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The Laser Interferometer Space Antenna (LISA) aims to observe gravitational waves in the mHz regime over
its 10-year mission time. LISA will operate laser interferometers between three spacecrafts. Each spacecraft
will utilize independent clocks which determine the sampling times of onboard phasemeters to extract the inter-
ferometric phases and, ultimately, gravitational wave signals. To suppress limiting laser frequency noise, signals
sampled by each phasemeter need to be combined in post-processing to synthesize virtual equal-arm interfer-
ometers. The synthesis in turn requires a synchronization of the independent clocks. This article reports on the
experimental verification of a clock synchronization scheme down to LISA performance levels using a hexago-
nal optical bench. The development of the scheme includes data processing that is expected to be applicable to
the real LISA data with minor modifications. Additionally, some noise coupling mechanisms are discussed.

I. INTRODUCTION

The first detection of the gravitational waves (GWs) by the
Laser Interferometer Gravitational-Wave Observatory (LIGO)
and Virgo in 2015 was the dawn of the gravitational wave as-
tronomy [1]. The target observation band of these ground-
based detectors is 1 Hz to 1 kHz, being limited by seismic and
gravity gradient noise below 1 Hz.

The Laser Interferometer Space Antenna (LISA), being a
gravitational-wave detector in space, will avoid the mentioned
limitations, targeting the observation band from 0.1 mHz to
1 Hz. This mission is composed of three spacecraft (SC),
forming a triangle with 2.5 million km arm lengths. Each SC
hosts a free-falling test mass (TM). The microscopic relative
displacement of these TMs will be sensed using inter-satellite
heterodyne laser interferometry with 10 pm/

√
Hz precision

per TM pair. Hence, GW signals will be detectable in the in-
terferometric phases extracted by digital phasemeters on each
SC. The sample timing of the latter in turn is determined by
onboard clocks, namely one per SC and all independent from
each other.

Orbital variations will lead to arm length drifts of 10 m s−1

as well as arm length mismatches by the order of 108 m. Such
unequal arm lengths cause a large coupling of laser frequency
noise into the interferometric phase readout. To mitigate this
overwhelming noise source, a virtual interferometer insen-
sitive to laser frequency noise can be synthesised in post-
processing by a technique named time-delay interferometry
(TDI) [2] . This scheme requires to shift phasemeter (PM) sig-
nals by precise time intervals related to the light travel times
along the arms, ideally in a common clock frame. This is im-
peded by the uncertain relation of sample times between dif-
ferent SC due to the independent clocks, which exhibit offsets
and drifts, and the light travel delays between the SC. On top,
differential clock jitter in the mHz measurement band directly
couples into phase sensing precision.

State-of-the-art space-qualified oscillators have a typical
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Allan deviation of about 10−13 for averaging times of 1 s [3].
That is around 4 orders larger than the required level to over-
come the differential clock jitter [4, 5]. Hence, LISA requires
a scheme to deal with both differential clock jitters and syn-
chronizing sample timing of all signals in post-processing.
The total process is summarized as clock synchronisation in
the following. It leads to the necessity of auxiliary monitors
of the differential clocks in addition to the main measurements
of optical carrier-carrier beatnotes [6, 7]. These are imple-
mented by encoding the clock tones in optical sidebands of
the beams. The optical beatnote between the local and re-
ceived sideband contains the differential clock information.
To relax phase fidelity requirements on the clock tone transfer,
the tones are up-converted from the MHz to the GHz regime
before being imprinted on the heterodyne beatnote as phase
modulation. Furthermore, to complete the clock synchroniza-
tion, the aforementioned delays needs to be derived. On top
of the baseline solution based on pseudo-random-noise (PRN)
ranging [7–9], TDI ranging (TDIR) [10] can act as a com-
plementary scheme. PRN ranging encodes a pseudo-random
noise via phase modulations in addition to the aforementioned
clock sideband. SC separations and the differences between
distant and local clock times are derived by comparing the re-
ceived PRN code and a local copy of it. In contrast, TDIR
derives these parameters by minimizing the noise level after
TDI processing.

This article reports on the experimental demonstration of
the clock synchronization among three independent clocks.
To demonstrate LISA performance levels (1 pm/

√
Hz per sin-

gle PM readout channel with a noise shape function [11]),
an implementation of a three-signal scheme by a picometer-
stable hexagonal optical bench [12] is used. It demonstrates
the suppression of noise due to unsynchronized clocks by
around 6 orders of magnitude, enabling the performance of
the optical three-signal combination on LISA levels. While
the setup cannot feature realistic light travel delays, the ab-
sence of a synchronization start pulse [13] between PMs in-
serts a realistic unknown initial delay. Consequently, these
delays have been determined by TDIR-like processing.

Besides the experimental results, a detailed model of the
clock synchronization based on the measured total frequen-
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cies is given, which is expected to be applicable with minor
modifications also to the real LISA data [14]. Moreover, noise
couplings stemming from the clock synchronization are dis-
cussed.

II. EXPERIMENTAL SETUP

The experimental setup applying the clock synchronization
in a hexagonal optical testbed was first proposed in [15] and
is illustrated in Figure 1. Conceptually, the three colored
phasemeter-clock assemblies together with the optical devices
like lasers and electro-optic modulators (EOM) can be inter-
preted as the three LISA SC.

Three optical heterodyne beatnotes are generated pairwise
from the three lasers. Two of these act as secondaries locked
to the remaining primary with LISA-like MHz offsets. In
this article, the MHz offsets are time-invariant. The beat-
notes are consecutively detected by pairs of complementary
photoreceivers and fed to PMs. By design, the phases of the
three beatnotes should cancel out in a three-signal combina-
tion [12, 16]. Residual noise gives a measure of the PM and
metrology chain performance.

The setup features five independent clocks in total, all of
which have frequencies around 2.4 GHz. They are categorized
into two groups: unprimed clocks for directly driving PMs and
primed clocks for driving EOMs. The latter are responsible
for creating GHz sidebands via phase modulations.

Each of the unprimed clocks, running at 2.400 GHz, drives
a phasemeter module called frequency distribution module
(FDM) [17]. Each FDM in turn consists of two frequency-
divider chains: one to derive 75 MHz pilot-tone signals (PT),
and the other to generate 80 MHz sampling clocks driving
the analog-digital converters (ADC) and digital clocks of the
PMs. The PT calibrates the ADC sampling jitter and removes
noise occurring in the 80 MHz clock generation. Hence, its
application requires high phase fidelity in the PT chain.

The primed clocks are connected to an EOM each. Note
that the virtual clock 1′, which is identical to 1, is in-
troduced for the ease of the modelling in Section III. To
achieve a 1 MHz offset between the carrier-carrier beatnote
and sideband-sideband beatnotes, the clocks 1′, 2′ and 3′ run
at 2.400 GHz, 2.401 GHz and 2.399 GHz, respectively.

To derive the differential clock signal between unprimed
clocks driving the PMs, they need to be related to the men-
tioned optical sideband-sideband beatnotes. This is done by
tracking electrical beatnotes between pairs of the local primed
and unprimed clocks, i.e. 2′-2 and 3′-3. The complete
clock tone transfer is conceptually summarized in Figure 2.
Through the rest of this article, clock 1 is chosen as a primary
clock, while clock 2 and 3 are secondary.

In LISA, the setup will be slightly different and more sym-
metric. Each SC will be equipped with two EOMs, one
per arm, driven by 2.400 GHz and 2.401 GHz. This ensures
the aforementioned 1 MHz offset. Furthermore, the different
GHz signals will ultimately be derived from a single onboard
10 MHz ultra-stable oscillators (USO). The three USOs on the
three SC will, however, not be actively synchronized to each

other, but individually free-running.
As mentioned, the PMs operate at a sampling frequency of

80 MHz generated by the FDMs. In LISA, the data streams
need to be low-pass-filtered, to avoid aliasing, and decimated
in several stages to a lower data rate before being downlinked
to earth. The current PM implementation in this experiment
utilizes a FPGA-based cascaded integrator-comb (CIC) fil-
ter as a first stage to decimate the phase readout towards an
intermediate data rate around 610 Hz. At these rates, more
sophisticated finite impulse response (FIR) filters are applied
in software to decimate further to 3.4 Hz as the final readout
rate. Note that the LISA baseline for the final data rate was
increased to 4 Hz. As will be described in Section IV, the
data analysis is sensitive to insufficient low-pass filtering. The
same effects will impact the data processing for LISA which
in turn will require careful design of the onboard processing.

While the hexagonal optical bench and photoreceivers are
hosted in a vacuum chamber with a moderate vacuum level
around 1 mbar, the three PMs are mounted in housings with
active temperature stabilization. The other components in Fig-
ure 1 are placed in air.

III. MODEL

The mathematical model of the clock synchronization in
this experiment can be derived by reducing the model for
LISA presented in [5]. The LISA phasemeter will be capa-
ble of providing data in either phase or frequency. While the
final data format is not yet decided, this work assumes that
the data is downlinked in units of frequency, which avoids
the need to handle frequent phase wrapping due to the MHz
beatnotes. Consequently, our experimental data is also mod-
elled and processed using frequency units similarly to [18],
which is only integrated to compute the phase spectral density
in the very end. Frequency measurements in this section are
assumed to be already corrected by a PT signal to suppress
ADC jitter, as described in [19]. Moreover, it is assumed that
the measured frequencies described in this section are the PM
outputs, i.e. the low-rate data after the down-sampling from
the 80 MHz sampling frequency. Note that imperfections in
the down-sampling process can impact the final results of our
analysis, which will be studied in detail in Section IV. How-
ever, in this section, the in-band properties of the interfero-
metric signals are described and thus any impact of the filters
and decimation stages is neglected.

While the notation conventions used in [5] is loosely fol-
lowed, a notable difference is that this lab experiment has no
need to refer to external time frames like the SC proper times.
Instead, the clock 1/1′ is chosen as a reference or primary
clock and all variables are written in that clocks time frame,
which will be always labelled with the index m (= m′).

A. Measurements

The measurements available from the experiment are first
described, focusing on how they are impacted by the different
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FIG. 1. Schematic of the experimental setup to demonstrate the clock synchronization at LISA performance levels. The three lasers are locked
to each other with MHz offsets and noise injections interfere pairwise and generate three optical beatnotes. Their combination should cancel
out by design and allows the characterization of the metrology chain, e.g. including the three readout PMs. A total of five clocks as well as
three optical and two electrical beatnotes are used to achieve synchronization between PMs.

post-processing
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FIG. 2. Conceptual diagram of the clock tone transfer. The solid-
black lines, the solid-red lines and the dashed-black lines denote elec-
trical signals, optical signals and digital data, respectively.

clocks.
The timing noise of the secondary clock i relative to the

primary clock m is denoted as qi(τ), while the overall clock
time ττm

i (τ) at a given reference clock time τ is modelled as

ττm
i (τ) = τ + δτi(τ)

= τ + qi(τ) + δτi,0, (1)

with δτi,0 as the constant initial time offset between the clocks.
We call δτi(τ) timer deviation. The superscript τm is to explic-

itly show that this functions is according to the clock m. The
primary clock naturally satisfies ττm

m (τ) = τ.
To transform variables sampled by the clock i to the primary

clock time frame, the inverse of Eq. (1) is needed, i.e., the
primary clock time given a time of the clock i. This can be
expressed by the implicit equation

ττi
m(τ) = τ − δτi(ττi

m(τ)). (2)

Phase measurements φτi sampled according to one of the
clocks i are simply shifted in time according to Eq. (2),

φτi (τ) = φτm (ττi
m(τ))

= φτm (τ − δτi(ττi
m(τ))). (3)

As stated above, the PM output is used in terms of frequen-
cies, which are related to the phase by a time derivative. This
gives

ντi (τ) =
dφτi (τ)

dτ

= ντm (ττi
m(τ)) ·

dττi
m(τ)
dτ

=
ντm (ττi

m(τ))
1 + q̇i(τ

τi
m(τ))

(4)

for expressing a frequency measured according to the clock
i relative to the same frequency measured by the reference
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clock.
The signals in this experiment can be categorized into

three types: optical carrier-carrier beatnotes, optical sideband-
sideband beatnotes and the differential clock signal between
the primed and unprimed clocks generated by an electrical
frequency mixer. These three signals can be expressed in the
primary clock time frame,

ντm
c,i′ j′ (τ) = ντm

j′ (τ) − ντm
i′ (τ), (5)

ντm
sb,i′ j′ (τ) = ντm

c,i′ j′ (τ) + f j′ q̇ j′ (τ) − fi′ q̇i′ (τ), (6)

ντm
mix,i(τ) = fi′ q̇i′ (τ) − fiq̇i(τ), (7)

where fi is the nominal frequency of the clock i in the GHz
regime. Note that all unprimed clocks have the same nominal
frequency fi = 2.400 GHz. Our goal is to construct a noise-
free signal combination, which in the primary clock frame
would be trivially given as

∆
τm
1PM(τ) = ντm

c,2′3′ (τ) + ντm
c,1′2′ (τ) + ντm

c,3′1′ (τ) ≡ 0. (8)

However, since the signals presented in Eq. (5) are recorded
according to the independent clocks i, and thus have their
expressions modified according to Eq. (4), all measurements
need to be synchronized before ∆

τm
1PM(τ) can be computed.

B. Clock synchronization

Any signals sampled by the secondary clocks need to be
interpolated to adjust their time stamps and rescaled to com-
pensate the multiplicative factor in Eq. (4). For the former, it
is first shown that a time shift by δτi(τ) perfectly compensates
the time stamping errors in Eq. (3),

φτi (τ + δτi(τ)) = φτm (ττi
m(τ + δτi(τ))

= φτm (τ), (9)

since

ττi
m(τ + δτi(τ)) = τ + δτi(τ) − δτi(ττi

m(

ττm
i (τ)︷     ︸︸     ︷

τ + δτi(τ)))
= τ. (10)

Here, the following relation was used: ττi
m(ττm

i (τ)) = τ.
The first step to get δτi(τ) from our measurements is to

combine Eq. (5) to (7) to get a differential measurement be-
tween the primary clock m and the secondary clock i,

ṙτm
im′ (τ) = ṙτm

im (τ) =
1
fi

[(
ντm

sb,i′m(τ) − ντm
c,i′m(τ)

)
+ ντm

mix,i(τ)
]

= q̇m(τ) − q̇i(τ)
= −q̇i(τ). (11)

The actual measurements in this combination are recorded
according to the clock i, as shown in Figure 2. They can be

expressed by applying Eq. (4) to ṙτm
im (τ),

ṙτi
im(τ) =

ṙτm
im (ττi

m(τ))
1 + q̇i(τ

τi
m(τ))

=
−q̇i(τ

τi
m(τ))

1 + q̇i(τ
τi
m(τ))

. (12)

ṙτi
im(τi) can be integrated over the measurement time, which

gives, using Eq. (3) and (4),

rτi
im(τ) =

∫ τ

0
ṙτi

im(τ′)dτ′

= −qi(ττi
m(τ)). (13)

Here, our measured rτi
im(τ) is missing the initial δτi,0. Hence, a

free parameter δτ̂i,0 is added to Eq. (13),

rτi
im,0(τ) = rτi

im(τ) − δτ̂i,0

= −qi(ττi
m(τ)) − δτ̂i,0

≈ −δτi(ττi
m(τ)), (14)

where the last approximation is only realized after fitting the
correct value for δτ̂i,0.

This gives us δτi, but still evaluated at ττi
m(τ). The times-

tamp can be adjusted by numerically solving the following
nested equation,

δτi(τ) = δτi(ττi
m(τ + δτi(τ)))

= −rτi
im,0(τ + δτi(τ)). (15)

Note that the final results in this experiment do not signifi-
cantly change when using rτi

im,0(τ) instead of δτi(τ) for the in-
terpolation. The reason is that the sub-ppm frequency offsets
between the clocks result in a negligible timing error over the
typical measurement times in the lab. Nevertheless, the more
exact expression given in Eq. (15) will be used to time-shift
the measurements to the primary clock frame. In addition, it
is necessary to undo the frequency scaling in Eq. (4) by apply-
ing a multiplicative factor. In total, the following is computed,

ν̃τi
c,i′ j′ (τ) =

ντi
c,i′ j′ (τ + δτi(τ))

1 + ṙτi
im(τ + δτi(τ))

≈ ντm
c,i′ j′ (τ). (16)

The final signal combination can be now formed,

∆3PM(τ; δτ̂i,0) = ντ1
c,2′3′ (τ) + ν̃τ2

c,1′2′ (τ) + ν̃τ3
c,3′1′ (τ)

≈ ∆
τm
1PM(τ), (17)

which reduces to the noise-free Eq. (8) after δτ̂i,0 is fitted to
the correct value of δτi,0.
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IV. ALIASING EFFECT

Laser frequency noises at high Fourier frequencies are
folded into the observation band due to aliasing in the dec-
imation stages. Hence, the clock synchronization needs to
take into account this frequency regime by utilizing carefully
designed anti-aliasing filters. As time-stamping and sam-
pling operations do not commute (see below), the residuals
of aliased frequency noise will otherwise spoil the measure-
ments. A brief summary of this will be given in the following,
while a detailed model will be presented in [20].

A decimation stage can be considered as a combination of
an anti-aliasing filter and down-sampling. This process is ex-
pressed introducing a sampling operator S and a filter operator
F,

νS (τ) = SFν(τ′), (18)

where νS (τ) is a measured frequency after filtering and down-
sampling. The one-sided power spectrum of νS is made up of
the in-band contribution and any folded/aliased power which
results from down-sampling,

S νS ( f ) =

∞∑
k=0

F̃( f )S (k)
ν ( f ). (19)

where F̃( f ) is the modulus squared of the filter’s transfer func-
tion. S (k)

ν ( f ) denotes the kth alias which is given by

S (k)
ν ( f ) =

S ν(n[k] fs + f ), n[k] = k
2 if k is even

S ν(n[k] fs − f ), n[k] = k+1
2 if k is odd

(20)

Using the introduced formalism, a split measurement, i.e.
the difference between the same signals measured by inde-
pendent two PMs, is written with the adjustment of one of the
time stamps in post-processing,

y(τ) = SFν(τ′) − T−1
i SFTiν(τ′)

= T−1
i ([Ti,S]F + S[Ti,F]) ν(τ′), (21)

where the time-stamping operator Ti and its inverse opera-
tor T−1

i are introduced. They represent the time shifts due to
the timer deviation between the primary and secondary clocks
and the compensation for it by time-shifting, respectively. No-
tice that a timer deviation was assumed to be constant here,
hence, q̇i(τ′), which generally appears in a denominator like
Eq. (4), was neglected. The first term shows the commutator
between time-stamping and sampling, which is the focus of
the rest of this section. The second term is the one between
time-stamping and filtering, which is called flexing-filtering
coupling [21] and described in appendix B.

The k-th contribution to the total amplitude spectrum den-
sity (ASD) is derived by taking a square root of the ensemble

average of the squared modulus of the Fourier transform F ,

Ỹ (k)( f ) =

√〈∣∣∣∣F [
T−1

i [Ti,S]Fν(τ′)
]∣∣∣∣2〉

=

√
F̃( f )S (k)

ν ( f ) ·
∣∣∣e−i2π f δτi − e−i2π(n[k] fs+ f )δτi

∣∣∣
=

√
F̃( f )S (k)

ν ( f ) · 2 |sin(πn[k] fsδτi)| . (22)

This shows Ti and S does commute for power below the new
Nyquist frequency but does not for all aliased power, i.e. when
k , 0.

Up to here, a constant timer deviation δτi was assumed to
derive the ASD of the commutator. Our actual timer devi-
ation is time-dependent and almost linear in time over a lab
measurement time. Hence, if the timer deviation varies more
than O(1/ fs), the sinusoidal factor is averaged because of the
phase scanning. In this case, after such an averaging, Eq. (21)
reduces to,

Ỹ (k)( f ) ≈
√

F̃( f )S (k)
ν ( f ) ·

√
2. (23)

This model of the aliasing effect can be applied to the three-
signal measurement,

∆′3PM(τ) = SFνc,2′3′ (τ′) + T−1
2 SFT2νc,1′2′ (τ′) + T−1

3 SFT3νc,3′1′ (τ′)

= −T−1
2 [T2,S]Fνc,1′2′ (τ′) − T−1

3 [T3,S]Fνc,3′1′ (τ′),
(24)

where all detailed descriptions of clock synchronizations pro-
vided in Section III are omitted and the perfect three-signal
test without any additional noise was assumed in the second
line, i.e. νc,2′3′ (τ′) = −νc,1′2′ (τ′) − νc,3′1′ (τ′).

Section V specifically demonstrates the aliasing effect due
to the CIC decimation stage mentioned in Section II. The fil-
ter operator described in this section corresponds to its inte-
gration stage prior to down-sampling. This is followed by the
comb stage, whose transfer function can be simply applied
from the left side of Eq. (23).

V. RESULTS

Using the setup in Section II, the clock synchronization
based on the model provided in Sections III and IV was ex-
perimentally demonstrated.

As shown in Figure 1, the two secondary lasers were locked
to the primary laser with fixed MHz offsets. On top, LISA-like
frequency noises was added at the lock error point. The MHz
beatnote frequencies of νc,1′2′ , νc,2′3′ and νc,3′1′ were chosen as
follows: 23.3, 6.6 and 16.7 MHz. The white frequency noise
of the beatnotes was set to 60 Hz/

√
Hz, mimicking current

noise allocations for LISA. All complementary photoreciever
signals were fed to PM 1. The associated three-signal combi-
nation is, hence, measured with a single clock and serves as a
measurement of the testbed sensitivity for the clock synchro-
nization, i.e. ∆

τm
1PM(τ) in Eq. (8).

The filter order of the Lagrange interpolation, to realize the
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FIG. 3. Two differential clock signals. Left: clocks 1-2. Right: clocks 1-3. The total relative frequency offsets were measured (bottom) and
the mean values were estimated at 0.320 ppm and 0.296 ppm. These were integrated to compute the clock time shifts (top). The top panel
shows the detrended time shifts (green), which shows their stochastic components, together with the total time shifts (blue).

time shifting described in Eq. (16), was 121. At both ends,
150 samples of interpolated data were truncated. Regarding
the TDIR-like optimization of the initial offsets δτ̂i,0, the noise
contribution in the final signal combination ∆3PM(τ; δτ̂i,0)
above 0.8 Hz was filtered out before the computation of its
noise power. This was done to avoid the disturbance by the
dominant interpolation error close to the Nyquist frequency.

Figure 3 shows the two differential clock measurements
from Figure 2 in both relative frequency offsets and time shifts
based on the signals described by Eq. (11) to (14). The mean
values of the relative frequency offsets were 0.320 ppm and
0.296 ppm between clocks 1-2, and 1-3, respectively. Addi-
tionally, the initial offsets δτi,0 were derived based on TDIR-
like processing: δτ̂2,0 ≈ 2.26 s and δτ̂3,0 ≈ 3.36 s.

Figure 4 shows the performance of the clock synchroniza-
tion in phase spectrum density. Pink is one of the beatnote
phase noises, which shows 1/ f behaviour due to the injected
white frequency noise. Yellow shows the raw three-signal test
with non-synchronized PMs. It is dominated by effects due to
the clock initial offsets. After the secondary clocks were syn-
chronized with respect to the primary clock, see Eq. (17), the
three-signal performance (red) was suppressed with respect
to the separately measured differential clock jitters (green) by
3 orders of magnitude at 1 Hz up to 6 orders of magnitude
at 0.1 mHz. At this state, the measurement is limited by the
testbed noise monitored with a single PM (gray). It deterio-
rated slightly with respect to earlier measurements [12] due
to changes in the setup and is focus of ongoing further noise
hunting to bridge the remaining gap to the LISA PM require-
ment (black) in the observation band.

For the regime above 1 Hz, two noise couplings stemming
from the clock synchronization were verified. For both mod-
els, the mentioned final FIR decimation stage is significant.

Firstly, the bump close to the Nyquist frequency can be ex-
plained well by the analytical model of Lagrange interpolation
errors (navy) described in appendix A. The interpolation error
sharply drops down to numerical noise levels towards lower
frequencies. Secondly, the flexing-filtering coupling (navy-
dot-dashed) described in appendix B limited the performance
around 1 Hz. To gain more margin at 1 Hz, the FIR filter could
be tuned more carefully.

As mentioned in Section IV, also the filter design of the
CIC decimation stage has a significant impact due to alias-
ing effects. This effect was estimated based on the averaged
model presented in Eq. (23) because the averaging is neces-
sary as Figure 3 shows the measured time shifts (top blue)
varied by around 2 ms over a measurement time of 9000 s,
which is longer than 1/ fs with fs of 610 Hz. Using a 2nd-
order CIC, the injected frequency noise 60 Hz/

√
Hz around

the slow sampling rate of the CIC was aliased to the obser-
vation band. It dominates the associated three-signal mea-
surements (red-dashed) at the upper Hz regime according to
its model (blue-dashed). In contrast, a 3rd-order CIC showed
sufficient suppression and was used instead.

Lastly, anticipating future limitations and analysing the re-
maining noise margin with respect to the current testbed sen-
sitivity, noise projections of electrical devices in the sensi-
tive clock path were performed. More precisely, the FDM
noise was measured separately and scaled to the heterodyne
frequencies of this particular measurement (violet). The PT
chain of this device consists of five by-2 dividers, an ampli-
fier, a filter and a power splitter. Their in-air thermal stability
notably affects the FDM performance. Besides, the total noise
projection of other electrical components, namely stand-alone
mixers etc. shown in Figure 1, were again separately mea-
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FIG. 4. Measurement of a three-signal test using clock synchronization. Pink shows the input phase noise due to white LISA-like frequency
noise. The raw three-signal measurement with independent PMs (yellow) and the differential clock jitter (green) can be suppressed using clock
synchronization (red) down to the testbed sensitivity (gray), partially reaching the LISA requirement (black). Limitations due to an insufficient
2nd order CIC filter match the model of the aliased noise (red-dashed, blue-dashed, respectively). Further limitations are due to interpolation
errors (navy) and the flexing-filtering coupling (navy-dot-dashed). Noise projections of the FDM and additionally used components like
stand-alone mixers are shown in violet and violet-dot-dashed, respectively.

sured (violet-dot-dashed).

VI. CONCLUSION

In this article, the experimental demonstration of inter-
satellite clock synchronization using a hexagonal optical
bench was presented. The setup parameters are close to the
current LISA baseline design. In addition to the experimental
setup, data analysis techniques were assembled that are ap-
plicable to the real LISA data with minor adaptations. They
are correcting for clock errors by properly time-shifting and
rescaling the total frequency errors, a scheme which is cur-
rently also under investigation for LISA [14]. This is in con-
trast to previously suggested clock correction schemes for
LISA, which operate on the residual frequency fluctuations
after large trends have been removed [5, 22–24].

With input frequency noise of 60 Hz/
√

Hz and LISA-
like heterodyne frequencies, the performance of the clock
synchronization was successfully tuned down to the current
testbed sensitivity, which is below 1 pm/

√
Hz above 60 mHz

and below 10 pm/
√

Hz above 2 mHz. This presents a new
benchmark performance of the LISA clock synchronization

scheme.

In addition to the shown performance, three important noise
couplings were experimentally demonstrated for the first time
in this context: the impact of the out-of-band frequency noise
via aliasing, the interpolation error and the flexing-filtering
coupling. In particular the first is necessary to constrain the
filter designs for LISA by experimentally showing and charac-
terising the significance of out-of-band frequency noise. The
interpolation error and the flexing-filtering coupling are im-
portant especially to push the upper bound of the LISA obser-
vation band to 1 Hz or higher.

Future investigations will include the improvement of the
current testbed sensitivity to LISA PM requirement levels in
the whole band. Furthermore, critical components like the
FDM will be analysed to improve their thermal stability and
their coupling into the measurement performance. On longer
time scales, the experimental setup will be upgraded to in-
clude more LISA features and components. As the main
testbed for the LISA metrology chain, it will continue to serve
as a pillar for technology development to finally enable gravi-
tational wave detection in space.
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Appendix A: LAGRANGE INTERPOLATION

In post-processing, PM data is interpolated using fractional
delay filters to adjust data time stamps. We recall the analyt-
ical model of the interpolation error presented in [25]. Time
shifts are assumed to be constant in this section.

The interpolation consists of two steps: an integer delay T0
i

to shift the time stamps to the nearest sample and a fractional
delay Tε

i implemented by a non-causal FIR filter. To model
the interpolation based on this decomposition, the time shift
δτi is also expanded,

δτi = δτ0
i + δτεi , (A1)

where δτ0
i = N/ fs by definition. fs is the sampling frequency

and N is an integer.
To estimate the error in frequency domain, the Fourier

transform of the following expression needs to be derived,

δTix(t) =
[
Tε

i T0
i − Ti

]
x(t), (A2)

where x(t) is a given data in time andTi is the perfect operator.
The Fourier transform of each operator reads,

F
[
T0

i x(t)
]

(ω) = eiωδτ0
i x̃(ω), (A3)

F
[
Tε

i x(t)
]

(ω) =

p∑
k=−p+1

cεkeiωk/ fs x̃(ω), (A4)

F [Tix(t)] (ω) = eiω(δτ0
i +δτεi ) x̃(ω), (A5)

where p = (a + 1)/2 with a as the filter order and cεk is a filter
coefficient.

Combining these equations, the Fourier transform of
Eq. (A2) is derived,

F [δTix(t)] (ω) = eiωδτ0
i

 p∑
k=−p+1

(
cεkeiωk/ fs

)
− eiωδτεi

 x̃(ω).

(A6)

After all, the interpolation error in amplitude spectral den-
sity δT̃i(ω) is computed,

δT̃i(ω) =

∣∣∣∣∣∣∣∣
p∑

k=−p+1

(
cεkeiωk/ fs

)
− eiωδτεi

∣∣∣∣∣∣∣∣ . (A7)

Appendix B: FLEXING FILTERING

The model of the flexing filtering coupling presented in [21]
is adapted to our case where only a single time-stamping op-
erator exists in Eq. (21).

The Fourier transform of time-shifted data Tix(t) can be
generally expressed,

F [Tix(t)] (ω) =

∫ ∞

−∞

x(t − δτi(t))dt

=
1

1 − q̇i
exp

(
−iω

δτi,0

1 − q̇i

)
x̃
(

ω

1 − q̇i

)
, (B1)

where the timer deviation δτi(t) was assumed to be a linear
function of time, i.e. δτi(t) = q̇it + δτi,0.

Each term of the commutator between time-stamping and
filtering reads,

F [TiFx(t)] (ω) =
1

1 − q̇i
exp

(
−iω

δτi,0

1 − q̇i

)
x̃
(

ω

1 − q̇i

)
F̃(ω),

(B2)

F [FTix(t)] (ω) =
1

1 − q̇i
exp

(
−iω

δτi,0

1 − q̇i

)
x̃
(

ω

1 − q̇i

)
F̃

(
ω

1 − q̇i

)
.

(B3)

Using Eq. (B2) and (B3), the flexing filtering coupling to
the first order of q̇i is derived,

F [[Ti,F]x(t)] (ω) ≈ ωq̇i exp
(
−iωδτi,0

)
x̃ (ω)

dF̃(ω)
dω

. (B4)

Hence, a filter design couples to a phase measurement via
its frequency derivative. This implies that this flexing filter-
ing coupling is dominant close to the Nyquist frequency of a
particular decimation stage.
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