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The Hodge Chern character of holomorphic connections
as a map of simplicial presheaves

CHEYNE GLASS

MICAH MILLER

THOMAS TRADLER

MAHMOUD ZEINALIAN

We define a map of simplicial presheaves, the Chern character, that assigns to every
sequence of composable non-connection-preserving isomorphisms of vector bundles
with holomorphic connections an appropriate sequence of holomorphic forms. We
apply this Chern character map to the Čech nerve of a good cover of a complex
manifold and assemble the data by passing to the totalization to obtain a map of
simplicial sets. In simplicial degree 0, this map gives a formula for the Chern character
of a bundle in terms of the clutching functions. In simplicial degree 1, this map gives
a formula for the Chern character of bundle maps. In each simplicial degree beyond 1,
these invariants, defined in terms of the transition functions, govern the compatibilities
between the invariants assigned in previous simplicial degrees. In addition to this, we
apply this Chern character to complex Lie groupoids to obtain invariants of bundles
on them in terms of the simplicial data. For group actions, these invariants land in
suitable complexes calculating various Hodge equivariant cohomologies. In contrast,
the de Rham Chern character formula involves additional terms and will appear in a
sequel paper. In a sense, these constructions build on a point of view of “characteristic
classes in terms of transition functions” advocated by Raoul Bott, which has been
addressed over the years in various forms and degrees, concerning the existence of
formulas for the Hodge and de Rham characteristic classes of bundles solely in terms
of their clutching functions.
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1 Introduction

Let HVB.U /D N .HVBr.U // be the simplicial presheaf that assigns to a complex
manifold U the nerve of the category whose objects are holomorphic vector bun-
dles endowed with holomorphic connections, and whose morphisms are holomorphic
bundle isomorphisms that ignore the connections. Let ��hol.U /Œu�

��0 be the non-
positively graded complex obtained by first tensoring holomorphic differential forms
.��hol.U /; d D 0/, with the polynomial ring in u of degree �2, and then quotienting
out by all elements in positive degrees. Then, �.U / D DK.��hol.U /Œu�

��0/ is the
underlying simplicial set of the Dold–Kan functor applied to ��hol.U /Œu�

��0. Simply,
this is the simplicial set whose k–simplices are decorations of all i–dimensional faces
of the standard k–simplex with sequences of forms, all even for i even, and all odd for i
odd, in such a way that the alternating sum of all forms sitting on the .i�1/–dimensional
faces of any i–dimensional face add up to 0. The assignment U 7! ��hol.U /Œu�

��0

defines a simplicial presheaf �.

We construct a map of simplicial presheaves Ch WHVB!�, as follows. In simplicial
degree 0, we assign to a holomorphic bundle and a holomorphic connection .E;r/ the
decoration of the standard 0–simplex by the sum dim.E/C 0 �uC 0 �u2C � � � , where
dim.E/ is the dimension of the fiber of E and the j th zero denotes the zero 2j–form.

In simplicial degree 1, we assign to a bundle isomorphism g W .E0;r0/! .E1;r1/

that ignores the holomorphic connections r0 and r1 the decoration of the standard 1–
simplex obtained by the trace of the bundle endomorphism-valued Maurer–Cartan form
.g�1dg/u. Here, dg represents the derivative of g obtained by pre- and postcomposition
with the operators r0 and r1 on the domain and the range.

In simplicial degree 2, we assign to a pair of composable morphisms .E0;r0/ !
.E1;r1/! .E2;r2/ the labeling of the seven faces of the standard 2–simplex by
formulas, where the 0–codimension face, which is the body of the triangle, is labeled by
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the trace of the product of the left- and right-invariant Maurer–Cartan forms. Similarly,
we decorate higher simplices with appropriate forms, all of which are compatibly
encompassed in the following statement:

Theorem 2.5 The above map is a map Ch W HVB ! � is a map of simplicial
presheaves.

We have chosen here a situation with vanishing differential, ie .��hol.U /; d D 0/. In
a sequel paper, this construction is completed to a map of presheaves whose target
is similarly built out of holomorphic forms but now with the differential @ instead
of the zero differential. These discussions are closely related by appropriate Hodge-
to-de Rham spectral sequences. In addition, a complete analog of this story in the
smooth category, wherein flat connections on smooth vector bundles play the role
of holomorphic connections on holomorphic bundles, follows naturally from this
description.

In Section 3, we apply the simplicial presheaf HVB to the Čech nerve simplicial
manifold {NU of a cover U of a complex manifold X to obtain a cosimplicial simplicial
set. The totalization of this cosimplicial simplicial set is a simplicial set whose vertices
are the vector bundles on X endowed with nonmatching holomorphic connections
on each open set of the cover U . The edges are bundle isomorphisms, which do not
necessarily respect the locally chosen connections, etc.

Similarly, we can evaluate the simplicial presheaf � on the Čech nerve of U and pass
to the totalization to obtain a simplicial set. The vertices of the simplicial set are closed
elements of the Čech complex of holomorphic forms with the zero internal differential.
We refer to this Čech complex as the Čech–Hodge complex, in contrast to the Čech–de
Rham complex, which has the @ operator on the holomorphic forms. The edges of the
totalization are witnesses to two such closed elements in the Čech–Hodge complex
representing the same Hodge cohomology class, and similarly for higher simplices,
with further elements witnessing how a sum of witnesses in the previous simplicial
degree is realized as a coboundary.

We then look at the map induced by Ch on the totalization. On the 0–simplices, the
totalized map gives a combinatorial formula for the Chern character of a bundle in the
Čech–Hodge complex, in terms of its transition functions. More precisely, we observe
in Proposition 3.6 and Remark 3.17 that our formulas agree with the formulas for the
Chern character as given by O’Brian, Toledo and Tong [11], where the Atiyah class was
represented as rg 2 {C �.U ;Hom.E;E/˝�1hol/ (see [11, page 243, Proposition 4.4]),

Algebraic & Geometric Topology, Volume 22 (2022)



1060 Cheyne Glass, Micah Miller, Thomas Tradler and Mahmoud Zeinalian

and then the Chern character is given by the sum of the classes of 1
kŠ

tr.g.rg/k/ in the
Hodge cohomology H �Hodge.M/ D H �. {C �.U ; ��hol/; ı/ (see [11, page 244]). It may
be worth noting that this Chern character is in general not the usual Chern character
coming from eg Chern–Weil theory. Indeed, both “Chern characters” live in different
spaces: while Atiyah’s Chern character lives in Hodge cohomology, the Chern character
from Chern–Weil theory lives in de Rham cohomology, and these two spaces are in
general only related via a spectral sequence. Nevertheless, when the manifold M is
Kähler this spectral sequence collapses, making the cohomologies isomorphic, and
under this isomorphism the two Chern characters coincide; see Atiyah [1, page 192,
Theorem 3].

Over the 1–simplices, we obtain a formula for the Hodge–Chern–Simons invariant
of bundle isomorphisms in the Čech complex, with respect to the domain and range
connections, and in terms of the transition functions of the bundle. Similar invariants
are obtained from the higher simplices.

We note that totalization has an interesting effect. Before totalization, the map on the
vertices was rather trivial, encoding only the rank of the vector bundle. After totalization,
the map on vertices becomes a cocycle representative of the total Chern character of
the holomorphic bundle in the Čech–Hodge complex, which is quite nontrivial. The
following statement summarizes the above:

Corollary 3.3 Given a complex manifold M with a cover U D fUigi2I , the map
Ch.{NU/ W HVB.{NU/ ! �.{NU/ is a map of cosimplicial simplicial sets , and thus
induces a simplicial set map on the totalization , ie a map

Tot.Ch.{NU// W Tot.HVB.{NU//! Tot.�.{NU// ��! DK
�
{C �.U ; ��hol/Œu�

��0
�
:

When transition functions take values in G D GL.n;C/, there is a more direct descrip-
tion of the Hodge Chern character analyzed in the diagram below, which we describe
in Section 4.

Theorem 4.17 There is a commutative diagram of simplicial sets

CMan�op
.{NU Œ��; BG/

ˇ
//


��

Tot.HVB.{NU//

Tot.Ch.{NU//

��

. {C �.U Œ��; ��hol//
even
closed

�
��

DK. {C �.U ; ��hol/Œu�
��0/ Tot.�.{NU//oo
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The above picture relates to the fact that on a complex Lie group with a linear n–
dimensional representation, there is a sequence of forms living on the Cartesian products
of G�p for every p D 0; 1; 2; : : : given by

Ch WD
�
n; tr.g@.g�1//; 1

2Š
tr.g1g2@.g�12 /@.g�11 //; : : :

�
:

These forms assemble into a single closed element in the complex of Hodge forms on
the stack BG D Œ�=G� represented by the simplicial manifold

� G G �G � � � :
si

dj

As mentioned, this simplicial presheaf point of view leads to a map of simplicial sets
whose value on the vertices reproduces the Chern character formulas. The value on
the 1–simplices is the Chern character of a map of bundles and higher-dimensional
simplices of the totalization are new invariants that should be thought of as an infinite
hierarchy of Chern character–type invariants for composable sequences of bundle maps.
We give a description of the sequence of holomorphic invariants in the Čech–Hodge
cochain complex that correctly mirror the sequence of the Chern–Simons invariants
present in the smooth picture for bundles.

In Section 5, a further application to equivariant theories, and more generally bundles
on simplicial manifolds, is worked out. Applying Ch to the stack ŒM=G�, we obtain
an induced map of simplicial sets,

(5-1) Tot
�
Ch.ŒM=G�/

�
W Tot

�
HVB.ŒM=G�/

�
! Tot

�
�.ŒM=G�/

�
:

We describe Tot
�
HVB.ŒM=G�/

�
more explicitly.

Proposition 5.3 The simplices of Tot
�
HVB.ŒM=G�/

�
have the following interpreta-

tion:

(1) A 0–cell in Tot
�
HVB.ŒM=G�/

�
consists precisely of a G–equivariant bundle , E,

with connection , r, where r is not required to satisfy any condition with respect
to the G–action.

(2) An n–cell in Tot
�
HVB.ŒM=G�/

�
consists precisely of a sequence of G–equivari-

ant bundles , E.0/; : : : ; E.n/, and G–equivariant maps , ˛0; : : : ; ˛n�1,

E.0/
˛0
�!E.1/

˛1
�! � � �

˛n�1
��!E.n/;

where each bundle E.i/ ! M has a connection ri , which is not required to
satisfy any conditions with respect to the G–action or the bundle maps.

The following corollary states that we can use the map Tot
�
Ch.ŒM=G�/

�
from (5-1)

as a measure for the connection r to be G–invariant.
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Corollary 5.5 Let .E;M; �; �; '/ be a G–equivariant bundle with connection r,
which , by Proposition 5.3(1), we may interpret as a 0–simplex in Tot

�
HVB.ŒM=G�/

�
0
.

If the connection r is G–invariant , then Tot
�
Ch.ŒM=G�/

�
applied to this is zero in all

positive holomorphic form degrees.

There is also an infinity homotopy coherent version of all of this, where vector bundles
are replaced by derived families whose clutching functions fit together only up to an
infinite system of coherent homotopies. This relates to the work of O’Brian, Toledo
and Tong [12; 11], which in fact motivated us and was the starting point of our project.
Here, we have avoided discussing this homotopy coherent generalization because the
strict case is sufficiently rich by itself. The homotopy coherent story, which will be
discussed in a forthcoming paper, will be employed to obtain invariants of the derived
automorphisms of coherent sheaves on complex manifolds. One foreseeable direction
is to develop a commutative diagram of spaces which after applying �0 results in
the classical Grothendieck–Riemann–Roch (GRR) commutative square. This will
extend the differential geometric discussion of GRR established by O’Brian, Toledo
and Tong [10; 12] to the entire K–theory spectrum. It will also extend the GRR from
ordinary manifolds to the equivariant setting and more generally to simplicial manifolds
in an appropriate sense.

Acknowledgments We would like to thank Domingo Toledo for email correspon-
dences and informing us of his paper with Tong on Green’s work [13]. While Green’s
work does not enter this paper, it will be relevant to our forthcoming work on a homotopy
coherent version of the discussion here. We also would like to thank Dennis Sullivan
for numerous valuable conversations about the local formulas for characteristic classes.
Zeinalian would also like to acknowledge a conversation with Julien Grivaux regarding
the work of Toledo and Tong, as well as Green’s work, on simplicial vector bundles
and the Chern character. We would like to add that the results of his student, Timothy
Hosgood, on simplicial connections and the Chern character [6] are entirely independent
of our work. Zeinalian would like to thank the Max Planck Institute and Université
Paris 13 for their hospitality during his visits.

2 A map of simplicial presheaves Ch

In this section, we define two simplicial presheaves and a map between them. First,
HVB.U /DN .HVBr.U // is the nerve of holomorphic vector bundles on a complex
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manifold U and, second, �.U /D DK.��hol.U /Œu�
��0/ is the Dold–Kan dual of holo-

morphic forms on U. We produce a map Ch W HVB! � of simplicial presheaves
between those, which we will show in Section 3 to be closely related to the Atiyah
class.

We begin by briefly recalling the notion of a holomorphic vector bundle with holo-
morphic connection, which will be the underlying setup for the constructions in this
paper.

Definition 2.1 Let M be a complex manifold. A holomorphic vector bundle E!M

onM consists, for some chosen cover fUigi2I ofM, of holomorphic transition functions
gi;j W Ui \Uj ! GL.n;C/ satisfying the usual cocycle conditions gi;j ı gj;k D gi;k
on Ui \Uj \Uk , gi;i D 1, and gi;j D g�1j;i . With this data, a holomorphic connection
then consists of holomorphic 1–forms Ai 2 �1hol.Ui ;C

n�n/ with values in complex
matrices satisfying the usual compatibility conditions Ai D gi;j �Aj �gj;iCgi;j �@.gj;i /,
where @D

Pdim.M/

`D1
dz` @=@z`. We denote by r the operator that is locally given by

rjUi D @CAi .

Note that any trivial bundle M �Cn!M has a canonical holomorphic connection
given by r D @, ie for the cover fM g of M we may pick A D 0. In particular, this
example shows that a holomorphic connection is not a (smooth) connection satisfying
extra conditions, since a smooth connection is locally given by dCA, where d D @Cx@
is the de Rham operator. Nevertheless, any holomorphic connection r can be made into
a (smooth) connection by taking rCx@ (where the check of the compatibility condition
for the Ai with d instead of @ uses the fact that the gi;j are holomorphic, ie x@.gi;j /D 0).

Moreover, for a given holomorphic vector bundle, there may not exist a holomorphic
connection. For one, the usual construction of a connection in the smooth setting uses
a partition of unity argument, which does not exist in the holomorphic setting. In fact,
it turns out that for holomorphic vector bundles with holomorphic connections, the
Atiyah class vanishes, giving thus an obstruction to the existence of a holomorphic
connection; see [1, page 188, Theorem 2].

We now define the functor HVBr W CManop! Catl of holomorphic vector bundles
with connection of a complex manifold.

Definition 2.2 We define a functor HVBr WCManop!Catl as follows. For a complex
manifold U 2Obj.CMan/, denote by HVBr.U / 2 Catl the (large) groupoid whose
objects are finite-dimensional holomorphic vector bundlesE!U over U together with
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holomorphic connection rE on E. By definition, a morphism f 2 HVBr.E0; E1/
consists of holomorphic bundle isomorphisms f WE0!E1, which need not to respect
the connections rE0 and rE1 in any way. Any map of complex manifolds ' WU !U 0

induces a functor HVBr.'/ WHVBr.U 0/!HVBr.U / via pullback, so that we have a
functor HVBr WCManop!Catl . Composing HVBr with the nerve N WCatl!Set�

op

l

thus gives a simplicial presheaf, ie a functor HVB WDN ıHVBr WCManop! Set�
op

l
.

Next, for a complex manifold U 2CMan, we consider the algebra ��hol.U / of holo-
morphic differential forms on U, and thus have a cochain complex ��hol.U /Œu�

��0,
which becomes a simplicial set after applying the Dold–Kan functor.

Definition 2.3 For a complex manifold U 2Obj.CMan/, consider the (nonnegatively
graded) cochain complex of holomorphic forms ��hol.U / on U with zero differential
d D 0. By Definition B.5, ��hol.U /Œu�

��0 D Q.��hol.U // is a chain complex with
zero differential, and, by Theorem B.3, the Dold–Kan functor yields a simplicial
abelian group DK.��hol.U /Œu�

��0/, which we think of as a simplicial set, �.U / D

DK.��hol.U /Œu�
��0/. Since holomorphic forms pull back via a holomorphic map

' W U ! U 0, this assignment defines a simplicial presheaf � W CManop! Set�
op

by
� WD DK.��hol. � /Œu�

��0/ WCManop! Set�
op

,

� WCManop ��hol.�/
����! ChC Q

�! Ch� DK
�!Ab�op F

�! Set�
op
:

The main goal of this section is to obtain map of simplicial presheaves from HVB
to �, ie a natural transformation Ch WHVB!�.

Definition 2.4 We define the Chern character map Ch W HVB!� by defining for
each complex manifold U 2Obj.CMan/ a map of simplicial sets

Ch.U /� WN .HVBr.U //�! DK.��hol.U /Œu�
��0/�

explicitly for each simplicial degree k, as follows:

k D 0 A 0–simplex in the nerve N .HVBr.U //0 is an object of HVBr.U /, ie a
holomorphic vector bundle E!U with holomorphic connection rE . To this data, we
need to assign a 0–simplex in DK.��hol.U /Œu�

��0/0. This amounts to associating to
.E!U;r/ a polynomial of holomorphic forms !0C!2uC!4u2C� � � 2��hol.U /Œu�

0,
with each !i 2�ihol.U /. We define Ch.U /0 by mapping E to the constant function
dim.E/, the dimension of the fiber of E, without any higher u–terms. As a shorthand,
we write Ch.U /0.E/ by labeling the 0–simplex by dim.E/:

dim.E/

Algebraic & Geometric Topology, Volume 22 (2022)
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kD 1 A 1–simplex in the nerve N .HVBr.U //1 consists of two holomorphic vector
bundles E0 ! U and E1 ! U with connections rE0 and rE1 and a bundle iso-
morphism f W E0 ! E1, which may not respect the connections. To this data, we
assign a 1–simplex in DK.��hol.U /Œu�

��0/1, which is a chain map from � � � ! 0!

he0;1i ! he0; e1i ! 0! � � � (in the notation from Example B.2) to ��hol.U /Œu�
��0.

Assign to e0 and e1 the dimensions dim.E0/ D dim.E1/, thought of as elements
in ��hol.U /Œu�

0, and assign to e0;1 the trace tr.f �1r1;0.f // � u 2 ��hol.U /Œu�
�1.

Here, r1;0 is the induced connection of rE0 and rE1 on Hom.E0; E1/. Note that
tr.f �1r1;0.f //�u2��hol.U /Œu�

�1 has no higher powers of u. Informally, we write the

chain map Ch.U /1.E0
f
�!E1/ WN.Z�1/!��hol.U /Œu�

��0 by labeling the interval
as follows:

dim.E0/ dim.E1/tr.f �1r1;0.f // �u

k� 2 A k–simplex in the nerve N .HVBr.U //k is a sequence of holomorphic vector
bundles E0; : : : ; Ek with holomorphic connections rE0 ; : : : ;rEk , and holomorphic
bundle isomorphisms E0

f1
�!E1

f2
�! � � �

fk
�!Ek not necessarily respecting the connec-

tions. For 0�p<q� k, let Qfq;p WEp!Eq be the composition Qfq;p WDfq ı� � �ıfpC1,
ie Ep

fpC1
��!EpC1

fpC2
��! � � �

fq
�!Eq . Now, to a k–simplex in the nerve we assign a k–

simplex in DK.��hol.U /Œu�
��0/k , which is a chain map N.Z�k/ to ��hol.U /Œu�

��0.
The generator ei of N.Z�k/ for i D 0; : : : ; k gets assigned dim.Ei / 2 ��hol.U /Œu�

0.
For `>0, the generator ei0;:::;i` with 0� i0< � � �< i`� k gets assigned to the following
element in ��hol.U /Œu�

�`:

(2-1)
1

`Š
tr. Qf �1i`;i0 ıri`;i`�1.

Qfi`;i`�1/ ı � � � ı ri2;i1.
Qfi2;i1/ ıri1;i0.

Qfi1;i0// �u
`;

where rq;p is the induced connection on Hom.Ep; Eq/ via the connections rEp
and rEq . Informally, we picture the chain map

Ch.U /k.E0
f1
�!E1

f2
�! � � �

fk
�!Ek/ WN.Z�

k/!��hol.U /Œu�
��0

by labeling the cells of a k–simplex with the terms from (2-1). For example, for k D 2
and the 2–simplex E0

f
�!E1

g
�!E2 in the nerve N .HVBr.U //, we get

dim.E0/

dim.E1/

dim.E2/

tr.f �1r1;0.f // �u tr.g�1r2;1.g// �u

tr..gf /�1r2;0.gf // �u

1
2

tr..gf /�1r2;1.g/r1;0.f // �u2

Algebraic & Geometric Topology, Volume 22 (2022)
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In the next theorem we show that this assignment is well defined.

Theorem 2.5 The assignments from Definition 2.4 give a map of simplicial presheaves
Ch WHVB!�, ie a natural transformation of functors CManop! Set�

op

l
.

Proof First, we show that the assignment defined by (2-1) is well defined, ie it
indeed gives a chain map N.Z�k/! ��hol.U /Œu�

��0. The differential in N.Z�k/
is d.ei0;:::;i`/D

P`
jD0.�1/

j ei0;:::;O{j ;:::;i` , while the differential in ��hol.U /Œu�
��0 van-

ishes, d D 0, by our choice of taking the zero differential in��hol.U /; see Definition 2.3.
We thus have to show that the images of

P`
jD0.�1/

j ei0;:::;O{j ;:::;i` also vanish. This
image is given by
1

.`� 1/Š
�u`�1 �

�
tr. Qf �1i`;i1 ıri`;i`�1.

Qfi`;i`�1/ ı � � � ı ri2;i1.
Qfi2;i1//

C

`�1X
jD1

.�1/j tr
�
Qf �1i`;i0 ıri`;i`�1.

Qfi`;i`�1/ ı � � �

ı rijC1;ij�1.
QfijC1;ij�1/ ı � � � ı ri1;i0.

Qfi1;i0/
�

C .�1/` tr. Qf �1i`�1;i0 ıri`�1;i`�2.
Qfi`�1;i`�2/ ı � � � ı ri1;i0.

Qfi1;i0//

�
:

Using the Leibniz property

rijC1;ij�1.
QfijC1;ij�1/DrijC1;ij�1.

QfijC1;ij ı
Qfij ;ij�1/

DrijC1;ij .
QfijC1;ij / ı

Qfij ;ij�1 C
QfijC1;ij ırij ;ij�1.

Qfij ;ij�1/;

together with Qf �1i`;i1D
Qfi1;i0 ı

Qf �1i`;i0 and Qf �1i`�1;i0D
Qf �1i`;i0 ı

Qfi`;i`�1 and the cyclic property
of the trace, shows that the above terms indeed vanish.

Finally, we note that Ch is a map of simplicial presheaves, ie a natural transformation.
For a morphism ' W U ! U 0 the induced simplicial sets are all given by pullback via ',
and (2-1) respects pullbacks.

3 Chern character induced via totalization

Some holomorphic vector bundles E ! M over a complex manifold M admit no
holomorphic connection, and these will not be objects in the category HVBr.M/ of
holomorphic vector bundles with holomorphic connections. However, we can cover the
underlying complex manifold by open sets so that each restriction of the bundle to an
open set has a holomorphic connection. By taking the limit of such a cover, we obtain
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a Chern character map associated to E. In fact, when taking limits, the holomorphic
Chern character as defined by Atiyah can be recovered as the 0–simplex part of this
Chern character map, while higher simplices naturally yield higher Chern–Simons
forms.

3.1 Totalization of Ch

We begin by describing the category of covers CovM of a complex manifold M 2
Obj.CMan/.

Definition 3.1 LetM 2Obj.CMan/ be a complex manifold, and denote by OpenM WD
fU �M WU is openg the set of all open subsets of M. By definition, an (open) cover U
of M consists of an index set I and a map ˛ W I ! OpenM such that

S
i2I ˛.i/DM.

We also write this as U D fUigi2I for Ui D ˛.i/. Next, we make the covers of M
into a category CovM by letting the objects of CovM consist of covers of M, while a
morphism CovM .U ;U 0/ consists of a map f W I ! I 0 such that ˛ D ˛0 ıf,

I

I 0

OpenMf

˛0

˛

There is a functor {N W CovM !CMan�op
called the Čech nerve of a cover, which we

define now. Let UDfUigi2I be a cover, and denote byUi0;:::;ik WDUi0\� � �\Uik . Then,
define the simplicial manifold {NU by setting the k–simplices of {NU to be the disjoint
union of the k–fold intersections, ie {NUk WD

`
i0;:::;ik2I

Ui0;:::;ik . Then {NU W�op!

CMan is a simplicial complex manifold with face maps dj W
`
i0;:::;ik2I

Ui0;:::;ik !`
i 00;:::;i

0
k�1
2I Ui 00;:::;i

0
k�1

induced by the inclusions Ui0;:::;ik
inc
,�! Ui0;:::;O{j ;:::;ik and de-

generacies sj W
`
i0;:::;ik2I

Ui0;:::;ik !
`
i 00;:::;i

0
kC1
2I Ui 00;:::;i

0
kC1

induced by the identity
maps Ui0;:::;ik

id
�! Ui0;:::;ij ;ij ;:::;ik . Indeed, all the simplicial identities follow by a

direct check. Below, we will slightly abuse notation by considering {NU both as
{NU W�op!CMan and {NU W�!CManop.

Proposition 3.2 Let M 2Obj.CMan/ be a complex manifold , and let U D fUigi2I
be an open cover of M. Composing {NU W �! CManop with HVB yields a cosim-
plicial simplicial set HVB.{NU/ WD HVB ı {NU W � ! CManop ! Set�

op

l
. Simi-

larly, composing {NU W � ! CManop with � yields a cosimplicial simplicial set
�.{NU/ WD�ı {NU W�!CManop! Set�

op
. Furthermore , composing Ch with {N.U/

yields a map Ch.{NU/ WHVB.{NU/!�.{NU/ of cosimplicial simplicial sets.
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Proof This follows from Ch WHVB!� being a natural transformation by Theorem 2.5
composed with {NU , resulting in Ch ı {NU WHVB ı {NU !� ı {NU , which is a natural
transformation of functors �! Set�

op

l
.

By Proposition 3.2, both HVB.{NU/ and �.{NU/ are cosimplicial simplicial sets. We
may thus apply the totalization. The relevant definitions for the totalization can be
found in Appendix D.

Corollary 3.3 Given a complex manifold M with a cover U D fUigi2I , the map
Ch.{NU/ W HVB.{NU/ ! �.{NU/ is a map of cosimplicial simplicial sets , and thus
induces a simplicial set map on the totalization , ie a map

(3-1) Tot.Ch.{NU// W Tot.HVB.{NU//! Tot.�.{NU//:

Applying the totalization to the cosimplicial simplicial set HVB.{NU/ gives, by def-
inition, a simplicial set Tot.HVB.{NU//. The 0–simplices of this simplicial set are
given by arbitrary holomorphic vector bundles E on Ui together with choices of local
holomorphic connections on each open set Ui of the cover U , as stated more precisely
in the next proposition.

Proposition 3.4 Let U D fUigi2I be an open cover of a complex manifold M. Then ,
the 0–simplices of Tot.HVB.{NU// are given by a choice of holomorphic bundles
Ei ! Ui with holomorphic connections ri , and holomorphic bundle isomorphisms
gi;j W Ej jUi;j ! Ei jUi;j (not necessarily respecting the connections) satisfying the
cocycle condition gi;j jUi;j;k ıgj;kjUi;j;k D gi;kjUi;j;k on Ui;j;k , as well as gi;i D idEi .

Proof First note that, by definition, Tot.HVB.{NU// is a simplicial set, which is deter-
mined by a product

Q
Œ`�2Obj.�/.HVB.{NU`//�

`

of simplicial sets, whose k–simplices
consist of simplicial set maps

Q
Œ`�2Obj.�/ Set�

op

l
.�` ��k;HVB.{NU`//. Thus, a 0–

simplex is given by a sequence of simplicial set maps �` ��0!HVB.{NU`/ for `D
0; 1; 2; : : : . Since each such map is determined by its image on the unique maximal non-
degenerate `–simplex, this amounts to a sequence of elements in HVB.{NU`/`, ie a holo-
morphic vector bundle E with holomorphic connection on {NU0D

`
i Ui , two holomor-

phic vector bundles zE0 and zE1 with holomorphic connection over {NU1D
`
i0;i1

Ui0;i1
and a morphism Qf W zE0! zE1 not respecting the connections, three holomorphic vector
bundles zzE0, zzE1 and zzE2 with holomorphic connection over {NU2 D

`
i0;i1;i2

Ui0;i1;i2
and morphisms

zzE0
QQf0
�!
zzE1

QQf1
�!
zzE2
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not respecting the connections, etc. However, in the totalization, this data is not
independent.

First, consider ' W Œ0�! Œ1�, '.0/ D r , where r is 0 or 1. Use � from (D-1) to map
the ` D 1 component zE0

Qf
�! zE1 to the ' W Œ0� ! Œ1� component, which gives the

bundle zEr interpreted as a simplicial set morphism �0 ��0! HVB.{NU1/. On the
other hand, using  from (D-1) to map the ` D 0 component E to the ' W Œ0�! Œ1�

component gives
�`

i0;i1
Ui0;i1

incr
�!

`
i Ui

��
.E/, ie the pullback of E under the inclu-

sions incr W Ui0;i1 ,! Uir . Since these coincide in the equalizer, we see that zEr is just
the pullback of E under the inclusion incr . Writing E D

`
i Ei over

`
i Ui , we see

that zE0 D
`
i0;i1

Ei0 jUi0;i1 and zE1 D
`
i0;i1

Ei1 jUi0;i1 .

Similar arguments show that all higher zzEi ;
zzzEi ; : : : , are pullbacks of E under inclusions

mapping Ui0;:::;im ,!Uir , obtained by considering the component � W Œ0�! Œm�, 0 7! r .

Next, considering components � W Œ1�! Œm�, �.0/D r , �.1/D s, for some 0� r � s�m,
shows that all morphisms QQfj ; : : : are induced by pullbacks of Qf W zE0! zE1 via inclusions.
In particular, if we write the map Qf W

`
i0;i1

Ei0 jUi0;i1 !
`
i0;i1

Ei1 jUi0;i1 in .i0; i1/
components as Qf D

`
i0;i1

gi1;i0 , where gi1;i0 W Ei0 jUi0;i1 ! Ei1 jUi0;i1 , then the 2–
simplex

zzE0
QQf0
�!
zzE1

QQf1
�!
zzE2

on U2 from above is given by

QQf0 D
a
i0;i1;i2

gi1;i0 jUi0;i1;i2 W
a
i0;i1;i2

Ei0 jUi0;i1;i2 !
a
i0;i1;i2

Ei1 jUi0;i1;i2 ;

QQf1 D
a
i0;i1;i2

gi2;i1 jUi0;i1;i2 W
a
i0;i1;i2

Ei1 jUi0;i1;i2 !
a
i0;i1;i2

Ei2 jUi0;i1;i2 ;

while the composition is QQf1 ı
QQf0 D

`
i0;i1;i2

gi2;i0 jUi0;i1;i2 W
`
i0;i1;i2

Ei0 jUi0;i1;i2 !`
i0;i1;i2

Ei2 jUi0;i1;i2 . Therefore, the functions fgi;j gi;j satisfy the cocycle condition
gi2;i1 ı gi1;i0 D gi2;i0 on triple intersections Ui0;i1;i2 , and we may thus interpret the
fgi;j gi;j2I as transition functions for a global holomorphic vector bundle on M, so
that on the cover U we have locally chosen holomorphic connections.

Finally, we note that there are no further higher conditions, since the higher restrictions
on the `–simplices in HVB.{NU`/` coming from (D-1) are implied by the cocycle
condition; see Figure 1.
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Ei Ei jUi;j EkjUi;j;k Ei jUi;j;k EkjUi;j;k;` Ei jUi;j;k;`

Ej jUi;j Ej jUi;j;k E`jUi;j;k;` Ej jUi;j;k;`

gi;j
gj;k jUi;j;k

gi;k jUi;j;k

g
i
;j
jU
i
;j
;k

g
j;k jU

i;j;k;`

gi;k jUi;j;k;`

g
k
;`
j U
i
;j
;k
;`

g i
;`
jU i
;j
;k
;`

gj;`jUi;j;k;`

g
i
;j
jU
i
;j
;k
;`

Figure 1: Higher relations in Tot.HVB.{NU//0 are induced by the cocycle condition.

Although not all holomorphic vector bundles admit a holomorphic connection, this is
certainly true locally.

Lemma 3.5 If � WE!M is a holomorphic vector bundle over M, then there exists
a cover U D fUigi2I of M such that , for each i 2 I, the restriction EjUi ! Ui has a
holomorphic connection. In particular , each holomorphic vector bundle with such a
choice of cover gives a 0–simplex in Tot.HVB.{NU//.

Proof Choose a local trivialization f i WDi �Cd !Egi2I via trivial holomorphic
bundles Di �Cd ! Di , where Di � Cm is an open disk. Then, the holomorphic
connection @D

P
k dzk @=@zk on Di �Cd !Di can be transported to a holomorphic

connection on EjIm. i /! Ui WD �.EjIm. i // via pullback by  �1i .

The last statement follows by Proposition 3.4.

The importance of the above map of simplicial sets is that for 0–simplices we re-
cover Atiyah’s Chern character; see [1]. More specifically, recall from [11, page 243,
Proposition 4.4] that the Atiyah class may be represented as rg D fri;j .gi;j /g 2
{C �.U ;Hom.E;E/˝�1hol/, and that the Chern character is, by [11, page 244], then given
by the sum of the classes of 1

kŠ
tr.g.rg/k/ in the Hodge cohomology H �Hodge.M/D

H �. {C �.U ; ��hol/; ı/; see Remark 3.17.

Proposition 3.6 The map from (3-1) on 0–simplices coincides with the Chern character
of a holomorphic vector bundle as defined by O’Brian , Toledo , Tong [11, page 244,
above Proposition 4.5] applied to the strict case. More precisely , for a 0–simplex given
by the local data .fEi!Ui ;rigi2I ; fgi;j gi;j2I / from Proposition 3.4, Tot.Ch.{NU//0
maps this 0–simplex to the 0–simplex in Tot.�.{NU//0, given by the sequence of
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holomorphic forms on
`
i0;:::;i`

Ui0;:::;i` , for `� 0,

(3-2)
a
i0;:::;i`

1

`Š
tr..gi`;i`�1 ı� � �ıgi1;i0/

�1
ıri`;i`�1.gi`;i`�1/ı� � �ıri1;i0.gi1;i0// �u

`:

Proof By the proof of Proposition 3.4, the 0–simplex of Tot.HVB.{NU// is a sequence
of ` composable morphismsa
i0;:::;i`

Ei0 jUi0;:::;i`

`
gi1;i0
�����!

a
i0;:::;i`

Ei1 jUi0;:::;i`

`
gi2;i1
�����!� � �

`
gi`;i`�1�������!

a
i0;:::;i`

Ei` jUi0;:::;i`

for `� 0, which do not (necessarily) respect the connections ri restricted to Ui0;:::;i` .
By Definition 2.4, and in particular (2-1), Ch maps this to (3-2) on the top nondegenerate
`–simplex of Tot.�.{NU//0.

Remark 3.7 The map (3-1) is producing not only the Chern character via the Atiyah
class on the 0–simplices of Tot.HVB.{NU//, but a host of Chern–Simons-type invariants
for holomorphic bundles on the higher simplices. We will revisit these invariants in a
future paper.

3.2 Totalization of cosimplicial nonpositively and nonnegatively graded
complexes

There is an even more explicit relationship between the formulas in (3-2) and the map
constructed in [11]. To see this we will interpret the 0–simplices of Tot.�.{NU// as a
Čech complex with values in holomorphic forms. We first need to make some general
statements about the Čech cochain complex.

Definition 3.8 Let A be a presheaf of nonnegatively graded cochain complexes on
a manifold M, and let U D fUigi2I be an open cover of M. We write Ai0;:::;in D
A.Ui0;:::;in/ and Aki0;:::;in D Ak.Ui0;:::;in/ for the degree k component, and write dA
for the internal differential of A. From this data, there are two ways to obtain a cochain
complex.

First, we define the Čech cochain complex {C �.U ;A/ of A for the cover U by setting

{C n.U ;A/D
Y

i0;:::;in2I

Ai0;:::;in ;
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where an element a 2 Aki0;:::;in is of total degree jaj D nC k. The Čech differential
ı W {C �.U ;A/! {C �C1.U ;A/ acts on an element c D fci0;:::;ingi0;:::;in2I 2 {C

�.U ;A/
with ci0;:::;in 2Ai0;:::;in via

(3-3) .ı.c//i0;:::;inC1 WD

nC1X
jD0

.�1/j � ci0���O{j ���inC1 jUi0;:::;inC1
:

Since ı2 D d2A D dAı� ıdA D 0, we can take the total differential

(3-4) D.c/D ı.c/� .�1/jcjdA.c/

on {C n.U ;A/, which satisfies D2 D 0. Furthermore, for two covers U D fUigi2I
and U 0 D fU 0i 0gi 02I 0 and a morphism of covers f 2 CovM .U ;U 0/, there is an induced
cochain map {C �.U 0;A/! {C �.U ;A/, fci 00;:::;i 0ngi 00;:::;i 0n2I 0 7! fcf .i0/;:::;f .in/gi0;:::;in2I ,
since Ui0;:::;in D U

0
f .i0/;:::;f .in/

. Thus, we have a functor {C �. � ;A/ W Covop
M ! ChC.

Alternatively, there is a cosimplicial nonnegatively graded cochain complex A W�!
ChC given by the assignment

AD A�;� W�! ChC; Œn� 7! An;� WD
Y

i0;:::;in2I

Ai0���in :

In particular, An;� in degree k is An;k WD
Q
i0;:::;in

Aki0���in . We may take the to-
tal complex of A, denoted by tot.A/. Recall from (D-3) that the total complex
of A is defined as tot.A/D

L
nA

n;�Œn�, where An;�Œn� is the cochain complex An;�

shifted up by n and the differential is as in (D-4). For two covers U D fUigi2I and
U 0 D fU 0i 0gi 02I 0 and a morphism of covers f 2 CovM .U ;U 0/, there is an identity map
A.U 0

f .i0/;:::;f .in/
/ D�!A.Ui0;:::;in/, which induces cochain maps

Q
i 00;:::;i

0
n2I 0

Ai 00���i 0n!Q
i0;:::;in2I

Ai0���in , fci 00;:::;i 0ngi 00;:::;i 0n2I 0 7! fcf .i0/;:::;f .in/gi0;:::;in2I , which assemble to
a map of cosimplicial nonnegatively graded cochain complexes. Thus, tot.A/ is also a
functor Covop

M ! ChC.

The next lemma shows that the two constructions in Definition 3.8 are naturally equiv-
alent.

Lemma 3.9 Let U D fUigi2I be an open cover on a manifold M, A be a presheaf of
nonnegatively graded cochain complexes onM, andA be the cosimplicial nonnegatively
graded cochain complex associated to A. Then there is an isomorphism tot.A/!
{C �.U ;A/ from the totalization to the Čech cochain complex.

Moreover , the isomorphisms tot.A/! {C �.U ;A/ yield a natural equivalence of functors
Covop

M ! ChC.
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Proof An element of degree k in
Q
`A

`;�Œ`� is a collection of elements cj;k�j 2
Aj;k�j Œj �, where j � 0. An element of total degree k in the Čech complex {C �.U ;A/
is a collection of elements cj;k�j 2 {C i .U ;A/, where cj;k�j associates to an open
setUi0���ij an element cj;k�j 2Ak�ji0���ij

. By definition, Ak�ji0���ij
is a factor inAj;k�j . Since

the differentials D in (3-4) and d in (D-4) differ by a factor .�1/jcjC1, the cochain iso-
morphism tot.A/! {C �.U ;A/ is given by cj;k�j 7! .�1/jc

j;k�j j�.jcj;k�j jC1/=2 �cj;k�j .
This proves the first statement.

For the second statement, note that since a morphism of covers acts on the indices
of the collections in

Q
i0;:::;in

Ai0;:::;in and {C �.U ;A/ in the same way (as described in
Definition 3.8), these isomorphisms induce a natural transformation.

Given a cosimplicial nonnegatively graded cochain complex A 2 .ChC/�, we get a
nonpositively graded cochain complex by applying the functorQ and taking totalization,
Tot.QA/; see Appendix D. Alternatively, we can take the total complex and apply
the functor Q, giving Q.tot.A//. The following lemma shows that these two cochain
complexes are equivalent:

Lemma 3.10 Let A W � ! ChC be a cosimplicial nonnegatively graded cochain
complex. Then

Tot
�M

`

Q.A`;�/

�
ŠQ.tot.A//:

Proof First note that, by Lemma D.2, tot.A/D
Q
`A

`;�Œ`� is the equalizer

eq W
Y
Œ`�

Hom�.N.Z�`/; A`;�/�
Y

Œm�!Œn�

Hom�.N.Z�m/; An;�/:

Since Q is a right adjoint, it commutes with limits. The equalizer is a limit, so the
right-hand side of the equation can be rewritten as

Q

�Y
`

A`;�Œ`�

�
DQ

�
eq W

Y
Œ`�

Hom�.N.Z�`/;A`;�/�
Y

Œm�!Œn�

Hom�.N.Z�m/;An;�/
�

Deq W
Y
Œ`�

QHom�.N.Z�`/;A`;�/�
Y

Œm�!Œn�

QHom�.N.Z�m/;An;�/:

Use the Hom–tensor adjunction to rewrite Hom�.N.Z�`/; A`;�/ as N �.Z�`/˝A`;�,
where N �.Z�`/ is the normalized cochain complex on �`. Then

(3-5) Q
�
Hom�.N.Z�`; A`;�//

�
D

N �.Z�`/˝A`;�˝ZŒu�

.N �.Z�̀ /˝A`;�˝ZŒu�/�>0
:
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We compare this expression to

Tot
�M

`

Q.A`;�/

�
D eq W

Y
Œ`�

.Q.A`;�//�
`

�
Y

Œm�!Œn�

.Q.An;�//�
m

:

By definition, .Q.A`;�//�
`

is equal to q
�
Hom�.N.Z�`/;Q.A`;�//

�
; see Example C.3

item (6) on page 1109. This, using the Hom–tensor adjunction, we can write as

(3-6) Q
�
Ch
�
N.Z�`;Q.A`;�//

��
D

N �.Z�`/˝A`;�˝ZŒu�=.A`;�˝ZŒu�/�>0�
N �.Z�̀ /˝A`;�˝ZŒu�=.A`;�˝ZŒu�/�>0

��>0 :
We see that (3-5) and (3-6) are equal, which proves the lemma.

Given a cosimplicial object in Ch�, denoted by A, we can apply totalization in .Ch�/�

to it to get an object in Ch�, and then apply the Dold–Kan functor to get a simplicial
abelian group. Alternatively, we can apply the Dold–Kan functor to every A`;� to get a
cosimplicial simplicial abelian group, and then apply totalization in .Ab�op

/� to get a
simplicial abelian group. The next lemma says that these simplicial abelian groups are
weakly equivalent.

Lemma 3.11 Let A W�! Ch� be a cosimplicial nonpositively graded cochain com-
plex. Then there is a weak equivalence of simplicial abelian groups

Tot
�M

`

DK.A`;�/
�
! DK

�
Tot

�M
`

A`;�
��
:

Proof First note that the functor DK is a right adjoint, so it commutes with all limits.
Since totalization is an equalizer of two maps, we get the equalities

DK
�

Tot
M
`

A`;�
�
D DK

�
eq W

Y
Œ`�

.A`;�/�
`

�
Y

Œm�!Œn�

.An;�/�
m

�
D eq W

Y
Œ`�

DK..A`;�/�
`

/�
Y

Œm�!Œn�

DK..An;�/�
m

/:

By definition — see (B-2) — the n–simplices of DK..A`;�/�
`

/ is the set of morphisms
in Ch� from N.Z�n/ to .A`;�/�

`

. Using the adjunctions between Hom and ˝, we see
that

DK..A`;�/�
`

/n D Ch�.N.Z�n/; .A`;�/�
`

/(3-7)

D Ch�
�
N.Z�n/; q

�
Hom�.N.Z�`/; A`;�/

��
D Ch�.N.Z�n/˝N.Z�`/; A`;�/:
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On the other hand, consider

Tot
�M

`

DK.A`;�/
�
D eq W

Y
Œ`�

.DK.A`;�//�
`

�
Y

Œm�!Œn�

.DK.An;�//�
m

:

By definition, .DK.A`;�//�
`

is a simplicial abelian group. Its n–simplices, by the
definition of the simplicial model category structure in Example C.2, are equal to�

.DK.A`;�//�
`�
n
DMap.Z�`;DK.A`;�//n

DAb�op
.Z�n˝Z�`;DK.A`;�//

D Ch�
�
N.Z.�n ��`//; A`;�

�
;

where the last equality follows from the adjunction between N and DK. We now use
the Eilenberg–Zilber map EZ WN.Z�n/˝N.Z�`/!N.Z.�n��`// (see [9, 1.6.11]),

(3-8) EZ.ej0;:::;jp ˝ ei0;:::;iq / WDX
.p;q/–shuffles .�;�/

sgn.�; �/ � .s�q � � � s�1.ej0;:::;jp /; s�p � � � s�1.ei0;:::;iq //;

where we have used notation from Example B.2. We note that EZ is a quasi-isomorphism
with quasi-inverse the Alexander–Whitney map (see [9, 1.6.12]). Thus, we get a map

(3-9) Ch�
�
N.Z.�n ��`//; A`;�

� .�/ıEZ
���! Ch�.N.Z�n/˝N.Z�`/; A`;�/:

This is exactly what we had in (3-7), which completes our proof.

Lemma 3.12 Let F WAb�op
!Set�

op
be the forgetful functor and letA�;� W�!Ab�op

be a cosimplicial simplicial abelian group. Then

F
�

Tot
�M

`

A`;�
��
Š Tot

�M
`

F.A`;�/
�
:

Proof The proof proceeds similarly to the previous two lemmas, since the forgetful
functor F is a right adjoint, just as the functors Q and DK were.

Combining the previous three lemmas, we obtain the diagram of functors

(3-10)

.ChC/�
Q
//

tot
��

.Ch�/� DK
//

Tot
��

.Ab�op
/�

Tot
��

F
// .Set�

op
/�

Tot
��

ChC
Q

// Ch� DK
// Ab�op F

// Set�
op
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The left and right squares strictly commute, while the middle square induces a commu-
tative square in the homotopy categories of these model categories.

We want to apply the above to the holomorphic forms on a complex manifold M.
Let M 2 CMan with an open cover U D fUigi2I and let {NU W �op ! CMan be
the Čech nerve, which is the simplicial manifold whose k–simplices are {NUk D`
i0;:::;ik2I

Ui0;:::;ik . Thus, applying holomorphic forms (with zero differential) gives
a cosimplicial nonnegatively graded cochain complex

��hol.
{NU/ W�

{NU
�!CManop �

�
hol. � /
���! ChC:

Now, denote by ��hol the sheaf of holomorphic forms (with zero differential). By
Definition 3.8, there is a cosimplicial cochain complex ��;�hol W � ! ChC, Œn� 7!Q
i0;:::;in

��hol.Ui0;:::;in/. Then these two cosimplicial nonnegatively graded cochain
complexes coincide:

Proposition 3.13 In the notation above , the above two cosimplicial nonnegatively
graded cochain complexes are isomorphic:

(3-11) ��hol.
{NU/Š��;�hol:

After taking the totalization , we get isomorphisms of cochain complexes

(3-12) tot.��hol.
{NU//Š tot.��;�hol/Š

{C �.U ; ��hol/;

where the differential on {C �.U ; ��hol/ is ı from (3-3).

Furthermore , there is a weak equivalence of simplicial sets

(3-13) Tot.�.{NU//D Tot
�
DK.��hol.

{NU/Œu���0/
�
��! DK. {C �.U ; ��hol/Œu�

��0/:

Proof For (3-11), note that the cosimplicial nonnegatively graded cochain complexes
map Œn� to the cochain algebra ��hol

�`
i0;:::;in2I

Ui0;:::;in
�
Š
Q
i0;:::;in2I

��hol.Ui0;:::;in/

with the zero differential. Equation (3-12) follows from (3-11) and Lemma 3.9 applied
to ��hol, where the total differential from (3-4) is DD ı on {C �.U ; ��hol/, since we have
set the cochain differential to be zero. Finally, (3-13) follows via Lemmas 3.10, 3.11
and 3.12; or, in other words, follow ��hol.

{NU/Š��;�hol around the diagram in (3-10):

Tot
�
DK.��hol.

{NU/Œu���0/
�
Š Tot

�
F
�
DK.Q.��;�hol//

��
Š F

�
Tot

�
DK.Q.��;�hol//

��
! F

�
DK

�
Tot.Q.��;�hol//

��
Š DK

�
Q.tot.��;�hol//

�
Š DK. {C �.U ; ��hol/Œu�

��0/:

Corollary 3.14 Using (3-1) and (3-13), we thus have a map

(3-14) Tot.HVB.{NU// Tot.Ch.{NU//
��������! Tot.�.{NU// (3-13)

��! DK. {C �.U ; ��hol/Œu�
��0/:
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3.3 Computing Tot.Ch.{NU//

In (3-14), we obtained a map Tot.HVB.{NU//! DK. {C �.U ; ��hol/Œu�
��0/. In this sec-

tion, we give an explicit description of this map. We first state a more explicit description
of n–simplices of Tot.HVB.{NU//, extending the statement from Proposition 3.4.

Proposition 3.15 Let U D fUigi2I be an open cover of a complex manifold M.
Then , the n–simplices of Tot.HVB.{NU// are given by a choice of nC 1 holomor-
phic bundles E.0/i ! Ui ; : : : ; E

.n/
i ! Ui (for each i 2 I ) together with holomor-

phic connections r.0/i ; : : : ;r
.n/
i , respectively, and holomorphic bundle isomorphisms

g
.p/
i;j WE

.p/
j jUi;j !E

.p/
i jUi;j (not necessarily respecting the connections) satisfying the

cocycle condition g.p/i;j jUi;j;k ı g
.p/

j;k
jUi;j;k D g

.p/

i;k
jUi;j;k on Ui;j;k and g.p/i;i D id

E
.p/

i

.
Moreover , there are bundle isomorphisms f pi W E

.p�1/
i ! E

.p/
i over Ui (also not

necessarily respecting the connections) satisfying f pi jUi;j ıg
.p�1/
i;j D g

.p/
i;j ıf

p
j jUi;j .

Proof Tot.HVB.{NU// is a simplicial subcomplex of
Q
Œ`�2Obj.�/.HVB.{NU`//�

`

,
which is a simplicial set whose n–simplices consist of elementsY

Œ`�2Obj.�/

Set�
op

l .�` ��n;HVB.{NU`//:

Thus, an n–simplex is given by a sequence of simplicial set maps�`��n!HVB.{NU`/
for `D 0; 1; 2; : : : satisfying certain conditions.

First, for fixed p 2 f0; : : : ; ng, consider the map �p W Œ0� ! Œn�, �p.0/ D p. Then,
an n–simplex of Tot.HVB.{NU// gives rise to 0–simplex of Tot.HVB.{NU//, via the
composition�`��0 id��p

���!�`��n!HVB.{NU`/. By Proposition 3.4 this 0–simplex
is given by a sequence of vector bundlesE.p/i !Ui with a holomorphic connectionr.p/

and bundle maps g.p/i;j satisfying the cocycle condition:

E
.p/
i E

.p/
i jUi;j E

.p/

k
jUi;j;k E

.p/
i jUi;j;k E

.p/

k
jUi;j;k;` E

.p/
i jUi;j;k;`

E
.p/
j jUi;j E

.p/
j jUi;j;k E

.p/

`
jUi;j;k;` E

.p/
j jUi;j;k;`

g
.p/
i;j

g
.p/
j;k
jUi;j;k

g
.p/
i;k
jUi;j;k

g
.
p
/

i
;j
jU
i
;j
;k

g .p
/j

;k jU
i;j
;k
;`

g
.p/
i;k
jUi;j;k;`

g
.
p
/

k
;`
j U
i
;j
;k
;`

g
.p
/

i;
`
jU i
;j
;k
;`

g
.p/
j;`
jUi;j;k;`

g
.
p
/

i
;j
jU
i
;j
;k
;`

On the other hand, when `D 0, the map �0 ��n!HVB.{NU0/ is determined by its
image on the maximal nondegenerate n–simplex of �0 ��n in HVB.{NU0/n, ie by n
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vector bundle isomorphisms over Ui

E
.0/
i

f 1
i
�!E

.1/
i

f 2
i
�!E

.2/
i

f 3
i
�! � � �

f n�1
i
��!E

.n�1/
i

f n
i
�!E

.n/
i ;

where the E.p/i coincide with the ones from above, since they are the images of
�0 ��0!�0 ��n. Now, the g.p/i;j and f pi commute as in

E
.p�1/
j jUi;j E

.p�1/
i jUi;j

g
.p�1/

i;j

E
.p/
j jUi;j E

.p/
i jUi;j

g
.p/

i;j

f
p

j
jUi;j

h
p

i;j
f
p

i
jUi;j

which can be seen by considering the image of two maximal nondegenerate 2–simplices
of�1��1 id��p

���!�1��n!HVB.{NU1/ with �p W Œ1�! Œn�, �p.0/Dp�1, �p.1/Dp.
The equalizer condition of the totalization shows that these two 2–simplices have faces
f
p
i jUi;j , hpi;j , g.p�1/i;j and g.p/i;j , hpi;j , f pj jUi ;j , respectively.

For example, in the equalizer (D-1), the � D ı0 W Œ0�! Œ1� component �0 ��n !
HVB.{NU1/ receives an output from � via the component �1��n!HVB.{NU1/, and
it receives an output from  via the component �0 ��n!HVB.{NU0/, which must
coincide:

Set�
op

l
.�1 ��n;HVB.{NU1//

Set�
op

l
.�0 ��n;HVB.{NU0//

Set�
op

l
.�0 ��n;HVB.{NU1//.

�jı0

 jı0

Now, the image of the 1–simplex .Œ1� �0
�! Œ0�; Œ1�

�p
�! Œn�/ 2 �0 � �n is the 1–

simplex
`
i E

.p�1/
i

`
i f

p

i���!
`
i E

.p/
i in HVB.{NU0/1, by definition. Under  , this maps

to the .ı0 W Œ0�! Œ1�/–component �0 ��n!HVB.{NU1/, which maps the 1–simplex
.Œ1�

�0
�! Œ0�; Œ1�

�p
�! Œn�/ to

`
i;j E

.p�1/
j

`
i;j f

p

j
������!

`
i;j E

.p/
j (suitably restricted toUi;j ).

On the other hand, consider the 2–simplex .Œ2� �1�! Œ1�; Œ2�
�p
�! Œn�/ 2�1 ��n, where

�p.0/ D p � 1, �p.1/ D p � 1 and �p.2/ D p. Assume that this gets mapped to
E 00

g 0
�!E 01

f 0
�!E 02 in HVB.{NU1/2. Note that the 0th face of .Œ2� �1�! Œ1�; Œ2�

�p
�! Œn�/ is

in fact
.Œ1�

�1ıı0Dı0ı�0
���������! Œ1�; Œ1�

�pıı0D�p
�������! Œn�/;

which thus gets mapped to E 01
f 0
�! E 02 in HVB.{NU1/1. Now the map � into the

ı0 W Œ0�! Œ1� component maps�1��n ˛
�!HVB.{NU1/ to�0��n ı0. � /�id

�����!�1��n ˛
�!
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HVB.{NU1/, so that it maps

.Œ1�
�0
�! Œ0�; Œ1�

�p
�! Œn�/ 7! .Œ1�

ı0ı�0
���! Œ1�; Œ1�

�p
�! Œn�/ 7!E 01

f 0
�!E 02:

Since the images of � and  coincide, we obtain that the 0th face E 01
f 0
�! E 02 of the

above 2–simplex equals
`
i;j E

.p�1/
i

`
i;j f

p

i
������!

`
i E

.p/
i . A similar argument shows

that E 00
g 0
�!E 01 equals

`
i;j E

.p�1/
j

`
i;j g

.p�1/

i;j
��������!

`
i;j E

.p�1/
i , etc.

This shows that f pi jUi;j ıg
.p�1/
i;j D h

p
i;j D g

.p/
i;j ıf

p
j jUi;j , as claimed.

Finally, we note that there are no higher relations, since all higher cocycle conditions
follow from the ones on the 1–simplices (see Figure 2).

We now use the data from the previous proposition to describe Tot.Ch.{NU//.

Proposition 3.16 Using the description from Proposition 3.15, the map of n–simplices
Tot.Ch.{NU//n W Tot.HVB.{NU//n ! DK. {C �.U ; ��hol/Œu�

��0/n is given by mapping
the generator ej0;:::;jp for 0� j0 < � � �< jp � n of N.Z�n/ to the cochain c.j0;:::;jp/ 2
{C �.U ; ��hol/Œu�

��0 defined as

(c.j0;:::;jp//i0;:::;i`

D u`Cp �
1

.`Cp/Š
� .�1/p.p�1/=2

�

X
.�1/s1C���Csp tr

��
.g
.jp/

i`;i`�1
� � �g

.jp/

ispC1;isp
/f

.jp ;jp�1/

isp
� � � f

.j2;j1/

is2

� .g
.j1/

is2 ;is2�1
� � �g

.j1/

is1C1
;is1
/f

.j1;j0/

is1
.g
.j0/

is1 ;is1�1
� � �g

.j0/

i2;i1
g
.j0/

i1;i0
/
��1

� r.g
.jp/

i`;i`�1
/ � � � r.g

.jp/

ispC1;isp
/r.f

.jp ;jp�1/

isp
/

� � � r.f
.j1;j0/

is1
/r.g

.j0/

is1 ;is1�1
/ � � � r.g

.j0/

i2;i1
/r.g

.j0/

i1;i0
/
�
;

where the sum is over 0� s1� s2� � � � � sp � ` and f .b;a/i D f bi ı� � �ıf
aC1
i WE

.a/
i !

E
.b/
i , f .a;a/i D id

E
.a/

i

appears precisely at the position s1; : : : ; sp, r is the induced
connection on the appropriate Hom.E.�/

�
; E.�/
�
/, and everything is suitably restricted to

Ui0;:::;i` .

Proof We follow the sequence of maps (see (3-12) and (3-13))

Tot.HVB.{NU//n
Tot.Ch.{NU//n
���������! Tot

�
DK.��hol.

{NU/Œu���0/
�
n

Lemma 3.11
�������! DK

�
Tot.��hol.

{NU/Œu���0/
�
n

Lemmas 3.10 and 3.9
������������! DK. {C �.U ; ��hol/Œu�

��0/n:
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E
.0/
i

E
.0/
j jUi;j E

.0/
i jUi;j

g
.0/
i;j

E
.0/

k
jUi;j;k

E
.0/
j jUi;j;k

E
.0/
i jUi;j;k

g
.0/
j;k
jUi;j;k

g
.0/
i;j
jUi;j;k

g
.0/
i;k
jUi;j;k

E
.1/
i

E
.1/
j jUi;j E

.1/
i jUi;j

g
.1/
i;j E

.1/

k
jUi;j;k

E
.1/
j jUi;j;k

E
.1/
i jUi;j;k

g
.1/
j;k
jUi;j;k

g
.1/
i;j
jUi;j;k

g
.1/
i;k
jUi;j;k

f 1
i

f 1
j
jUi;j

f 1
i
jUi;j f 1

k
jUi;j;k

f 1
j
jUi;j;k

f 1
i
jUi;j;k

� � �

Figure 2: Higher relations in Tot.HVB.{NU//n are induced by the conditions
on the 1–simplices.

An n–simplex in the simplicial set Tot.HVB.{NU// consists of a sequence of n–
simplices in N .HVBr.{NU`//�

`

for `D 0; 1; 2; : : : , where {NU`D
`
i0;:::;i`

Ui0;:::;i` , ie
in Set�

op

l

�
�n��`;N .HVBr.{NU`//

�
. In particular, in the notation from Example B.2

and Proposition 3.15, the .pCq/–simplex .s�q � � � s�1.ej0;:::;jp /; s�p � � � s�1.ei0;:::;iq //
in �n ��` gets mapped to compositions of g.r/ij and f ri restricted to {NU`:

E
.r�1/
i � �

g
.r�1/

i;j

�

�

�

g
.r�1/

j;k

E
.r/
i

� �

g
.r/

i;j

�

�

�

g
.r/

i;j
f r
i

f r
j f r

i

f r
j

:::

:::

:::

:::

:::

:::

:::

:::

:::

:::

:::

:::

This map is exhibited in the following few examples:

� .er ; e0/ 7!
`
E
.r/
i and .er�1;r ; s0e0/ 7!

`
f ri .

� .s0er�1;r ; s1e01/ 7! .�

`
g
.r�1/

i;j
������! �

`
f r
i

���! �/;

.s1er�1;r ; s0e01/ 7! .�

`
f r
j

���! �

`
g
.r/

i;j
����! �/:

� .s2s0er�1;r ; s1e0;1;2/ 7! .�

`
g
.r�1/

j;k
������! �

`
f r
j

���! �

`
g
.r/

i;j
����! �/.

Now, applying Tot.Ch.{NU// means that we apply Ch to each simplex in the nerve
N .HVBr.{NU`//, ie we apply (2-1) to composable morphisms. In the above examples,
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we thus obtain (on Ui , Ui;j and Ui;j;k , respectively):

� .er ; e0/ 7! dim.E.r// and .er�1;r ; s0e0/ 7! u trŒ.f ri /
�1rf ri �.

� .s0er�1;r ; s1e01/ 7!
1
2Š
�u2 trŒ.f ri g

.r�1/
i;j /�1rf ri rg

.r�1/
i;j �;

.s1er�1;r ; s0e01/ 7!
1
2Š
�u2 trŒ.g.r/i;j f

r
j /
�1
rg

.r/
i;jrf

r
j �:

� .s2s0er�1;r ; s1e0;1;2/ 7!
1
3Š
�u3 trŒ.g.r/i;j f

r
j g

.r�1/

j;k
/�1rg

.r/
i;jrf

r
j rg

.r�1/

j;k
�.

Next, by Lemma 3.11, we map this into DK.Tot��hol.
{NU/Œu���0/, whose n–simplices

are given by cochain maps in Ch�.N.Z�n/˝ N.Z�`/;��hol.
{NU`/Œu���0/ for ` D

0; 1; 2; : : : ; see (3-7). We obtain these cochain maps by applying the Eilenberg–Zilber
map (3-8). More precisely, to a generator ej0;:::;jp ˝ ei0;:::;iq of N.Z�n/˝N.Z�`/
we assign the sum over all .p; q/–shuffles:

� er ˝ e0 7! dim.E.r// and er�1;r ˝ e0 7! u trŒ.f ri /
�1rf ri �.

� er�1;r ˝ e01 7!

1
2Š
�u2

�
�trŒ.f ri g

.r�1/
i;j /�1rf ri rg

.r�1/
i;j �C trŒ.g.r/i;j f

r
j /
�1
rg

.r/
i;jrf

r
j �
�
:

� er�1;r ˝ e0;1;2 7!

1
3Š
�u3

�
�trŒ.g.r/i;j f

r
j g

.r�1/

j;k
/�1rg

.r/
i;jrf

r
j rg

.r�1/

j;k
�˙ two other .1; 2/–shuffles

�
:

Thus, ej0;:::;jp ˝ ei0;:::;iq (for pC q > 0) gets mapped by

(3-15) ej0;:::;jp ˝ ei0;:::;iq 7!

upCq

.pCq/Š

X
.p;q/–shuffles .�;�/

sgn.�; �/ trŒ..hpCq�1 � � � h0/�1rhpCq�1 � � � rh0/�;

where form2f1; : : : ; pg the h�m are “vertical maps” f jmC1i ı� � �ıf
jmC1
i Df

.jmC1;jm/

i

for some i , while all other h� are “horizontal maps” g.jm/i;i 0 for some m, i and i 0.

Now, applying Lemma 3.10 (and in particular Lemma D.2) shows that we only use
the highest nondegenerate generator ei0;:::;i` 2N.Z�

`/�` to map to ��hol.
{NU`/ (since

the images of the lower generators ei0;:::;iq of N.Z�`/ are induced via the equalizer
condition from N.Z�q/; see Lemma D.2). We thus land in

DK
�
tot.��hol.

{NU//Œu���0
�
n
Š Ch�

�
N.Z�n/;

M
`�0

��hol

� a
i0;:::;i`

Ui0;:::;i`

�
Œu���0

�
;
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where a generator ej0;:::;jp of N.Z�n/ maps to the ` component, by taking the image
of ej0;:::;jp ˝ ei0;:::;i` under (3-15), ie

ej0;:::;jp 7!
1

.pC `/Š
�upC`

�

X
.p;`/–shuffles .�;�/

sgn.�; �/ trŒ..hpC`�1 � � � h0/
�1
rhpC`�1 � � � rh0/�:

Now, for a given sequence of indices i0; : : : ; i` and a .p; `/–shuffle .�; �/, setting
0� s1 WD�1 � s2 WD�2�1� � � � � sp WD�p�pC1� `, it follows that the “vertical
maps” are precisely at h�m D f

.jm;jm�1/
ism

, while the “horizontal maps” are all other
h� D g

.jm/
i� ;i��1

for appropriate m and � (see Figure 3). Note from (B-1) that the sign
above is precisely sgn.�; �/D .�1/s1C���Csp . A final sign comes from the isomorphism
tot.��hol.

{NU//Œu���0! {C �.U ; ��hol/Œu�
��0 as in Lemma 3.9, where we multiply by a

sign .�1/.�p/�..�p/C1/=2 D .�1/p.p�1/=2, since the degree jej0;:::;jp j equals �p.

This shows that we get precisely the terms described in the proposition, and thus
completes the proof.

In particular, for 0–simplices we have the following interpretation:

Remark 3.17 Since DK.C /�, for any nonpositively graded cochain complex C 2 Ch�,
is a simplicial set, whose 0–simplices have as underlying set DK.C /0 D C 0, we see
that

DK. {C �.U ; ��hol/Œu�
��0/0 D . {C

�.U ; ��hol/Œu�/
0
Š

�M
`�0

{C `.U ; ��hol/

�even

:

Given a 0–simplex of Tot.HVB.{NU// via the data from Proposition 3.4, this thus maps
under (3-14) to the Čech–de Rham forms c 2

L
`
{C `.U ; �`hol/, with

ci0;:::;i` D
1

`Š
tr..gi`;i0/

�1
r.gi`;i`�1/ � � � r.gi1;i0//:

These are, in fact, the classes that were given by O’Brian, Toledo and Tong for the
Chern character; see [11, page 244]. Recall that the cohomology of {C �.U ; ��hol/ with
the Čech differential (and zero as internal differential) is, by definition, the Hodge
cohomology H �Hodge.M/ of M 2Obj.CMan/, ie H �Hodge.M/ WDH �. {C �.U ; ��hol/; ı/.

4 Restricting to product bundles with connection @

In the previous section, we gave a map

Tot.Ch.{NU// W Tot.HVB.{NU//! Tot.�.{NU// ��! DK. {C �.U ; ��hol/Œu�
��0/:
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In this section, we define a variant of this map on a new domain, CMan�op
.{NU Œ��; BG/,

which is capable of encoding any holomorphic vector bundle in some sense (see
Remark 4.7), and we produce a commutative diagram

(4-1)

CMan�op
.{NU Œ��; BG/ //

��

Tot.HVB.{NU//

Tot.Ch.{NU//
��

DK. {C �.U ; ��hol/Œu�
��0/ Tot.�.{NU//oo

which represents the map Tot.Ch.{NU// on CMan�op
.{NU Œ��; BG/.

4.1 A subsimplicial presheaf of HVB

In this section, we define the top horizontal map of (4-1). We start by defining the
cosimplicial simplicial manifold {NU Œ��.

Definition 4.1 Let U D fUigi2I be a cover U 2 CovM ; see Definition 3.1. We
first define the cosimplicial cover U Œ�� W � ! CovM . For fixed n, define the index
set I Œn� WD f.i; j / W i 2 I; 0 � j � ng. For convenience we will use the notation
i .j / D .i; j / for the indices in I Œn�. Then define the cover U Œn� WD fUi.j/gi.j/2I Œn� by
defining the open set Ui.j/ WD ˛

Œn�.i .j // WDUi , where ˛Œn� W I Œn�!OpenM determines
the cover as in Definition 3.1. In other words, U Œn� is obtained by taking nC 1 copies
of the original cover U . We can make this into a cosimplicial cover by assigning to a
morphism � W Œn�! Œm� in � the cover morphism U Œ��.�/ 2 CovM .U Œn�;U Œm�/ given by
f� W I

Œn�! I Œm�, f�.i .j //D i .�.j //, for which clearly ˛Œm�.f�.i .j ///DUi D˛Œn�.i .j //.
Note that U Œ��.� ı �0/D U Œ��.�/ ıU Œ��.�0/, so that we obtain the claimed cosimplicial
cover U Œ�� W�! CovM .

Now, composing U Œ�� W � ! CovM with the Čech nerve {N W CovM ! CMan�op

from Definition 3.1 yields the cosimplicial simplicial complex manifold {NU Œ�� W�!
CMan�op

.

The next proposition gives a more conceptual way of thinking about {NU Œ��.

Proposition 4.2 There is a functor F WCMan�op
! .CMan�op

/� such that F .{NU/D
{NU Œ��.
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Proof Consider an object X D X� 2 CMan�op
which assigns to each Œ`� 2 � a

complex manifold X`. Then F .X/ is a functor F .X/ D F .X/� W �! CMan�op
,

Œn� 7!F .X/n, where F .X/nDF .X/n
�
W�op!CMan; Œ`� 7!F .X/n

`
is defined to be

F .X/n` WD
a

�2Set.Œ`�;Œn�/

X`:

Here, Set.Œ`�; Œn�/ denotes all set maps from Œ`� to Œn�. For a morphism ˛ 2�.Œk�; Œ`�/,
we define F .X/n.˛/ W F .X/n

`
! F .X/n

k
to be

a
�2Set.Œ`�;Œn�/

X`
F .X/n.˛/
�������!

a
�2Set.Œk�;Œn�/

Xk;

Set.Œ`�; Œn�/�X` 3 .�; x/ 7! .� ı˛;X.˛/.x// 2 Set.Œk�; Œn�/�Xk :

With this definition, F .X/n becomes a simplicial manifold.

Next, we show that F .X/� is indeed a functor F .X/� W�! CMan�op
. In fact, for

a morphism ˇ 2�.Œn�; Œm�/, define the natural transformation F .X/.ˇ/ W F .X/n!

F .X/m of functors �op! CMan by the sequence of maps F .X/.ˇ/` W F .X/
n
`
!

F .X/m
`

, a
�2Set.Œ`�;Œn�/

X`
F .X/.ˇ/`
�������!

a
�2Set.Œ`�;Œm�/

X`;

Set.Œ`�; Œn�/�X` 3 .�; x/ 7! .ˇ ı �; x/ 2 Set.Œ`�; Œm�/�X`:

Since the composition F .X/n
`

F .X/n.˛/
�������! F .X/n

k

F .X/.ˇ/k
�������! F .X/m

k
is equal to the

composition F .X/n
`

F .X/.ˇ/`
�������! F .X/m

`

F .X/m.˛/
�������! F .X/m

k
, this shows that F .X/.ˇ/

is indeed a natural transformation, and thus F .X/ W�!CMan�op
is a functor.

Now, to see that we have a functor F WCMan�op
! .CMan�op

/�, we must assign to
a natural transformation � WX ! Y of simplicial manifolds X; Y 2Obj.CMan�op

/ a
natural transformation F .�/ W F .X/! F .Y /. In detail, F .�/n

`
W F .X/n

`
! F .Y /n

`
is

defined by Set.Œ`�; Œn�/�X` 3 .�; x/ 7! .�; �`.x// 2 Set.Œ`�; Œn�/� Y`, which makes
F .�/n W F .X/n ! F .Y /n into a natural transformation, since F .X/n

`

F .X/n.˛/
�������!

F .X/n
k

F .�/n
k

����! F .Y /n
k

equals F .X/n
`

F .�/n
`

����! F .Y /n
`

F .Y /n.˛/
�������! F .Y /n

k
, and it gives

an equality of the composed natural transformations F .X/n
F .X/.ˇ/
������!F .X/m

F .�/m
�����!

F .Y /m and F .X/n
F .�/n
����! F .Y /n

F .Y /.ˇ/
������! F .Y /m, which can be seen by applying

it to an object Œ`� 2�op.
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Finally, to prove the stated condition, note that

F .{NU/n` D
a

�2Set.Œ`�;Œn�/

{NU` D
a

�2Set.Œ`�;Œn�/

� a
i0;:::;i`2I

Ui0;:::;i`

�

D

a
�2Set.Œ`�;Œn�/

� a
i
.�.0//
0 ;:::;i

.�.`//

`
2I Œn�

U
i
.�.0//
0 ;:::;i

.�.`//

`

�

D

a
i
.j0/

0 ;:::;i
.j`/

`
2I Œn�

U
i
.j0/

0 ;:::;i
.j`/

`

D {NU Œn�
`
:

Furthermore, the action of ˛ 2�.Œk�; Œ`�/ comes from mapping Ui0;:::;i` ! Ui 00;:::;i
0
k

as stated in Definition 3.1, while the action of ˇ 2�.Œn�; Œm�/ comes from mapping
Ui.j0/0 ;:::;i

.j`/

`
! Ui.ˇ.j0//0 ;:::;i

.ˇ.j`//

`
as described in Definition 4.1. Thus, this yields the

stated result, ie that F .{NU/� D {NU Œ��.

Next, we define the simplicial manifold BG.

Definition 4.3 Let G be a complex Lie group. We define a simplicial complex
manifold BG 2Obj.CMan�op

/ (also denoted by Œ�=G�) by setting the n–simplices to
beBGnDG�n, ie we haveBG0Df�g,BG1DG,BG2DG�G,BG3DG�G�G; : : : .
The face maps dj WG�n!G�.n�1/ for 0 < j < n are

dj .g1; : : : ; gn/D .g1; : : : ; gj �gjC1; : : : ; gn/;

while d0.g1; : : : ; gn/ D .g2; : : : ; gn/ and dn.g1; : : : ; gn/ D .g1; : : : ; gn�1/. The de-
generacies sj WG�.n�1/!G�n are given by

sj .g1; : : : ; gn�1/D .g1; : : : ; gj ; 1; gjC1; : : : ; gn�1/

for 0� j � n� 1.

In the following, we will be mainly interested in the case G D GL.n;C/.

Since BG and {NU Œn� (for fixed n) are simplicial manifolds, we can consider the set
of morphisms between these simplicial manifolds, ie CMan�op

.{NU Œn�; BG/. Now,
varying n, this becomes a simplicial set CMan�op

.{NU Œ��; BG/ 2 Set�
op

by setting the
n–simplices to be CMan�op

.{NU Œn�; BG/. We now describe these n–simplices more
explicitly.
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Lemma 4.4 A simplicial manifold map CMan�op
.{NU Œn�; BG/ is precisely given

by nC 1 transition functions g.0/i;j W Ui;j ! G; : : : ; g
.n/
i;j W Ui;j ! G, each satisfying

the cocycle condition g.p/i;j jUi;j;k � g
.p/

j;k
jUi;j;k D g

.p/

i;k
jUi;j;k and g.p/i;i D 1 for any p D

0; : : : ; n, together with n maps f 1i W Ui !G; : : : ; f ni W Ui !G, each commuting with
the transition functions via f pi jUi;j �g

.p�1/
i;j D g

.p/
i;j �f

p
j jUi;j .

Proof A simplicial manifold map h 2 CMan�op
.{NU Œn�; BG/ is a map for each

k–simplex, ie .{NU Œn�/k! BGk , ora
i
.j0/

0 ;:::;i
.jk/

k
2I Œn�

h
i
.j0/

0 ;:::;i
.jk/

k

W

a
i
.j0/

0 ;:::;i
.jk/

k
2I Œn�

U
i
.j0/

0 ;:::;i
.jk/

k

!G�k :

For k D 0, this is vacuous; for k D 1, we get hi.j0/0 ;i
.j1/

1
W Ui.j0/0 ;i

.j1/

1
! G; for k D 2,

we get hi.j0/0 ;i
.j1/

1 ;i
.j2/

2
W Ui.j0/0 ;i

.j1/

1 ;i
.j2/

2
!G �G; etc. Since h respects the face maps,

we see that hi.j0/0 ;i
.j1/

1 ;i
.j2/

2
D .hi.j0/0 ;i

.j1/

1
jV ; hi

.j1/

1 ;i
.j2/

2
jV /, where V DUi.j0/0 ;i

.j1/

1 ;i
.j2/

2
,

as well as hi.j0/0 ;i
.j1/

1
jV � hi

.j1/

1 ;i
.j2/

2
jV D hi

.j0/

0 ;i
.j2/

2
jV . This shows, in particular, that

hi.j0/0 ;i
.j1/

1 ;i
.j2/

2
is determined by the hi.j0/0 ;i

.j1/

1
and a similar argument shows that in fact

all of the maps hi.j0/0 ;:::;i
.jk/

k
D .hi.j0/0 ;i

.j1/

1
jW ; hi

.j1/

1 ;i
.j2/

2
jW ; : : : ; hi

.jk�1/

k�1
;i
.jk/

k
jW / are

determined by the hi.j0/0 ;i
.j1/

1
restricted to W DUi.j0/0 ;:::;i

.jk/

k
. Moreover, hi.j0/0 ;i

.j1/

1
jV �

hi.j1/1 ;i
.j2/

2
jV D hi.j0/0 ;i

.j2/

2
jV is the only condition that is imposed on the functions

hi.j0/0 ;i
.j1/

1
besides hi.j/;i.j/ D 1 coming from the degeneracy �0 W Œ1�! Œ0�.

Now, for 0 � p � n, let g.p/i;j WD hi.p/;j .p/ W Ui;j ! G, and, for 1 � p � n, let

f
p
i WD hi.p/;i.p�1/ W Ui !G. Then, g.p/i;j jUi;j;k �g

.p/

j;k
jUi;j;k D g

.p/

i;k
jUi;j;k and

f
p
i jUi;j �g

.p�1/
i;j D hi.p/;i.p�1/ jUi;j � hi.p�1/;j .p�1/

D hi.p/j .p�1/ D hi.p/;j .p/ � hj .p/;j .p�1/ jUi;j D g
.p/
i;j �f

p
j jUi;j ;

so that these functions satisfy the stated conditions. On the other hand, all hi.j0/0 ;i
.j1/

1

can be written as products of the g.p/i;j and f pi and their inverses, eg for p < q we have
hi.p/;i.q/ D .f

pC1
i /�1 � .f

pC2
i /�1 � � � .f

q
i /
�1.

We want to define a simplicial set map from CMan�op
.{NU Œ��; BG/ to Tot.HVB.{NU//.

To this end, we will use the described n–simplices of Tot.HVB.{NU// from Proposition
3.15.

Definition 4.5 Let G D GL.n;C/. Then, we define a map

ˇ WCMan�op
.{NU Œ��; BG/! Tot.HVB.{NU//
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which assigns to the data of an n–simplex in the domain, g.0/i;j ; : : : ; g
.n/
i;j and f 1i ; : : : ; f

n
i

from Lemma 4.4, the data of an n–simplex in the range from Proposition 3.15 as
follows. Let E.0/i DUi �Cn!Ui ; : : : ; E

.n/
i DUi �Cn!Ui be the product bundles

with connections r.0/i D @; : : : ;r
.n/
i D @, where @D

Pn
`D1 dz` @=@z`. This makes the

g
.p/
i;j maps of bundles g.p/i;j WE

.p/
j jUi;j !E

.p/
i jUi;j as well as the f pi maps of bundles

f
p
i WE

.p�1/
i !E

.p/
i .

Then, we claim:

Proposition 4.6 ˇ WCMan�op
.{NU Œ��; BG/! Tot.HVB.{NU// is a map of simplicial

sets.

Proof We need to show that ˇ commutes with the application of a morphism � W Œn�!

Œm� of �.

In fact, a face map ıj W Œn� 1�! Œn� in � induces a simplicial set map

CMan�op
.{NU Œn�; BG/!CMan�op

.{NU Œn�1�; BG/

by forgetting the open sets Ui.j/ of the j th component in U Œn�, while degeneracies
�j W Œn�! Œn� 1� induce CMan�op

.{NU Œn�1�; BG/!CMan�op
.{NU Œn�; BG/, which

repeat the open sets Ui.j/ of the j th component in U Œn� (with the unit 1 for the transition
function).

On the other hand, for the totalization (see Definition D.1), a face map ıj W Œn�1�! Œn�

maps
Q
` Set�

op�
�`��n;HVB..{NU/`/

�
!
Q
` Set�

op�
�`��n�1;HVB..{NU/`/

�
by

precomposing by �n�1!�n, which under the interpretation from Proposition 3.15
forgets the j th bundles E.j /i ! Ui (since the E.p/i are the images for ` D 0, ie the
images under the map �0 ��n! HVB.{NU0/). Similarly, �j W Œn�! Œn� 1� gives a
map

Q
` Set�

op�
�` ��n�1;HVB..{NU/`/

�
!
Q
` Set�

op�
�` ��n;HVB..{NU/`/

�
by

precomposing with�n!�n�1, which, interpreted as in Proposition 3.15 (ie for `D 0),
repeats the j th bundle E.j /i ! Ui .

Since ˇ maps the pth component in the domain to the pth component in the range,
and morphisms of � act in the same way in the domain and range (forgetting the j th

component for ıj , and repeating the j th component for �j ), we see that ˇ is indeed a
map of simplicial sets.

Remark 4.7 The image of ˇ does not give all 0–simplices of Tot.HVB.{NU//, since,
by construction (Definition 4.5), we only get trivial product bundles with connection @
on Ui . In fact, if we define HVBtriv to consist only of trivial product bundles with
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fiber Cn and connection @, then HVBtriv is a subsimplicial presheaf of HVB such that
ˇ WCMan�op

.{NU Œ��; BG/! Tot.HVBtriv.{NU// is an isomorphism.

However, every holomorphic vector bundleE!M together with cover U and choice of
local trivializations over U can be represented as a 0–simplex of CMan�op

.{NU Œ��; BG/
via Lemma 4.4 for nD 0 (see Lemma 3.5 for 0–simplices of Tot.HVB.{NU//). There-
fore, diagram (4-1) will provide an alternative for calculating Ch of E with the choice
of @ for the local connections.

4.2 A combinatorial integration over the fiber

In order to define the left vertical map in (4-1), we need an “integration over the fiber”
for Čech cochains, ie a suitable map

R
�k W
{C �.U Œk�;A/! {C �.U ;A/, which we define

in this section.

We start with some notation on indices. For k � 0, we “split” the set f0; : : : ; qg into
kC 1 levels by choosing positions 0� s1 � s2 � � � � � sk � q, where a step of a level
occurs. More precisely, we make the following definition:

Definition 4.8 A k–step position of f0; : : : ; qg (or a k–step, or simply a step) is defined
to be a sequence of natural numbers 0� s1 � s2 � � � � � sk � q. The set of k–steps is

Sk.q/ WD f.s1; : : : ; sk/ 2Nk
0 W 0� s1 � s2 � � � � � sk � qg:

Now, let U D fUigi2I be a cover of a manifold M, and consider a sequence of indices
.i0; : : : ; iq/ 2 I

qC1. (In all of the cases of interest below, these will be the indices
applied to some element cDfci0;:::;iqg in some Čech complex.) Using a k–step position
0� s1 � s2 � � � � � sk � q, we can split .i0; : : : ; iq/ into kC 1 subsequences

.i0; : : : ; is1/; .is1 ; : : : ; is2/; : : : ; .isk ; : : : ; iq/:

Example 4.9 Let A be a presheaf of nonnegatively graded cochain complexes, such
as the sheaf of holomorphic functions A D ��hol. Let U D fUigi2I be a cover of a
manifold M. Recall the Čech complex {C �.U ;A/ from Definition 3.8. Given elements
c0; : : : ; ck 2 {C

�.U ;A/, their product can be defined as

(4-2) .c0 � � � ck/i0;:::;iq D
X

.s1;:::;sk/2Sk.q/

.c0/i0;:::;is1 � .c1/is1 ;:::;is2 � � � .ck/isk ;:::;iq :
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0
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Figure 3: A visual representation of the indices in I Œk� induced by a k–step
.s1; : : : ; sk/ with k D 5 and q D 15.

Example 4.10 Denote by U Œk� WD fUi.j/gi.j/2I Œk� the k–fold cover from Definition 4.1.
For each sequence of indices .i0; : : : ; iq/ of I and for each choice of k–step positions
.s1; : : : ; sk/ 2 Sk.q/, there is an induced sequence of indices .j0; : : : ; jqCk/ of I Œk�

given by (see Figure 3)

(4-3)

j0 D i
.0/
0 ; : : : ; js1 D i

.0/
s1
;

js1C1 D i
.1/
s1
; : : : ; js2C1 D i

.1/
s2
;

:::

jsmCm D i
.m/
sm
; : : : ; jsmC1Cm D i

.m/
smC1

;
:::

jskCk D i
.k/
sk
; : : : ; jqCk D i

.k/
q :

The set of all indices of I Œk� obtained by splitting .i0; : : : ; iq/ into kC1 levels described
in the above way is denoted by

(4-4) Jk.i0; : : : ; iq/ WD f.j0; : : : ; jqCk/ W (4-3) holds for some .s1; : : : ; sk/2Sk.q/g:

Note from (4-3) that, for .j0; : : : ; jqCk/2 Jk.i0; : : : ; iq/ and 0�m� k, the indices of
the mth level occur exactly at jsmCm; : : : ; jsmC1Cm, and this information can always
be recovered from .j0; : : : ; jqCk/. Thus, the steps to and from the mth level occur
exactly at jsmCm and jsmC1Cm. For our purposes, it is important to note that we
do allow the special case where sm D smC1, in which case there is only one index
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jsmCmD jsmC1Cm at themth level. FormD 1; : : : ; k�1, we denote by yJm
k
.i0; : : : ; iq/

those indices that come from Jk.i0; : : : ; iq/ with either jsmCm or jsmC1Cm removed.
That is, writing E|` WD .j0; : : : ; O|`; : : : ; jqCk/ for E| D .j0; : : : ; jqCk/,

(4-5)

yJ
m; 
k

.i0; : : : ; iq/ WD f E|smCm W E| 2 Jk.i0; : : : ; iq/g;

yJ
m;!
k

.i0; : : : ; iq/ WD f E|smC1Cm W E| 2 Jk.i0; : : : ; iq/ and sm ¤ smC1g;

yJmk .i0; : : : ; iq/ WD
yJ
m; 
k

.i0; : : : ; iq/t yJ
m;!
k

.i0; : : : ; iq/:

For mD 0 (resp. mD k), we only remove the index where the step occurs, but not j0
(resp. jq). More precisely, we define

yJ 0k .i0; : : : ; iq/ WD
yJ
0;!
k

.i0; : : : ; iq/ WD f E|s1 W E| 2 Jk.i0; : : : ; iq/g;(4-6)

yJ kk .i0; : : : ; iq/ WD
yJ
k; 
k

.i0; : : : ; iq/ WD f E|skCk W E| 2 Jk.i0; : : : ; iq/g:(4-7)

Lemma 4.11 Fix a set of indices i0; : : : ; iq 2 I, and a k � 0. Then , the map

f WJk.i0; : : : ; iq/�f0; : : : ; qCkg

!

� G
0�r�q

Jk.i0; : : : ; O{r ; : : : ; iq/

�
t

� G
0�m�k

yJmk .i0; : : : ; iq/

�
;

..j0; : : : ; jqCk/; `/ 7! .j0; : : : ; O|`; : : : ; jqCk/;

which removes the `th index j`, is a bijection.

Proof First, note that the map f is well defined. If the removed index j` is either
the beginning jsmCm or the end jsmC1Cm index of a level (say the mth level), then
f ..j0; : : : ; jqCk/; `/ D .j0; : : : ; O|`; : : : ; jqCk/ lands in yJm

k
.i0; : : : ; iq/. Otherwise,

f removes one of the original indices, say ir , in which case f ..j0; : : : ; jq/; `/ lands
in Jk.i0; : : : ; O{r ; : : : ; iq/. We can construct the inverse f �1 by observing that for
each 0 � r � q and .j 00; : : : ; j

0
qCk�1

/ 2 Jk.i0; : : : ; O{r ; : : : ; jq/ there exists a unique
.j0; : : : ; jqCk/ 2 Jk.i0; : : : ; iq/ and 0� `� qCk such that .j0; : : : ; O|`; : : : ; jqCk/D
.j 00; : : : ; j

0
qCk�1

/. Similarly, for each 0�m�k and .j 00; : : : ; j
0
qCk�1

/2 yJm
k
.i0; : : : ; jq/

there exists a unique .j0; : : : ; jqCk/ 2 Jk.i0; : : : ; iq/ and 0 � ` � q C k such that
.j0; : : : ; O|`; : : : ; jqCk/D .j

0
0; : : : ; j

0
qCk�1

/ with j` on the mth level.

We next define the integration over the fiber map.

Definition 4.12 Let U D fUigi2I be a cover of a complex manifold M, and let U Œk� be
the k–fold cover coming from U from Definition 4.1. For an element � 2 {C �.U Œk�;A/
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in the Čech complex, we define integration over the fiber map
R
�k W
{C �.U Œk�;A/!

{C �.U ;A/, which maps the components
R
�k W
{C qCk.U Œk�;Ar/! {C q.U ;Ar/, by setting

(4-8)
�Z

�k
�

�
i0;:::;iq

WD

X
.j0;:::;jqCk/2Jk.i0;:::;iq/

.�1/s1C���Csk ��j0;:::;jqCk :

Note that the sign is well defined, since each .j0; : : : ; jqCk/ 2 Jk.i0; : : : ; iq/ uniquely
determines a k–step .s1; : : : ; sk/.

Let k > 0 and let j 2 f0; : : : ; kg. For the j th face map ıj W Œk � 1�! Œk�, there is a
map of covers U Œ��.ıj / 2 CovM .U Œk�1�;U Œk�/ given by ignoring the open sets Ui.j/
of the j th component of the cover U Œk�. In particular, by Definition 3.8, there is an
induced map zıj W {C �.U Œk�;A/! {C �.U Œk�1�;A/, which forgets the j th open sets Ui.j/ ,
ie zıj .�/ 2 {C �.U Œk�1�;A/ is the collection determined by � 2 {C �.U Œk�;A/, which is
only defined on indices not including any i .j / for i 2 I.

With this notation, we have the following integration over the fiber formulas:

Proposition 4.13 The integration over the fiber commutes with the internal differential
dA of A, ie

(4-9) dA

�Z
�k
�

�
D

Z
�k
dA.�/:

For the Čech differential ı, we get the identity

(4-10)
Z
�k
ı.�/D .�1/k � ı

�Z
�k
�

�
C

kX
jD0

.�1/j
Z
�k�1

zıj .�/:

Proof For (4-9), note that both sides of (4-8) are on the open set Ui0;:::;iq , so that the
same differential dA of A.Ui0;:::;iq / is applied inside and outside the sum of (4-8).

Next, we prove (4-10). For fixed indices i0; : : : ; iq 2 I, we first calculate ı
�R
�k �

�
on

Ui0;:::;iq to be�
ı

�Z
�k
�

��
i0;:::;iq

D

X
0�r�q

.�1/r �

�Z
�k
�

�
i0;:::;O{r ;:::;iq

D

X
0�r�q

X
.j 00;:::;j

0
qCk�1

/2Jk.i0;:::;O{r ;:::;iq/

.�1/rCs
0
1C���Cs

0
k ��j 00;:::;j

0
qCk�1

:
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Next, we calculate
R
�k ı.�/ on Ui0;:::;iq to be�Z

�k
ı.�/

�
i0;:::;iq

D

X
.j0;:::;jqCk/2Jk.i0;:::;iq/

.�1/s1C���Csk
X

0�`�qCk

.�1/`�j0;:::; O|`;:::;jqCk

D

X
0�r�q

X
.j 00;:::;j

0
qCk�1

/2Jk.i0;:::;O{r ;:::;iq/

.�1/rCkCs
0
1C���Cs

0
k ��j 00;:::;j

0
qCk�1

C

X
0�m�k

X
.j 00;:::;j

0
qCk�1

/2 yJm
k
.i0;:::;iq/

.�1/rCmCs
0
1C���Cs

0
k ��j 00;:::;j

0
qCk�1

;

where we have used Lemma 4.11 in the last equality. (To see the sign in the first line of
the right-hand side, note that if the removed index j`D i

.�/
r occurs at ir at the �th level,

then s1D s01; : : : ; s� D s0� while s�C1D s0�C1�1; : : : ; sk D s0
k
�1, and `D rC�; thus,

`C s1C� � �C sk D .rC�/C s01C� � �C s0
k
� .k��/� rCkC s01C� � �C s0

k
.mod 2/.

For the sign in the second and third lines of the right-hand side, assume again that
j` D i

.�/
r , and note that in this case the s1 D s01; : : : ; sk D s0

k
do not change, while

`D r Cm is the number of indices before j`.)

It therefore remains to show that
Pk
jD0

R
ıj .�k/

� on Ui0;:::;iq can be written as

(4-11)
� kX
jD0

.�1/j
Z
�k�1

zıj .�/

�
i0;:::;iq

D

X
0�m�k

X
.j 00;:::;j

0
qCk�1

/2 yJm
k
.i0;:::;iq/

.�1/rCmCs
0
1C���Cs

0
k ��j 00;:::;j

0
qCk

:

Proof of (4-11) We evaluate the right-hand side of (4-11). First, we claim that the
right-hand side of (4-11) vanishes except for the terms where either

(1) s1 D 0 in yJ 0
k
.i0; : : : ; iq/, or

(2) sm D smC1 in yJm
k
.i0; : : : ; iq/ for mD 1; : : : ; k� 1, or

(3) sk D q in yJ k
k
.i0; : : : ; iq/.

Since we fixed .i0; : : : ; iq/, we will simplify notation by writing yJm
k
D yJm

k
.i0; : : : ; jq/.

To see (1), if s1 > 0, then the indices .j0; : : : ; O|s1 ; : : : ; jqCk/ 2 yJ
0;!
k

coincide with
the indices .j0; : : : ; O|s01C1; : : : ; jqCk/ 2

yJ
1; 
k

for the new steps .s01; s
0
2; : : : ; s

0
k
/ D
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.s1� 1; s2; : : : ; sk/, since

.js1�1; O|s1 ; js1C1/D .i
.0/
s1�1

;
b
i .0/s1

; i .1/s1
/D .i

.0/
s1�1

;
1
i
.1/
s1�1

; i .1/s1
/

D .i
.0/

s01
;
b
i
.1/

s01
; i
.1/

s01C1
/D .js01

; O|s01C1
; js01C2

/:

Thus, the same term appears twice, once from yJ 0
k

with .s1; : : : ; sk/, and once from yJ 1
k

with .s01; : : : ; s
0
k
/, and cancels as they have opposite signs (as the “r Cm” part of the

sign is the same for both, but s01 D s1� 1).

Next, for (2), if sm < smC1, either the indices .j0; : : : ; O|smCm; : : : ; jqCk/ 2 yJ
m; 
k

or the indices .j0; : : : ; O|smC1Cm; : : : ; jqCk/ 2 yJ
m;!
k

appear in yJm
k

. In the first case,
.j0; : : : ; O|smCm; : : : ; jqCk/ coincides with

.j0; : : : ; O|s0
.m�1/C1

C.m�1/; : : : ; jqCk/ 2 yJ
m�1;!
k

for the steps .s01; : : : ; s
0
m; : : : ; s

0
k
/D .s1; : : : ; smC1; : : : ; sk/, since the indices coincide

after removal of the index in question, ie

.jsmCm�1; O|smCm; jsmCmC1/D .i
.m�1/
sm

;
b
i .m/sm

; i
.m/
smC1

/

D .i .m�1/sm
;
1
i
.m�1/
smC1

; i
.m/
smC1

/

D .i
.m�1/

s0m�1
;
1
i
.m�1/

s0m
; i
.m/

s0m
/

D .js0mCm�2; O|s0mCm�1; js0mCm/:

The two corresponding terms have opposite signs (since s0mD smC1), and thus cancel.
In the second case, .j0; : : : ; O|smC1Cm; : : : ; jqCk/ coincides with

.j0; : : : ; O|s0
.mC1/

C.mC1/; : : : ; jqCk/ 2 yJ
mC1; 
k

for .s01; : : : ; s
0
mC1; : : : ; s

0
k
/D .s1; : : : ; smC1�1; : : : ; sk/, since we again have coincid-

ing indices

.jsmC1Cm�1; O|smC1Cm; jsmC1CmC1/D .i
.m/
smC1�1

;
1
i .m/smC1

; i .mC1/smC1
/

D .i
.m/
smC1�1

;
2
i
.mC1/
smC1�1

; i .mC1/smC1
/

D .i
.m/

s0
mC1

;
2
i
.mC1/

s0
mC1

; i
.mC1/

s0
mC1
C1
/

D .js0
mC1
Cm; O|s0

mC1
CmC1; js0

mC1
CmC2/:

Again, these have opposite signs (since s0mC1 D smC1� 1) and thus cancel.
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Finally, for (3), if sk < q, the indices .j0; : : : ; O|skCk; : : : ; jqCk/ 2 yJ
k; 
k

coincide with
the indices .j0; : : : ; O|s0

.k�1/C1
C.k�1/; : : : ; jqCk/ 2 yJ

k�1;!
k

for .s01; : : : ; s
0
k�1

; s0
k
/ D

.s1; : : : ; sk�1; skC 1/, since removing the appropriate index yields

.jskCk�1; O|skCk; jskCkC1/D .i
.k�1/
sk

;
b
i .k/sk

; i
.k/
skC1

/D .i .k�1/sk
;
1
i
.k�1/
skC1

; i
.k/
skC1

/

D .i
.k�1/

s0
k
�1

;
1
i
.k�1/

s0
k

; i
.k/

s0
k

/D .js0
k
Ck�2; O|s0

k
Ck�1; js0

k
Ck/:

As the corresponding terms have opposite signs (due to s0
k
D skC 1), they cancel.

Thus, the only remaining terms are as follows. For (1), there are terms in yJ 0
k

with
s1 D 0 and j0 removed, ie we only have steps that skip the 0th level altogether. For (2),
we have terms in yJm

k
with sm D smC1 and jsmCm removed, ie we only have steps

that skip the mth level altogether. For (3), we have terms in yJ k
k

with sk D q and jqCk
removed, ie we have steps that skip the kth level altogether. We thus sum over steps
that are in Jk�1.i0; : : : ; iq/, where we skip over the mth level for mD 0; : : : ; k. Note
conversely, that for any step in Jk�1.i0; : : : ; iq/ and any m D 0; : : : ; k, we can add
another level, which will be the mth level, so that the steps come from yJm

k
via removing

the mth level. This shows thatX
0�m�k

X
.j 00;:::;j

0
qCk�1

/2 yJm
k
.i0;:::;iq/

.�1/rCmCs
0
1C���Cs

0
k ��j 00;:::;j

0
qCk�1

D

X
0�m�k

.�1/m
X

.j 00;:::;j
0
qCk�1

/2Jk�1.i0;:::;iq/

.�1/s
0
1C���C

bs0mC���Cs0k .zım.�//j 00;:::;j 0qCk�1
D

� kX
mD0

.�1/m
Z
�k�1

zım.�/

�
i0;:::;iq

;

where we have used that s0m D r in the first equality. This proves (4-11).

This completes the proof of Proposition 4.13.

4.3 Computing Tot.Ch.{NU// on product bundles

We will define the left vertical map of (4-1) as a composition of two maps  and �,

(4-12)

CMan�op
.{NU Œ��; BG/

��

. {C �.U Œ��; ��hol//
even
closed

�
��

DK. {C �.U ; ��hol/Œu�
��0/
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Here, . {C �.U Œ��; ��hol//
even
closed denotes the simplicial set whose k–simplices are ı–closed

elements of {C �.U Œk�; ��hol/ which are of even total degree.

Definition 4.14 Assume that G DGL.n;C/. For a cover V D fVj gj2J 2 CovM of M,
we define the map V W CMan�op

.{NV; BG/ V�! . {C �.V; ��hol//
even
closed as follows. By

Lemma 4.4 (for U D V and n D 0), an element h 2 CMan�op
.{NV; BG/ is given

by transition functions gi;j W Vi;j ! G � Cn;n. Then, define V.h/ on the open set
Vj0;:::;jp to be

(4-13) .V.h//j0;:::;jp WD
1

pŠ
tr.g�1jp;j0 � @.gjp;jp�1/ � � � @.gj2;j1/ � @.gj1;j0//:

Note that .V.h//j0;:::;jp 2�
p
hol.Vj0;:::;jp / is of Čech degree p and form degree p, and

thus of even total degree 2p in {C �.V; ��hol/. The collection f.V.h//j0;:::;jpgj0;:::;jp2J
is ı–closed in {C �.V; ��hol/, since�
ı.V.h//

�
j0;:::;jp

D
1

.p� 1/Š
tr.g�1jp;j1@.gjp;jp�1/ � � � @.gj2;j1//

C

p�1X
`D1

.�1/` �
1

.p� 1/Š
tr.g�1jp;j0@.gjp;jp�1/ � � � @.gj`C1;j`�1/ � � � @.gj1;j0//

C .�1/p �
1

.p� 1/Š
tr.g�1jp�1;j0@.gjp�1;jp�2/ � � � @.gj1;j0//

D 0

vanishes, just as in the proof of Theorem 2.5 (using the Leibniz property of @ and the
cyclicity of the trace).

Now, the simplicial set map  WCMan�op
.{NU Œ��; BG/! . {C �.U Œ��; ��hol//

even
closed from

(4-12) in simplicial degree n is defined as n WD U Œn� W CMan�op
.{NU Œn�; BG/ !

. {C �.U Œn�; ��hol//
even
closed. Note that  respects morphisms in �, since the simplicial

structure in the domain and range of  comes from the cosimplicial cover U Œ�� W�!
CovM .

Next, we define the map � from (4-12).

Definition 4.15 The map � W . {C �.U Œ��; ��hol//
even
closed! DK. {C �.U ; ��hol/Œu�

��0/ assigns
to an n–simplex c 2 . {C �.U Œn�; ��hol//

even
closed an n–simplex in DK. {C �.U ; ��hol/Œu�

��0/nD

Ch�.N.Z�n/; {C �.U ; ��hol/Œu�
��0/, ie a chain map from the chains on the standard n–

simplex to {C �.U ; ��hol/Œu�
��0. If ei0;:::;i` with 0 � i0 < � � � < i` � n is a generator
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of N.Z�n/�` as in Example B.2, then denote by � W Œ`�! Œn� the map �.j / WD ij ,
which induces a map z� W . {C �.U Œn�; ��hol//

even
closed ! . {C �.U Œ`�; ��hol//

even
closed. When c is

concentrated in homogeneous total degree jcj, we define �.c/ by

(4-14) �.c/ WN.Z�n/! {C �.U ; ��hol/Œu�
��0; ei0;:::;i` 7! .�1/`.`�1/=2ujcj=2

Z
�`

z�.c/:

Note that jz�.c/j D jcj since the degree of c is jcj, so that
ˇ̌R
�`
z�.c/

ˇ̌
D jcj � `, andˇ̌

ujcj=2
R
�`
z�.c/

ˇ̌
D�`.

Proposition 4.16 The map � W . {C �.U Œ��; ��hol//
even
closed! DK. {C �.U ; ��hol/Œu�

��0/ from
Definition 4.15 is a well-defined map of simplicial sets.

Proof First, we show that �.c/ as defined in (4-14) is indeed a chain map:

ı.�.c/.ei0;:::;i`//

D.�1/`.`�1/=2 �ujcj=2 �ı

�Z
�`

z�.c/

�

D.�1/`.`�1/=2 �ujcj=2 �.�1/`
�Z
�`
ı.z�.c//�

X̀
jD0

.�1/j
Z
�`�1

zıj .z�.c//

�
(by (4-10))

D

X̀
jD0

.�1/j �.�1/.`�1/.`�2/=2 �ujcj=2
Z
�`�1

zıj .z�.c//

D

X̀
jD0

.�1/j � �.c/.ei0;:::;O{j ;:::;i`/

D �.c/.d.ei0;:::;i`//;

where we used that ı.z�.c//D z�.ı.c//D 0. To see that � is a map of simplicial sets,
let � W Œn�! Œm�, with z� W . {C �.U Œm�; ��hol//

even
closed! . {C �.U Œn�; ��hol//

even
closed the induced

map. Then, for c 2 . {C �.U Œm�; ��hol//
even
closed and ei0;:::;i` a generator of N.Z�n/�` and

� W Œ`�! Œn� as before, we get

�.z�.c//.ei0;:::;i`/D .�1/
`.`�1/=2

�ujcj=2
Z
�`

z�.z�.c//

D .�1/`.`�1/=2 �ujcj=2
Z
�`

A.� ı�/.c/
D �.c/.e�.�.0//;:::;�.�.`///

D .�.c//.�].ei0;:::;i`//;
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where �] W N.Z�n/ ! N.Z�m/ is the map induced by postcomposition with � in
�n D�. � ; Œn�/. Thus, �.z�.c//D .precomposition with �]/ ı .�.c// as maps

. {C �.U Œm�; ��hol//
even
closed! Ch�.N.Z�n/; {C �.U ; ��hol/Œu�

��0/;

which shows that � is a map of simplicial sets.

We can now state the main theorem of this section.

Theorem 4.17 The following is a commutative diagram of simplicial sets:

CMan�op
.{NU Œ��; BG/

ˇ
//



��

Tot.HVB.{NU//

Tot.Ch.{NU//

��

. {C �.U Œ��; ��hol//
even
closed

�
��

DK. {C �.U ; ��hol/Œu�
��0/ Tot.�.{NU//oo

Proof We calculate �..h// for an n–simplex h2CMan�op
.{NU Œn�; BG/. For indices

i
.j0/
0 ; : : : ; i

.jr /
r 2 I Œn�, by Definition 4.14,

.n.h//
i
.j0/

0 ;:::;i
.jr /
r

D
1

rŠ
tr.h�1

i
.jr /
r ;i

.j0/

0

�@.h
i
.jr /
r ;i

.jr�1/

r�1

/ � � � @.h
i
.j2/

2 ;i
.j1/

1

/�@.h
i
.j1/

1 ;i
.j0/

0

//;

which is of total degree 2r (ie Čech degree r and form degree r). By Definition 4.15,
this becomes the map

�.n.h// WN.Z�
n/! {C �.U ; ��hol/Œu�

��0;

ej0;:::;jk 7! .�1/k.k�1/=2 �udegree=2
Z
�k

z�.n.h//;

where � W Œk�! Œn�, �.p/Djp , is as in Definition 4.15. Since z� W. {C �.U Œn�; ��hol//
even
closed!

. {C �.U Œk�; ��hol//
even
closed forgets all but the levels j0; : : : ; jk , this in turn becomes, in

component i0; : : : ; iq 2 I,�
�.n.h//.ej0;:::;jk /

�
i0;:::;iq

D .�1/k.k�1/=2 �u2.qCk/=2

�

X
.a
.b0/

0 ;:::;a
.bqCk/

qCk
/2Jk.i0;:::;iq/

.�1/s1C���Csk � .n.h//
a
.�.b0//

0 ;:::;a
.�.bqCk//

qCk
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D .�1/k.k�1/=2 �uqCk

�

X
.�1/s1C���Csk �

1

.qC k/Š

� tr
�
h�1
a
.�.bqCk//

qCk
;a
.�.b0//

0

� @.h
a
.�.bqCk//

qCk
;a
.�.bqCk�1//

qCk�1

/ � � � @.h
a
.�.b1//

1 ;a
.�.b0//

0

/
�
;

where the second sum is over the same indices as the first. Note that, by the definition
of Jk.i0; : : : ; iq/, any adjacent indices a.bq/q and a.bqC1/qC1 appearing in the above sum
are of the form either bq D bqC1 or aq D aqC1. Thus, the only ha.�.bqC1//

qC1
;a
.�.bq//
q

that
appear above are (in the notation of Proposition 3.15) either g.bq/aq ;aqC1

or f .bqC1;bq/aq
D

f
bqC1
aq ı � � � ıf

bqC1
aq WE

.bq/
aq !E

.bqC1/
aq .

Next, the outcome of going around the diagram from the theorem in the other way is
described in Proposition 3.16, which we see coincides with the above, since the ˇ map
assigns the connections r D @ to all bundles.

Example 4.18 Consider the case of a 2–simplex h 2CMan�op
.{NU Œ2�; BG/, where

we assume again that G D GL.n;C/. Then �..h// is a mapping

N.Z�2/! {C �.U ; ��hol/Œu�
��0; ej0;:::;jk 7! c.j0;:::;jk/

given by

c.0/

c.1/

c.2/

c.0;1/
c.1;2/

c.0;2/

c.0;1;2/

where, for j 2 f0; 1; 2g,

.c.j //i0;:::;iq D
1

qŠ
�uq trŒ.g.j /iq ;i0/

�1@.g
.j /
iq ;iq�1

/ � � � @.g
.j /
i1;i0

/�;

and, for .j 0; j 00/ 2 f.0; 1/; .0; 2/; .1; 2/g,

.c.j
0;j 00//i0;:::;iq

D
1

.qC 1/Š
�uqC1

�

X
0�s�q

.�1/s tr
�
.g
.j 00/
iq ;iq�1

� � �g
.j 00/
isC1;is

f
.j 00;j 0/
is

g
.j 0/
is;is�1

� � �g
.j 0/
i1;i0

/�1

� @.g
.j 00/
iq ;iq�1

/ � � � @.g
.j 00/
isC1;is

/@.f
.j 00;j 0/
is

/@.g
.j 0/
is;is�1

/ � � � @.g
.j 0/
i1;i0

/
�
;
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.c.0;1;2//i0;:::;iq

D�
1

.qC 2/Š
�uqC2

�

X
0�s1�s2�q

.�1/s1Cs2 tr
�
.g
.2/
iq ;iq�1

� � � f
.2;1/
is2

� � � f
.1;0/
is1

� � �g
.0/
i1;i0

/�1

� @.g
.2/
iq ;iq�1

/ � � � @.f
.2;1/
is2

/ � � � @.f
.1;0/
is1

/ � � � @.g
.0/
i1;i0

/
�
:

In the lowest case, this is interpreted as .c.j //i0 D u
0 tr.idCn/D dim.Cn/D n.

In the remainder of this section, we want to give an alternative description of  from
(4-12) via the universal Chern form on BG.

Definition 4.19 Assume that G DGL.n;C/. Applying holomorphic forms to the sim-
plicial manifold BG from Definition 4.3, we obtain a cosimplicial nonnegatively graded
cochain complex ��hol.BG/ W �! ChC with ��hol.BG/k D �

�

hol.G
�k/. There is a

closed and even element Ch in the totalization, Ch2 tot.��hol.BG//D
Q
`�

`
hol.G

�`/Œ`�,
given by the sequence of forms

(4-15) Ch WD
�
n; tr.g@.g�1//; 1

2Š
tr.g1g2@.g�12 /@.g�11 //; : : :

�
:

If h 2CMan�op
.{NV; BG/, there is an induced map ��hol.h/ W�

�

hol.BG/!��hol.
{NV/,

and thus a map on the total complex, tot.��hol.h// W tot.��hol.BG//! tot.��hol.
{NV//Š

{C �.V; ��hol/ by (3-12). Then, we claim the following:

Proposition 4.20 The map  WCMan�op
.{NU Œ��; BG/! . {C �.U Œ��; ��hol//

even
closed from

Definition 4.14 can be expressed via the Chern character Ch by

n.h/D tot.��hol.h//.Ch/ 2 . {C �.U Œn�; ��hol//
even
closed:

Proof Just as in Definition 4.14, let h 2CMan�op
.{NV; BG/ be given by transition

functions gVi;j WVi;j!G�Cn;n from Lemma 4.4. As shown in the proof of Lemma 4.4,
these gVi;j induces all higher maps Vj0;:::;j` !G�` via

Vj0;:::;j` 3 x 7! .gVj0;j1.x/; : : : ; g
V
j`�1;j`

.x//:

Thus, the `–form 1
`Š

tr.g1 � � �g` � @.g�1` / � � � @.g�11 // 2�`hol.G
�`/, which is the ` com-

ponent of Ch, gets pulled back by h to

1

`Š
tr.gVj0;j1 � � �g

V
j`�1;j`

� @.gVj`;j`�1/ � � � @.g
V
j1;j0

// 2�`hol.Vi0;:::;i`/:
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Now, since the gVi;j satisfy the cocycle condition gVj0;j1 � � �g
V
j`�1;j`

D gVj0;j` by Lemma
4.4, this is precisely the expression obtained for the definition of V.h/ in (4-13).

Applying this to the covers V D U Œn� for all n yields the claim of the proposition.

5 Holomorphic vector bundles with group action

We give an application of the previous sections by considering a complex manifold
with group action. We first generalize Definition 4.3.

Definition 5.1 Let M be a complex manifold, and G be a (possibly discrete) complex
Lie group together with a right action on M. We define a simplicial complex manifold
ŒM=G� 2Obj.CMan�op

/ by setting the n–simplices to be ŒM=G�n DM �G�n:

M M �G M �G �G � � � :
si

dj

The face maps dj WM �G�n!M �G�.n�1/ for 0 < j < n are

dj .x; g1; : : : ; gn/D .x; g0; : : : ; gj �gjC1; : : : ; gn; /;

while dn.x;g1; : : : ;gn/D .x;g1; : : : ;gn�1/ and d0.x;g1; : : : ;gn/D .x�g1;g2; : : : ;gn/.
The degeneracies sj WM �G�.n�1/!M �G�n are given by sj .x; g1; : : : ; gn�1/D
.x; g1; : : : ; gj ; 1; gjC1; : : : ; gn�1/ for 0� j � n� 1.

By Section 2,

HVB.ŒM=G�/ W� ŒM=G�
���!CManop HVB

��! Set�
op

l ;

�.ŒM=G�/ W�
ŒM=G�
���!CManop �

�! Set�
op

are cosimplicial simplicial sets, and Ch.ŒM=G�/ W HVB.ŒM=G�/! �.ŒM=G�/ is a
map of cosimplicial simplicial sets. By applying the totalization, we obtain an induced
map as follows.

Note that the above gives rise to a map of simplicial sets

(5-1) Tot
�
Ch.ŒM=G�/

�
W Tot

�
HVB.ŒM=G�/

�
! Tot

�
�.ŒM=G�/

�
:

In order to interpret the above map, we briefly review the notion of a G–equivariant
bundle.
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Definition 5.2 Given aG–manifold,M, with action given by � WM �G!M, a bundle
E �
�!M is aG–equivariant bundle overM if there is aG–action on E, ' WE�G!E,

such that the diagram

E �G E

M �G M

'

��id �

�

commutes.

With this, we can now describe Tot
�
HVB.ŒM=G�/

�
more explicitly.

Proposition 5.3 The simplices of Tot
�
HVB.ŒM=G�/

�
have the following interpreta-

tion:

(1) A 0–cell in Tot
�
HVB.ŒM=G�/

�
consists precisely of a G–equivariant bundle , E,

with connection , r, where r is not required to satisfy any condition with respect
to the G–action.

(2) An n–cell in Tot
�
HVB.ŒM=G�/

�
consists precisely of a sequence of G–equivari-

ant bundles , E.0/; : : : ; E.n/, and G–equivariant maps , ˛0; : : : ; ˛n�1,

E.0/
˛0
�!E.1/

˛1
�! � � �

˛n�1
��!E.n/;

where each bundle E.i/ ! M has a connection ri , which is not required to
satisfy any conditions with respect to the G–action or the bundle maps.

Proof First we prove part (1). Similar to the proof of Proposition 3.4, a 0–simplex, !,
in Tot

�
HVB.ŒM=G�/

�
is given by a sequence of simplicial set maps, �` ��0 !`

�!

HVB.ŒM=G�/ for `D 0; 1; 2; : : : . Note then, for `D 0, we have the image under !0
of a vertex which is given by a vector bundle, E00 WDE, with connection, r, over M.
Over M �G, !1 gives a pair of bundles,

E10 E11

M �G

�

satisfying E11 D d
�
0 .E/ and E10 D d

�
1 .E/DE�G with appropriately induced pullback

connections. Over the point .m; g/ 2M �G, this map acts on the fibers as

�.m;g/ W ..E
1
0 /.m;g/ DEm/ 7! ..E11 /.m;g/ DEm�g/:
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From this data, we can define a map of manifolds for each g 2G, 'g WE!E, defined
by 'g j.E�G/.m;g/ WD �.m;g/ W Em 7! Em�g . Furthermore, for each g 2 G, this map
commutes with � , ie � ı'g DRg ı� , where Rg D �. � ; g/ is the right multiplication
of G on M. Note, however, that we still have to check that this a G–equivariant map,
ie that 'g 0 ı'g D 'g �g 0 . This relation requires higher simplicial data. Our sequence of
simplicial set maps, !, also provides a 2–simplex given by !2:

E21 E20

E22

M �G �G

�1;0

�2;1 �2;0

Here, by the definition of totalization, E20 D d
�
1 .d

�
1E/D d

�
2 .d

�
1E/, E

2
1 D d

�
0 .d

�
1E/D

d�2 .d
�
0E/, and E22 D d�1 .d

�
0E/ D d�0 .d

�
0E/. Similarly, note that �1;0 D d�2 .�/,

�2;0 D d
�
1 .�/ and �2;1 D d�0 .�/. Since the above diagram commutes, the proof is

concluded after unpacking the equation given by the above commutative triangle,

�2;1 ı�1;0 D �2;0:

Since E20 D d�1 .E �G/ D .d1 ı d1/
�.E/, the composition of maps governing the

pullback is given by d1 ı d1 W .m; g; g0/ 7! m. Similarly, E21 D .d0 ı d2/
�.E/ is

given by d0 ı d2 W .m; g; g0/ 7! .m � g/ and E22 D .d0 ı d0/
�.E/ is given by d0 ı

d0 W .m; g; g
0/ 7! .m �g �g0/. Thus, the maps act accordingly on the fibers:

.�1;0/.m;g;g 0/ WEm 7!Em�g ;

.�2;1/.m;g;g 0/ WEm�g 7!Em�g �g 0 ;

.�2;0/.m;g;g 0/ WEm 7!Em�g �g 0 :

Therefore, the above commutative diagram shows that '0g ı'gD'g �g 0 , which concludes
the proof that E is a G–equivariant bundle.

Now we turn to part (2). Similar to the proof of Proposition 3.15, an n–simplex is given
by a sequence of simplicial set maps �` ��n !`

�!HVB.ŒM=G�`/ for `D 0; 1; 2; : : :
satisfying certain conditions. The 0–simplices of this n–simplex are precisely the data
for a G–equivariant bundle, .E.i/; '.i// for i D 0; : : : ; n, as described in part (1). Over
the base manifold M, we can write the image of the maximal nondegenerate n–simplex
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of �0 ��n, under the map !0, in HVB.ŒM=G�0/ as a sequence of G–equivariant
bundles,

E.0/ E.1/ � � � E.n/

M

˛0 ˛1 ˛n�1

such that each ˛i W E.i/! E.iC1/, as a morphism in HVB.M/ maps fibers .E.i//m
to .E.iC1//m. To see that these maps ˛i respect the G–actions '.i/, we note that !1
offers us the commutative diagram

d�0 .E
.0// d�0 .E

.1// � � � d�0 .E
.n//

d�1 .E
.0// d�1 .E

.1// � � � d�1 .E
.n//

M �G

�.0/

d�0 .˛0/

�.1/

d�0 .˛1/ d�0 .˛n�1/

�.n/

d�1 .˛0/ d�1 .˛1/ d�1 .˛n�1/

which on the fiber over a point .m; g/ 2M �G induces a commutative diagram of
maps of fibers,

.E.i//m .E.iC1//m

.E.i//m�g .E.iC1//m�g

.'.i//g

˛i

.'.iC1//g

˛i

and thus each ˛i is a G–equivariant map of G–equivariant bundles. Since there are no
higher relations, this concludes the proof.

For a G–equivariant bundle E �
�!M, where ' W E �G ! E denotes the lift of the

G–action � WM �G!M on M on the base, we note that there is an induced map
of bundles, � WE �G! ��.E/ over M �G, which we may interpret as a section of
Hom.E�G; ��.E// overM�G, ie as a 0–form � 2�0hol

�
M�G;Hom.E�G; ��.E//

�
.

Now assume, furthermore, that E!M is equipped with a holomorphic connection r.
Pulling back r under the projection pr1 W M �G ! M gives a connection rE�G

on E �G, while pulling back r under � W M �G ! M gives an induced connec-
tion r�

�.E/ on ��.E/, and thus we get an induced connection rHom.E�G;��.E// of
Hom.E �G; ��.E//, which we simply denote by r again. Thus, we may apply r
to �, which is given by pre- and postcomposing with rE�G and r�

�.E/, respectively:

r.�/ WD r�
�.E/
ı� �� ırE�G 2�1hol

�
M �G;Hom.E �G; ��.E//

�
:
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Definition 5.4 A connection r on a G–equivariant bundle .E;M; �; �; '/ is G–
invariant if r.�/D 0.

Note that this definition is stronger than demanding g�r D r for all g 2 G, which
means that the pullback of r.�/ viaM�fgg!M�G is zero for each g2G. However,
the two notions are in agreement when G is discrete.

The next corollary states that we can use the map Tot
�
Ch.ŒM=G�/

�
from (5-1) as a

measure for the connection r to be G–invariant.

Corollary 5.5 Let .E;M; �; �; '/ be a G–equivariant bundle with connection r,
which , by Proposition 5.3(1), we may interpret as a 0–simplex in Tot

�
HVB.ŒM=G�/

�
0
.

If the connection r is G–invariant , then Tot
�
Ch.ŒM=G�/

�
applied to this is zero in all

positive holomorphic form degrees.

Proof Since r.�/ D 0, it follows that tr.��1r.�// � u D 0, which is the form-
degree 1 part of Tot

�
Ch.ŒM=G�/

�
0
. Similarly, the higher form degrees vanish; for

example, in the notation of the proof of Proposition 5.3(1), the form-degree 2 part is
1
2

tr.��12;0r2;1.�2;1/r1;0.�1;0// �u
2 D

1
2

tr
�
��12;0d

�
0 .r.�//d

�
2 .r.�//

�
�u2 D 0.

Therefore, Tot
�
Ch.ŒM=G�/

�
measures the extent to which a holomorphic connection

is G–invariant.

Appendix A Small and large simplicial sets

In this appendix we recall some notation of small and large simplicial set; see eg [4; 7].

Definition A.1 Let � be the category whose objects are Œn� D f0; : : : ; ng for n D
0; 1; 2; : : : and morphisms � W Œn�! Œm� are nondecreasing maps. We have face maps
ıj W Œn� 1�! Œn� skipping j (for j D 0; : : : ; n), and degeneracies �j W Œn�! Œn� 1�

repeating j (for j D 0; : : : ; n� 1). If C is a category, then a simplicial (respectively
cosimplicial) object in C is a functor X D X� W�op! C (respectively a functor X D
X� W�! C), where we write Xn WDX.Œn�/ (respectively Xn WDX.Œn�/), as usual.

For example, �n W�op! Set is the simplicial set of the standard n–simplex, given by
setting �n

k
WD�.Œk�; Œn�/. Moreover, �� W�! Set�

op
is a cosimplicial simplicial set.

We remark on the size of the categories that we study. In this paper we consider small,
large and extra-large categories, as well as small and large simplicial sets. We recall
some notation from [7].
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Definition A.2 Fix three Grothendieck universes Us , Ul and Uel, with Us 2 Ul 2 Uel,
whose elements are called small sets, large sets and extra-large sets, respectively. In this
paper, we assume that certain sets, such as the underlying set of a complex manifold or
a holomorphic vector bundle, are elements of Us .

A category C is called small (respectively large, or extra-large) if both the set of objects
Obj.C/ and the set of morphisms Mor.C/ D

`
E;E 02Obj.C/ C.E;E 0/ are small sets

(respectively large sets, or extra-large sets). An example of a small category is the
simplicial category � from above. Examples of large categories are the category Set
of small sets, the category Ch of cochain complexes, the category CMan of complex
manifolds, and the category Cat of small categories. Examples of extra-large categories
are the category Setl of large sets and the category Catl of large categories.

A simplicial object X W �op ! C in a category C is called small (respectively large)
if all Xn D X.Œn�/ are small sets (respectively large sets), and similarly for a cosim-
plicial object X W � ! C. Denote by Set�

op
the category of all small simplicial

sets, which is a large category. Denote by Set�
op

l
the category of large simplicial

sets, which is an extra-large category. The nerve N .C/ of a category is the sim-
plicial set whose set of 0–simplices N .C/0 D Obj.C/ are the objects of C, and k–
simplices for k � 1 are k composable morphisms E0

f1
�! E1

f2
�! � � �

fk
�! Ek , ie

N .C/k D
`
E0;:::;Ek2Obj.C/ C.E0; E1/� � � � � C.Ek�1; Ek/. If C is a small category

(respectively large category), then N .C/ is a small simplicial set (respectively large
simplicial set). Moreover, the nerve is a functor N W Cat! Set�

op
or N W Catl! Set�

op

l
.

In Section 3, we consider cosimplicial simplicial sets, ie functors of the form X W�!

Set�
op

, or, more generally, functors X W�! Set�
op

l
, where, for the latter, Xn W�op!

Setl , so that .Xn/m is a large set.

Sometimes, we do not comment on the size and just refer to categories or simplicial
sets without any size reference. Note, however, that all structures in this paper are, in
particular, large structures.

Appendix B Cochain complexes and the Dold–Kan functor

We frequently consider cochain complexes in this paper that are concentrated in non-
negative or nonpositive degrees. The next definitions provide more details.

Definition B.1 Denote by Ch the category of Z–graded cochain complexes. So an
object in Ch is a pair .C �; d /, with d W C �! C �C1. Note that if .C�; @/ is a graded
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chain complex, ie @ WC�!C��1, then we think of it as an object of C � 2 Ch by setting
C n WD C�n in degree n.

Let ChC be the category of nonnegatively graded cochain complexes and Ch� be the
category of nonpositively graded cochain complexes.

Example B.2 If A W�op!Ab is a simplicial abelian group, then define the negatively
graded chain complex N.A/ 2 Ch� to be the normalized chains of A, ie in degree
�k � 0 we set it to be Ak modulo degeneracies,

N.A/�k WD Ak

.� k�1X
jD0

Im.sj W Ak�1! Ak/

�
:

The differential d W N.A/�k ! N.A/�kC1 is induced by the alternating sum of the
face maps

Pk
jD0.�1/

jdj W Ak! Ak�1.

In particular, the free abelian group of the standard n–simplex Z�n is a simplicial
abelian group. The cochain complex N.Z�n/ 2 Ch� has the following explicit rep-
resentation. In degree �` � 0, N.Z�n/�` is the free abelian group with generators
ei0;:::;i` for all 0 � i0 < � � � < i` � n corresponding to the nondegenerate `–simplex
i W Œ`�! Œn�, k 7! ik , of �n. The generator ei0;:::;i` can be thought of labeling an `–cell
of the topological n–simplex j�nj. The differential d WN.Z�n/�`!N.Z�n/�`C1 is
given by d.ei0;:::;i`/D

P`
jD0.�1/

j ei0;:::;O{j ;:::;i` .

Similarly, we can describe generators of N.Z.�n��m// as follows. Let j W Œp�! Œn�,
k 7! jk , be a nondegenerate p–simplex of �n, and i W Œq� ! Œm�, k 7! ik , be a
nondegenerate q–simplex of �m. In order to obtain a nondegenerate r–simplex of
�n ��m with p � r and q � r , choose numbers 0 � �1 < �2 < � � � < �r�q � r � 1
and 0 � �1 < �2 < � � � < �r�p � r � 1 with f�1; : : : ; �r�qg \ f�1; : : : ; �r�pg D ¿.
Then .j ı ��1 ı � � � ı ��r�p W Œr� ! Œn�; i ı ��1 ı � � � ı ��r�q W Œr� ! Œm�/ is a non-
degenerate r–simplex of �n ��m, and we denote the corresponding generator of
N.Z.�n ��m// by .s�r�p � � � s�1.ej0;:::;jp /; s�r�q � � � s�1.ei0;:::;iq //. In particular, for
r D pC q, f�1; : : : ; �p; �1; : : : ; �qg determines a permutation of f0; : : : ; pC q� 1g,
and those .�; �/ are then called .p; q/–shuffles. Denote the sign of this permutation by
sgn.�; �/, which is calculated as

(B-1) sgn.�; �/D .�1/�1C.�2�1/C.�3�2/C���C.�p�pC1/:

The Dold–Kan construction makes the normalization into an equivalence of categories;
see for example [2; 8; 3, Section 2; 4, Chapter III.2].
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Theorem B.3 (Dold and Kan) Let Ab�op
be the category of simplicial abelian groups

and Ch� the category of nonpositively graded cochain complexes. There is an adjoint
pair of functors N a DK, which is an equivalence , where N W Ab�op

! Ch� is the
normalization and DK W Ch�!Ab�op

.

The functor DK can be defined as follows. For a nonpositively graded chain complex
C ��0 2Obj.Ch�/, define DK.C ��0/2Ab�op

to be the simplicial abelian group which
in simplicial degree k consists of the cochain maps from normalized cells of the standard
simplex �k to C ��0, ie we set

(B-2) DK.C ��0/k WD Ch�.N.Z�k/; C ��0/:

The Dold–Kan functor DK W Ch�! Ab�op
can be composed with the forgetful map

F WAb�op
! Set�

op
, which we denote by DKD F ıDK W Ch�! Set�

op
.

We will need to use functors between Ch, Ch� and ChC.

Definition B.4 The truncation functor t is t W Ch! ChC defined by t .C �/D C ��0.

The quotient functor q is q W Ch! Ch� defined by q.C �/D C �=C ��0.

Definition B.5 There is an adjoint pair of functors

T W Ch�� ChC WQ:(B-3)

To define T , let ZŒv� be the cochain complex of polynomials in a formal variable v of
degree jvj D C2 with differential d D 0. For an object C D C ��0 2 Obj.Ch�/, the
tensor product C ˝ZŒv� is a Z–graded cochain complex, and then T .C / 2 ChC is
defined as the truncation of C ˝ZŒv� to nonnegative degrees,

T .C /��0 WD .C ˝ZŒv�/��0:

Thus, elements of T .C ��0/ in even degree 2k � 0 are polynomials c0vkCc�2vkC1C
� � � , and elements in odd degree 2kC1� 0 are polynomials c�1vkC1Cc�3vkC2C� � � ,
where each cj 2 C j.

To define Q, let ZŒu� be the cochain complex of polynomials in a formal variable u
of degree juj D �2 with differential d D 0. For an object C D C ��0 2 Obj.ChC/,
the tensor product C ˝ZŒu� is a Z–graded cochain complex, and Q.C/ 2 Ch� is the
quotient of C ˝ZŒu� by all the positively graded components of C ˝ZŒu�,

Q.C/��0 WD .C ˝ZŒu�/�=.C ˝ZŒu�/�>0:
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We sometimes abuse notation and simply write Q.C/D C Œu���0. Thus, elements of
Q.C ��0/ in even degree �2k� 0 are represented by polynomials c0ukCc2ukC1C� � � ,
and elements in odd degree �2k � 1 � 0 are polynomials c1ukC1 C c3ukC2 C � � � ,
where each cj 2 C j.

Appendix C Simplicial model categories

To take the totalization of a cosimplicial object, the category M is assumed to be
a simplicial model category. This means that M is a model category enriched over
simplicial sets. That is, given any two objects X and Y in M, there is a simplicial
set, denoted by Map.X; Y /, with Map.X; Y /0 DM.X; Y /, and a composition map
Map.X; Y / �Map.Y;Z/ ! Map.X;Z/, satisfying the usual associativity axioms.
Given X 2M and a simplicial set K�, we also need to define objects X˝K� and XK�

in M, satisfying some compatibility relations with the model structure and with the
enrichment over simplicial sets. The reader can find the axioms in [5, Chapter 9.1].

Example C.1 [5, Example 9.1.13] The category Set�
op

of simplicial sets is a simpli-
cial model category, with the following simplicial model category structure:

(1) f WX�!Y� is a weak equivalence if the induced map on the geometric realization,
jf jW jX�j ! jY�j, is a quasi-isomorphism, ie it induces isomorphisms between
the homotopy groups of jX�j and jY�j.

(2) f WX�! Y� is a fibration if it is a Kan fibration.

(3) f WX�! Y� is a cofibration if it has the left lifting property with respect to trivial
fibrations.

(4) For simplicial sets X� and Y�, let Map.X�; Y�/ be the simplicial set whose
n–simplices are given by simplicial set maps X� ��n�! Y�.

(5) For a simplicial set X� and simplicial set K�, let X�˝K� be the simplicial set
X� �K�.

(6) For a simplicial set X� and simplicial set K�, let XK�
�

be the simplicial set
Map.K�; X�/.

Example C.2 The category Ab�op
of simplicial abelian groups is a simplicial model

category with the following simplicial model category structure (see [4, Chapter III,
Proposition 2.11]):

(1) f W A�! B� is a weak equivalence if the induced map on geometric realization
jf jW jA�j ! jB�j is a quasi-isomorphism.
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(2) f W A�! B� is a fibration if it is a Kan fibration.

(3) f W A� ! B� is a cofibration if it has the left lifting property with respect to
trivial fibrations.

(4) For simplicial abelian groups A� and B�, let Map.A�; B�/ be the simplicial set
whose n–simplices are given by simplicial abelian group maps A�˝ZZ�n

�
!B�.

(5) For a simplicial abelian group A� and simplicial set K�, A�˝K� is A�˝Z ZK�,
where ZK� is the free simplicial abelian group on K�.

(6) For a simplicial abelian group A� and simplicial set K�, AK�� is the simplicial set
Map.ZK�; A�/ defined in (4), with the group structure inherited by the group
structure on A�.

The Dold–Kan correspondence can be used to transfer the simplicial model category
structure on Ab�op

to Ch�. To define the simplicial model category structure on Ch�,
let Hom�.C �;D�/ be the cochain complex of graded maps between cochain complexes
C � and D�. An element of degree n is a graded map f W C �!D�Cn, and d.f / D
dD ıf � .�1/

nf ı dC is an element in degree nC 1.

Example C.3 We use the following simplicial model category structure on Ch�:

(1) f WC �!D� is a weak equivalence if f induces an isomorphism on cohomology.

(2) f W C �!D� is a fibration if it is a degreewise surjection for n < 0.

(3) f W C �!D� is a cofibration if it has the left lifting property for every trivial
fibration.

(4) For C � and D� in Ch�, let the n–simplices of the simplicial set Map.C �;D�/
be Map.C �;D�/n WD Ch�.C �˝N.Z�n/;D�/.

(5) For C � in Ch� and K a simplicial set, let C � ˝K be the cochain complex
C �˝N.ZK/.

(6) For C � in Ch� and K a simplicial set, let .C �/K be the cochain complex
q
�
Hom�.N.ZK/;C �/

�
, where q is the quotient functor from Definition B.4.

Appendix D Totalization of a cosimplicial object in a
simplicial model category

Definition D.1 [5, Definition 18.6.3] Let X W � ! C be a cosimplicial object in
a simplicial model category C, ie each Xn 2 Obj.C/. (For example, this applies to
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C D Set�
op

, in which case X is a cosimplicial simplicial set.) Then, the totalization
Tot.X/ of X is defined as the object in C, which is the equalizer of the maps

(D-1)
Y

Œ`�2Obj.�/

.X`/�
` �

 
�!
�!

Y
� W Œn�!Œm�

.Xm/�
n

:

Here, to a morphism � W Œn�! Œm�, the map � sends a factor of .Xm/�
m

to the factor
..Xm/�

n

/� using the induced map .��/.�/ W �n ! �m. The map  sends a factor
of .Xn/�

n

to the factor ..Xm/�
n

/� using the induced map X.�/ WXn!Xm.

Furthermore, for a morphism F of cosimplicial objects X and Y in C, ie a natural
transformation F WX! Y, there is an induced map Tot.F / WTot.X/!Tot.Y / defined
as follows. The natural transformation F W X ! Y induces maps .X`/�

`

! .Y `/�
`

and .Xm/�
n

! .Y m/�
n

, which defines a diagram

(D-2) Tot.X/!
Y

Œ`�2Obj.�/

.Y `/�
` �

 
�!
�!

Y
� W Œn�!Œm�

.Y m/�
n

:

Using the universal property of Tot.Y / then gives us a map Tot.F / WTot.X/!Tot.Y /.

We can also define an algebraic analog of totalization for cosimplicial nonnegatively
graded cochain complexes, called the total complex and denoted by tot. We let
K�;� W�! ChC, Œn� 7!Kn;�, be a cosimplicial nonnegatively graded cochain complex.
Then K�;� can be made into a bicomplex where the differential ı W K�;� ! K�C1;�

is defined by taking the alternating sums of the maps induced by the coface maps
Œn�! ŒnC 1�, and the differential dK W K�;� ! K�;�C1 is given by the differentials
dn WK

n;�!Kn;�C1 of the cochain complexes. We obtain an ordinary cochain complex
in ChC in two ways. One way is by taking the total complex of K�;�, by defining

(D-3) tot.K/ WD
M
n�0

Kn;�Œn�;

where Kn;�Œn� denotes Kn;� shifted up by n, with differential d , applied to c 2 tot.K/
of degree jcj, given by

(D-4) d.c/ WD dK.c/� .�1/
jcj
� ı.c/:

The second way is by taking the equalizer

(D-5) eq W
Y
Œ`�

Hom�.N.Z�`/;K`;�/�
Y

Œm�!Œn�

Hom�.N.Z�m/;Kn;�/

with differential d
�
.f` W N.Z�

`/! K`;�/`
�
D .dK ı f` � .�1/

jf`j � f` ı dN.Z�`//`.
The following lemma shows that the two cochain complexes are equal:
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Lemma D.2 Let K�;� W �! ChC be a cosimplicial nonnegatively graded cochain
complex. Then the total complex tot.K/ from (D-3) is isomorphic to the equalizer
from (D-5).

Proof An element of degree k in
Q
`K

`;�Œ`� is a collection of elements c0;k 2K0;kŒ0�,
c1;k�1 2K1;k�1Œ1�; : : : ; ck;0 2Kk;0Œk�.

An element of degree k in Hom�.N.Z�`/;K`;�/ is a collection of maps

f
k;0
`
WN.Z�`/0!K`;k; f

k;1
`
WN.Z�`/�1!K`;k�1; : : : ; f

k;k
`
WN.Z�`/�k!K`;0:

An element of degree k in the product
Q
Œ`� Hom�.N.Z�`/;K`;�/ is then a collection

of these maps over all Œ`�, f k;�
`
W N.Z�`/�� ! K`;k��. To be in the equalizer, the

maps ff k;�
�
g must fit in commutative diagrams

N.Z�m/�i
f
k;i
m
//

��

Km;k�i

��

N.Z�n/�i
f
k;i
n

// Kn;k�i

for every map Œm�! Œn�. The maps ff k;�
�
g in the equalizer then are determined by

f
k;0
0 WN.Z�0/0!K0;k , f k;11 WN.Z�1/�1!K1;k�1; : : : ; f

k;k
k
WN.Z�k/�k!Kk;0.

Using the Hom–tensor adjunction, we can identify f k;ii with ci;k�i 2Ki;k�i Œi �.
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