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Supplementary Notes 

 

Note 1: Data collection and image processing 

For both, the direct and diffracted beam measurements, and for each ∆𝑡, we acquired a static 

image (probe only), an excitation laser background image (pump only), and a pump-probe 

image, in a sequential way. The camera readout time is approximately 1.1 sec between each 

acquisition. After the course of the image acquisition at a certain ∆𝑡, the delay line was changed 

by the interval of 3.3 ps, and the measurement was repeated in the observable time window range 

from ∆𝑡 = -233 ps to 400.3 ps for the direct beam case and from ∆𝑡 = -133 ps to 433.3 ps for the 

diffracted beam case. Difference maps were obtained by subtraction of the probe-only and the 

pump-only images from the pump-probe images, and addition of the camera background image 

recorded prior to the ∆𝑡 scan (to compensate for double cancelling of the detector noise). 

Integrated intensities were obtained by defining regions-of-interest (ROIs) around the image 

centre (direct beam experiments) or the Bragg reflections (diffraction experiments) and summing 

up the values of all pixels within the ROIs. The ROI size for the direct beam experiment was 30 

pixels by 30 pixels (≅ 1.7 mm by 1.7 mm as indicated in the red box in Fig. 1B), and that for the 

diffracted beam experiment was 10 pixels by 10 pixels, covering a single Bragg spot. The 

estimated electron detector resolution was approximately 50 µm. Six-fold symmetry of the 

diffraction pattern was assumed and used to increase the S/N by averaging over symmetry-

equivalent Bragg spots. Absolute differences, Δ𝐼, obtained by integration of the difference map 

were converted to relative intensities Δ𝐼/𝐼ref by using values obtained by integration of the probe 

only images as reference intensities.  

Note 2: Data analysis  

For a given region-of-interest (ROI) let 𝐼(Δ𝑡) be the background-corrected and integrated 

intensity at time Δ𝑡 after laser excitation (nominal delay). Let 𝐼ref(Δ𝑡) denote the intensity at the 

ROI if no effect is present, neither the surface field effect nor the excess Debye-Waller effect due 

to temperature changes of the sample following photo-excitation.  Thus, 𝐼ref(Δ𝑡) = 𝐼(Δ𝑡) for Δ𝑡 < 

0. We also assume that each effect changes the observed intensity separately by independent 

factors 𝑥SF and 𝑥DW. Then, the combined effect is given by the product: 

𝐼(Δ𝑡)

𝐼ref(Δ𝑡)
= 𝑥SF(Δ𝑡)𝑥DW(Δ𝑡)    (1) 

where, 𝐼/𝐼ref is the relative intensity, which can be expressed by the relative intensity changes, 

Δ𝐼/𝐼ref, via the following relation: 

Δ𝐼

𝐼ref
=

𝐼(Δ𝑡)−𝐼ref(Δ𝑡)

𝐼ref(Δ𝑡)
=

𝐼

𝐼ref
− 1    (2) 

In the case that only a single effect is active, one of the factors would be identical to 1.  

In the following, the time argument is replaced by the true delay 𝑡 = Δ𝑡 − 𝑡0 which is the

nominal delay Δ𝑡 corrected for an unknown offset 𝑡0 (to be fitted) between the arrival of the 

probe and the pump pulse at the sample (arrival times measured at pulse maximum). 

 

Note 3: Debye-Waller effect.  



According to the Debye-Waller theory, the intensity of a Bragg reflection, 𝐼(hk)(𝑇l), (hk) Miller 

indices, is affected by the lattice temperature, 𝑇l, of the diffracting crystal (two-dimensional case) 

as: 

𝐼(hk)(𝑇l) = 𝐼(hk),0 ⋅ 𝑒𝑥𝑝 {−
1

2
< 𝑢(𝑇l)

2 > 𝐺(hk)
2 }  (3) 

where 𝐼(hk),0, < 𝑢(𝑇l)
2 >, and 𝐺(hk) are the scattered intensity of the rigid lattice (at zero 

Kelvin), the in-plane mean square atomic displacement dependent on 𝑇l, and the reciprocal 

lattice vector of the (hk) lattice points, respectively. Assuming that < 𝑢(𝑇l)
2 > of carbon atoms 

in graphene is proportional to 𝑇l, we reformulate Supplementary Equation (3) with respect to 

𝑇l(𝑡) for the respective spot orders: 

𝐼(10)(𝑇l(𝑡))

𝐼(10),ref
= 𝑒𝑥𝑝{−𝑝(𝑇l(𝑡) − 𝑇l,ref)𝐺(10)

2 }     (4) 

𝐼(11)(𝑇l(𝑡))

𝐼(11),ref
= 𝑒𝑥𝑝{−𝑝(𝑇l(𝑡) − 𝑇l,ref)𝐺(11)

2 }  

                 = 𝑒𝑥𝑝{−𝑝(𝑇l(𝑡) − 𝑇l,ref)𝐺(10)
2 (𝐺(11)/G(10))2}  (5) 

where, 𝑝 is a constant.  𝑇l,ref is the lattice temperature before excitation, 𝐼(hk),ref is the intensity 

that would be measured if the temperature were the same as before excitation. We write 𝐼(hk),ref = 

𝐼(hk),ref(𝑡) to indicate that measured intensities might be subject to small temporal variations due 

to instabilities in the experimental setup. With (𝐺(11)/𝐺(10))2= 3 for graphene and Δ�̃�l = 𝑝(𝑇l −

𝑇l,ref)𝐺(10)
2 , Supplementary Equations 4 and 5 are rewritten as: 

𝐼(10)(𝑡)

𝐼(10),ref(𝑡)
= 𝑒𝑥𝑝( − Δ�̃�l(𝑡))     (6) 

𝐼(11)(𝑡)

𝐼(11),ref(𝑡)
= 𝑒𝑥𝑝( − 3 Δ�̃�l(𝑡))     (7) 

Δ�̃�l and the temperature change Δ𝑇l = 𝑇l − 𝑇l,ref are related by a constant factor, 𝑝𝐺[10]
2 . Thus, 

𝛥�̃�l can be considered as the temperature change measured in special units. In the following Δ�̃�l 

will be identified with Δ𝑇l. Hence, the relative intensity changes (𝐼(hk)/𝐼(hk),ref) of the 1st and 2nd 

order reflection due to the Debye-Waller effect are related to the change in lattice temperature 

according to 

𝑥(10),DW = 𝑒𝑥𝑝( − Δ𝑇l(𝑡))     (8) 

𝑥(11),DW = 𝑒𝑥𝑝( − 3 Δ𝑇l(𝑡))     (9) 

In order to describe the variation of the lattice temperature after photo-excitation, first a simple 

model was used based on the assumption of a thermal system in contact with a heat bath at 

temperature 𝑇l,ref  which absorbs a certain amount of energy E at time 𝑡0. In this simplest version, 

the absorbed energy is immediately converted to thermal energy, leading to a sudden rise in 

temperature of  Δ𝑇 = 𝐸/𝐶   at   𝑡 = 0 where 𝐶 is the lattice heat capacity. At  𝑡 > 0 the 

temperature excursion decays exponentially via anharmonic phonon coupling modes of graphene 

if the thermal relaxation rate, 𝑏T, is constant (1). This model already captures the most important 

features of the temperature curve, and the measured intensity traces can be fitted with this model 

to fairly high quality if the temporal resolution of the measurements is taken into account (see 



Supplementary Note 5). However, conversion of absorbed energy into lattice vibrations 

corresponding to a Boltzmann distribution at elevated temperature proceeds on time scales 

comparable to the temporal resolution, on the order of a few picoseconds (1). To allow for a 

gradual increase of the temperature after photo-excitation we finally used a combination of two 

exponentials of the form:  

           Δ𝑇l(𝑡) =  𝑋T(𝑒𝑥𝑝( − 𝑎T𝑡) − 𝑒𝑥𝑝( − 𝑏T𝑡))(
𝑎T

𝑏T−𝑎T
) 𝛩(𝑡)       (10)  

Here, 𝑋T is a constant, 𝑎T and 𝑏T are rate constants describing the gradual conversion of the 

absorbed energy into lattice vibrations and the relaxation back to equilibrium by thermal transfer 

to the heat bath. 𝛩 is the Heaviside step function. Supplementary Equation 10 is the solution of 

the inhomogeneous differential equation: 

𝐶 
𝑑𝑇l

𝑑𝑡
 =   ∆𝐸 𝑎T  exp(−𝑎T 𝑡)  −   𝐶 𝑏T (𝑇l −  𝑇ref)   (11) 

Solving Supplementary Equation 11 shows that 𝑋T =  𝐸 𝐶⁄ . This is the maximum lattice 

temperature that could be reached after long time if thermal relaxation were forbidden (𝑏T = 0). 

Thus, 𝑋T should be proportional to the fluence used in the experiments, and the adequacy of the 

model can be measured against the degree of proportionality.   

The first term in Supplementary Equation 11 describes the conversion of absorbed energy 

into lattice heat. It is modelled as an exponential decay that is independent of the lattice 

temperature. More complicated models with a higher number of free parameters could be 

envisioned. However, the number of parameters that can be determined by fitting to the observed 

intensity traces is limited by the precision of the experimental data.  

Note 4: Surface field effect.   

For the quantitative analysis of the measured intensity kinetics of the projection images,  a 

phenomenological approach was adopted due to the lack of a comprehensive physical model of 

space charge dominated plasma dynamics, comprising both the initial plasma build-up and the 

subsequent charge recombination process. We used a two-exponential function similar to 

Supplementary Equation 10 to express 𝑥SF as a function of time:  

𝑥SF(𝑡) = 1 −   𝑋SF(𝑒𝑥𝑝( − 𝑎SF 𝑡) − 𝑒𝑥𝑝( − 𝑏SF 𝑡)) (
𝑎SF

𝑏SF−𝑎SF
) 𝛩(𝑡) (12) 

The form of the exponential term in Supplementary Equation 12 is the same as that used to 

model the temperature variation underlying the Debye-Waller effect. By analogy to 𝑋T, the 

constant factor 𝑋SF can be used to quantify the overall strength of the surface field effect. The 

terms 𝑎SF and 𝑏SF are the rate constants of the build-up and the decay phase of the surface field 

effect. Supplementary Equation 12 is well-suited for characterizing the observed initial intensity 

drop and the subsequent recovery observed in projection imaging. 

Note 5: Convolution with probe pulse.  

The observed intensity time traces are blurred by the finite temporal resolution of the 

measurements which is mainly determined by the probe electron bunch duration (≅ 12 ps 

FWHM for the D = 180 fs excitation case), longer than the delay time interval (≅ 3.3 ps). Hence, 

functions 𝑥SF (direct beam case) or 𝑥SF 𝑥(hk),DW (diffraction experiments) were transformed by 



numerical convolution with the pulse profile, before comparing them with measurements of the 

relative intensities 𝐼 𝐼ref⁄ . A Gaussian profile 𝑃𝜎e
 with standard deviation 𝜎e = 5 ps =

FWHH/2.355 was assumed.  

       𝑦obs(𝑡) =  
𝐼(𝑡)

𝐼ref(𝑡)
       = [𝑥SF ∗ 𝑃𝜎e

](𝑡)   +  휀(𝑡)    (13) 

𝑦(hk),obs(𝑡) =   
𝐼(hk)(𝑡)

𝐼(hk),ref(𝑡)
 = [𝑥SF 𝑥(hk),DW ∗ 𝑃𝜎e

](𝑡) +  휀(hk)(𝑡)  (14) 

In these preliminary equations, the asterisk denotes convolution, 𝑦obs(𝑡) the observed data, and 

휀(𝑡) deviations from the expected values due to statistical errors of the measurements (residuals). 

In the absence of systematic errors, deviations from the expected values should be distributed 

about zero. In this case, Supplementary Equations 13 and 14 could be used to fit the free 

parameters that appear on the right side by minimizing the sum of the squared residuals. 

Note 6: Intensity drift correction. 

According to Supplementary Equations 13 and 14 the relative intensities measured at negative 

times should be distributed around 1 because 𝑦obs(𝑡) = 1 + 휀(𝑡) for  𝑡 ≪ −𝜎e. However, this 

was not the case in general, indicating that small systematic errors remained even after careful 

correction of the raw data (see Supplementary Note 1). To account for such errors, the fit 

function was modified by addition of a “drift” term in the form of a Taylor expansion, 𝑦0 +
𝑦1𝑡 + 𝑦2 𝑡

2 …, where the parameters 𝑦𝑖 were considered as fit parameters. For some of the direct 

beam traces, inclusion of terms up to second order in 𝑡 led to small improvements of the fit. 

However, in order to reduce the danger of overfitting, the expansion was generally truncated at 

the linear term. In most cases, and in particular for all traces of the diffraction experiments, 

inclusion of the constant term was sufficient to obtain satisfying results. Thus, the final form of 

the fit function was 

𝑦calc(𝑡) = [𝑥SF ∗ 𝑃𝜎e
](𝑡)   +  𝑦0 + 𝑦1𝑡  (for surface field effect) (15) 

   𝑦(hk),calc(𝑡) =  [𝑥SF 𝑥(hk),DW ∗ 𝑃𝜎e
](𝑡)  +  𝑦(hk),0 (for Debye-Waller effect) (16) 

with 𝑦1 = 0 for all but two cases (see Supplementary Table 1). 

Note 7: Procedure of fitting. 

First, the traces of the direct beam experiments were fitted using Supplementary Equation 15 

with 5 or 6 parameters (𝑡0, 𝑋SF, 𝑎SF, 𝑏SF, 𝑦0 [, 𝑦1]), in general. Measured traces and fitted curves 

are shown in Supplementary Figure 3, and the fitted parameters are listed in Supplementary 

Table 1. It turned out that the rate constants  𝑎SF (= 1 𝜏SF,ini⁄ ) and  𝑏SF (= 1 𝜏SF,rec⁄ ) did not vary 

a lot for conditions where the surface field effect is strong and contamination of diffraction data 

is high. Thus, when the diffraction data were fitted, 𝑎SF and 𝑏SF were set to the mean values of 

the results obtained from the direct beam experiments, in order to reduce the number of free 

parameters. The diffraction data were fitted using Supplementary Equation 16, with up to 7 free 

parameters (𝑡0, 𝑋T, 𝑎T, 𝑏T, 𝑋SF, 𝑦(10),0, 𝑦(11),0). The traces of both diffraction orders were fitted 

simultaneously by minimizing the total sum of the squared residuals. The results are presented in 

Supplementary Figure 6 and Supplementary Table 3 (with 𝑎T = 1 𝜏T,ini⁄  and 𝑏T = 1 𝜏T,rec⁄ ). It 

should be noted that the surface field effect was assumed to be the same for both diffraction 



orders. The results of the D-series showed that the SF effect is negligible at F of 12.1 mJ/cm² and 

D of 2 ps and above. In the F-series, D was 2 ps, and F did not exceed 12.1 mJ/cm². Hence, for 

the final calculations, parameter 𝑋SF was set to zero (for the F-series), reducing the number of 

free parameters from 7 to 6. Calculations were done with R (2), and R package minpack.lm (3) 

was used for non-linear least-squares fitting with the Levenberg-Marquardt algorithm. 

  



 

Supplementary Figure 1. Schematic of the experimental setup. The master laser system used 

in the present work was a Yb:KGW based femtosecond laser system (Pharos, Light Conversion) 

operating at 1030 nm central wavelength with tunable pulse duration (180 fs – 10 ps) and repetition 

rate (1 – 50 kHz). The fundamental laser pulse was frequency-doubled to generate a second 

harmonic (515 nm) split (by a beam splitter, BS) into two arms. One arm was frequency-doubled 

to obtain a fourth harmonic (257 nm) that is back-illuminating the photocathode to generate an 

electron bunch. A stack of metal and insulator plates is directly integrated to the photocathode, 

used as an electrostatic Einzel lens for the purpose of electron bunch focusing. The other arm was 

the excitation source that irradiates the sample after going through a focusing lens, with an incident 

angle of approximately 30o. The excitation laser fluence was adjusted by manually rotating the 

neutral density filter (NDF) wheel, and the pulse duration was changed by computer-controlled 

variation of the separation distance of a grating pair built into the laser system. The adjusted 

fluence and the pulse duration were independently confirmed by a laser power measurement and 

by an autocorrelation measurement, respectively. The time-delay between the electron bunch and 

the excitation pulse was varied over the desired range by a programmed scan of the retroreflector 

position on the delay line stage. After passing the sample, direct and diffracted electrons are 

collected at a microchannel plate (chevron type, pore diameter: 12 μm)/phosphor screen assembly 

inside a vacuum chamber (~110-8 mbar), and electron images are recorded with a scientific grade 

CCD camera (PI system, Ropers scientific Ltd.)  



Supplementary Figure 2. Direct beam image analysis. a Typical projection image of the copper 

mesh grid before (upper panel) and after (lower panel) excitation. The kinetic energy of the probe 

electron for this measurement was 0.5 keV. Scale bar is 5 mm. b Line profiles (upper graph) of a 

region-of-interest (indicated by the opened yellow box) of the direct beam image in Supplementary 

Fig. 2a. The profiles are integrated in the horizontal direction. The lower graph shows the 

difference of the profiles between the projection images. The sum of the red and blue shaded area 

is equal to 0, indicating the conservation of the total charge of the probe electron bunch. 

 



Supplementary Figure 3. F- and D-dependent pump-probe kinetics of the direct beam 

intensity. a F-dependence. Black circles in the left plots are the measured intensity changes, ∆𝑰/𝑰, 

as a function of ∆𝒕, and the solid red curve corresponds to the fit of each time-trace. Dotted black 

and red lines indicate the correction of the intensity drift and the time zero shift, respectively. The 

right plots are the corresponding residual values from the two-exponential model used to fit the 

data (for details see Supplementary Note 2). b D-dependence. 

 

 



  



Supplementary Figure. 4. Calculated temporal evolution of electronic and lattice 

temperature of the Cu mesh. a F-dependence: profiles at a fixed D of 180 fs and varying Fs. b 

D-dependence: profiles at a fixed F of 22.8 mJ/cm2 and varying Ds. 

  



Supplementary Figure 5. Relation between 𝑻𝐞,𝐩𝐞𝐚𝐤 and 𝝉 of the Cu mesh upon excitation 

with different F and D. The values are tabulated in Supplementary Table 1. 

 

 

 

  



  



Supplementary Figure 6. F- and D-dependent pump-probe kinetics of diffracted beam 

intensities. a D-dependence. Black circles in the left plot are the relative intensity changes, ∆𝑰/𝑰, 

of the (10) reflections (upper panel) and the (11) reflections (bottom panel), and the solid red 

curves are the results of simultaneous fits of both traces. Surface field and Debye-Waller effects 

are depicted separately by solid blue and cyan curves, respectively. Dotted red and black lines 

indicated intensity offsets and the time zero shifts. Plots on the right side show the corresponding 

residuals. b F-dependence. 

  



Supplementary Figure 7. Calculated electric potential distribution at the charge separated 

region. a-c The plasma charge is set to (160 fC, d = 20 μm) (a), (160 fC, d = 70 μm) (b), and (16 

fC, d = 20 μm) (c), respectively. 𝜑 = 10, 50, 100, 150, 200 μm (from left to right), 𝛿 = 1, 10, 50, 

100, 150 μm (from top to bottom).  

  



Supplementary Figure 8. Calculated electric field at the charge separated region. a-c The 

plasma charge is set to (160 fC, d = 20 μm) (a), (160 fC, d = 70 μm) (b), and (16 fC, d = 20 μm) 

(c), respectively. From left to right: 𝜑 = 10, 50, 100, 150, 200 μm, from top to bottom: 𝛿 = 1, 10, 

50, 100, 150 μm.   

  



 

 

 

 



  



 

Supplementary Figure 9. Distribution of final positions of low-energy electrons at the screen 

plane. a-c The plasma charge is set to (160 fC, d = 20 μm) (a), (160 fC, d = 70 μm) (b), and (16 

fC, d = 20 μm) (c), respectively.  

  



 

F 
(mJ/cm2) 

 𝑡0 
(ps) 

100 𝑋SF 
𝜏SF,ini 

(ps) 

𝜏SF,rec 

(ps) 
104  𝑦

0
 106  𝑦

1
 

0.94* 10.0 
0.9 
±0.1 

100 ∞ 
2.7 

±4.3 
0 

4.5 
-2.8 
±3.0 

5.2 
±0.5 

64.5 
±11.6 

294.8 
±45.0 

-1.3 
±4.6 

0 

9.1 
10.2 
±1.0 

10.6 
±0.2 

21.4 
±1.6 

227.5 
±7.1 

-8.9 
±5.0 

0 

13.7 
8.8 
±0.8 

15.7 
±0.3 

19.2 
±1.3 

170.0 
±4.4 

-11.5 
±5.9 

0 

18.2 
9.0 
±0.5 

20.2 
±0.2 

20.9 
±0.9 

177.6 
±3.2 

-4.8 
±5.2 

0 

22.8 
7.7 
±0.4 

23.8 
±0.2 

20.5 
±0.8 

177.8 
±2.7 

-9.2 
±5.2 

0 

27.3 
6.2 
±0.5 

31.8 
±0.7 

28.0 
±1.5 

107.6 
±4.4 

-77.6 
±7.0 

57.0 
±4.1 

D (ps)  𝑡0 

(ps) 
100 𝑋SF 

 𝜏SF,ini 

(ps) 

 𝜏SF,rec 

(ps) 
104  𝑦

0
 106  𝑦

1
 

0.18 
7.7 
±0.4 

23.8 
±0.2 

20.5 
±0.8 

177.8 
±2.7 

-9.2 
±5.2 

0 

0.55 
10.2 
±0.9 

14.4 
±0.2 

17.0 
±1.4 

222.5 
±6.4 

-10.5 
±6.8 

0 

1.0 
19.6 
±1.5 

8.7 
±0.3 

25.3 
±3.0 

255.8 
±30.7 

82.3 
±9.4 

62.9 
±7.0 

1.55 
21.7 
±2.1 

7.4 
±0.4 

39.2 
±5.4 

219.7 
±18.3 

7.2 
±5.8 

0 

2.0 
9.3 
±2.0 

6.5 
±2.7 

40.4 
±4.7 

303.0 
±23.4 

4.2 
±4.9 

0 

2.5 
9.6 
±2.7 

5.2 
±0.2 

21.0 
±4.4 

405.5 
±40.2 

-2.2 
±7.1 

0 

3.1 
15.0 
±3.4 

3.9 
±0.2 

11.7 
±4.6 

526.9 
±72.6 

-1.9 
±7.6 

0 

Supplementary Table 1. Summary of fitted parameters for the direct beam case. These 

parameters are determined by the two-exponential model. The error values correspond to ±1 

standard deviation. *The F = 0.94 mJ/cm² trace was fitted with two free parameters, all other 

parameters were set to fixed values.  Due to the low S/N of this trace, 𝑿𝐒𝐅 is the only parameter 

that can be fitted with reasonable confidence. 

 

  



F (mJ/cm2)  D (fs) 𝑇e,peak (K) 𝜏 (ps) 

27.3 180 5331.6 2.185 

22.8 180 5004.3 2.188 

18.2 180 4624.7 2.251 

13.7 180 4194.4 2.298 

9.1 180 3636.3 2.310 

4.5 180 2817.4 2.133 

0.94 180 1398.4 1.378 

22.8 550 4805.4 2.701 

22.8 1000 4605 3.189 

22.8 1550 4352.3 3.671 

22.8 2000 4159.7 4.191 

22.8 2500 3975.1 4.595 

22.8 3100 3791.5 5.015 

Supplementary Table 2. Summary of 𝑻𝐞,𝐩𝐞𝐚𝐤  and 𝝉 of the Cu mesh upon excitation with 

different F and D. These values are determined from the calculated electronic temperature 

profile, 𝑻𝐞(∆𝒕), in Supplementary Fig. 4. 

  



F 
(mJ/cm2) 

𝑡0 (ps)  𝑋T 
𝜏T,ini 

(ps) 

𝜏T,rec 

(ps) 
𝑦

(10),0
 𝑦
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 𝑋SF 

12.1 
1.2 

±0.7 

2.7E-02 
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±1.1 

1199 
±80 

-2.4E-04 
±4.0E-04 

-3.9E-03 

±6.7E-04 
0 

10.1 
2.9 

±0.7 

2.3E-02 

±4.0E-04 

13.9 

±1.2 

915 
±57 

-7.9E-05 
±3.6E-04 

-2.0E-03 

±6.1E-04 
0 

8.1 
12.0 
±0.9 

2.0E-02 

±4.5E-04 

11.4 

±1.5 

628 
±39 

-7.1E-04 
±4.1E-04 

-1.1E-03 

±6.8E-04 
0 

6.1 
12.5 
±1.5 

1.2E-02 

±5.0E-04 

11.8 

±2.7 

501 
±49 

-3.2E-03 
±4.5E-04 

-3.6E-03 

±7.4E-04 
0 

4.1 
15.9 
±2.5 

   9.1E-03 

±5.0E-04 

21.3 

±4.6 

430 
±52 

4.0E-04 
±3.8E-04 

1.6E-03 

±6.1E-04 
0 

D (ps) 𝑡0 (ps)  𝑋T 
𝜏T,ini 

(ps) 

𝜏T,rec 

(ps) 
𝑦

(10),0
 𝑦

(11),0
 𝑋SF 

0.5 
10.7 
±0.9 

2.2E-02 

±1.1E-03 

16.1 

±2.3 

523 
±41 

-3.7E-03 
±6.4E-04 

-9.7E-03 

±7.7E-04 

3.7E-02 

±2.6E-03 

1.0 
5.4 

±0.7 

2.5E-02 

±8.5E-04 

12.7 

±1.2 

883 
±70 

-2.2E-03 
±5.2E-04 

-6.5E-03 

±6.3E-04 

1.0E-02 

±2.0E-03 

1.5 
1.2 

±0.7 

2.7E-02 

±8.0E-04 

10.7 

±1.1 

1370 
±142 

-4.9E-04 
±5.2E-04 

-4.3E-03 

±6.4E-04 

2.8E-03 

±2.1E-03 

2.0 
1.2 

±0.7 

2.7E-02 

±8.8E-04 

10.2 

±1.1 

1208 
±120 

-2.8E-04 
±5.5E-04 

-4.0E-03 

±6.8E-04 

7.0E-07 

±2.3E-03 

2.5 
-5.1 
±0.7 

   2.7E-02 

±7.7E-04 

9.5 

±1.0 

7834 
±4417 

3.9E-03 
±5.4E-04 

-1.4E-03 

±7.1E-04 

   9.8E-08 

±2.1E-03 

Supplementary Table 3. Summary of fitted parameters for the diffracted beam case. For 

details of fitting procedure see Supplementary Note 2. Estimated uncertainties correspond to ±1 

standard deviation. 𝝉𝐒𝐅,𝐢𝐧𝐢 , and 𝝉𝐒𝐅,𝐫𝐞𝐜  were set to 24.4 ps and 190.0 ps, respectively, as fixed 

parameters. These values were the weighted average of the respective parameters in 

Supplementary Table 1.  

 

 

  



Supplementary References 

 

1 Hu, J., Vanacore, G. M., Cepellotti, A., Marzari, N. & Zewail, A. H. Rippling ultrafast dynamics 

of suspended 2D monolayers, graphene. Proc. Natl. Acad. Sci. 113, E6555-E6561 (2016). 

2 R Core Team, R: A language and environment for statistical computing URL https://www.R-

project.org/. R Foundation for Statistical Computing, Vienna, Austria. (2020). 

3 T. V. Elzhov, K. M. Mullen, A. Spiess, B. Bolker, minpack.lm: R interface to the Levenberg-

Marquardt nonlinear least-squares algorithm found in MINPACK, Plus Support for Bounds.  R 

package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm (2016). 

 


