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a b s t r a c t 

Building machine learning models using EEG recorded outside of the laboratory setting requires methods robust 
to noisy data and randomly missing channels. This need is particularly great when working with sparse EEG 

montages (1–6 channels), often encountered in consumer-grade or mobile EEG devices. Neither classical ma- 
chine learning models nor deep neural networks trained end-to-end on EEG are typically designed or tested for 
robustness to corruption, and especially to randomly missing channels. While some studies have proposed strate- 
gies for using data with missing channels, these approaches are not practical when sparse montages are used and 
computing power is limited ( e.g., wearables, cell phones). To tackle this problem, we propose dynamic spatial 
filtering (DSF), a multi-head attention module that can be plugged in before the first layer of a neural network 
to handle missing EEG channels by learning to focus on good channels and to ignore bad ones. We tested DSF 
on public EEG data encompassing ∼4000 recordings with simulated channel corruption and on a private dataset 
of ∼100 at-home recordings of mobile EEG with natural corruption. Our proposed approach achieves the same 
performance as baseline models when no noise is applied, but outperforms baselines by as much as 29.4% accu- 
racy when significant channel corruption is present. Moreover, DSF outputs are interpretable, making it possible 
to monitor the effective channel importance in real-time. This approach has the potential to enable the analysis 
of EEG in challenging settings where channel corruption hampers the reading of brain signals. 
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. Introduction 

Electroencephalography (EEG) enables investigations into brain
unction and health in an economical manner and for a wide array of
urposes, including sleep monitoring, pathology screening, neurofeed-
ack, brain-computer interfacing and anaesthesia monitoring ( Dhindsa,
017; Hohmann et al., 2020; Johnson and Picard, 2020; Kreuzer, 2017;
rigolson et al., 2021; Mihajlovi ć et al., 2014 ). Thanks to recent ad-
ances in mobile EEG technology, these applications can now be more
asily translated from the lab and clinic to contexts such as at-home or
mbulatory assessments. This carries the potential of democratizing EEG
pplications and revolutionizing the study of brain health in real-world
ettings. However, in these new settings, the number of electrodes avail-
ble is often limited and signal quality is much harder to control. More-
ver, with the increasing availability of these devices, the amount of
ata generated now exceeds the capacity of human experts ( e.g., neurol-
gists, sleep technicians, etc.) to analyze and manually annotate every
ingle recording, as is traditionally done in research and clinical set-
ings. Novel methods facilitating clinical and research applications in
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eal-world settings, especially with sparse EEG montages, are therefore
eeded. 

The use of machine learning for automating EEG analysis has been
he subject of much research in recent decades ( Lotte et al., 2007; Roy
t al., 2019 ). However, state-of-the-art EEG prediction pipelines are gen-
rally benchmarked on datasets recorded in well-controlled conditions
hat are relatively clean when compared to data from mobile EEG. As a
esult, it is unclear how models designed for laboratory data will cope
ith signals encountered in real-world contexts. This is especially crit-

cal for mobile EEG recordings that may contain a varying number of
sable channels as well as overall noisier signals, in contrast to most
esearch- and clinical-grade recordings. In addition, the difference in
umber of channels between research and mobile settings also means
hat interpolating bad channels offline (as is commonly done in record-
ngs with dense electrode montages) is likely to fail on mobile EEG de-
ices given their limited spatial information. It is an additional challenge
hat the quality of EEG data is not static but can vary significantly within
 given recording. This suggests that predictive models should handle
oise dynamically. Ideally, not only should machine learning pipelines
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Table 1 

Existing methods for dealing with noisy EEG data. 

Approach Examples Notes 

Ignore or reject noise No denoising Schirrmeister et al. (2017) , Lawhern et al. (2018) , 
Li et al. (2019) , Schirrmeister et al. (2017) , 
Gemein et al. (2020) , Supratak et al. (2017) , 
Guillot et al. (2020) , Phan et al. (2019) , 
Phan et al. (2020) 

Might not work in real-life applications 
(out of the lab/clinic) 

Removing bad epochs Manor and Geva (2015) , Dhindsa (2017) , 
Hefron et al. (2018) , Wang et al. (2018) 

Doesn’t allow online predictions; Might 
discard useful information 

Implicit denoising Robust input representations Covariance matrices in Riemannian tangent space 
( Sabbagh et al., 2020 ) 

Might not work if too few channels 
available 

Topomaps ( Bashivan et al., 2015; Hagad et al., 
2019; Thodoroff et al., 2016 ) 

Expensive preprocessing step; Might not 
work if too few channels available 

Robust signal processing techniques Lomb-Scargle periodogram ( Chu et al., 2018; Li 
et al., 2015 ) 

Only useful for missing samples, not 
missing channels 

Robust machine learning classifiers Handcrafted features and random forest 
( Engemann et al., 2018 ) 

Requires feature engineering step 

Explicit denoising Spatial projection-based approaches Signal Space Separation (SSS) for MEG 
( Taulu et al., 2004 ) 
ICA-based denoising ( Jung et al., 1998; Mammone 
et al., 2011; Winkler et al., 2011 ) 

Might not work if too few channels 
available; Additional preprocessing step; 
Preprocessing might discard important 
information for learning task 

Automated correction Autoreject ( Jas et al., 2017 ), FASTER ( Nolan et al., 
2010 ), PREP ( Bigdely-Shamlo et al., 2015 ) 

Expensive preprocessing step 

Model-based interpolation/ 
reconstruction 

Deep learning-based superresolution (GAN, LSTM, 
AE, etc.) ( Corley and Huang, 2018; El-Fiqi et al., 
2019; Han et al., 2018; Kwon et al., 2019; 
Svantesson et al., 2020 ) 
Tensor decomposition, compressed sensing 
( Ramakrishnan and Satyanarayana, 2016; 
Sole-Casals et al., 2018 ) 

Separate training step; Additional 
inference step to reconstruct at test time; 
Requires separate procedure to detect 
corrupted channels 

Interpretable denoising Channel corruption-invariant 

architecture 

Dynamic Spatial Filtering (this work) Trained end-to-end, no additional 

preprocessing, interpretable, works 

with sparse montages 
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roduce predictions that are robust to (changing) sources of noise in
EG, but they should also do so in a way that is interpretable. For in-
tance, if noise is easily identifiable, corrective action can be quickly
aken by experimenters or users during a recording. 

It is important to consider that not all sources of noise affect EEG
ecordings in the same way ( Hari and Puce, 2017 ). Physiological arti-
acts are large electrical signals that are generated by current sources
utside the brain such as heart activity, eye or tongue movement, mus-
le contraction, sweating, etc. Depending on the EEG electrode montage
nd the setting of the recording ( e.g., eyes open or closed), these artifacts
an be more or less disruptive to measuring the brain activity of interest.
ovement artifacts, on the other hand, are caused by the relative dis-

lacement of EEG electrodes with respect to the scalp, and can introduce
oise of varying spectral content in the affected electrodes during move-
ent. If an electrode cannot properly connect with the skin ( e.g., after
 movement artifact or because it was not correctly set up initially), its
eading will likely contain little or no physiological information and in-
tead pick up instrumentation and environmental noise. These are com-
only referred to as “bad ” or “missing ” channels in the literature. In the

ontext of this work, we refer to them as “corrupted channels ” to explic-
tly include the case where a signal corruption mechanism ( e.g., active
oise sources in uncontrolled environments) must be accounted for by
redictive models. While channel corruption affects EEG recordings in
ll contexts, it is more likely in real-world mobile EEG recordings than
n controlled laboratory settings where trained experimenters can mon-
tor and remedy bad electrodes during the recording. Therefore, special
are must be given to the problem of channel corruption in sparse mo-
ile EEG settings. 

In this paper, we propose and benchmark an attention mechanism
odule designed to handle corrupted channel data, based on the con-

ept of “scaling attention ” ( Hu et al., 2018; Woo et al., 2018 ). This
odule can be inserted before the first layer of any convolutional neu-

al network architecture in which activations have a spatial dimension
 Chambon et al., 2018; Lawhern et al., 2018; Schirrmeister et al., 2017 ),
nd then be trained end-to-end for the prediction task at hand. 
2 
The rest of the paper is structured as follows. Section 2 presents an
verview of the EEG noise handling literature, then describes the atten-
ion module and denoising procedure proposed in this study. The neural
rchitectures, baseline methods and data used in our experiments are
ntroduced in Section 3 . Next, Section 4 reports the results of our exper-
ments on sleep and pathology EEG datasets. Lastly, we examine related
ork and discuss the results in Section 5 . 

. Methods 

.1. State-of-the-art approaches to noise-robust EEG processing 

Existing strategies for dealing with noisy data can be divided into
hree categories ( Table 1 ): (1) ignoring or rejecting noisy segments,
2) implicit denoising, i.e. , methods that allow models to work despite
oise, and (3) explicit denoising, i.e. , methods that rely on a separate
reprocessing step to handle noise or missing channels before predic-
ion. We now discuss existing methods employing these strategies in
ore detail. 

The simplest way to deal with noise in EEG is to assume that it is
egligible or to simply discard bad segments ( Roy et al., 2019 ). For
nstance, a manually selected amplitude or variance threshold ( Hefron
t al., 2018; Manor and Geva, 2015; Wang et al., 2018 ) or a classifier
rained to recognize artifacts ( Dhindsa, 2017 ) can be used to identify
egments to be ignored. This approach, though commonplace, is ill-
uited to mobile EEG settings where noise cannot be assumed to be neg-
igible, but also to online applications where model predictions need to
e continuously available. Moreover, this approach is likely to discard
indows due to a small fraction of bad electrodes, potentially losing
sable information from other channels. 

Implicit denoising approaches can be used to design noise-robust
rocessing pipelines that do not contain a specific noise handling step.
irst, implicit denoising approaches can use representations of EEG data
hat are robust to missing channels. For instance, multichannel EEG can
e transformed into topographical maps ( “topomaps ”) that are less sen-
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itive to the absence of a few channels. This representation is then typ-
cally fed into a standard convolutional neural network (ConvNet) ar-
hitecture. While this approach can gracefully handle missing channels
n dense montages ( e.g., 16 to 64 channels in Bashivan et al., 2015; Ha-
ad et al., 2019; Thodoroff et al., 2016 ), it is likely to perform poorly
n sparse montages ( e.g., 4 channels) as spatial interpolation might
ail if channels are missing. Moreover, this approach requires compu-
ationally demanding preprocessing and feature extraction steps, un-
esirable in online and low-computational resources contexts. In the
raditional machine learning setting, Sabbagh et al. (2020) showed
hat representing input windows as covariance matrices and using Rie-
annian geometry-aware models did not require common noise cor-

ection steps to reach high performance on a brain age prediction
ask. However, the robustness of this approach has not been evalu-
ted on sparse montages. Also, its integration into neural network ar-
hitectures is not straightforward with geometry-aware deep learning
emaining an active field of research ( Bronstein et al., 2017 ). Signal
rocessing techniques can also be used to promote invariance to cer-
ain types of noise. For instance, the Lomb-Scargle periodogram can be
sed to extract spectral representations that are robust to missing sam-
les ( Chu et al., 2018; Li et al., 2015 ). However, this approach fails
hen channels are completely missing. Finally, implicit denoising can
e achieved with traditional machine learning models that are inher-
ntly robust to noise. For instance, random forests trained on hand-
rafted EEG features were shown to be notably more robust to low
NR inputs than univariate models on a state-of-consciousness predic-
ion task ( Engemann et al., 2018 ). Although promising, this approach is
imited by its feature engineering step, as features (1) rely heavily on do-
ain knowledge, (2) might not be optimal to the task, and (3) require an

dditional processing step which can be prohibitive in limited resource
ontexts. 

Multiple studies have explicitly handled noise by correcting cor-
upted signals or predicting missing or additional channels from avail-
ble ones. Spatial projection approaches aim at projecting the input
ignals to a noise-free subspace before projecting the signals back into
hannel-space, e.g., using independent component analysis (ICA) ( Jung
t al., 1998; Mammone et al., 2011; Winkler et al., 2011 ) or princi-
al components analysis (PCA) ( Kothe and Jung, 2016; Uusitalo and
lmoniemi, 1997 ). While approaches such as ICA are powerful tools
o mitigate artifact and noise components in a semi-automated way,
heir efficacy can diminish when only few channels are available. For
nstance, in addition to introducing an additional preprocessing step,
hese approaches are likely to discard important discriminative informa-
ion during preprocessing because they are decoupled from the predic-
ion task. Also, the fact that preprocessing is done independently from
he supervised learning task, or the statistical testing procedure, actu-
lly makes the selection of preprocessing parameters ( e.g., number of
ood components) challenging. Motivated by the challenge of parame-
er selection, fully automated denoising pipelines have been proposed.
ASTER ( Nolan et al., 2010 ) and PREP ( Bigdely-Shamlo et al., 2015 )
oth combine artifact correction, noise removal and bad channel inter-
olation into a single automated pipeline. Autoreject ( Jas et al., 2017 )
s another recently developed pipeline that uses cross-validation to au-
omatically select amplitude thresholds to use for rejecting windows or
agging bad channels. These approaches are well-suited to offline anal-
ses where the morphology of the signals is of interest, however they are
ypically computationally demanding and are also decoupled from the
tatistical modeling. Additionally, it is unclear how interpolation can be
pplied when using bipolar montages ( i.e. , that do not share a single
eference), as is often the case in e.g., polysomnography ( Berry et al.,
012 ) and epilepsy monitoring ( Rosenzweig et al., 2014 ). 

Finally, generic machine learning models have been proposed to
ecover bad channels. For instance, generative adversarial networks
GANs) have been trained to recover dense EEG montages from a few
lectrodes ( Corley and Huang, 2018; Svantesson et al., 2020 ). Other sim-
lar methods have been proposed, e.g., long short-term memory (LSTM)
3 
eural networks ( Paul, 2020 ), autoencoders ( El-Fiqi et al., 2019 ), or ten-
or decomposition and compressed sensing ( Ramakrishnan and Satya-
arayana, 2016; Sole-Casals et al., 2018 ). However, these methods pos-
ulate that the identity of bad channels is known ahead of time, which
s a non-trivial assumption in practice. 

In contrast to the existing literature on channel corruption handling
n EEG, we introduce an interpretable end-to-end denoising approach
hat can learn implicitly to work with corrupted sparse EEG data, and
hat does not require additional preprocessing steps. 

.2. Dynamic spatial filtering: Second-order attention for learning on noisy 

EG signals 

The key goal behind dynamic spatial filtering (DSF) is to help neural
etworks focus on the most important channels, at each time instant,
iven a specific machine learning task on EEG. To do so, we introduce
 spatial attention mechanism that dynamically reweights channels ac-
ording to their predictive power. This idea is inspired by recent de-
elopments in attention mechanisms, most specifically the “scaling at-
ention ” approach proposed in computer vision ( Hu et al., 2018; Woo
t al., 2018 ). Notably, DSF leverages second-order information, i.e. , spa-
ial covariance, to capture dependencies between EEG channels. In this
ection, we detail the learning problem under study, the proposed atten-
ion architecture and a data augmentation transform designed to help
rain noise-robust models. 

Notation We denote by � 𝑞� the set {1 , … , 𝑞} . The index 𝑡 refers to
ime indices in the multivariate time series 𝑆 ∈ ℝ 

𝐶×𝑀 , where 𝑀 is the
umber of time samples and 𝐶 is the number of EEG channels. 𝑆 is
urther divided into non-overlapping windows 𝑋 ∈ ℝ 

𝐶×𝑇 where 𝑇 is the
umber of time samples in the window. We denote by 𝑦 ∈  the target
sed in the learning task. Typically,  is � 𝐿 � for a classification problem
ith 𝐿 classes. 

We perform experiments in the supervised classification setting. A
odel 𝑓 Θ ∶  →  with parameters Θ ( e.g., a convolutional neural net-
ork) is trained to predict the class 𝑦 of EEG windows 𝑋. For this, we

rain 𝑓 Θ to minimize the loss  , e.g., the categorical cross-entropy loss,
ver the example-label pairs ( 𝑋 𝑖 , 𝑦 𝑖 ) : 

 ̂Θ = arg min 
Θ

𝔼 𝑋 𝑖 ,𝑦 𝑖 ∈× [  ( 𝑓 Θ( 𝑋 𝑖 ) , 𝑦 𝑖 )] . (1)

In particular, we are interested in the performance of 𝑓 Θ when ran-
om channels are corrupted and more specifically when channel corrup-
ion occurs at test time ( i.e. , when training data is mostly clean). Toward
his goal, we insert an attention-based module 𝑚 DSF ∶ ℝ 

𝐶×𝑇 → ℝ 

𝐶 ′×𝑇 

nto 𝑓 Θ which performs a (fixed) transformation Φ( 𝑋) to extract rele-
ant spatial information from 𝑋, followed by a reweighting mechanism
or the input signals. 

In order to implicitly handle noise in neural network architectures,
e design an attention module where second-order information is ex-

racted from the input and used to predict weights of a linear transfor-
ation of the input EEG channels, that are optimized for the learning

ask ( Fig. 1 ). Applying such linear transforms to multivariate EEG signals
s commonly referred to as “spatial filtering ”, a technique that has been
idely used in the field of EEG ( Blankertz et al., 2007; de Cheveigné
nd Simon, 2008; Lotte and Guan, 2010; Makeig et al., 1996; McFar-
and et al., 1997; Nikulin et al., 2011; Parra et al., 2005 ). This enables
he model to learn to ignore noisy outputs and/or to reweight them,
hile still leveraging any remaining spatial information. We now show
ow this module can be applied to the raw input 𝑋. 

We define the dynamic spatial filter (DSF) module 𝑚 DSF as: 

 DSF ( 𝑋) = 𝑊 DSF ( 𝑋 ) 𝑋 + 𝑏 DSF ( 𝑋 ) , (2)

here 𝑊 DSF ∈ ℝ 

𝐶 ′×𝐶 and 𝑏 DSF ∈ ℝ 

𝐶 ′ are obtained by reshaping the
utput of a neural network, e.g., a multilayer perceptron (MLP),
 Θ𝐷𝑆𝐹 

(Φ( 𝑋)) ∈ ℝ 

𝐶 ′×( 𝐶+1) (see Fig. 1 ). Under this formulation, each row
n 𝑊 DSF corresponds to a spatial filter that linearly transforms the input
ignals into another virtual channel. Here, 𝐶 

′ can be set to the number of
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Fig. 1. Visual description of the Dynamic Spatial Filtering (DSF) attention module. An input window 𝐗 with 𝐶 spatial channels is processed by a 2-layer MLP to 
produce a set of 𝐶 ′ spatial filters 𝐖 and biases 𝐛 that dynamically transform the input 𝐗 . This allows the subsequent layers of a neural network to ignore bad channels 
and focus on the most informative ones. 
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nput spatial channels 𝐶 or considered a hyperparameter of the attention
odule. 2 When 𝐶 

′ = 𝐶, if the diagonal of 𝑊 DSF is 0, 𝑊 DSF corresponds
o a linear interpolation of each channel based on the 𝐶 − 1 others, as is
ommonly done in the classical EEG literature ( Perrin et al., 1989 ) (see
upplemental Appendix F for an in-depth discussion). Heavily corrupted
hannels can be ignored by giving them a weight of 0 in 𝑊 DSF . To facili-
ate this behavior, we can further apply a soft-thresholding element-wise
onlinearity to 𝑊 DSF : 

 

′
DSF = sign ( 𝑊 DSF ) max ( ||𝑊 DSF || − 𝜏, 0) , (3)

here 𝜏 is a threshold empirically set to 0.1, |⋅| is the element-wise
bsolute value and both the sign and max operators are applied element-
ise. 

In our experiments, the spatial information extracted by the trans-
orms Φ( 𝑋) was either (1) the log-variance of each input channel or
2) the flattened upper triangular part of the matrix logarithm of the
ovariance matrix of 𝑋 (see Supplemental Appendix A). 3 When report-
ng results, we denote models as DSFd and DSFm when DSF takes the
og-variance or the matrix logarithm of the covariance matrix as input,
espectively. We further add the suffix “-st ” to indicate the use of the
oft-thresholding nonlinearity, e.g., DSFm-st . 

Interestingly, the DSF module can be seen as a multi-head attention
echanism ( Vaswani et al., 2017 ) with real-valued attention weights

nd where each head is tasked with producing a linear combination of
he input spatial signals. 

Finally, we can inspect the attention given by 𝑚 DSF to each input
hannel by computing the “effective channel importance ” metric 4 𝝓 ∈
 

𝐶 where 

𝑗 = 

√ √ √ √ 

𝐶 ′∑
𝑖 =1 

𝑊 𝑖𝑗 
2 . (4)
2 In which case it can be used to increase the diversity of input channels in 
odels trained on sparse montages ( 𝐶 ′ > 𝐶) or perform dimensionality reduc- 

ion to reduce computational complexity ( 𝐶 ′ < 𝐶). 
3 In practice, if a channel is “flat-lining ” (has only 0s) inside a window and 

herefore has a variance of 0, its log-variance is replaced by 0. Similarly, if a 
ovariance matrix eigenvalue is 0 when computing the matrix logarithm (see 
upplemental Appendix A), its logarithm is replaced by 0. 
4 “Effective channel importance ” measures how useful the actual data of a 

hannel is. It is not to be confused with the theoretical importance of a channel, 
.e. , the fact that in theory some channels (given good signal quality) might be 
ore useful for some tasks than other channels. Therefore, in this work, when 
e measure or discuss the “importance ” of a channel, we refer to the useful- 
ess of the actual signal collected with that channel with respect to the task. 
or instance, a corrupted channel will likely have low “importance ”, although 
he neurophysiological information available at that location would be useful 
hould the channel not be corrupted. The use of the word importance in the 
resent context is in line with the literature in statistical machine learning re- 
erring to “feature importance ” as quantified for example using “permutation 
mportance ” ( Breiman, 2001 ). 
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4 
ntuitively, 𝝓 measures how much each input channel is used by 𝑚 DSF 
o produce the output virtual channels. A normalized version 

̂ = 

𝝓

max 𝑖 𝝓𝑖 

(5) 

an also be used to obtain a value between 0 and 1. This straightfor-
ard way of inspecting the functioning of the DSF module facilitates

he identification of important or noisy channels. 
To further help our models learn to be robust to noise, we design a

ata augmentation procedure that randomly corrupts channels. Specifi-
ally, channel corruption is simulated by performing a masked channel-
ise convex combination of input channels and Gaussian white noise
 ∈ ℝ 

𝐶×𝑇 : 

̃
 = (1 − 𝜂) diag ( 𝝂) 𝑋 + 𝜂 diag ( 𝝂) 𝑍 + diag (1 − 𝝂) 𝑋, (6)

here 𝑍 𝑖,𝑗 ∼  (0 , 𝜎2 
𝑛 
) for 𝑖 ∈ � 𝑇 � and 𝑗 ∈ � 𝐶� , 𝜂 ∈ [0 , 1] controls the rel-

tive strength of the noise, and 𝝂 ∈ {0 , 1} 𝐶 is a masking vector that con-
rols which channels are corrupted. The operator diag ( 𝑥 ) creates a square
atrix filled with zeros whose diagonal is the vector 𝑥 . Here, 𝝂 is sam-
led from a multinouilli distribution with parameter 𝑝 . Each window 𝑋

s individually corrupted using random parameters 𝜎𝑛 ∼  (20 , 50) 𝜇V,
∼  (0 . 5 , 1) , and a fixed 𝑝 of 0.5. 

.3. Computational considerations 

We set the following hyperparameters when training deep neural
etworks: optimizer, learning rate schedule, batch size, regularization
trength (number of training epochs, weight decay, dropout) and pa-
ameter initialization scheme. In all experiments, we used the AdamW
ptimizer ( Loshchilov and Hutter, 2017 ) with 𝛽1 = 0 . 9 , 𝛽2 = 0 . 999 , a
earning rate of 10 −3 and cosine annealing. The parameters of all neu-
al networks were randomly initialized using uniform He initialization
 He et al., 2015 ). Dropout ( Srivastava et al., 2014 ) was applied to 𝑓 Θ’s
ully connected layer at a rate of 50% and weight decay was applied to
he trainable parameters of all layers of both 𝑓 Θ and ℎ Θ𝐷𝑆𝐹 

. Moreover,
uring training, the loss was weighted to optimize balanced accuracy.
ome hyperparameters were tuned on a dataset-specific basis and are
escribed along with the datasets ( i.e. , weight decay and batch size). 

Deep learning and baseline models were trained using a combi-
ation of the braindecode ( Schirrmeister et al., 2017 ), MNE-Python
 Gramfort et al., 2014 ), PyTorch ( Paszke et al., 2019 ), pyRiemann
 Barachant et al., 2013a ), mne-features ( Schiratti et al., 2018 ) and scikit-
earn ( Pedregosa et al., 2011 ) packages. 5 Finally, deep learning models
ere trained on 1 or 2 Nvidia Tesla V100 or P4 GPUs for anywhere from
 few minutes to 7 h, depending on the amount of data, early stopping
nd GPU configuration. 
5 Code used for data analysis can be found at https://github.com/hubertjb/ 
ynamic- spatial- filtering . 

https://github.com/hubertjb/dynamic-spatial-filtering
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. Experiments 

.1. Downstream tasks 

We studied noise robustness through two common EEG classification
ownstream tasks: sleep staging and pathology detection. First, sleep
taging, a critical step in sleep monitoring, allows the diagnosis and
tudy of sleep disorders such as apnea and narcolepsy ( Bathgate and
dinger, 2019 ). This 5-class classification problem consists of predicting
hich sleep stage (W (wake), N1, N2, N3 (different levels of sleep) or R

rapid eye movement periods)) an individual is in, in non-overlapping
0-s windows of overnight recordings. While a large number of ma-
hine learning approaches have been proposed to perform sleep staging
 Chambon et al., 2018; Motamedi-Fakhr et al., 2014; Phan et al., 2020;
oy et al., 2019 ), the handling of corrupted channels has not been ad-
ressed in a comprehensive manner yet, as channel corruption is less
ikely to occur in clinical and laboratory settings than in the real-world
ettings we consider here. 6 

Second, the pathology detection task aims at detecting neurologi-
al conditions such as epilepsy and dementia from an individual’s EEG
 Micanovic and Pal, 2014; Smith, 2005 ). In a simplified formulation this
ives rise to a binary classification problem where recordings have to
e classified as either pathological or non-pathological. Such recordings
re typically carried out in well-controlled settings ( e.g., in a hospital
 Obeid and Picone, 2016 )) where sources of noise can be monitored
nd mitigated in real-time by experts. To test pathology detection per-
ormance in the context of mobile EEG acquisition, we used a limited set
f electrodes, in contrast to previous work ( Gemein et al., 2020; Lopez
t al., 2015; Schirrmeister et al., 2017 ). 

These two tasks are further described in Section 3.3 when discussing
he data used in our experiments. 

.2. Compared methods 

We compared the performance of the proposed DSF and data aug-
entation method to other established approaches. In total, we con-

rasted combinations of three machine learning pipelines and three dif-
erent noise-handling strategies. 

We consider the following machine learning pipelines: (1) end-to-
nd deep learning (with and without the DSF module) from raw sig-
als, (2) filter-bank covariance matrices with Riemannian tangent space
rojection and logistic regression ( Barachant et al., 2013a; Congedo
t al., 2017; Lotte et al., 2018; Sabbagh et al., 2020 ) (which we refer
o as “Riemann ”), and (3) handcrafted features and random forest (RF)
 Gemein et al., 2020 ). 

We used ConvNet architectures as 𝑓 Θ in deep learning pipelines
Supplemental Appendix B). For pathology detection, we used the
hallowNet architecture from Schirrmeister et al. (2017) which
arametrizes the frequency-band common spatial patterns (FBCSP)
ipeline ( Gemein et al., 2020 ). We used it without modifying the ar-
hitecture, yielding a total of 13,482 trainable parameters when 𝐶 = 6 .
or sleep staging, we used a 3-layer ConvNet which takes 30-s windows
s input ( Banville et al., 2021; Chambon et al., 2018 ), with a total of
8,457 trainable parameters when 𝐶 = 4 and an input sampling fre-
uency of 100 Hz. Finally, when evaluating DSF, we added modules
 DSF before the input layer of each neural network. The input dimen-

ionality of 𝑚 DSF depends on the chosen spatial information extraction
ransform Φ( 𝑋) : either 𝐶 (log-variance) or 𝐶( 𝐶 + 1)∕2 (vectorized co-
ariance matrix). We fixed the hidden layer size of 𝑚 DSF to 𝐶 

2 units,
hile the output layer size depended on the chosen 𝐶 

′. The DSF mod-
les added between 420 and 2864 trainable parameters to those of 𝑓 Θ
epending on the configuration. 
6 A recent study reported training a neural network on artificially-corrupted 
leep EEG data, with a goal similar to ours ( Jónsson et al., 2020 ); however, this 
tudy only appears as a Supplement with little information on the methods and 
esults. 

t  

t

5 
The Riemann pipeline first applied a filter bank to the input EEG,
ielding narrow-band signals in the 7 bands bounded by (0.1, 1.5, 4, 8,
5, 26, 35, 49) Hz. Next, covariance matrices were estimated per win-
ow and frequency band using the OAS algorithm ( Chen et al., 2010 ).
he covariance matrices were then projected into their Riemannian tan-
ent space exploiting the Wasserstein distance to estimate the mean
ovariance used as the reference point ( Bhatia et al., 2018; Sabbagh
t al., 2019 ). The vectorized covariance matrices with dimensionality
f 𝐶( 𝐶 + 1)∕2 were finally z-score normalized using the mean and stan-
ard deviation of the training set, and fed to a linear logistic regression
lassifier. 

The handcrafted features baseline, inspired by Gemein et al.
2020) and Engemann et al. (2018) , relied on 21 different feature types:
ean, standard deviation, root mean square, kurtosis, skewness, quan-

iles (10, 25, 75 and 90th), peak-to-peak amplitude, frequency log-
ower bands between (0, 2, 4, 8, 13, 18, 24, 30, 49) Hz as well as all
heir possible ratios, spectral entropy, approximate entropy, SVD en-
ropy, Hurst exponent, Hjorth complexity, Hjorth mobility, line length,
avelet coefficient energy, Higuchi fractal dimension, number of zero

rossings, SVD Fisher information and phase locking value. This resulted

n 63 univariate features per EEG channel, along with 
( 

𝐶 

2 

) 

bivariate fea-

ures, which were concatenated into a single vector of size 63 × 𝐶 + 

( 

𝐶 

2 

)
 e.g., 393 for 𝐶 = 6 ). In the event of non-finite values in the feature rep-
esentation of a window, we imputed missing values feature-wise using
he mean of the feature computed over the training set. Finally, feature
ectors were fed to a random forest model. 

When applying traditional pipelines to pathology detection experi-
ents, we aggregated the input representations recording-wise as each

ecording has a single label ( i.e. , pathological or not). To do so, we
sed the geometric mean on covariance matrices and the median on
andcrafted features. Deep learning models, on the other hand, were
rained on non-aggregated windows, but their performance was evalu-
ted recording-wise by averaging the predictions over windows within
ach recording. Hyperparameter selection for logistic regression and
andom forest models is described in Supplemental Appendix C. 

We combined the machine learning approaches described above with
he following noise-handling strategies: (1) no denoising, i.e. , models are
rained directly on the data without explicit or implicit denoising, (2)
utoreject ( Jas et al., 2017 ), an automated correction pipeline, and (3)
ata augmentation, which randomly corrupts channels during training.

Autoreject is a denoising pipeline that explicitly handles noisy
pochs and channels in a fully automated manner ( Jas et al., 2017 ).
irst, using a cross-validation procedure, it finds optimal channel-wise
eak-to-peak amplitude thresholds to be used to identify bad channels
n each window separately. If more than 𝜅 channels are bad, the epoch
s rejected. Otherwise, up to 𝜌 bad channels are reconstructed using the
ood channels with spherical spline interpolation. In pathology detec-
ion experiments, we allowed Autoreject to reject bad epochs, as classi-
cation was performed recording-wise. For sleep staging experiments
owever, we did not reject epochs as one prediction per epoch was
eeded, but still used Autoreject to automatically identify and interpo-
ate bad channels. In both cases, we used default values for all parame-
ers as provided in the Python implementation 7 , except for the number
f cross-validation folds, which we set to 5. 

Finally, data augmentation consists of artificially corrupting chan-
els during training to promote invariance to missing channels. When
raining neural networks, the data augmentation transform was applied
n-the-fly to each batch. For feature-based methods, we instead precom-
uted augmented datasets by applying the augmentation multiple times
o each window (10 for pathology detection, 5 for sleep staging), and
hen extracting features from the augmented windows. 
7 https://github.com/autoreject/autoreject 

https://github.com/autoreject/autoreject
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Table 2 

Description of the datasets used in this study. 

TUAB ( López et al., 2017; Obeid 
and Picone, 2016 ) 

PC18 (train) ( Ghassemi et al., 
2018; Goldberger et al., 2000 ) 

MSD 

Recording settings Hospital Sleep clinic At-home 
# recordings 2993 994 98 
# unique subjects 2329 994 67 
Sampling frequency (Hz) 250, 256 or 512 200 256 
# EEG channels 27 to 36 6 4 
Reference Common average M1 or M2 Fpz 
Labels Normal, abnormal W, N1, N2, N3, R W, N1, N2, N3, R 
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.3. Data 

Approaches were compared on three datasets ( Table 2 ): for pathol-
gy detection on the TUH Abnormal EEG dataset ( Obeid and Pi-
one, 2016 ) and for sleep staging on both the Physionet Challenge 2018
ataset ( Ghassemi et al., 2018; Goldberger et al., 2000 ) and an internal
ataset of mobile overnight EEG recordings. 

The TUH Abnormal EEG dataset v2.0.0 (TUAB) ( López et al., 2017;
beid and Picone, 2016 ) contains 2993 recordings of 15 min or more

rom 2329 different patients who underwent a clinical EEG exam in a
ospital setting. Each recording was labeled as “normal ” (1385 record-
ngs) or “abnormal ” (998 recordings) based on detailed physician re-
orts. Most recordings were sampled at 250 Hz and comprised be-
ween 27 and 36 electrodes. The corpus is already divided into a train-
ng and an evaluation set with 2130 and 253 recordings each. The
ean age across all recordings is 49.3 years (min: 1, max: 96) and
3.5% of recordings are of female patients. The TUAB data was prepro-
essed in the following manner. The first minute of each recording was
ropped to remove noisy data that occurs at the beginning of recordings
 Gemein et al., 2020 ). Longer files were cropped such that a maximum of
0 min was used from each recording. Then, 21 channels common to all
ecordings were selected (Fp1, Fp2, F7, F8, F3, Fz, F4, A1, T3, C3, Cz, C4,
4, A2, T5, P3, Pz, P4, T6, O1 and O2). EEG channels were downsampled
o 100 Hz and clipped at ±800 𝜇𝑉 . Finally, non-overlapping windows of
 s were extracted, yielding windows of size ( 600 × 21 ). Deep learning
odels were trained on TUAB with a batch size of 256 and weight decay

f 0.01. 
Physionet Challenge 2018 dataset (PC18) The Physionet Challenge

018 (PC18) dataset ( Ghassemi et al., 2018; Goldberger et al., 2000 )
ontains recordings from a total of 1983 different individuals with (sus-
ected) sleep apnea whose EEG, EOG, chin EMG, respiration airflow
nd oxygen saturation were monitored overnight. Bipolar EEG chan-
els F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-M1 were recorded
t 200 Hz. Sleep stage annotations were obtained from 7 trained scorers
ollowing the AASM manual ( Berry et al., 2012 ) (W, N1, N2, N3 and R).

e focused our analysis on a subset of 994 recordings for which these
nnotations are publicly available. In this subset of the data, mean age
s 55 years (min: 18, max: 93) and 33% of participants are female. For
C18, the EEG was first filtered using a 30 Hz FIR lowpass filter with a
amming window to reject higher frequencies that are not critical for

leep staging ( Aboalayon et al., 2016; Chambon et al., 2018 ). The EEG
hannels were then downsampled by a factor of two to 100 Hz to reduce
he dimensionality of the input data. Finally, non-overlapping 30-second
indows ( 3000 × 6 ) were extracted. Experiments on PC18 used a batch

ize of 64 and weight decay of 0.001. 
Muse Sleep Dataset (MSD) We lastly tested our approach on real-

orld mobile EEG data, in which channel corruption is likely to occur
aturally. We used an internal dataset of overnight sleep recordings col-
ected with the Muse S EEG headband from InteraXon Inc. (Toronto,
anada). This data was collected in accordance with the privacy pol-

cy (July 2020) users must agree to when using the Muse headband 8 
8 https://choosemuse.com/legal/privacy/ 

i  

t

6 
nd which ensures their informed consent concerning the use of EEG
ata for scientific research purposes. The Muse S is a four-channel
ry EEG device (TP9, Fp1, Fp2, TP10, referenced to Fpz), sampled
t 256 Hz. The Muse headband has been previously used for event-
elated potentials research ( Krigolson et al., 2017 ), brain performance
ssessment ( Krigolson et al., 2021 ), research into brain development
 Hashemi et al., 2016 ), sleep staging ( Koushik et al., 2018 ), and stroke
iagnosis ( Wilkinson et al., 2020 ), among others. A total of 98 par-
ial and complete overnight recordings (mean duration: 6.3 h) from 67
nique users were selected from InteraXon’s anonymized database of
use customers, and annotated by a trained scorer following the AASM
anual. Despite the derivations being different from the common mon-

age used in polysomnography, the typical microstructure necessary to
dentify sleep stages, e.g., sleep spindles, k-complexes and slow waves,
an be easily seen in all four channels. Therefore, sleep stage annotations
ere obtained from actual EEG activity rather than ocular or muscular
rtifacts. Mean age across all recordings is 37.9 years (min: 21, max:
4) and 45.9% of recordings are of female users. Preprocessing of MSD
ata was the same as for PC18, with the following differences: (1) chan-
els were downsampled to 128 Hz, (2) missing values (occurring when
luetooth packets are lost) were replaced by linear interpolation using
urrounding valid samples, (3) after filtering and downsampling, sam-
les which overlapped with the original missing values were replaced
y zeros, and (4) channels were zero-meaned window-wise. We used a
atch size of 64 and weight decay of 0.01 for MSD experiments. 

We split the available recordings from TUAB, PC18 and MSD into
raining, validation and testing, such that recordings used for testing
ere not used for training or validation. For TUAB, we used the pro-
ided evaluation set as the test set. The recordings in the development
et were split 80-20% into a training and a validation set. Therefore, we
sed 2171, 543 and 276 recordings in the training, validation and test-
ng sets. For PC18, we used a 60-20-20% random split, meaning there
ere 595, 199 and 199 recordings in the training, validation and testing

ets respectively. Finally, for MSD, we retained the 17 most corrupted
ecordings for the test set (Supplemental Appendix D) and randomly
plit the remaining 81 recordings into training and validation sets (65
nd 16 recordings, respectively). This was done to emulate a situation
here training data is mostly clean, and strong channel corruption oc-

urs unexpectedly at test time. We performed hyperparameter selection
n each of the three datasets using a cross-validation strategy on the
ombined training and validation sets. 

We repeated training on different training-validation splits (two for
C18, three for TUAB and MSD). Neural networks and random forests
ere trained three times per split on TUAB and MSD (two times on
C18) with different parameter initializations. Training ran for at most
0 epochs or until the validation loss stopped decreasing for a period of
 least 7 epochs on TUAB and PC18 (a maximum of 150 epochs with a
atience of 30 for MSD, given the smaller size of the dataset). 

Finally, accuracy was used to evaluate model performance for
athology detection experiments, while balanced accuracy (bal acc), de-
ned as the average per-class recall, was used for sleep staging due to

mportant class imbalance (the N2 class is typically much more frequent
han other classes). 

https://choosemuse.com/legal/privacy/
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Fig. 2. Impact of channel corruption on pathology detection performance of standard models. We trained a filter-bank Riemannian geometry pipeline (blue), a 
random forest on handcrafted features (orange) and a standard ShallowNet architecture (green) on the TUAB dataset, given montages of 2 (T3, T4), 6 (Fp1, Fp2, T3, 
T4, Fz, Cz) or 21 (all available) channels. Performance was then evaluated on artificially corrupted test data under two scenarios: (A) the 𝜂 noise strength parameter 
was varied given a constant channel corruption probability of 50%, and (B) the number of corrupted channels was varied given a constant noise strength of 1. Error 
bars show the standard deviation over 3 models for handcrafted features and 6 models for neural networks. While traditional feature-based models fared slightly 
better than a vanilla neural network in some cases (bottom right), adding noise predictably degraded the performance of all three models. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.4. Evaluation under conditions of noise 

The impact of noise on downstream performance and on the pre-
icted DSF filters was evaluated in three steps. First, we artificially cor-
upted the input EEG windows of TUAB and PC18 by using a similar
rocess to our data augmentation strategy ( Eq. (6) ). We used the same
alues for 𝜂, 𝜎 and 𝑝 , but used a single mask 𝝂 per recording, such that
he set of corrupted channels remained the same across a recording.
efore corrupting, we subsampled a few EEG channels to recreate the
parse montage settings of TUAB (Fp1, Fp2, T3, T4, Fz, Cz) and PC18
F3-M2, F4-M1, O1-M2, O2-M1). We then analyzed downstream perfor-
ance under varying noise level conditions. Second, we ran experiments

n real corrupted data (MSD) by training our models on the cleanest
ecordings and evaluating their performance on the noisiest recordings.
inally, we analyzed the distribution of DSF filter weights predicted by
 subset of the trained models. 

. Results 

.1. Performance of existing methods degrades under channel corruption 

How do standard EEG classification methods fare against channel
orruption? If channels have a high probability of being corrupted at
7 
est time, can noise be compensated for by adding more channels? To
nswer these questions, we measured the performance of three baseline
pproaches (Riemannian geometry, handcrafted features and a “vanilla ”
et, i.e. , ShallowNet without attention) trained on a pathology detection
ask on three different montages as channels were artificially corrupted.
esults are presented in Fig. 2 . 

All three baseline methods performed similarly and suffered consid-
rable performance degradation as stronger noise was added ( Fig. 2 A)
nd as more channels were corrupted ( Fig. 2 B). First, under progres-
ively noisier conditions, adding more channels did not generally im-
rove performance. Strikingly, adding channels even hampered the abil-
ty of the models to handle noise. Indeed, the impact of noise was much
ess significant for 2-channel models than for 6- or 21-channel models.
he vanilla net performed slightly better than the other methods in low
oise conditions, however it was less robust to heavy noise when using
1 channels. 

Second, when an increasing number of channels was corrupted
 Fig. 2 B), using denser montages did improve performance, although
y a much smaller factor than what might be expected. For instance,
osing one or two channels with the 21-channel models only yielded a
inor decrease in performance, while models trained on sparser mon-

ages lost as much as 30% accuracy. However, even when as many as
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Fig. 3. Impact of channel corruption on pathology detection performance for models coupled with (1) no denoising strategy, (2) Autoreject and (3) data augmentation. 
We compared the per recording accuracy on the TUAB evaluation set (6-channel montage) as (A) the 𝜂 noise strength parameter was varied given a constant channel 
corruption probability of 50%, and (B) the number of corrupted channels was varied given a constant noise strength of 1. Error bars show the standard deviation 
over 3 models for handcrafted features and 6 models for neural networks. Using an automated noise handling method (Autoreject; second column) provided some 
improvement in noise robustness over using no denoising strategy at all (first column). Data augmentation benefited all methods, but deep learning approaches and 
in particular DSF (third column, in red and magenta) yielded the best performance under channel corruption. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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9 This 6-channel montage (Fp1, Fp2, T3, T4, Fz, Cz) performed similarly to 
a 21-channel montage in no-corruption conditions ( Fig. 2 ) while being more 
representative of the sparse montages likely to be found in mobile EEG devices. 
5 channels were still available ( i.e. , six corrupted channels), models
rained on 21 channels performed worse than 2- or 6-channel models
ithout any channel corruption, despite having access to much more

patial information on average. Interestingly, when models were trained
n 21 channels, traditional feature-based methods were more robust to
orruption than a vanilla net up to a certain point, however this did not
old for sparser montages. 

These results suggest that standard approaches cannot handle sig-
ificant channel corruption at a satisfactory level, even when denser
ontages are available. Therefore, better tools are necessary to train
oise-robust models. 

.2. Attention and data augmentation mitigates performance loss under 

hannel corruption 

If including additional EEG channels does not by itself resolve perfor-
ance degradation under channel corruption, what can be done to im-
rove the robustness of standard EEG classification methods? We evalu-
8 
ted the performance of our models when combined with three denois-
ng strategies ( Section 3.2 ) for a fixed 6-channel montage. 9 Results on
athology detection (TUAB) are presented in Fig. 3 . 

Without denoising, all methods showed a steep performance de-
rease as noise became stronger ( Fig. 3 A) or more channels were
orrupted ( Fig. 3 B). Automated noise handling (second column) re-
uced differences between methods when noise strength was increased
 Fig. 3 A), and helped marginally improve robustness when only one or
wo channels were corrupted ( Fig. 3 B). However, it is only with data
ugmentation that clear performance improvements could be obtained,
llowing all methods to perform considerably better in the noisiest set-
ings (third column). Performance of traditional baselines was degraded
owever in low noise conditions. Neural networks, in contrast, saw their
erformance increase the most across noise strengths and numbers of
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Fig. 4. Impact of channel corruption on sleep staging performance for models coupled with (1) no denoising strategy, (2) Autoreject and (3) data augmentation. We 
compared the test balanced accuracy on PC18 (4-channel montage) as (A) the 𝜂 noise strength parameter was varied given a constant channel corruption probability 
of 50%, and (B) the number of corrupted channels was varied given a constant noise strength of 1. Error bars show the standard deviation over 3 models for 
handcrafted features and 4 models for neural networks. Similarly to Fig. 3 , automated noise handling provided a marginal improvement in noise robustness in some 
cases, data augmentation yielded a performance boost for all methods, while a combination of data augmentation and DSF (third column, red and magenta lines 
which overlap) led to the best performance under channel corruption. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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orrupted channels. Whereas their performance decreased by at least
4.6% when going from no noise to strongest noise with the other strate-
ies, training neural networks with data augmentation reduced perfor-
ance loss to 5.3–10.5% on average. The DSF models improved perfor-
ance further still over the vanilla ShallowNet by yielding an improve-
ent of e.g., 1.8-7.5% across noise strengths. Finally, adding the matrix

ogarithm and the soft-thresholding nonlinearity (DSFm-st, in magenta)
ielded marginal improvements over DSFd. Under strong noise corrup-
ion ( 𝜂 = 1 ) our best performing model (DSFm-st + data augmentation)
ielded an accuracy improvement of 29.4% over the vanilla net without
enoising. Overall, this suggests that learning end-to-end to both predict
nd handle channel corruption at the same time is key to successfully
mproving robustness. 

Next, we repeated this analysis on a sleep staging task using the
C18 dataset ( Fig. 4 ). As above, not using a denoising strategy led to
 steep decrease in performance. Once more, Autoreject leveled out dif-
erences between the different methods and boosted performance under
ingle-channel corruption, but otherwise did not improve or degrade
9 
erformance as compared to training models without denoising. Data
ugmentation, in contrast, again helped improve the robustness of all
ethods. Interestingly, it benefited non-deep learning approaches more

han in pathology detection, yielding for instance a similar performance
or both handcrafted features and the vanilla StagerNet. DSF remained
he most robust though with both DSFd and DSFm-st consistently out-
erforming all other methods. The performance of these two methods
as highly similar, producing mostly overlapping lines ( Fig. 4 ). 

Finally, do these results hold under more intricate, naturally occur-
ing corruption such as found in at-home settings? To verify this, we
rained the same sleep staging models as above on the cleanest record-
ngs of MSD (4-channel mobile EEG), and evaluated their performance
n the 17 most corrupted recordings of the dataset. Results are pre-
ented in Fig. 5 . As above, the Riemann approach did not perform well,
hile the handcrafted features approach was more competitive with the
anilla StagerNet without denoising. However, contrary to the above ex-
eriments, noise handling alone did not improve the performance of our
odels. Data augmentation was even detrimental to the Riemann and
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Fig. 5. Recording-wise sleep staging results on 
MSD. Test balanced accuracy is presented for 
the Riemann, handcrafted features and vanilla 
net models without a denoising strategy, and 
for the vanilla net, DSFd and DSFm-st mod- 
els with data augmentation (DA). Each point 
represents the average performance obtained 
by models with different random initializations 
(1, 3 and 9 initializations for Riemann, hand- 
crafted features and deep learning models, re- 
spectively) on each recording from the test 
set of MSD. Lines represent individual record- 
ings. The best performance was obtained by 
combining data augmentation with DSF with 
logm(cov) and soft-thresholding (DSFm-st). 
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anilla net models on average (see Fig. S3). Combined with dynamic
patial filters (DSFd and DSFm-st) though, data augmentation helped
mprove performance over other methods. For instance, DSFm-st with
ata augmentation yielded a median balanced accuracy of 65.0%, as
ompared to 58.4% for a vanilla network without denoising. Perfor-
ance improvements were as high as 14.2% when looking at individual

essions. Importantly, all recordings saw an increase in performance,
howing the ability of our proposed approach to improve robustness in
oisy settings. 

Taken together, our experiments on simulated and natural channel
orruption indicate that a strategy combining an attention mechanism
nd data augmentation yields higher robustness than traditional base-
ines and existing automated noise handling methods. 

.3. Attention weights are interpretable and correlate with signal quality 

Our experiments above demonstrated that DSF with data augmenta-
ion led to higher classification performance than “no denoising ” and
utoreject baselines on both pathology detection and sleep staging

asks, under simulated and real-world channel corruption. Given the
alidated benefit of using DSF, can we explain the behavior of the mod-
le by inspecting its internal functioning? If so, in addition to improving
obustness, DSF could also be used to monitor the effective importance
f each incoming EEG channel, providing an interesting “free ” insight
nto signal quality. To test this, we analyzed the effective channel im-
ortance 𝜙𝑖 of each EEG channel 𝑖 to the spatial filters over the TUAB
valuation set. Results are shown in Fig. 6 . 

Overall, the attention weights behaved as expected: the more usable
 i.e. , noise-free) a channel was, the higher its effective channel impor-
ance 𝜙𝑖 was relative to those of other channels. For instance, without
ny additional corruption, the DSF module focused most of its attention
n channels T3 and T4 ( Fig. 6 A, first column), known to be highly rele-
ant for pathology detection ( Gemein et al., 2020; Schirrmeister et al.,
017 ). However, when channel T3 was replaced with white noise, the
SF module reduced its attention to T3 and instead further increased its
ttention on other channels (second column). Similarly, when both T3
nd T4 were corrupted the module reduced its attention on both chan-
els and leveraged the remaining channels instead, i.e. , mostly Fp1 and
p2 (third column). Interestingly, this change is reflected by the topog-
aphy of the predicted filters 𝑊 DSF ( Fig. 6 B): for instance, some dipolar
lters computing a difference between left and right hemispheres were
ynamically adapted to rely on Fp1 or Fp2 instead of T3 or T4 ( e.g., fil-
ers 1, 3 and 5). Intuitively, the network has learned to ignore corrupted
ata and to focus its attention on the good EEG channels, and to do so
n a way that preserves the meaning of each virtual channel. 

To further verify the interpretability of DSF’s attention weights on
aturally-corrupted real-world EEG data, we visualized the normalized
10 
ffective channel importance metric alongside a time-frequency repre-
entation of the raw EEG in Fig. 7 . As expected, the metric dropped to
alues close to zero when a channel suffered heavy corruption, e.g. Fp1
hroughout the recording (left column) and TP9 intermittently (right
olumn). These results again illustrate the capacity of DSF to ignore
orrupted data, but also highlight its capacity to dynamically adapt to
hanging noise characteristics. 

.4. Deconstructing the DSF module 

What might explain the capacity of the DSF module to improve
obustness to channel corruption and provide interpretable attention
eights? By comparing DSF to simpler interpolation-based methods,
SF can be understood as a more complex version of a simple attention-
ased model that decides how much each input EEG channel should be
eplaced by its interpolated version (details provided in Supplemental
ppendix F). With this connection in mind, we performed an ablation
tudy to understand the importance of each additional mechanism lead-
ng to the formulation of the DSF module. Fig. 8 shows the performance
f the different attention module variations trained on the pathology
etection task with data augmentation, under different noise strengths.

Naive interpolation of each channel based on the 𝐶 − 1 others (or-
nge) performed similarly to or worse than the vanilla ShallowNet
odel (blue) across noise strengths. Introducing a single attention
eight (green) to control how much channels should be mixed with their

nterpolated version only improved performance for noise strengths
bove 0.5. Using one attention weight per channel (red) further im-
roved performance, this time across all noise strengths. The addition of
ynamic interpolation (magenta), in which both the attention weights
nd an interpolation matrix are generated based on the input EEG win-
ow, yielded an additional substantial performance boost. Relaxing the
onstraints on the interpolation matrix and adding a bias vector to ob-
ain DSFd (brown) led to very similar performance. Finally, the addition
f the soft-thresholding non-linearity and the use of the matrix logarithm
f the covariance matrix (DSFm-st, pink) further yielded performance
mprovements. 

Together, these results show that combining channel-specific inter-
olation and dynamic prediction of interpolation matrices is necessary
o outperform simpler attention module formulations. Performance can
e further improved by providing the full covariance matrix as input to
he attention module and encouraging the model to produce 0-weights
ith a nonlinearity. 

. Discussion 

We introduced Dynamic Spatial Filtering (DSF), a new method to
andle channel corruption in EEG based on an attention mechanism
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Fig. 6. Effective channel importance and spatial filters predicted by the DSF module trained on pathology detection. We compared three scenarios on the TUAB 
evaluation set: no added corruption, only T3 is corrupted and both T3 and T4 are corrupted. (A) The corruption process was carried out by replacing a channel with 
white noise ( 𝜎 ∼  (20 , 50) 𝜇V), as illustrated with a single 6-s example window (first row). (B) The distribution of effective channel importance values 𝜙 is presented 
using density estimate and box plots. Corrupted channels are significantly down-weighted in the spatial filtering. (C) A subset of the spatial filters (median across all 
windows) are plotted as topomaps for the three scenarios. Corrupting T3 overall reduced the effective importance attributed to T3 and slightly boosted T4 values, 
while corrupting both T3 and T4 led to a reduction of 𝜙 for both channels, but to an increase for the other channels. This change was also reflected in the overall 
topography: dipole-like patterns (indicated by white arrows) were dynamically modified to focus on clean channels ( e.g., Filter 3). 
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rchitecture and a data augmentation transform. Plugged into a neu-
al network whose input has a spatial dimension ( e.g., EEG channels),
SF predicts spatial filters that allow the model to dynamically focus
n important channels and ignore corrupted ones. DSF shares links with
nterpolation-based methods traditionally used in EEG processing but
n contrast does not require separate preprocessing steps that are of-
en expensive with dense montages or poorly adapted to sparse ones.
SF outperformed feature-based approaches and automated denoising
ipelines under simulated corruption on two large public datasets and
n two different predictive tasks. Similar results were obtained on a
maller dataset of mobile sparse EEG with strong natural corruption,
emonstrating the applicability of our approach to challenging at-home
ecording conditions. Finally, the inner functioning of DSF can easily be
nspected using a simple measure of effective channel importance and
opographical maps. Overall, DSF is computationally lightweight, easy
o implement, and improves robustness to channel corruption in sparse
EG settings. 
11 
.1. Handling EEG channel loss with existing denoising strategies 

As opposed to the more general problem of “noise handling ”
 Table 1 ), we focused our experiments on the problem of channel cor-
uption in sparse montages. In light of our results, we explain why exist-
ng strategies are not well suited for handling channel corruption, while
SF is. 

Our first experiment ( Section 4.1 ) demonstrated that adding more
EG channels does not necessarily make a classifier more robust to chan-
el loss. In fact, we observed the opposite: a model trained on two chan-
els can outperform 6- and 21-channel models under heavy channel
orruption ( Fig. 2 A). This can be explained by two phenomena. First,
ncreasing the number of channels increases the input dimensionality of
lassifiers, making them more likely to overfit the training data. Tuning
egularization hyperparameters can help with this, but does not solve
he problem by itself. Second, in vanilla neural networks, the weights
f the first spatial convolution layer, i.e. , the spatial filters applied to
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Fig. 7. Normalized effective channel importance 𝝓̂ predicted by the DSF module on two MSD sessions with naturally-occurring channel corruption. Each column 
represents the log-spectrogram of the four EEG channels of one recording (Welch’s periodogram on 30-s windows, using 2-s windows with 50% overlap). The red line 
above each spectrogram is the normalized effective channel importance 𝜙̂𝑖 (see Eq. (5) ), between 0 and 1, computed using a DSFm-st model trained on MSD. When 
a channel is corrupted throughout the recording (left column, second row, as indicated by broad spectrum high power noise), DSF mostly “ignores ” it by predicting 
small weights for that channel. This results in 𝜙̂𝑖 values close to 0 for Fp1. When the corruption is intermittent (right column, first row), DSF dynamically adapts its 
spatial filters to only ignore important channels when they are corrupted. This is the case for channel TP9 around hours 4, 6, and 7, where 𝜙̂𝑖 is again close to 0. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Performance of different attention module architectures on the TUAB 
evaluation set under increasing channel corruption noise strength. Each line 
represents the average of 6 models (2 random initializations, 3 random splits). 
Models that dynamically generate spatial filters, such as DSF, outperform sim- 
pler architectures across noise levels. 
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he input EEG, are fixed. If one of the spatial filter relies mostly on one
pecific (theoretically) important input channel, e.g., T3, and this input
hannel is corrupted, all successive operations on the resulting virtual
hannel will carry noise as well. This highlights the importance of dy-
amic reweighting: with DSF, we can find alternative spatial filters when
 theoretically important channel is corrupted, and even completely ig-
ore a corrupted channel if it contains no useful information. 
12 
Since adding channels is not on its own a solution, can traditional
EG denoising techniques help handle the channel corruption prob-
em? A seemingly simple approach would be to use a fixed threshold
n a relevant descriptor of signal quality ( e.g., amplitude, variance or
pectral slope) to identify bad channels window-by-window. While this
pproach may appear straightforward, it requires making non-trivial
hoices: Which descriptor should we use? How should we select thresh-
ld values? How do we handle bad channels once they have been identi-
ed? Moreover, this approach is likely to perform suboptimally as differ-
nt EEG hardware, channel and reference positions, preprocessing steps
nd recording conditions, especially in out-of-the-lab settings, all have
n impact on the power and morphology of the signals. As a result, fixed
hreshold values will work well in some cases, but fail to catch actual
oise (or be too strict) in others. 

Instead, it would make sense to adapt thresholds in a data-driven
anner. This is the basis for Autoreject ( Jas et al., 2017 ) which selects

mplitude thresholds using a cross-validation procedure and interpo-
ates bad channels using head geometry. In our experiments, automated
enoising did help but only marginally (middle column of Figs. 3 and
 ). The relative ineffectiveness of this approach can be explained by the
ery low number of available channels in our experiments (4 or 6) which
ikely harmed the quality of the interpolation. Our results therefore do
ot invalidate the use of interpolation-based methods (whose perfor-
ance has been demonstrated multiple times on denser montages and

n challenging noise conditions ( Bigdely-Shamlo et al., 2015; Jas et al.,
017; Nolan et al., 2010 )) but only expose their limitations when work-
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ng with few channels. Still, there are other reasons why interpolation-
ased methods might not be optimal in settings like the ones studied
n this paper. For instance, completely replacing a noisy channel by its
nterpolated version means that any remaining usable information in
his channel will be discarded and that any noise contained in the other
non-discarded) channels will end up in the interpolated channel. 

Finally, an interesting case to consider is when tasks can be per-
ormed accurately with a single good channel, e.g., sleep staging
 Liang et al., 2012 ). In such a case, could a single-channel model per-
orm as well as a multi-channel model, without the need to worry about
he challenges discussed above? While this may be true if we have access
o a reliably good channel, as soon as it is corrupted ( e.g., in real-world
obile EEG settings) it can no longer be used by the model. An ensemble

f single-channel models might be an interesting solution; however this
equires knowing both which channel to focus on and when, which is
ot trivial and requires additional logic and processing pipeline compo-
ents. Moreover, to improve upon such a model by making use of spatial
nformation ( Chambon et al., 2018 ) the model should be trained on all
ossible combinations of good channels, which can quickly become pro-
ibitive. DSF offers a compelling solution to the challenges encountered
ith single-channel models thanks to its end-to-end dynamic reweight-

ng capabilities. 

.2. Impact of the input spatial representation 

The representation used by the DSF module constrains the types of
atterns that can be leveraged to produce spatial filters. For instance,
sing the log-variance of each channel allows detecting large-amplitude
orruption or artifacts, however this makes the DSF model blind to more
ubtle kinds of interactions between channels. These interactions can be
ery informative in certain cases, e.g., when one channel is corrupted by
 noise source which also affects other channels but to a lesser degree. 

Our experiments suggested that models based on log-variance (DSFd)
r vectorized covariance matrices (DSFm-st) were roughly equivalent in
imulated noise conditions ( Figs. 3 –4 ). This is likely because the additive
hite noise we used was not spatially correlated and therefore no spa-

ial interactions could be leveraged by the DSF modules to identify noise.
n naturally corrupted data however, using the full spatial information
long with soft-thresholding was critical to outperforming other meth-
ds ( Fig. 5 ). This is likely because the noise in at-home recordings was
ften correlated spatially and because corrupted channels, often con-
aining mostly noise (Supplemental Appendix D), could be completely
gnored by DSF. 

Related attention block architectures have used average-pooling
 Hu et al., 2018 ) or a combination of average- and max-pooling
 Woo et al., 2018 ) to summarize channels. Intuitively, average pooling
hould not yield a useful representation of the input, as EEG channels
re often assumed to have zero-mean, or are explicitly highpass filtered
o remove their DC offset. Max-pooling, on the other hand, does capture
mplitude information that overlaps with second-order statistics, how-
ver it does not allow differentiating between large transient artifacts
nd more temporally consistent corruption. Experiments on TUAB (not
hown) confirmed this: a combination of min- and max-pooling was less
obust to noise than covariance-based models. From this perspective,
ectorized covariance matrices or similar representations (Supplemen-
al Appendix A) are an ideal choice of spatial representation. Ultimately,
SF could be fed with any learned representations with a spatial dimen-

ion, e.g., filter-bank representations. 

.3. Impact of the data augmentation transform 

Data augmentation was critical to developing invariance to corrup-
ion ( Section 4.2 ). For instance, under simulated corruption, a vanilla
eural network trained with our data augmentation transform gained
onsiderable robustness, even without an attention mechanism. Does
his mean that data augmentation is the key ingredient to DSF? In fact,
13 
ur results on naturally corrupted data ( Fig. 5 ) showed that data aug-
entation without attention negatively impacted performance and that

dding an attention mechanism was necessary to improve performance.
oreover, traditional pipelines generally did not benefit from data aug-
entation as much as neural networks did, and even saw their perfor-
ance degrade considerably in certain cases, e.g., in low noise condi-

ions in pathology detection experiments and on the real-world data for
he Riemann models. 

Nonetheless, these results highlight the role of data augmentation
ransforms in developing robust representations of EEG. Recently, work
n self-supervised learning for EEG ( Banville et al., 2021; Cheng et al.,
020; Mohsenvand et al., 2020 ) has further suggested the importance
f well-characterized data augmentation transforms for representation
earning. Importantly though, the motivation behind the use of data aug-
entation in our experiments was not primarily to reduce overfitting
ue to limited sample sizes like commonly done in deep learning, but
ather to evaluate methods under controlled corruption of experimental
ata. Ultimately, our additive white noise transform could be combined
ith channel masking and shuffling ( Saeed et al., 2020 ) and other po-

ential corruption processes such as those described in ( Cheng et al.,
020; Mohsenvand et al., 2020 ). 

.4. Interpreting dynamic spatial filters to measure effective channel 

mportance 

The results in Fig. 6 demonstrated that visualizing the spatial filters
roduced by the DSF module can reveal the spatial patterns a model has
earned to focus on ( Section 4.3 ). 

As observed in our experiments, a higher 𝝓 indicates higher effective
mportance of a channel for the downstream task. For instance, tempo-
al channels were given a higher importance in the pathology detec-
ion task, which is consistent with previous work ( Gemein et al., 2020;
chirrmeister et al., 2017 ). Similarly, in real-world data, low 𝝓 values
ere given to a channel whenever it was corrupted ( Fig. 7 ). 

However, 𝝓 is not a strict measure of signal quality but more of chan-
el usefulness: there could be different reasons behind the boosting or
ttenuation of a channel by the DSF module. Naturally, if a channel is
articularly noisy, its contribution might be brought down to zero to
void contaminating virtual channels with noise. Conversely though, if
he noise source behind a corrupted channel is also found (but to a lesser
egree) in other channels, the corrupted channel could also be used to
egress out noise and recover clean signals ( Haufe et al., 2014 ). In other
ords, 𝝓 reflects the importance of a channel conditionally to others. 

Finally, using DSF to obtain a measure of channel usefulness actually
pens the door to DSF being used in non-machine learning settings. For
nstance, once a neural network is trained with DSF, its effective channel
mportance values can be reused as an indicator of signal quality on
imilar data ( e.g., data collected with the same or similar hardware).
uch a signal quality metric can be helpful during data collection, or to
now which parts of the recording should be kept for analysis. 

.5. Practical considerations 

When faced with channel corruption in a predictive task, which mod-
lling and denoising strategies should be preferred? This choice should
epend on the number of available channels, as well as on assumptions
bout the stationarity of the noise. When using sparse montages, as in
his paper, different solutions can lead to good results. For instance,
andcrafted features with random forests can perform well when spa-
ial information is not critical ( e.g., sleep staging, Section 4.2 ) or noise is
tationary ( Engemann et al., 2018 ), although they require a non-trivial
eature engineering step. However, when less can be assumed about the
redictive task, e.g., corruption might be non-stationary or spatial infor-
ation is likely important, DSF with data augmentation is an effective
ay to make a neural network noise-robust. Although we did not test
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enoising approaches on dense montages, we can expect different meth-
ds to work well in these settings. For instance, under stationary noise,
iemmanian geometry-based approaches were shown to be robust to the

ack of preprocessing in MEG data ( Sabbagh et al., 2020 ). If, on the other
and, noise is not stationary and the computational resources allow it,
nterpolation-based methods might be used to impute missing channels
efore applying a predictive model ( e.g., Jas et al., 2017 ). In cases where
ntroducing a separate preprocessing step is not desirable, DSF with data
ugmentation might again be a promising end-to-end solution. 10 

.6. Related work 

Deep learning and noise robustness for audio data 

Noise robustness is of particular interest to the speech recognition
ommunity. For example, “noise-aware training ” was proposed to train
eep neural networks on noisy one-channel speech signals by providing
n estimate of the noise level as input to the network ( Seltzer et al.,
013 ). Noise-invariant representations of speech signals were also de-
eloped by training a classifier to perform well on the speech recognition
ask but badly on signal quality classification ( Serdyuk et al., 2016 ) or
y penalizing the distance between the internal representations of clean
nd noisy signals ( Liang et al., 2018; Salazar et al., 2018 ). Methods have
lso been designed to leverage the spatial information of multiple audio
hannels similarly to our proposed DSF approach. Deep beamforming
etworks were used to dynamically reweight different audio channels
o improve robustness to noise, for instance with filter prediction sub-
etworks ( Li et al., 2016; Xiao et al., 2016a; 2016b ). In a fashion similar
o ours, recent work also used spatial attention to reweight beamformed
nput speech signals to decide which filters to focus on ( He et al., 2020 ).

Attention mechanisms for EEG processing 

Recent efforts in the deep learning and EEG community have led to
arious applications of attention mechanisms to end-to-end EEG pro-
essing. First, some studies used attention to improve performance on a
pecific task by focusing on different dimensions of an EEG representa-
ion. For instance, natural language processing-inspired attention mod-
les were used in sleep staging architectures to improve processing of
emporal dependencies ( Guillot et al., 2020; Guillot and Thorey, 2021;
han et al., 2019; 2020; Yuan et al., 2019 ). Attention was also applied in
he spatial dimension to dynamically combine information from differ-
nt EEG channels ( Yuan and Jia, 2019; Yuan et al., 2018 ) or even from
eterogeneous channel types ( Yuan et al., 2019 ). In one case, spatial
nd temporal attention were used simultaneously in a BCI classification
ask ( Huang et al., 2019 ). Second, attention mechanisms have been used
o enable transfer learning between different datasets with possibly dif-
erent montages. In ( Nasiri and Clifford, 2020 ), two parallel attention
echanisms allowed a neural network to focus on the channels and win-
ows that were the most transferable between two datasets. Combined
ith an adversarial loss, this approach improved domain adaptation per-

ormance on a cross-dataset sleep staging task. Similarly to DSF, a spatial
ttention block was used in ( Guillot and Thorey, 2021 ) to recombine in-
ut channels into a fixed number of virtual channels and allow models
o be transferred to different montages. A Transformer-like spatial atten-
ion module was also proposed to dynamically re-order input channels
 Saeed et al., 2020 ). In contrast to DSF, though, these approaches used
ttention weights in the [0,1] range, breaking the conceptual connection
etween channel recombination and spatial filtering. 

.7. Limitations 

Our experiments on sleep data focused on window-wise decoding,
.e., we did not aggregate larger temporal context but directly mapped
10 In this case, the number of parameters of the module can be controlled by 
.g., selecting log-variance as the input representation or reducing dimensional- 
ty by using fewer spatial filters than there are input channels. 
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14 
ach window to a prediction. However, modeling these longer-scale
emporal dependencies was recently shown to help sleep staging per-
ormance significantly ( Chambon et al., 2018; Guillot et al., 2020; Guil-
ot and Thorey, 2021; Phan et al., 2019; 2020; Supratak et al., 2017;
uan et al., 2019 ). Despite a slight performance decrease, window-wise
ecoding offered a simple but realistic setting to test robustness to chan-
el corruption, while limiting the number of hyperparameters and the
omputational cost of the experiments. In practice, the effect of data
orruption by far exceeded the drop in performance caused by using
lightly simpler architectures. 

The data augmentation and the noise corruption strategies exploited
n this work employ additive Gaussian white noise. While this approach
elped develop noise robust models, spatially non-correlated additive
hite noise represents an “adversarial scenario ”. Indeed, under strong
hite noise, the information in higher frequencies is more likely to be

ost than with e.g., pink or brown noise. Additionally, the absence of spa-
ial noise correlation means that spatial filtering can less easily leverage
ulti-channel signals to regress out noise ( Section 5.4 ). Exploring more

aried and realistic types of channel corruption could further help clar-
fy the ability of DSF to work under different conditions. Despite this,
ur experiments on naturally corrupted sleep data showed that additive
hite noise as a data augmentation does help improve noise robustness.

Finally, we focused our empirical study of channel corruption on two
linical problems that are prime contenders for mobile EEG applications:
athology screening and sleep monitoring. Interestingly, these two tasks
ave been shown to work well even with limited spatial information
 i.e. , single-channel sleep staging ( Liang et al., 2012 )) or to be highly cor-
elated with simpler spectral power representations ( Schirrmeister et al.,
017 ). Therefore, future work will be required to validate the use of DSF
n tasks where fine-grained spatial patterns might be critical to success-
ul prediction, e.g., brain age estimation ( Engemann et al., 2020 ). Other
ommon EEG-based prediction tasks such as seizure detection might
enefit from DSF and will require further validation. 

. Conclusion 

We presented Dynamic Spatial Filtering (DSF), an attention mech-
nism architecture that improves robustness to channel corruption in
EG prediction tasks. Combined with a data augmentation transform,
SF outperformed other noise handling procedures under simulated and

eal channel corruption on three datasets. Moreover, DSF enables effi-
ient end-to-end handling of channel corruption, works with few chan-
els, is interpretable and does not require expensive preprocessing. We
ope that our method can be a useful tool to improve the reliability
f EEG processing in challenging non-traditional settings such as user-
dministered, at-home recordings. 
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