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Understanding the three-dimensional quantum Hall effect in generic multi-Weyl semimetals
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The quantum Hall effect in three-dimensional Weyl semimetal (WSM) receives significant attention for the
emergence of the Fermi loop where the underlying two-dimensional Hall conductivity, namely, sheet Hall con-
ductivity, shows quantized plateaus. In tilt multi-Weyl semimetals (mWSMs) lattice models, we systematically
study Landau levels (LLs) and magneto-Hall conductivity both under the parallel and perpendicular magnetic
field (referenced to the Weyl node’s separation), i.e., B || z and B || x, to explore the impact of tilting and
nonlinearity in the dispersion. We make use of two (single) node low-energy models to qualitatively explain
the emergence of mid-gap chiral (linear crossing of chiral) LLs on the lattice for B || z (B || x). Remarkably,
we find that the sheet Hall conductivity becomes quantized for B | z even when two Weyl nodes project onto
a single Fermi point in two opposite surfaces, forming a Fermi loop with &, as the good quantum number. On
the other hand, the Fermi loop, connecting two distinct Fermi points on two opposite surfaces, with k, being
the good quantum number, causes the quantization in sheet Hall conductivity for B || x. The quantization is
almost lost (perfectly remained) in the type-II phase for B || x (B || z). Interestingly, the jump profiles between
the adjacent quantized plateaus change with the topological charge for both cases. The momentum-integrated
three-dimensional Hall conductivity is not quantized; however, it bears the signature of chiral LLs resulting in
the linear dependence on p for small x. The linear zone (its slope) reduces (increases) as the tilt (topological

charge) of the underlying WSM increases.
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I. INTRODUCTION

With the discovery of the quantum Hall effect (QHE)
[1], the new realm of topological phases of quantum matters
emerges as the central theme of research in condensed matter
physics for their symmetry protected edge states [2]. In the
presence of a strong magnetic field, two-dimensional (2D)
electron gases, for instance, 2D massless Dirac fermions in
graphene and topological surface states, exhibit Landau levels
(LLs) that further result in quantized plateaus in the integer
QHE [3,4]. This effect had been theoretically generalized to
a three-dimensional (3D) system quite some time ago [5,6],
while the experimental realization took place only recently
[7,8]. Interestingly, the extra dimension along the magnetic
field direction prevents the quantization of the Hall conduc-
tance in a 3D electron gas.

Weyl semimetals (WSMs) appear suitable candidates to
study 3D topological states of matter where the band structure
becomes a 3D analog of graphene. However, either time-
reversal symmetry or inversion symmetry, or both of these
symmetries are broken in WSMs [9]. The WSMs host pairs
of monopoles and anti-monopoles of the Berry curvature in
momentum space [10], referred to as Weyl nodes (WNs) of
opposite chirality. Interestingly, the chiral-anomaly induced
negative magnetoresistance [11-13], quantum anomalous
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Hall effect [14,15], nonlocal transport [16], and the plasmon
mode [17] directly reflect the topological nature of WSMs
[12,18]. The WSMs ideally harbor a conical spectrum with
a point-like Fermi surface at the WN. This class is usually
denoted as type-I WSMs. A large tilt in the WNs introduces
the Lifshitz transition where the Fermi surface is no longer
point-like, giving rise to the class of type-II WSMs [19-21]
where the density of states at the WNs become finite. The
type-I and type-1I phases of WSMs have been experimentally
realized in several inversion asymmetric compounds such as
TaAs, MoTe,, and WTe, [22,23].

Interestingly it has been shown that the topological charge
m can be generically greater than unity in multi-WSMs
(mWSMs) [15,24,25], as compared to the conventional
WSMs with m = 1, resembling the multilayer analogs of
graphene [26,27]. The nonlinear anisotropic dispersion of
mWSMs is extensively analyzed in low-energy as well as
lattice model Hamiltonians [28,29]. However, the experimen-
tal discovery of mWSMs is yet to be made. Now, turning
our attention to the intriguing linear responses, the electric-,
thermal-, and magnetotransport properties have been theoret-
ically studied for single WSM [30-35] as well as mWSMs
[36-42] following semiclassical Boltzmann transport for-
malism. Meanwhile, Kubo theory is employed to study the
optical responses [43—49]. On the other hand, WSMs further
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provide fertile ground to investigate various nonlinear trans-
port phenomena [50-52]. Apart from the theoretical studies,
the topological transport properties are thoroughly investi-
gated in several experiments with materials like, ZrTes and
TaAs [13,53-57].

The high-field magnetoconductivity recently has acquired
massive attention due to its underlying LL characteristics [58].
Notably, the Fermi arcs at opposite surfaces, connected by
“wormhole” tunneling through the WNs, can form a com-
plete Fermi loop supporting the QHE [59-61]. There exist
various quantum transport signatures such as field selec-
tive anomaly [62], the magnetothermoelectric response [63],
excitonic phase [64], as well as thickness-dependent mag-
netoconductivity [65] that are associated with the LLs. The
Landau quantization in Cd3As, [66], and TIBiSSe [67] has
been observed experimentally using scanning tunneling mi-
croscopy. The 3D QHE has been experimentally realized in
CdsAs; [68-70]. The QHE has been studied theoretically in
the presence of interaction as well [71-73].

While much has been investigated using Boltzmann trans-
port based on the low-energy models, we focus on studying
the magnetoconductivity in the quantum limit considering a
generic lattice model. Notice that the LLs have been merely
extensively studied in the lattice Hamiltonian of single WSMs
[62]. This further motivates us to contemplate the generic
tilted double and triple WSMs. On the other hand, the for-
mation of a Fermi loop via “wormhole” tunneling in the
presence of the magnetic field, being perpendicular to the
WN’s separation, has been studied in low-energy models
[60]. The lattice effect of such Fermi loops remains un-
explored. We, therefore, combine the above aspects with
exploring the following questions: What are the effects of
an anisotropic nonlinear dispersion on the LLs for the cases
with parallel and perpendicular magnetic fields? How do the
Fermi loops appear and result in the quantized 2D sheet
Hall conductivities? What are the effects of tilt in the Weyl
spectrum for the above cases? What are the consequences
of higher topological charges in the Hall conductivities?
Therefore our study is directed towards the understanding
of the 3D QHE, associated with the “wormhole” tunneling,
by investigating the chiral LLs mediated magnetotransport
properties while its 2D analog has been substantially analyzed
before. Our study is experimentally relevant in predicting
the accurate response as we consider the lattice models free
from any cutoff problems encountered in continuum models.
Our investigations can thus become instrumental in explor-
ing the connection of the Fermi arc surface states with the
3D QHE.

In this work, considering the generic tilted lattice model
of mWSMs, we investigate the formation of LLs and quan-
tizations in magneto-Hall conductivity when the magnetic
field is parallel (B = B,Z) and perpendicular (B = B,%) to
the WN’s separation. We find that for B||z (B]|x), there ex-
ist the chiral (linear crossings of counterpropagating) LLs
traversing through the WNs within the bulk gap while the
number of chiral channels and their chiralities is proportional
to the magnitude and sign of the topological charges of the
underlying WN, respectively (see Figs. 2 and 3). These nu-
merical findings can be explained by taking into account
a two (single) node low-energy model for B||z (B||x). We

show that the 2D sheet Hall conductivities, emerging from
the Fermi loop construction with a good quantum number,
i.e., momentum mode &, (k,), can yield a quantized response
for B||z (B]|x) while their staircase-like behavior is directly
connected to the filling of k, (k;)-independent flat LLs (see
Figs. 4 and 7). We find that the staircase profile is maximally
destroyed for the over-tilted type-II phase with B||x. This is
in contrast to the B||z case where the staircase nature remains
preserved. On the other hand, from the behavior of the sheet
Hall conductivities at small chemical potentials & — 0, one
can identify the underlying topological charge of the mWSMs.
The momentum integrated Hall conductivities in 3D are found
to exhibit linear p-dependence around p — 0 indicating the
crucial role of the mid-gap chiral LLs (See Figs. 5 and 8). We
analytically provide a plausible explanation for this observa-
tion. The width of this p-linear zone decreases with increasing
tilt while its slope gets steeper with increasing the topological
charge.

This paper is organized as follows. We first discuss the
generic lattice and low-energy models for mWSM in Sec. II.
Then, we analytically compute the LLs in continuum models
and compare them with the numerical results obtained from
lattice models for B||z and B||x in Sec. III. We next discuss the
magneto-Hall conductivity in Sec. IV where we investigate
the quantized and nonquantized structures of 2D and 3D Hall
conductivities, respectively, under the magnetic field B||z and
B||x. We discuss our findings with the relevant literature in
the field of 3D QHE in Sec. V. Finally we conclude in Sec. VI
with possible experimental connections and future directions.

II. MODELS

We consider the generic two band model of the form
Hm(k) = Nm(k)'a Witth(k) = (N):n(k)’ ]\{:;71(16)7 sz(k)) and
o = (oy, 0y, 0;) to describe the lattice Hamiltonian of mWSM
for the topological charge m, where ¢ represents the pseudo-
spin degrees of freedom. The individual terms are as follows
for single WSM [29,48,74]

le (k) =tsink,
Ni(k) = { N} (k) =1tsink, ,

N}(k) =t.cosk, —m, + 2 — cosk, — cosky
double WSM [24,29,48,75] W
NZ2(k) = t(cos k, — cosky)
N2(k) = t sink, sin k,
Na(k) = N}Ek; =t,cosk, — nzz + 6 + cos 2k, + cos 2k, '

—4 cosk, — 4cosk,
2
and triple WSM [24,29,48,75]
N3(k) = t sink,(—2 — cosk, + 3 cosk,)
N;(k) = —t sinky(—2 — cosk, + 3 cosk,)
NZ3 (k) =t cosk, — m; + 6 + cos 2k, + cos 2k,

—4cosk, — 4cosk,

N;sk) =

3
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The above mWSM lattice Hamiltonians breaks time reversal
symmetry 7 =K with K being the complex conjuga-
tion: TH,,(k)T ' # H,,(—k). We consider a universal tilt
term for all the above cases m =1, 2, and 3 as given
by Nj'(k) =ty cos k;: H,, (k) = H, (k) + Ny'(k)I. The energy
eigenvalues of H, (k) are found to be E, (k) = Ny'(k)+

Zl:x,y,z(Nlm(k))2‘ The parameters ¢ and ¢, denote respec-

tively the hopping strengths between different and same
pseudo-spin degrees of freedom and m, is the onsite mass
term. Besides the tilt parameter f tilts the energy dispersion
along k, axis. For ty < 1, (tp > t;), it corresponds to type-I
(type-1I) WSM. Without loss of generality, parameters in the
above Hamiltonians are set ast, =t = 1 and m; = 0 to locate
the two WNs of opposite chiralities at k[f = (0,0, j:%) when
solving E,,(k) = 0.

The low-energy effective Hamiltonian, expanding the lat-
tice Hamiltonian of topological charge m around a given WN
at k;, can be written as [29,48]

ﬁm(k) = Olka [COS (m¢k )Ux + sin (m¢k)gy] + Ukzaz + tOkza
4)

where k| = /k)%—i—k)z, and ¢y = arctan(k,/k,). One can

clearly notice the nonlinear anisotropic dispersion E,, (k) =

fok, & /a2k3™ + v2k2 in mWSM as compared to the single

WSM E(k) = tok, £ v [k2 + k} + k2. The double (triple)

WSM exhibits quadratic (cubic) dispersion along k., while
keeping linear along k,. The topological charge m is encoded
in the Berry curvature, associated with the Bloch Hamiltonian

Hm (k), as defined by
oN
x & ) (5)

ok,

ONy
ok

1
Q' (k) = (—=1) ——— €Nk -
ralk) = (=1) AN eV <
where [ denotes the band index and a, b, c = x,y, z. The
Chern number referred to as the topological charge in this con-
text, measures the Berry flux enclosed by the closed surface
over the Brillouin zone (BZ) as given by

1
= — | Qk).d*k. 6
j 27_[/321() (6)

From above, one can find that C} =+m [39] for
the valence (—) and conduction band (4) with the
Berry curvature for the low-energy model Q7 (k)=
Emva k"2 (ky, ky, mk;) /[2(a2 k3" + v2k2 )32

Having discussed the notion of topological charge in the
low-energy model, we now analyze the Fermi arc surface
states from the lattice Hamiltonian. The WSM encompasses
Fermi arc surface states connecting the projection of two
WNs in the ky-k; (kc-k;) plane with open boundary condition
along x (y) direction. The 3D WSM conceives 2D Chern
insulator plates, lying over xy plane, between two WNs at
k, = £ /2 while the remaining region in k, consists of trivial
insulator plates. Therefore the 3D WSM can be regarded
as stacking 2D Chern insulator layers in the direction of
WNs’ separation. In the present case, this can be further
motivated by the fact that H, (ks, k, k; = 7) becomes time-
reversal symmetry broken quantum anomalous Hall insulator
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FIG. 1. Profile of 2D Chern numbers, calculated using Eq. (6),
as a function of k, for single (a), double (b), and triple (c) WSMs
following Egs. (1), (2), and (3), respectively. We considert, =t = 1
and m, = 0 throughout the paper.

hosting a topologically protected one-dimensional gapless
chiral edge state [76]. The number of Fermi arcs, interest-
ingly, is directly given by the topological charge of mWSM
[77]. Consequently, the 2D planes in between the two WNs
have a Chern number given by the topological charge that
is evident from Fig. 1. To be more precise, we compute the
Chern number C” for the occupied valence band, follow-
ing Eq. (6) in k,-k, plane, as a function of k, to show the
underlying orientation of quantum anomalous Hall plates in
the BZ. The Fermi arcs for single, double and triple WSMs
Egs. (1), (2), and (3), are connected across the BZ between
k,f as explicitly shown in Figs. 1(a), 1(b) and 1(c), respec-
tively.

III. LANDAU LEVELS

A. Low-energy model

We shall now investigate the formation of LLs in the low-
energy Hamiltonian. In order to capture the physics from
both WNs, one can expand the Bloch Hamiltonian H,,(k)
around I = (0, 0, 0) point of which the low-energy Hamil-
tonian takes the following form:

H,, (k) = to(1 — k2)oo + (1 — kD)o, + k"oy + Ko, (7)

where ki = k. £ ik, and o1 = (o, £ ioy)/2. Notice that in
the above low-energy model, the WNs appears at kljf =
(0,0, %1) and the energy spectrum is E; (k) = (1 — kzz) +

We first study the effect of a perpendicular magnetic field
B = (0,0, B) in the z-direction that is along the separation
between the WNs. For u < w, i.e., VB > W, the sharp LLs
are formed in the strong field limit. Here, 1 denotes the chem-
ical potential and w. = v/[p refers to the cyclotron frequency
where v, and Ip = «/;73 represent, respectively, velocity and
magnetic length. Note that thermal fluctuation, measured by
the inverse of relaxation time 7, is less than the quantum
fluctuation such that w.7 > 1. By using the minimal cou-
pling theory, the momentum k is replaced by Il =k + eA
with A being the vector potential. We choose Landau gauge
A = (—By,0,0) and introduce the ladder operators consis-
tently such that [a, a'] = 1 witha = \%(1’[)C —illy)anda’ =

%(nx + iTl,) for which I = (k, — eBy, k,, k,). Adopting
the natural unit we set e = 1. The low-energy Hamiltonian
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[Eq. (7)] thus reduces to

f _ 2dla+1 (@)m

; + % Ig

Hu(k a,a") = N . ®
(Jia > f + 2a* a+1

where fi = (tp £ 1)(1 — kf). We solve the secular equation in
following basis:

Hulk,, a, a)| VL) = E; (n, k)| L), 9)

with the spinor part of |W,) as [xi|n —m), xa2lm)1F for n >
m. One can solve the eigenenergies of the LLs

E, . (n k) =€ £ /€] — 4e, (10)

where €)= fy + f-+2m/lZ and € = fif +[2n+
Dfy — Qn=2m+ Df1/I3 — 2n+ 1)2n —2m+ 1)/13 —
Y22/ and y = /n(n —1)...(n —m + 1). Here, + and
— signs in Eq. (10) correspond to the conduction band n > 0
and valence band n < 0, respectively, for the n-th LL. We de-
note |n| by n for valence band throughout. The corresponding
normalization factors are x; + = (1 4+ ((E,+ — a)/b)*)~'/?
and X2+ = (1 + ((Em,i - a)/b)z)il/z(Em,i - a)/b with
a=f,—2n—m)/l2—1/[> and b= (v/2/ls)"y. Notice
that for the monolayer, bilayer, and trilayer graphene,
the energies of the LLs are found proportional to +/Bn,
B/n(n — 1), and B>>\/n(n — 1)(n — 2), respectively [26,78].
The similar feature is also observed for the mWSM as visible
from the last term y2(2/I3)" in €. To be more precise,
the LL energies for single, double and triple WSMs with
topological charge m =1, 2, and 3 are proportional to
VBn+ fiB, k;,n,m), /B*n(n—1)+ fo(B, k.,n,m), and
VB3n(n — 1)(n — 2) + f3(B, k., n, m), respectively.

It can be easily understood that LLs are independent
of k, referring to their degenerate structure in k.. The
chiral LL for a single WSM is given by the zeroth eigen-
state |W{) = [0, |0)]" with energy E{ , (0, k;) = f_ + B. For
double WSM, zeroth and first eigenstates |\IJ§)) = [0, |0)]¥
and |\1121) = [x110), x211)]7 have the energies E; (0,k) =
f-+B and E; (1,k;) = f- + 3B, respectively. For triple
WSM, zeroth, first and second eigenstates |‘IIO) [0, |0V]7,
1W3) = [x110), x| 1)1" and [W3) = [x{1), x;12)]" have the
energies E; (0,k) = f- + B, E§’+(1 k;) = f-+3B and
E;  (2,k;) = f- + 5B, respectively. The normalization fac-
tors x’s can be computed thoroughly considering the above
energies. One can find another set of energy solution for
these LLs such as E5 _(0,k;) =0, E5 _(1,k;) = f — B and

2, k) =fr — SB that we do not consider in order to
malntam the notion of chirality. Importantly, the magnetic
field, effectively coupled to the o, term, leads to the nonde-
generate chiral LLs as demonstrated above.

Having discussed the chiral structure and their associated
spinor part, we now focus on the localization of these LLs as
coming from their spatial part. To start with, one can consider
k, = —id, while writing the low-energy Hamiltonian [Eq. (8)]

as follows:
f+ ]2(1+Z) (ll(n+3n))
Hn(k, 0y 0 \\m i 11
et = [(zg(n—;—n» St a4

with n = —y/lgp + lgk, = (yo — y)/Ig and yo = kxlé. Consid-
ering the fact that Z = n? - 38;2) demonstrates the harmonic
oscillator, the eigenfunctions can be found to be

el [mn_m(n)m - m>} (12)
VLL, X2@n(n)In) ’

where cbn(n) = CXP(—|77|2/2)H11(77)/V 2nn’lBﬁ and I-In(n)

represents the Hermite polynomial. The wave functions be-
come plane waves along x and z directions, while localized
around yy in the y direction. L, L, denotes the cross-section of
the sample in the 2D plane where the electrons execute free
particle motion. The Landau degeneracy is estimated to be
ny = BL,L, /27 such that the cyclotron center of the electrons
always remains inside the sample yo = 27 n,/L:B < L,. This
degeneracy is also reflected in the energy of the LLs only de-
pendent on k, not k. Therefore one can find for an individual
LL that there exist n, number of momentum modes having the
same energy with a given value of k,. We discuss these issues
more elaborately while connecting with the numerical results,
based on the lattice models.

We now analyze the perpendicular magnetic field case
where B = (B, 0,0) is perpendicular to the separation of
WN:s. In this case, we do not need to consider the low-energy
model [Eq. (7)] that captures the physics of two WNs simulta-
neously. Instead, we continue with the low-energy model at a
single WN as discussed in Eq. (4). For simplicity, we choose
o, = v =1 and the low-energy model around a given WN
thus takes the form

|w2 () =

M, (k) = tok.00 + k.0, + k"o + K}lo_. (13)

One can realize that the analytical solution for LLs in mWSMs
becomes way more complex and hence we have to restrict
ourselves to the single WSM case with m = 1. By employ-
ing a unitary transformation U = exp(io,m /4), H{ (k) takes a
simple form allowing to continue with the analytical calcula-
tions: UH|(k)U™' = H (k) = tok,00 — k.0, + kyo, + k0.
With the vector potential A = (0, 0, By), the ladder opera-
tors become a = \I/_BE(HZ —illy), a' = f/—’%(l'lz +illy), I =
(ky, ky, k; + By). As aresult, the low-energy Hamiltonian can
be written as

ala+a’) + k. Ba'

k. a,a) = |: Ba ala+a®) —k,

], (14)
where o = 1y/+/2lg and g = —+/2/l5. The above Hamilto-
nian is similar to the tilted Dirac cones in presence of a
perpendicular magnetic field [79]. The identity term propor-
tional to « is analogous to a pseudo in-plane effective electric
field of strength Eefr = ar+/2/15. Hence, the low-energy model
can be regarded as an analog of monolayer graphene under a
crossed electric and magnetic field, except the k.o, term [80].

One can also transform the Hamiltonian into a moving
frame along z direction with velocity v = E.¢/B =ty such
that the transformed electric field vanishes and the magnetic

field reducesto B’ = B,/1 — tg [80]. Therefore, in the moving

frame, the LLs can be obtained as +/2Bn(1 —13)'/* when
ky = 0. Since we have k, in low-energy Hamiltonian, the
complete expression for the energy in the moving frame is

045424-4



UNDERSTANDING THE THREE-DIMENSIONAL QUANTUM ...

PHYSICAL REVIEW B 106, 045424 (2022)

given by E{ v (n, k) = (1 — zg)‘/‘*\/an R — )12
The Lorentz back transformation of momentum yields the
energy of the LLs in the rest frame E|(n,k,) = £(1 —

13)¥ 4\/ 2Bn + k2(1 — t3)~'/? while the argument of the wave

8. An al-
ternative diagonalization technique can also be employed to
derive the above expression [81]. The chiral LL appears to be
El”(O, k) =+x(1 — tg)l/zkx. The spinor parts for the LLs are
similar to the earlier case as [xi|n — 1), xa2|m)]T for n > 1
and [0, |1)]” forn =0, respectively. One can notice that the
energies of the LLs are independent of k, and hence there exist
anumber n, = BL,L, /27 of degenerate k, modes for each LL
with a given k,. It is noteworthy that the LLs are dependent
on the tilt. Therefore a higher magnitude of tilt essentially
destroys the chiral nature of the LLs. We numerically investi-
gate the double and triple WSM, as discussed in Eq. (13), in
the presence of B = (B, 0, 0) where we will compare with the
lattice results.

Notice that it is not physically permitted to have the mid-
gap LLs with opposite chiralities for a single WN. The WNs
of opposite topological charges host two separate chiral LLs
with positive and negative slopes of k.. On the other hand,
two copies of bulk LLs for two WNs merge on top to give
rise to the doubly degenerate bulk LL spectrum irrespective
of momentum. We anticipate that for a nonlinear dispersion,
such degeneracy might not appear over the entire BZ. The
structure of the mid-gap chiral LLs is also expected to be
nontrivially modified for the higher topological charge. We
investigate the LLs for the lattice Hamiltonian to extensively
verify the above predictions and tendencies obtained from the
low-energy analysis.

In short, some of the generic features of the LLs that
nonlinear dispersion would lead to /O((Bnr)™) dependence in
the energies of nth LL. The above is very clearly evident when
B is applied along z direction. The relative spacing between
two consecutive bulk LLs decreases with increasing n for a
given value of topological charge m. This can be observed
irrespective of the choice of the magnetic fields. We note that
for a linearized single WSM without the tilt H;(k) =k - o,

the bulk LLs are given by =+,/2Bn + k? for magnetic field

along i direction referring to a particle-hole symmetric nature
of LL spectrum [65]. Once the tilt term preserves (breaks)
the particle-hole symmetry, the bulk LL spectrum, associated
with the tilted WSM, is expected to preserve (break) the
particle-hole symmetry. Interestingly, for particle-hole sym-
metry preserving tilt that is also perpendicular to the WNs’
separation, one can notice the imbalance in the number of chi-
ral modes for the magnetic field along the tilt direction [62].
We do not encounter such a situation, as evident from Eq. (10),
in the present case with particle-hole symmetry breaking tilt
parallel to WNs’ separation. For a higher topological charge
with nonlinear dispersion, the tilt can lead to richer quantum
phenomena that might be absent in untilted single WSM.
The analytical treatment hints at the above for parallel B =
(0, 0, B). On the other hand, for perpendicular B = (B, 0, 0),
the nonlinear dispersion in mWSMs hinders a reachable ana-
Iytical solution, in contrast with the case of parallel B.

- A=)/ 2
functions becomes 1 = T(y —k Iz +

B. Lattice model

Having discussed the generation of LLs in the low-energy
model, we now illustrate the formalism to execute the LLs in
the tight-binding lattice Hamiltonian. With the same choice
of the Landau gauge previously discussed for parallel and
perpendicular magnetic fields, in lattice space, the hopping be-
tween different sites in the Hamiltonian needs to be modified

by the Peierls substitution 7 jc/ ¢; — £ je' i 27" cf¢;. As men-

tioned before k, and k, are good quantum numbers. Precisely,
for both cases B = (0, 0, B) and B = (B, 0, 0), the real space
Hamiltonian takes the compact form H,,(k,, j,, k;) so that we
can equally minimize the finite size effect along y direction.
Consisting of a finite number of layers along y direction, we
first continue with the single WSM [Eq. (1)], as follows:

Hilke, jy ko) = {C}:ykn[(cos(kz — jyBx) +2
—cos(k, + ijz))az + sin(k, + jyB;)o”*

+ (tg cos(k, — jyB,) — w)o’]

Lt c ’
2 €tk ~ i )0

Lo + :
=5k, TG )T | [ Clke: (15)

The Hamiltonian for double WSM [Eq. (2)] can be written as

Vo

H2(kxa jy’ kz) = {C]T kxz[(tz COS(kZ - ijx) +6

+ cos 2(ky + jy,B;) — 4 cos(k, + j,B;))o*
+ cos(ky + j,B;)o* + (to cos(k, — j,By)

0 Ly + P

—wo 1+ | =5 C e, T Ca )0

1 . k B! ct N
+ 5 sintke + BICG e, = Gl )
= 2C) 14, TC a0

Lt cl e 16
+ 5( =2k + Jy 2.k )U Ty Kz ( )

Finally, the triple WSM [Eq. (3)] takes the form
H3(kx7 jyv kz)
= {c}w,{x[(tZ cos(k, — jyBy) +6

+ cos 2(k, + j,B;) — 4 cos(k, + j,B;))o*
+ sin(k, + jyB;)(—=2 — cos(k, + jyB;))o*
+ (to cos(k; — ijx) - M)ao]

3 : . T X
+ [5 sin(ks + jyB)(C] _, +Cl L0

1 , ,
— 5 (=2+3 cos(ky + jyBI)C! _, —C 1\ )0’

HKoyz Jy
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FIG. 2. LL energies as a function of k, under B || z, shown for
a single WSM with m = 1 [Eq. (15)], a double WSM with m =2
[Eq. (16)], and a triple WSM with m = 3 [Eq. (17)] in (al)—(a3),
(b1)—(b3), and (cl)—(c3), respectively, keeping k, = 0 fixed. We
consider t, = 0 for (al)-(cl), 0.5 for (a2)—(c2), and 1.2 for (a3)—
(c3). The mid-gap chiral LLs, traversing through the WNs at k:pt =
(0, 0, £ /2), exist both in type-I and type-II phases as depicted in
red color. These numerical results on the lattice are qualitatively
consistent with analytical LL energies calculated using Eq. (10).
The insets depict the number of nondegenerate chiral Landau levels,
proportional to the topological charge m, inside the bulk gap as
designated by the grey shaded region.

- 2(C;‘,"71akx: + C]Tv‘i’lyku )O'Z}

1
i i :
+ [Zi(cjy—z,ku = Cj 21,00’

1 :
+ E(Czizquz +Cl o )a":| }Cj".,kw (17)

Therefore we can cast all three Hamiltonians in 2L, x 2L,
matrices. For the numerical evaluation, we consider the sam-
ple size L, = 100 with a periodic boundary condition in the y
direction. To satisfy the y-direction periodicity, the magnetic
field can only be chosen as 27 /Q with Q commensurate with
L, so that Q = L,/n reduces to an integer only. Otherwise
explicitly mentioned, all the following numerical results are
performed under the magnetic field of amplitude B = 27 /L,
[62,82].

1. Bz

We depict the evolution of LLs for a single WSM in
Figs. 2(al), 2(a2), and 2(a3) with three different values of the
tilt parameter 7y = 0, 0.5, and 1.2, denoting type-I untilted,
type-1I, and type-II tilted WSM, respectively. The exact order
of LLs for double and triple WSMs are shown in Figs. 2(b1),
2(b2), 2(b3) and 2(cl), 2(c2), 2(c3), respectively. By starting
from the untilted case with 7o = 0, the nonlinear structure of

the LLs as a function of k; is visible. A gap exists between
the bulk LLs with n = +1, £2, and +3 for single WSM,
double WSM, and triple WSM, respectively. The size of this
gap can be analytically calculated as AE; . (n,k; = 1) =

2,/ eg — 4¢; from Eq. (10) revealing the fact that the gap size

depends on the magnetic field and topological charge. The
nondegenerate chiral LLs are visible inside the gap [see the
insets of Figs. 2(al), 2(bl), and 2(cl)] as predicted by the
analytical analysis in Sec. III A. The sign of the associated
topological charge of a given WN determines the chirality of
the mid-gap LLs traversing across the WNs at k, = 4 /2.
Apart from the fact that the number of chiral modes is de-
termined by the topological charge m, these modes are robust
even under a larger tilt. The conservation of topological charge
actively results in pairs of positive and negative chiral modes.
However, the gap between the bulk LLs vanishes at #p = 1
when the semimetallic nature emerges. In the over tilted case
to > 1, bulk LLs for positive (negative) values can appear
below (above) zero energy.

A close inspection of Fig. 2 suggests that the LLs for
single and triple WSMs qualitatively follow —E, . (n, k;)
[Eqg. (10)] for m = 1 and 3. The analytical solutions, given by
E; . (n, k;), thus correctly indicate the above profile except
the sign. On the other hand, for double WSM, LLs obtained
analytically with E; | (n, k;) can describe the numerical find-
ings. The apparent chirality reversal for the mid-gap chiral
LLs for m = 1 and 3 between analytical and numerical calcu-
lations might originate from the following lattice effect. The
sign of the topological charge, associated with a given WN,
changes for double WSM compared to that for the single and
triple WSM. Based on the low-energy model, the analytical
solution can not accurately capture the distribution of the
topological charge of the WNs in the BZ. Another mismatch
is that for m = 3 lattice calculations, the chiral LLs are irregu-
larly spaced [see the inset of Fig. 2(c1)] in contrast to equally
spaced analytically obtained for low-energy one.

2.B|x

Now, coming to a situation where the magnetic field is
along x direction, the LLs for single, double, and triple WSMs
are plotted in Figs. 3(al)-3(a3), 3(b1)-3(b3), and 3(c1)-3(c3),
respectively as a function of k,. For #y = 0, we find that the
counterpropagating chiral LLs linearly cross each other at
k, = 0 within the bulk gap as noticed for a single WSM. The
bulk gap between n = %1 can be estimated by the analytical
expression AE~{’(1, 0)=2(1 — t§)3/4\/§. Interestingly, both
the WNs of opposite topological charges have their common
projection at k, = 0, causing the crossing of positive and
negative chiral LLs. One can find two and three such linear
crossings, respectively, at k, = 0 for double and triple WSMs
[see the insets of Figs. 3(al), 3(bl), and 3(c1)]. Small gaps ex-
ist at k, # 0 where chiral LLs exhibit avoided level crossing.
A higher topological charge WSM hosts richer microscopic
variation of the mid-gap chiral LLs.

Different from the parallel magnetic field, the chirality of
these LLs can only be meaningful at k, = 0 irrespective of the
value of m. One can understand that the topological charge
imprints its signature by the number of degenerate points at
ky = 0. The number of chiral LLs passing through k, = 0 is
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FIG. 3. The variation of LL energies, computed from Eqs. (15)-
(17) as a function of k, for B || x while following the format given
in Fig. 2. The mid-gap chiral LLs, depicted in red color, linearly
cross each other at k, = 0 (displayed in the insets) only for the
type-I phase, while for the type-IL, these chiral modes become indis-
tinguishable from the bulk LLs. The chiral LLs are always gapped
except at k, = 0. The number of linear crossings associated with
chiral LLs at k, = O can directly determine the topological charge
of the underlying WSMs. Each of the bulk LLs is doubly degenerate
for untilted single WSM. By contrast, for untilted double and triple
WSMs, the bulk LLs only degenerate at k, = 0. Similar to Fig. 2, the
bulk gap is represented by the grey shaded region.

twice the topological charge of the underlying WSMs. With
increasing tilt, the gap of the avoided crossing increases within
the bulk gap, and it can no longer preserve the particle-hole
symmetry in the LL spectrum. For sufficiently large tilt in the
type-1I phase, the chiral structure of LLs at k, = 0 becomes
wholly dissolved into the bulk. This is in stark contrast to
the case B || z. Another crucial difference is that for untilted
single WSM with perpendicular B, the bulk LLs are doubly
degenerate irrespective of momentum k, while lifting the
degeneracy for the tilted one. For double and triple WSMs,
nonlinear anisotropic dispersion lifts the degeneracy every-
where except at k, = 0.

Bearing in mind that the analytical solution E| (1, k) qual-
itatively explains the numerical findings, for m = 2 and 3,
the numerical lattice results are consistent with numerical LL
energies calculated in the low-energy model Eq. (13) with
appropriate gauge choice: kL =k, + f%h;(a +a') and k, =
[%ls(a —a"). Unlike the parallel magnetic field, the linear
crossings of chiral LLs, obtained from the lattice model are
correctly captured by the low-energy model. The distribution
of individual topological charges in BZ is not crucial for the
perpendicular magnetic field. For completeness, we comment
that the LL spectrum in the lattice model for Fig. 3 can also be
qualitatively explained by the numerical result incorporating
perpendicular B with the same gauge choice mentioned above
in Eq. (7). However, it would be challenging to tackle the

problem analytically even for a single WSM, and that is why
we probe the perpendicular B case at least for the single WSM
of the low-energy model in Eq. (13).

IV. MAGNETOCONDUCTIVITY

We now focus on a highly relevant physical observable,
namely, the magneto-Hall conductivity, that has been exten-
sively studied in 2D systems [83—-86]. However, here we will
investigate the 3D system and highlight the intriguing out-
comes as compared to the 2D systems. The nondiagonal Hall
conductivity with i # j, following the Kubo linear-response
theory, is expressed as follows:

oy = % 303 (fu — f3) (@IVi | B)(BIV, lat)

o — &g (eq —&g) +1in

ke k; o, BFa

ie? (Vi |B)(BVy, lat)
=N (fa — )—/,
N lga%;a J fﬂ (&g —85)2_1’_772

(18)
where &, is the eigenvalue, associated with the state |«) for the
underlying Hamiltonian H,,(k) and n — 0 in a clean system.
The velocity matrix is given by Vi, = % We compute
Vi, (ky, Jy, k;) by doing the partial derivative of the Hamilto-
nians H,(k, jy, k;) [Egs. (1)-(3)]; see Appendix B for more
details. Here, f, denotes the zero-temperature Fermi-Dirac
distribution function and the overall normalization is given by
N = nyn,. We are mainly interested in oy, (0y;), that is o;;
with the i = x(y) and j = y(z) component for B along z (x)
direction.

In this paper, we deal with 3D systems and, therefore, need
to be careful with the summation of momentum modes to cap-
ture the essential physics. For the 2D problem, one can only
encounter the summation over the good quantum number, i.e.,
momentum, resulting in the /;* factor in the normalization N.
In the 3D case, the normalization incorporates a length scale
in addition to the above factor. Usually, the normalization N
for the 3D case refers to the slab’s volume, while for the
2D case, it represents the surfaces that host the Fermi arcs.
Normally, UI%D has the dimensionality ¢?/h and in 3D, 0ij
becomes 2 /h over length o0;; = O’I%-D /L [60]. To understand
the behavior of Hall conductivity, we compute the 2D sheet
Hall conductivity .2’ (k.) while summing the degenerate en-
ergy levels only over k, for B = (0, 0, B). Henceforth, we
will refer to the 2D sheet Hall conductivity as 2D Hall con-
ductivity. Similarly, for B = (B, 0, 0), we examine O’yZZD (ky)
while summing the degenerate energy levels only over k,.
The analysis is motivated by the fact that the LL spectrum
is independent of k, (k,) for B along z(x)-direction. Therefore
the 3D Hall conductivity takes the form o;; = ). aisz (k) /my
with i # j # [ where n; has the length dimension along [-
direction such that k; = 27 p/n; (p denotes integer number).
To be precise, n, = BL,L,/2m and n, = L, (n, = BL.L, /2
and n, = L,) for o, (0,;). The above discussion resembles
Halperin’s argument that for Fermi energy lying within this
gap, the 3D Hall conductivity o;; is given by (e*/h) Y, €:ixGi
where G is reciprocal lattice vector of an internal potential [5].

In order to acquire an idea about the possible
quantization in axzf’ (k;) at the outset, one can continue with
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Wi, = mk] ™! (cos((m — 1)¢)oy £ sin((m — Dy )oy) —
2kyy0, from low-energy Hamiltonian (Eq. (4)) and
loe) = [|n — m) |n)]". This results in (| Vi BBV, o) =
mzkf_m_z(&l/_mﬂ + 8y .n—m). The energy denominator in
Eq. (18) thus can be accordingly selected with ' =n+£ 1,
n+2, and n+3 for single, double and triple WSM,
respectively, for a given set of (k,, k,). Following the above
argument, the quantized plateaus are expected to show jumps
by topological charge m for 2D Hall conductivity. However,
the argument is oversimplified compared with lattice models.

One more aspect that we would like to discuss is the den-
sity of states (DOS). It is intimately connected to the Hall
conductivity, as we will analyze below. Since the LLs are
discrete, the DOS can be expressed as the sum of a series of
delta functions given by

1
D) =+ 3 8w = a), (19)

where the normalization factor N changes accordingly with
the dimensionality of the underlying problem and the LL
energy &, are obtained after diagonalizing H,,(k,, j, k;). In
order to understand o*izl-D (k;), we compute partial density of
state (PDOS) for a given momentum mode k;, defined by
D>p(u, k) with normalization N = n,, [ # p. The 3D DOS,
expressed as D(u) = Zk[ Dop(u, k;)/n; turns out to be rel-
evant while analyzing the integrated response o;;. In the 3D
case, one can find that N = n,n; using Eq. (19). We refer
to the PDOS as D,p(k;) similar to aj-D (k;) for convenience.
We numerically execute the § function by a Lorentzian i.e.,
S(u — e4) = n/[( — £4)* + 1] with 1 being the broadening
parameter to mimic disorder effects in experiment.

A.B |z

In Figs. 4(a)-4(c), we present szyD (k;) for untilted single,
double and triple WSMs, respectively with B = (0, 0, B). Fo-
cusing on the untilted mWSM, the .2” (k. )s for single, double
and triple WSM are quantized to —1, 2, and —3 respectively
when |k;| > 7 /2 even though their corresponding PDOSs sig-
nal no density of electrons. This can be understood from the
fact that the nontrivial 2D Chern insulator plates are stacked in
the region for |k;| > 7 /2 while constructing the 3D mWSM
as shown in Figs. 1(a)-1(c) without external magnetic fields.
While for |k,| < /2, we remarkably notice the unit jumps,
i.e., quantization changes by unity, in 02°(k;) wherever u
crosses the k,-independent one flat LL as shown in the upper-
right insets. This is accurately captured by the peaks in the
PDOS associated with the jumps in aff) (k;). This suggests
that the staircase profile can also emerge for |k,;| > 7 /2 when
|| is sufficiently large to pass through flat LLs lying far away
from zero energy. Note that we are restricting ourselves within
the bulk gap where the chiral LLs are purely observed. We
do not find degenerate chiral LLs, and as a result, we always
find £1 jumps in 2D Hall conductivity irrespective of the
topological charge of the underlying WSMs. However, for
triple WSM with k, = 7 /2 in Fig. 1(c), due to finer spacing
gaps between the chiral LLs below the numerical resolution
n = 0.01, we observe the jumps are not perfectly quantized
around p ~ 0.04.

The flat LL picture is evident in the momentum zone
|k;| < /2 where the 2D-layered insulator behaves trivially
without the magnetic field. This is the reason that the 2D
Hall conductivity 02°(|k;| < 7 /2) vanishes for m = 1, 2, and
3 as shown in Figs. 4(a), 4(b) and 4(c), respectively. On the
other hand, the topological nature of Chern insulator plates, in
the residual momentum zone |k,| > 7 /2, remains unaltered
with the magnetic field as long as flat LLs do not appear
within the u window of interest. We hence observe quantized
plateau given by the topological charge G)?)P (k;) = C(k;) for
|k.| > m /2. This global unity jump feature of 2D Hall conduc-
tivity is consistent with the nondegeneracy of LLs as obtained
(understood) from the lattice (low-energy) model. Besides, the
width of the plateau is determined by the gap size between two
consecutive flat LLs. The plateau is maximally stretched for a
single WSM as the nonlinearity in the dispersion for higher
charger mWSMs might reduce the relative gap between two
consecutive LLs.

Now we turn our attention to the effect of tilt as shown
in Figs. 4(d), 4(e) and 4(f) for single, double, and triple
WSMs, respectively, with a fixed value of k, = 0.47r. With
increasing tilt, more bulk LLs come within a given range
of w as the bulk gap reduces. This results in the reduction
in the width of a plateau for higher tilt values. Moreover,
due to the particle-hole asymmetry in the LL spectrum,
the number of jumps above zero and below zero are not
equal. Therefore the underlying 2D conductivity can react
to the varying tilt; however, the jump magnitude is al-
ready settled by the nondegenerate k, independent flat LLs
within the concerned window of . It is to be noted that
the indirect nature of gap for LL spectrum with #) > 1 in
Fig. 2 can preserve the staircase-like profile of 2D Hall
conductivity.

Having discussed the 2D structure of the quantized con-
ductivity, we then investigate the 3D Hall conductivity o,, =
> k. szyD (k;)/n; in Fig. 5. The different Chern insulator plates,
with quantized 2D conductivity along z direction, would
combine to yield the 3D Hall conductivity. Therefore the
Hall conductivity no longer exhibits quantized structure as
observed for O’XZ‘P (k;). Let us first focus on the type-I sin-
gle WSM. Interestingly, we find that oy, varies linearly
with u when there exist the chiral LLs only inside the
bulk gap. One can understand this behavior because there
are n, degenerate LLs associated with each perpendicular
momentum mode k,. Therefore it shows a continuous dis-
tribution of flat LLs in k, while k, is varied. After the
summation over the perpendicular momentum k,, the quan-
tization is missing due to the interference among various
2P (k.) profiles. Notice that the occupied bulk LLs below s
add up destructively to wash out the quantized signal even
though u stays inside the gap. When u is varied outside the
bulk gap, we find nonlinear © dependence with additional
bulk LLs.

We can appreciate the 3D phenomena by investigating
the structure of DOS with p following the similar line of
argument presented for the 2D case. We find that inside the
bulk gap where only chiral LLs exist, the DOS demonstrates
a nonzero flat structure. The linear © dependence of Hall con-
ductivity gets destroyed as long as bulk LLs start contributing.
The slope of 3D Hall conductivity changes discontinuously
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FIG. 4. Normalized 2D Hall conductivity zeyD (k;)/oo (shown in left axis), following Eq. (18), and PDOS D,p(k,) (shown in right axis),

following Eq. (19), as a function of u, keeping the tilt term fixed at 7y
upper-right insets show the flat k,-independent LLs at k, = 7 /2. One

=0, form =1in (a), m =2 in (b), and m = 3 in (c) when B || z. The
can notice that zeyu (k;) jumps by unity to the next plateau at certain

when there exists a flat LL with the energy given by . The jump profiles for different values of k, are in accordance with the LL spectrum
illustrated in Fig. 2. We repeat (a), (b) and (c) in (d), (e), and (f) with (IZVD (k, = 0.47) for the tilt 7, = 0, 0.5, and 1.2, respectively. The
staircase-like structure continues to exist for type-II phases as well. We set = 0.01. The 2D sheet Hall conductivity is measured in the unit

of €% /h. We follow this convention throughout.

when a peak exists in the DOS profile at a certain p. Now
coming to the case of a higher topological charge, the width
of the flat region in DOS decreases, and so does the linear area
in the Hall conductivity, as depicted in Figs. 5(b) and 5(c).
Interestingly, with increasing tilt, more bulk LLs come into
the picture, and the contributions from the chiral LLs become
insufficient to yield the linear behavior of Hall conductivity
with . It is worth mentioning that the slope of the w-linear
regime increases with a larger topological charge. The re-
sponses of oy, at u = 0 for single, double, and triple WSM

m=3
Oy

are approximately related: |o)g’,=1| ~ |$| x| |, where
the denominator matches with number of chiral LLs given by
m.

The linear dependence on u in oy, for & — 0 can plausi-
bly be explained considering that LLs are observed only in
high magnetic fields. To be precise, in order to experience

the chiral LLs with n < m, one has to consider small carrier
density such that /B/u > 1. This essentially allows to cast
the f, — fp in terms of Taylor series expansion around the en-
ergies of the LLs: f,(u + E, (o, k;)) — fg(u + E, (B, k.)) =
Jo(Ey(a, k) — fp(E, (B, k) + u(fy — fg) where a, B <
m refers to the chiral LLs within the bulk gap and f' =
df(x)/0x. Therefore the relative occupancy factor f, — f3
can yield the linear p dependence for w — 0 while such
analysis is not accurate for u far away from 0. From this as-
sumption, the leading order term in f, — fp is u independent,
which resembles the p independent behavior of quantized
Hall conductivity szyD (k;) between two adjacent jumps. How-
ever, as discussed above, the summation over k, destroys the
quantization leaving the linear u behavior in oy,. We here
comment that 3D anomalous Hall conductivity for WSM in
absence of any magnetic field is not expected to be quantized
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FIG. 5. Normalized 3D magneto-Hall conductivities o, /0y, defined in Eq. (18), for B || z as a function of p for m = 1in (a), m =2 in
(b), and m = 3 in (c) while varying #, = 0, 0.5, and 1.2. The DOSs are computed from Eq. (19), in (d), (e), and (f) with the same parameter
set as used for (a), (b), and (c). The flat regions in DOS, observed for type-I phase only, cause the u-linear regions in o,, where the chiral LLs
contribute maximally. We associate the peaks in the DOS with the change in the slope of oy, for #p = 0 with the blue dashed lines to emphasize
the connection between the above two quantities. The 3D Hall conductivity is measured in the unit of (¢?/h)/L. We follow this convention

throughout.

as oy, ~ Cky where ko denotes the separation between two
WNs [87,88].

We have investigated the effect of tilt under a constant
magnetic field. We now focus on the response of 2D and 3D
Hall conductivities concerning the variation of magnetic fields
as shown in Figs. 6(a)-6(c) and 6(d1)-6(f1), respectively. The
width of the quantized Hall plateau in O‘fyp (k;, =m/2) in-
creases with B. Because of the degeneracy of each LL linearly
proportional to B, it takes a higher value of the magnetic field
to fill up one LL before the electrons jump into the next empty
one. The staircaselike structure is in complete agreement with
the PDOS pattern. In the case of triple WSM, we find a
jump with a higher magnitude possibly caused by the irregular
spacing between the chiral LLs around @ >~ 0. The resulting
3D Hall conductivity oy, after adding the contributions from
all k, modes show prominent linear © dependence when u
remains in the vicinity of chiral LLs. The change in slope can
be well explained by the DOS structure as demonstrated in
Figs. 6(d2)-6(f2). It is noteworthy that the bulk gap in the
LL spectrum E,,(n, k;) increases with the magnetic field. In
DOS, the flat region, capturing chiral LLs further confirms this
for single WSMs when B increases. This picture qualitatively
holds for mWSMs but quantitatively changes for a higher
topological charge.

B.B | x

We shall now investigate magneto-Hall conductivity in the
presence of perpendicular magnetic field B = (B, 0, 0), i.e.,
perpendicular to the WN’s separation. We reiterate that the
LLs at k, = 0 are doubly degenerate, as clearly observed from
numerical findings (see Fig. 3), irrespective of the topological

charge of the WSM. This is in contrast to the parallel magnetic
field B = (0, 0, B) case where the LLs are nondegenerate for
all values of k, (see Fig. 2). At the outset, we comment that a
perpendicular magnetic field would lead to distinct response
characteristics compared to a parallel magnetic field. We be-
low extensively analyze the effect of tilt and the amplitude of
the magnetic field as well.

Let us first concentrate on the momentum labeled 2D
Hall conductivity ayzzD (ky) as displayed in Figs. 7(a), 7(b)
and 7(c) for untilted single, double and triple WSMs, re-
spectively. For a single WSM, o (k = 0) always exhibits
a jump by two throughout the range of u, including u = 0,
as there exists k;-independent doubly degenerate flat LLs.
For a D (k. #0), we do not find any jump at u =0 due
to the absence of LLs. We find jumps by unity at p =~
+0.45 for k, =37 /20 that is consistent with the flat k,-
independent LLs [see insets in Fig. 7(a)]. Interestingly, the
remaining flat LLs are doubly degenerate, leading to the
double jump, i.e., quantization changes by two, in o” (k)
except when p crosses the mid-gap chiral LLs for certain
values of k.. Due to the particle-hole symmetry of the flat
LL spectrum, the 2D Hall conductivity is an odd function
of w: 2P (ky, p) = —0;P(ke, —p1). In the case of double
WSM, U)?ZD (ky = 0) shows double jumps except for u =0
as the LLs at zero energy are not degenerate for k, = 0 [see
Figs. 3 and 7(b)]. On the other hand, o7”(k, # 0) always
exhibits single jump i.e., quantization changes by unity, as
none of the LLs are doubly degenerate. Although we some-
time get double jump for k, = 7 /20 due to numerical artifact
where energy difference between two consecutive flat LLs
is less than the resolution n = 0.01 considered in numerical
analysis.
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FIG. 6. Normalized 2D Hall conductivity oxzf’ (k, = m/2)/0o (shown in left axis), following Eq. (18), and PDOS D;,p(k, = 7 /2) (shown
in right axis), using Eq. (19), as a function of i for m = 1 in (a), m = 2 in (b), and m = 3 in (c), by varying the strength of the magnetic field
B = By, 2By, 4By, and 10B, keeping 7y = 0.5 fixed. We show (d1), (el), and (f1), [(d2), (e2), and (f2)] for the 3D magneto-Hall conductivity
oyy [DOS D()] as a function of u with the above set of parameters. The degeneracy of the LLs increases with increasing B. This is reflected
in the increased width of the quantized plateau [u-linear region] shown in (a)-(c) [(d1)-(f1)].

Last for triple WSM, o.2”(k, = 0) indeed represents coun-
terintuitive behavior as we find nonmonotonic jump profile
with respect to u [see Fig. 7(c)]. A close inspection suggests
that multiple degenerate LLs at © = £0.15, 0 yield jumps by
more than 2. The nonmonotonicity at © = 0 might relate to
the underlying chirality of LLs in the vicinity of the above
values of w. The chiral nature of the mid-gap LLs for the
crossing at u = 0, k, = 0 is opposite to that for the crossing
at u = £0.15, k, = 0 [see Fig. 3(c1)]. However, the unequal
jump magnitude is hard to understand, while the rest of the
uniform double jumps directly connect to the double degener-
acy of LLs at k, = 0. Now for o”(k, # 0), the single jump
pattern is not visible for closely spaced LLs as indicated by
the PDOS structure, similar to the previous case of double
WSM. The nonmonotonicity around p = 0 gets suppressed
as k, staying from O, i.e., shown as k, = 27 /30, as the mid-
gap LLs do not reverse their chiralities through the linear
crossings. Importantly, due to particle-hole symmetry in the
k;-independent flat LL spectra, ayzzD (k,) vanishes identically at

pw=0forallm =1, 2, and 3 irrespective of the values of k.

This zero Hall conductance at u = 0 is because the electrons
with opposite chirality cancel out each other’s contribution at
u=0.

Next, coming to the tilt mediated complex behavior of
oyzzD(kX = 0), as displayed in Figs. 7(d)-7(f), we find that
the staircase-like structure becomes distorted and eventually
almost disappears around p = 0 for sufficiently large tilt
strength. Notice that o2”(k,) no longer behaves like an odd
function of u, as a consequence of the breaking of particle-
hole symmetry in the presence of the tilt term. For type-II
mWSMs, the chiral LLs are entirely dissolved into the bulk,
and hence it exhibits a substantially deformed staircase (with
highly irregular width of the plateau and nonuniform jump)
structure instead of the clean staircase (with almost regular
width and uniform jump) profile. This is in sharp contrast
to the earlier case of the parallel magnetic field B||z where
the type-II WSMs still exhibit the staircase-like structure [see
Figs. 4(d)—4(f)]. The metallic nature of the LL spectrum with
to > 1 in Fig. 3 can in principle destroy the staircaselike
profile of 2D Hall conductivity.
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FIG. 7. Normalized 2D sheet Hall conductivity ayzzD (ky)/ 09, computed from Eq. (18), and PDOS D,p(k,), evaluated from Eq. (19), as a
function of p with tilt term set at 7y = 0, for m = 1 in (a), m = 2 in (b), and m = 3 in (c) when B || x. The insets show the k,-independent flat
LLs at k, = 0.157. One can notice that aw (k) jumps to the next plateau at certain ; when there exists a flat LL within the energy window
scanned by w. We find double jumps, i.e., quantlzatlon changes by two, in a. D(k, = 0) for all of the WSMs, while the triple WSM additionally
exhibits a nonmonotonic profile following the LL spectrum illustrated in F1g 3. We repeat (a), (b), and (c), respectively, in (d), (e), and (f) with
ayzzD (ky = 0.157) fortp = 0, 0.5, and 1.2. The clean staircase-like structure almost vanishes in type-II phase while it exists in type-I phase.

Having explained the 2D Hall conductivity, we now an-
alyze the 3D Hall conductivity by summing over all k, in
BZ: o,, = Zk (k )/n, as shown in Figs. 8(a)-8(c). No-
ticeably, o, contmues showing linear dependence on & when
DOS is roughly flat, indicating that the chiral LLs are promi-
nently contributing. Without tilt, the 3D Hall conductivity is
an odd function of u with o.(1) = —0,.(—u) inherited from

ZD(k,). Likewise, in the parallel magnetic field case, the
discontinuities in the slope of 3D Hall conductivity appear
exactly at the peak of the DOS profile [see Figs. 8(d)-
8(f)]. As expected, with augmenting the tilt strength, the
width of the p-linear zone reduces. The flat region in DOS
shrinks, referring to the disintegration of chiral LLs into
the bulk.

The behavior o,, ~ u for u — 0 is originated from the
factor f, — fp while computed with the mid-gap chiral LLs.

Notice that the energy spectrum E,,(n < m, k;) of mid-gap
chiral LL varies linearly with k; around the underlying WN's
under the application of magnetic field B;. As a result, the
Fermi momentum, defined by E,,(n < m, kp) = u inside the
bulk gap of the LL spectrum, is approximately linear in u.
This might, in turn, lead to the linear behavior of u for the 3D
Hall conductivity. Such linear behavior is more prominently
visible for oy, than that for o,, as the linearity of Fermi
momentum with u is more restricted for the case B || x. The
linear variation of Hall conductivity as a function of x can
be regarded as a hallmark to distinguish type-I WSMs from
type-1II as this behavior is only observed for type-I WSM in
the present case. Another vital point is that the slope of the
wu-linear region increases as the topological charge increases.
This pronounced response can be caused by the increasing
number of chiral crossings within the bulk gap around y = 0.
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The above findings are similar to that for parallel magnetic
field B||z.

We now focus on the evolution of 2D Hall conductivity
while tuning the amplitude of magnetic fields for a given value
of tilt zp = 0.5 as shown in Figs. 9(a)-9(c). The width of the
quantized plateau increases because of the enhanced degener-
acy of each LL, as shown at k, = 37 /20, also consistently
reflected in the corresponding PDOS profiles. Notably, the
monotonic pattern observed for triple WSM, around u = 0,
becomes less prominent with increasing B. The momentum
integrated 3D Hall conductivity shows that the w-linear region
gets broadened with increasing B while the corresponding
DOSs exhibit flat profiles [see Figs. 9(d1)-9(f2)]. Therefore
similar to the parallel magnetic field, one can also observe
similar tendencies in the magnetoconductivity in the case of a
perpendicular magnetic field.

V. COMPARISON WITH LITERATURE

After extensively analyzing our results on the 2D sheet
Hall conductivity (TI%D (k;) and 3D Hall conductivity o;;, we
here connect our findings with other relevant work in a similar
direction. To begin with, we reiterate that the strong magnetic
field essentially gaps out the WNs leading to a Fermi surface
at 4 = 0 with a finite value of Fermi wave-vector kr. The
magnetic field-induced such a charge density wave of length
Ap = 21 /kp is analyzed for a single WSM in the context of
QHE [14]. Our results are consistent with the above study
predicting kr = 0 and # O respectively for B || x and B || z
where the WNs are located along k, without any magnetic
field. From the theoretical perspective, 3D WSMs exhibit
quantized QHE investigated in Refs. [60,61]. Interestingly, the
quasiquantization is experimentally observed in the presence
of a magnetic field for the 3D QHE due to such charge density
wave [8]. The quantization is investigated while varying the
magnetic field for a fixed chemical potential. Such a quan-
tized behavior can be anticipated from our analysis of oy,

being equivalent to the 2D sheet Hall conductivity zeyp (kr)
for a given k, = kr (see Fig. 4). We encounter the staircase
profile for the quantization versus u keeping B fixed. Notice
that LL energies increase with B, as shown in our analytical
calculations. This changes kr even when u keeps fixed in-
side the bulk gap. One can hence expect that o2?(kr) can,
in principle, exhibit a staircase profile under the variation
of B as flat k,-independent LLs cross a given u. One can
obtain a staircase-like behavior of szzD (kr) while varying B
for u # 0 residing in the bulk gap. It is thus evident that 2ok

over the 2D sheet Hall conductivity O'l%«D (k;) does not lead
to a quantized plateau. Due to the limitation of our current
framework, the 2D staircase sheet Hall conductivity as vary-
ing B is beyond our scope, and we leave such a study for the
future.

In the context of topological transport in WSM, the role
of surface Fermi arc states is very important. It has been
shown that the time taken by the electrons with velocity v
to execute the cyclic motion, i.e., magnetic cyclotron orbit,
through the Fermi loop is divided into two parts such that
t = tae + L Where tye X ko/(evB) with ky being the length
of the Fermi arc, and #;; & L/v denote time spent by elec-
tron on the surface and inside the bulk of the WSM [89].
The contribution from a chiral LL (i.e., bulk) dominates for
B > B. = ky/L while surface Fermi arc contribution prevails
for magnetic field below such critical field strength. For a
thick slab of WSM with L >> [ and finite chemical potential
such that u intersects the bulk LLs, one expects the surface
contribution to become insignificant. In the present case, we
consider B = 2mn/L with n being integer, and L > ko/k2,
we find the chiral and nonchiral bulk LL are responsible for
the conductivity. The oscillation in the 2D density of states,
observed in Figs. 4 and 7, as a function of pu is related
to the quantum oscillations in terms of 1/B. These oscilla-
tions, in our case, are governed by the bulk LLs, and hence
we believe that the bulk conductivity o;; = Zk, o; jD (k) is

I

maximally governed by the LLs. The magnetic field has to be
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stronger enough magnetic field B = 10B, can lead to a nonmonotonic profile of O‘yzzD (k, = 3 /20) and a deviation from pu-linear behavior in

Oy.
perpendicular to the surface hosting the Fermi arc to receive
the Fermi arc contribution. In our case, the magnetic field
always lies parallel to the xz surfaces, hosting the Fermi arcs,
as we do not have any y component of B. Therefore the surface
arc contribution under a perpendicular magnetic field is less
than that of the bulk. Furthermore, to minimize the finite size
effect, we consider the PBC along the y-direction so that the
flat LLs become dispersionless. This might result in further
reduction in the surface effect. However, the contribution of
the surface Fermi arc is yet to be explored in more detail in
future studies.

Finally, we discuss the effect of disorder on the 3D Hall
conductivity. We believe that similar to the integer quantum
Hall effect in 2D, the quantization in 2D sheet Hall con-
ductivity remains unaffected in the presence of weak on-site
random disorder Wy;s. For strong disorder, scattering between
the localized edge states leads to the deviation from the quan-
tization. This means that scattering between the k;-dependent
LLs can destroy the staircase profile of 2D Hall conductiv-
ity under magnetic field along the ith direction. It has been
shown that the quantized Hall conductivity, caused by the
chiral zeroth LLs traversing the gap, is robust against disorder
scattering for an intermediate number of layers in the direction

of the magnetic field [63]. One can hence anticipate that the
scattering between two opposite chiral LLs gets suppressed
as long as the disorder is weak compared to energy scale
AE =~ vpky. Here, vp denotes the Fermi velocity and WNs
appear at (0, 0, +k¢/2). The quantized 2D Hall conductivity
is expected to be observed (destroyed) for Wgis < AE (Wyis >
AE). We notice that the disordered 3D QHE is a completely
new research direction, and it requires further investigations
beyond the scope of the present study. The sample thickness
and the mean free path caused by the disorder play interesting
roles in quantizing 2D Hall conductivity for the disordered
case.

VI. DISCUSSION AND SUMMARY

Transport properties of topological systems have emerged
as a central theme of recent research in condensed mat-
ter physics, with an inherent connection to the quantum
Hall effect. Among them, 2D systems have been extensively
studied theoretically early on [2,90]. Interestingly, in recent
experiments, ZrTes, HfTes, and Cds;As, have been found to
exhibit QHE in 3D [7,8,70,91,92]. Therefore, in the present
theoretical work on 3D WSMs in the quantum limit, we try
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TABLE I. The main findings on LLs (Fig. 2) and 2D sheet Hall conductivity (TXzyD (k,, ) (Fig. 4) are presented in a table for B || z. The
step represents the difference between two consecutive quantized plateaus in o2 (., i) in the unit of ¢*//i. The staircase profile of o3” (k, 1)

remains unaltered with p referring to the monotonic behavior.

Topological Number of chiral Dispersive Sheet Hall conductivity Steps in UfyD (k;, ) Steps in afy” (k, 0)
charge m LL through WN (flat) along without tilt for type-1 for type-II

1 1 k. (k) 0P (ko 1) # —0 2P ko, — 1) 1, monotonic 1, monotonic

2 2 k. (k¢) 0Pk, ) # =0l (ks — i) 1, monotonic 1, monotonic

3 3 k. (k) 0P (ko 1) # —0 2P ko, — 1) 1, monotonic 1, monotonic

to answer the following experimentally relevant questions:
How does the Hall conductivity respond in generic, tilted
mWSM models under different orientations of magnetic fields
concerning the WIN’s separation? Further, we study how to
distinguish type-I from type-Il mWSMs following different
magnetic field orientations. To answer these questions, we
first analytically solve the LLs in a low-energy model consist-
ing of two WNs at k;[ = (0,0, 1) and successfully depict
the LLs in the lattice ones in the case of a parallel magnetic
field (0, 0, B), namely, B aligns with the WN’s separation. On
the other hand, the LL spectrum under perpendicular magnetic
field (B, 0, 0), i.e., B being normal to the WN’s separation,
can be qualitatively explained by the low-energy model, de-
scribing a single WN. The sign and magnitude of higher
topological charges imprint their signatures on the chirality
(which is the slope of the mid-gap LLs) and the number of
chiral LLs passing through a WN at k, , = =7 for B || z (see
Fig. 2). In the case of B | x, the topological charge value
can be obtained from the number of linear crossings of the
mid-gap LLs at k, = 0 (see Fig. 3), with two WNs of opposite
chiralities projected simultaneously. In both the cases with
B || z and B || x, the bulk gap reduces with increasing the tilt
strength. However, the chiral LLs continue to exist for the
type-1I phase only if B || z. Therefore inspecting these dis-
tinct responses can simultaneously identify the type-1/type-1I
phase and topological charges.

The chiral structure of the LLs, dispersing along the mag-
netic field direction, essentially encrypts the quantization of
the edge states. The magneto-Hall conductivity oy, for B || z
and oy, for B || x are then the immediate measures to in-
vestigate the perceptible differences in terms of the tilt and
topological charge. Notably, the WSMs can be envisioned as
stacking Chern insulator plates along the direction of WN’s
separation. Our finding is, therefore, consistent with the fact
that QHE in WSMs can only take place when Fermi arcs
at opposite surfaces are connected through the bulk WNs to
form the Fermi loop with a good quantum number [60]. This
leads to the quantization in the 2D sheet Hall conductivity
oyzzD (ky) when B || x such that the two Fermi arcs existing
on the two opposite yz-surfaces, are strapped together via the
WNs at k;,t = (0, 0, &%) by considering k, as a good quantum
number. Surprisingly, our findings indicate that the QHE can
also be observed when B || z such that both the WNs have an
identical projection on the same Fermi point on the opposite
xy-surfaces. This way, disconnected Fermi points can be cou-
pled by considering k, as a good quantum number. This further
leads to the staircase-like quantized behavior in (TXZyD (k;). Tobe

more precise, the staircaselike structure in as-D (k;) emerges
from 3D WSMs under B || / when electrons fill up the flat
k,-independent LLs serially with [ # p (see Figs. 4 and 7).
Surprisingly, we find that o.2”(k;) always exhibits jumps
by unity for both type-I and type-II phases. By contrast, the
staircase pattern in avzzD (k) and the double jump due to the
crossing of the chiral LLs at k, = 0, observed for the type-I
phase are maximally destroyed for the type-II phase. Apart
from these distinct features with the tilt, the jump profiles be-
tween the adjacent quantized plateaus become different with
the topological charge change. In the untilted case, oyzzD (ky)

becomes an odd function of w, unlike GXZyD (k;), as the flat
LL spectrum is particle-hole symmetric irrespective of the
topological charge for B || x. We also demonstrate the effect
of an increasing magnetic field on the 2D Hall conductivity,
where the width of the quantized plateau increases due to the
degeneracy associated with each flat LL (see Figs. 6 and 9).
In the end, we find linear dependence on w for © — 0 in
the 3D Hall conductivities o;; = ), 05-[’ (k;)/n; irrespective
of the direction of the magnetic fields (see Figs. 5 and 8).
The mid-gap chiral LLs around . = 0 are responsible for the
above linear response that we also explain analytically by a
plausible argument. Interestingly, the tilt reduces the width of
the linear regime, eventually destroyed in the type-II phase.
The slope associated with this p-linear region increases with
the topological charge. The notable findings of our work are
tabulated in Tables I and II for B || z and B || x, respectively.
Considering all the above theoretical predictions based on
lattice models, we believe that our work is closely relevant
in transport experiments with mWSMs.

Last, coming to a possible experimental investigation of
our work, we can comment that building 3D systems by at-
taching electronic gates suitably in 2D systems or stacking
the 2D materials [93] appeared to fail as the resulting shape
of the Fermi surface indicates its 2D nature. The 3D QHE
was performed in ZrTes with a magnetic field of around 2 T
and temperature around 0.6 K, such that the lowest LL is
only occupied in the extreme quantum limit [7,8,70]. The Hall
resistivity plateau is proportional to half the Fermi wavelength
along the magnetic field direction. The 3D QHE has been
observed when the Fermi wavelength is much larger than the
lattice constant. In our present case, a significant length of
the Fermi arc (such as periodic boundary conditions can be
imposed) is considered for the lattice along the magnetic-field
direction. Thus our results can be experimentally relevant
under appropriate parameter regimes. However, we analyze
our results with varying chemical potential to maintain the
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TABLE II. The main findings on LLs (Fig. 3) and 2D sheet Hall conductivity ayzzD (ky, n) (Fig. 7) are presented in a table for B || x. The
steps in quzD(kx, /) are not always found to be unity indicating the deviation from uniform feature as described in Table I. The profile also
becomes irregular when the width of the plateaus are substantially different from each other.

Topological Number of chiral Dispersive Sheet Hall Steps in 02 (k,, i) Steps in 0° (k,, i)
charge m LL through WN (flat) along conductivity without tilt for type-I for type-II
1 2 ky (k) 02 (ke 1) = =0, (ky, — 1) 1,2,uniform(mostly) nonuniform (mostly)
2 4 ke (k.) 0P ke, ) = =072 (ke —p0) 1,2,uniform(partially) irregular
3 6 ke (k) ayzzD (ke, 1) = —asz (ke, —1) 1,2,uniform(minimally) irregular

magnetic field commensurate with the sample size. Of course,
it would be a practical topic to explore these effects in
mWSMs in the context of the ab-initio studies, e.g.,type-I
(i.e., TaAs and NbAs) and type-II (i.e., MoTe,, LaAlGe, and
WTe,, while varying magnetic field continuously. It could
also be interesting to investigate 3D QHE in other topological
semimetals, such as nodal-line and Dirac semimetals.
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APPENDIX A: LATTICE HAMILTONIAN MATRIX

By employing a periodic boundary condition along y di-
rection, we can write down the Hamiltonian for single, double,
and triple WSM described by Eqgs. (15)—(17) in the tridiagonal
matrix form. These matrices for single, double, and triple
WSM are as follows:

[ h hiy o his he,— i,
hy  hy haa - hoy,
H,, (k) = hy  haa hss : ,
H.c. :
hp,—1  hi-i,
L hL.v _
(AD)

where hj and hj _yjj,-2j,) are the intra- and interlayer
(second nearest) hopping matrices. For single WSM,
only the intra- and interlayer contribute with h; =
(cos(k, — jyBx) + 2 — cos(ky + jyB;))o, + sin(k, + j,B;)
oy + (to cos(k, — j,By) — )00 and hj_j, = 30y —
%o*z. Notice that for double and triple WSM, we need to
take the second nearest interlayer hopping into account. In
the case of double WSM, we have h; = (¢, cos(k; — jyBy) +
6 4 cos 2(k, + jyB;) — 4 cos(k, + j,B;))o, + cos(k, + j,B;)
o, + (to cos(k; — jyBy) — w)oo, ;= —30c + 2 sin(k, +
JyB)oy — 20, and h;_,; = %az. For triple WSM, these
are  given by h; = (cos(k; — j,Bx)+ 6 + cos2(k, +
JyB;) — 4cos(ky + j,B;))o, + sin(k, + jyB;)(—2 — cos(k, +
JyB)oy + (tocos(k, — jyBy) — w)oo, 1), = 3 sin(ky +
JjyB)ox — 3(=2 + 3cos(k, + jyB.))oy — 20, and hj _,; =
70y + 30z

For magnetic fields applied along with different directions
B || z or B || x, we only need to set either B, = 0 or B, =0 in
the matrices above.

APPENDIX B: LATTICE VELOCITY MATRIX

According to the definition of velocity Vy, = 2= the ve-
locity can be also expressed by the matrix formula.

1.B |z

In the case B along z direction, the derivation of Hamiltion
respective to k, and k, need to be considered. Then, we can
write down the corresponding V; and V), for single, double,
and triple WSM elaborately.

For m =1 single WSM, the corresponding matrices are
following:

% 0 --- 0
Ve = o 0 (B1)
H.c. :
Vi

v

where onsite element V; = cos (k; + j,B;)o, + sin (k, +
JyB;)o, and

0 Vi - Vi
v, 0 Vs 0 (B2)
* 7| he. S
0
where V; ; =1o0v+ ziiaz and the boundary connection
Vi, = V.
For m = 2 double WSM, the velocity matrices are
i Voo oo Vi
Vo, Vs 0O
Vi, = o B3
b H.c. ) : (B3)
Vi,
where V; = —sin(k, + j,B;)o, + [ — 2sin2(k, + j,B;) +

4sin (k, + j,B,)lo, and Vj,_y;, = L cos (k, + j,B.)o,.

[0 Vi, Vi3 Vi,-1 Vi,
0 Viz Vou o - Var,
Y, = 0 Vu Vi : . (B4)
H.c. N :
0 Vi,
- 0 -

045424-16



UNDERSTANDING THE THREE-DIMENSIONAL QUANTUM ...

PHYSICAL REVIEW B 106, 045424 (2022)

where  Vj_y; = 30, + 1sin(k; + j,B.)o, + 0.  and

—15z,

For m =3 triple WSM, the velocity matrices share
the same structure as for m =2 in Egs. (B3) and
(B4). For Vi, the nonzero elements in upper diagonal
matrix V;, = (—2cos (ky + jyB;) — cos2(k, + j,B;))o, +
(—2sin2(k, + jyB;) + 4sin (ky + jyB;))o, and V;_y; =
2 cos (k; + jyB:)oy + 3 sin (k + jyB.)oy. While for V),
the elements are Vj_y; = 53 sin (k; + jyB.)o, + (1 —

3 . 2 _ 1 1
5 cos (ky + jyB.))oy + s0;and V; ;= 50¥ — ;o

‘/jy _2.].,\' =

2.B|x

When applying a magnetic field in the x direction, we need
to consider the derivatives of Hamiltonian concerning the rest
two variables k, and k,. Since k, terms only appear in the
onsite block, their velocity matrices Vi of single, double,
and triple WSM are diagonal as given in Eq. (B1). Notice
that instead of filling with different values V; = — sin(k, —
JyBe)(toog + o) there we keep this same for all the three
WSMs. The y-direction velocity matrices are kept the same
as what has been derived in Appendix B 1 with k. + j,B;
replaced by k, as B, = 0 for B || x.
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