Now, for any pair ([E2],P2) ∈ B × P̌3, consider the space Ext1(OP2(−1), E2) of

extensions (39):

(48) 0→ E2 → E ′ → OP2(−1)→ 0.

Since E2 is locally free, one has

(49) Ext1(OP2(−1), E2) ' H0(Ext1(OP2(−1), E2)) ' H0(E2|P2(2)).
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For l = (ρ ◦ τ)([E2]) denote ľ = {P2 ∈ P̌3 | P2 3 l}. Consider the two cases: (a) P2 ∈ ľ;

and (b) P2 6∈ ľ.

(a) P2 ∈ ľ. In this case one sees using (43) that T or1(Ol(2) ,OP2(2)) ' Ol(3) and the

scheme l̄ = l(2) ∩ P2 is described by the triple 0 → OY → Ol̄ → Ol → 0, where Y

is a 0-dimensional scheme of length 3 supported on l. Thus, after applying the functor

−⊗OP2(2) to the exact sequence (45), we obtain an exact triple

0→ Ol(3)→ Il(2) ⊗OP2(2)→ IY,P2(1)→ 0.

Since Y ⊂ l, it follows that h0(IY,P2(1)) = 1, hence the last triple yields h0(Il(2)⊗OP2(2)) =

5. Therefore, the triple

(50) 0→ OP2(2)→ E2|P2(2)→ Il(2) ⊗OP2(2)→ 0,

obtained by applying the functor −⊗OP2(2) to (45), yields

(51) h0(E2|P2(2)) = 11.

(b) P2 6∈ ľ. In this case W = l(2) ∩ P2 is a 0-dimensional scheme of length 2 supported at

the point l ∩ P2, and the triple (50) becomes: 0 → OP2(2) → E2|P2(2) → IW,P2(2) → 0.

From this triple we obtain

(52) h0(E2|P2(2)) = 10.

Consider the space Σ1 of isomorphism classes of sheaves E ′ obtained as exten-

sions (48). One has a natural projection π1 : Σ1 → B × P̌3 with fibre described as

π−1
1 ([E2],P2) = P(Ext1(OP2(−1), E2)). Now by (49), (51) and (52) this fibre has dimen-

sion 10, respectively, 9 in case (a), respectively, (b) above. Hence in view of (47) we

have

(53) dim Σ1 = 26.

Now return to the triple (37). Consider the space W1 parametrising the surjections

e1 : E ′ � OP2(2) (up to a scalar multiple) for [E ′] ∈ Σ1 and P2 = pr2(π([E ′])), where

pr2 : B× P̌3 → P̌3 is the projection. We thus obtain a surjective morphism p1 : W1 → Σ1

with fibre p−1
1 (E) being an open dense subset in P(Hom(E ′,OP2(2))) ' P10, where P2 =

pr2(π1([E ′])). Thus by (53)

(54) dimW1 = 36.
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On the other hand, the triple (37) means that there is a morphism

(55) q : W1 → H \ (H ∩ G(2, 1)), Ke1 7→ ker(e1 : E ′ � OP2(2)).

(ii) h0(E2) = 0. This means that E2 is stable, i.e. [E2] ∈ B(2). It is well-known

(see [12, §9, Lemma 9.5]) that each bundle [E2] ∈ B(2) fits in an exact sequence

0→ OP3(−1)→ E2 → IY (1)→ 0,

where Y is a divisor of the type (3,0) on some smooth quadric surface in P3. Moreover,

for given E2, this divisor is not unique, but varies in a 1-dimensional linear series without

fixed points. Therefore, for any pair ([E2],P2) ∈ B(2) × P̌3 one can choose a nontrivial

section s ∈ E2|P2(1) such that its zero scheme Z = (s)0 is a 0-dimensional scheme of

length 3, and therefore h0(IZ,P2(3)) = 7. This together with the exact triple

0→ OP2(1)
s→ E2|P2(2)→ IZ,P2(3)→ 0

yields h0(E2|P2(2)) = 10, hence in view of (49) we obtain

(56) P(Ext1(OP2(−1), E2)) ' P9.

Now, as above, consider the space Σ0 of isomorphism classes of sheaves E ′ obtained as

extensions (48) with [E2] ∈ B(2). One has a natural projection π0 : Σ0 → B(2) × P̌3

with fibre described as π−1
0 ([E2],P2) = P(Ext1(OP2(−1), E2)). Now by (56) this fibre has

dimension 9, and we obtain

(57) dim Σ0 = dimB(2) + dim P̌3 + dimP(Ext1(OP2(−1), E2)) = 13 + 3 + 9 = 25.

Again return to the triple (37). Consider the space W0 parametrising the surjec-

tions e0 : E ′ � OP2(2) (up to a scalar multiple) for [E ′] ∈ Σ0 and P2 = pr2(π([E ′])),

where pr2 : B(2) × P̌3 → P̌3 is the projection. We thus obtain a surjective morphism

p0 : W0 → Σ0 with fibre p−1
0 (E) being an open dense subset in P(Hom(E ′,OP2(2))) ' P10,

where P2 = pr2(π0([E ′])). Thus by (57)

(58) dimW0 = 35.

On the other hand, the triple (37) means that there is a morphism

(59) q : W0 → (H \ (G(2, 1) ∩H)), Ke0 7→ ker(e0 : E ′ � OP2(2)).
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Note that, for any E2 in (37) we have either h0(E2) = 1 or h0(E2) = 0. This means that

the morphism

q : W1 ∪W0 → (H \ (G(2, 1) ∩H))

defined in (55) and (59) is surjective. Hence (29) follows from (54) and (58). �

7. Components of B(5)

We finally have at hand all the ingredients needed to complete the proof of our

second main result, namely the characterization of the irreducible components of B(5).

We will proof the following result.

Theorem 20. The moduli space B(5) has exactly 3 irreducible components, namely:

(i) the instanton component, of dimension 37, which consists of those bundles given

as cohomology of monads of the form

(60) 0→ 5 · OP3(−1)→ 12 · OP3 → 5 · OP3(1)→ 0, and

(61) 0→ 2 · OP3(−2)→ 3 · OP3(−1)⊕ 3 · OP3(1)→ 2 · OP3(2)→ 0;

(ii) the Ein component, of dimension 40, which consists of those bundles given as

cohomology of monads of the form

(62) 0→ OP3(−3)→ OP3(−2)⊕ 2 · OP3 ⊕OP3(2)→ OP3(3)→ 0;

iii) the closure of the family G(2, 1), of dimension 37, which consists of those bundles

given as cohomology of monads of the form

(63) 0→ OP3(−2)⊕OP3(−1)→ 6 · OP3 → OP3(1)⊕OP3(2)→ 0 and

(64) 0→ OP3(−2)⊕2 ·OP3(−1)→ OP3(−1)⊕6 ·OP3⊕OP3(1)→ 2 ·OP3(1)⊕OP3(2)→ 0.

The first ingredient of the proof is the fact, proved by Hartshorne and Rao, that

every bundle in B(5) is cohomology of one of the above monads, cf. [14, Table 5.3, page

804].

Recall that for each stable rank 2 bundle E on P3 with vanishing first Chern class,

the number α(E) := h1(E(−2)) mod 2 is called the Atiyah–Rees α-invariant of E, see

[12, Definition in page 237]. Hartshorne showed [12, Corollary 2.4] that this number is

invariant on the components of the moduli space of stable vector bundles on P3. One can
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easily check that the cohomologies of monads of the form (60) and (61) have α-invariant

equal to 0, while the cohomologies of the other three types of monads have α-invariant

equal to 1.

Rao showed in [26] that the family of bundles obtained as cohomology of monads

of the form (61) is irreducible, of dimension 36, and it lies in a unique component of B(5).

Since instanton bundles of charge 5, i.e. the cohomologies of monads of the form (60),

yield an irreducible family of dimension 37, it follows that the set

I := {[E] ∈ B(5) | α(E) = 0}

forms a single irreducible component of B(5), of dimension 37, whose generic point corre-

sponds to an instanton bundle. In addition, every [E] ∈ I satisfies H1(End(E)) = 37; this

was originaly proved by Katsylo and Ottaviani for instanton bundles [22], and by Rao for

the cohomologies of monads of the form (61) [26, Section 3]. Therefore, we also conclude

that I is nonsingular. This completes the proof of the first part of the Main Theorem.

Our next step is to analyse those bundles with Atiyah–Rees invariant equal to 1.

Hartshorne proved in [13, Theorem 9.9] that the family of stable rank 2 bundles

E with c1(E) = 0 and c2(E) = 5 whose spectrum is (−2,−1, 0, 1, 2) form an irreducible,

nonsigular family of dimension 40. Such bundles are precisely those given as cohomologies

of monads of the form (62), cf. [14, Table 5.3, page 804], which is a particular case of

a class of monads studied by Ein in [10]. From these references, we conclude that the

closure of the family of vector bundle arising as cohomology of monads of the form (62)

is an oversized irreducible component of B(5) of dimension 40.

We proved above that the bundles arising as cohomology of monads of the form

(63) form a third irreducible component of dimension 37, while those bundles arising as

cohomology of monads of the form (64), denoted by H, form an irreducible family of

dimension 36. It follows that latter must lie either in G(2, 1) or in E , the closures G(2, 1)

and E , respectively, within B(5).

Proposition 21. H ⊂ G(2, 1).

Proof. Suppose by contradiction that there exists a vector bundle E ∈ H ∩ E . By the

inferior semi-continuity of the dimension of the cohomology groups of coherent sheaves,

one has that h1(E(−2)) ≥ 3. However, one can check from the display of the monad (64)

that dim H1(E(−2)) = 1 < 3. It follows that the family H must lie in G(2, 1). �
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This last proposition finally concludes the proof of Main Theorem 2. We summarize

all the information in the theorem, and the discrete invariants of stable rank 2 bundles

with c1 = 0 and c2 = 5 in the following table.

Table 1. Irreducible components of B(5)

Component Dimension Monads Spectra α-invariant

Instanton 37
(1) (0,0,0,0,0)

0
(2) (-1,-1,0,1,1)

Ein 40 (3) (-2,-1,0,1,2) 1

Modified

Instanton
37

(4)
(-1,0,0,0,1) 1

(5)

In order to give a complete description of the vector bundles E ∈ G(2, 1), we

include here its cohomology table. Knowing the spectrum of an arbitrary E ∈ G(2, 1)

(given in the table above) allows us to conclude that h1(E(k)) = 0 for k ≤ −3, and to

compute h1(E(−2)) = 1 and h1(E(−1)) = 5. Serre duality tells us that h2(E(k)) = 0

for k ≥ −1, while stability implies that h0(E(k)) = 0 for k ≤ 0, and h3(E(k)) = 0 for

k ≥ −4; it follows that h1(E) = −χ(E) = 8.

Table 2. hi(E(l)) for E ∈ G(2, 1)

i\l -4 -3 -2 -1 0

3 0 0 0 0 0

2 8 5 1 0 0

1 0 0 1 5 8

0 0 0 0 0 0
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