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ABSTRACT: The discovery of new catalytically active materials is
one of the holy grails of computational chemistry as it has the
potential to accelerate the adoption of renewable energy sources
and reduce the energy consumption of chemical industry. Indeed,
heterogeneous catalysis is essential for the production of synthetic
fuels and many commodity chemicals. Consequently, novel solid
catalysts with higher activity and selectivity, increased sustainability
and longevity, or improved prospects for rejuvenation and
cyclability are needed for a diverse range of processes. .
Unfortunately, computational catalyst discovery is a daunting Adj PIN
task, among other reasons because it is often unclear whether a
proposed material is stable or synthesizable. This perspective
proposes a new approach to this challenge, namely the use of
generative grammars. We outline how grammars can guide the
search for stable catalysts in a large chemical space and sketch out several research directions that would make this technology
applicable to real materials.

heterogeneous ca['atysis in grammar school

H INTRODUCTION instance, they correspond to known, stable structures if the
database is constructed from experimental data. On the
flipside, this means that there is a strong selection bias and
the screening will not be able to discover new, unexpected
materials. A rule-based definition of the library is in principle
less biased, as it allows enumerating all possible structures
within its constraints, not just known systems. Most catalyst
screening studies typically use very simple rules, however, so
that these screenings can be equally restrictive. Alternatively,
one could imagine a third strategy, namely the completely
random sampling of atomic arrangements. While this approach
would definitely be unbiased and unconstrained, it would also
lead to mostly unphysical structures, making the screening

Heterogeneous catalysis is an essential technology for enabling
sustainable economic development."”” On one hand, chemical
processes like ammonia synthesis require massive amounts of
energy and are thus substantial greenhouse gas emitters. On
the other hand, the long-term storage of renewable energy in
synthetic fuels is itself a catalytic process. In both cases, new
and improved catalysts would therefore yield large benefits
toward reducing global net carbon emissions. While new
catalysts have historically often been found by serendipity or
empirical insight, theoretical understanding has played an
increasingly significant role over the past decades. Indeed, not
least, the fundamental theoretical understanding of catalyst ) Iv inefficient
functionality based on scaling relations (limited as it may exiremely metcient.

practically be) has led to the emergence of an entire field of The above Paragraph reveals some c.ruc1a1 desiderata ‘for 2
computational screening based catalyst discovery.3_5 catalyst screening library, namely that it should be unbiased,

Such a computational catalyst screening requires first to extensive, and exclusively contain valid samples. As we shall
define a library of candidates (i.e., a chemical space, see Figure see, what this r}rlleians 1r}11 practice ldep ends somewhalt OE tl;cel
1). This space is typically constructed according to some c;) ntext. Nelzert.eess, these (iarty comp eting) goas shou
simple rules (e.g., the set of ordered metals or solid solution always be taken into account when designing a screening study.
alloys in a fixed lattice) or taken from some predefined It is the purpose of this perspective to argue that a good way to

experimental or computational database (e.g, the Materials

Project®). Once this space is defined, the screening itself Received: December 3, 2021

consists of computationally estimating the catalytic activity of Revised:  January 13, 2022

all candidates (or representative samples) contained therein. Published: February 3, 2022
Using a predefined database to span the chemical space has

the advantage that all candidates fulfill certain requirements

(implicitly) set upon construction of the database. For
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Simple Rule

Random Search

Figure 1. Cartoon depiction of different screening spaces. Random
search (white) covers a wide range of candidates but includes many
unphysical structures. A simple rule (green) defines a very restrictive
space. Experimental or computational databases can be highly diverse
but are also biased and incomplete, potentially missing entire classes
of interesting materials. A formal grammar could in principle cover a
large screening space without including unphysical candidates. Note
that the proportions are arbitrary. In particular, the space of random
structures is much larger than depicted and mostly consists of
nonsensical structures.

balance these requirements could be to define the chemical
space of interest via formal grammars. In the following, we
briefly give a general introduction into this concept before
discussing how it can be useful for catalyst discovery.

B RESULTS AND DISCUSSION

Formal Grammars. Formal grammars were originally
developed in the field of theoretical linguistics, where they
describe how syntactically valid sentences can be formed from
a language’s words.”® An example of this is shown in Figure 2.

S
NP Pre CN
Adj PIN SiN  SiN

—

heterogeneous catalysis  in

o

grammar school

Figure 2. Grammatical derivation of the title of this article.

Here, the title of this article is formed by creating a sentence of
the form “noun phrase” + “preposition” + “compound noun”
(abbreviated as NP, Pre, and CN, respectively). Subsequently,
NP and CN are further specified: The former consists of an
adjective (Adj) and a plural noun (PIN), while the latter
consists of two singular nouns (SiN). Finally, these
placeholders are replaced by actual English words so that
Pre becomes in, Adj becomes heterogeneous, etc.

The power of formal grammars does not just lie in the
analysis of given sentences, however. Instead a grammar can be
used to generate all syntactically valid sentences in a language.
To see how this works, we must first understand what the
components of such a grammar are. To this end, a simple toy
grammar is introduced in Figure 3, based on the sets N, X, and

N = {S,NP, Pre, CN,Adj, PIN, SiN}

catalysis, violinists, signals,

heterogeneous, young, promising,
T =
in, grammar, band, news, school, camp, room

S — NP PreCN
NP - Adj PIN
CN - SiN SiN
P= Adj - [heterogeneous; young; promising]
PIN - [catalysis; violinists; signals]
SiN - [grammar; band; news; school; camp; room|]
Pre - [in]

Figure 3. Components of a formal grammar. The set N contains
nonterminal symbols (i.e., placeholders for certain types of words or
phrases). The set ¥ contains terminal symbols (i.e., the words of the
language). The set P contains production rules, which define how
nonterminal symbols can be modified and replaced.

P. The first of these collects all so-called nonterminal symbols,
which are placeholders for certain types of words or phrases
(i.e., Adj or SiN, in the example above). Here, we also include
the starting symbol S, which marks the start of every new
sentence derivation. The second set contains all terminal
symbols, which are the actual words of the language (..,
heterogeneous or school). Finally, the set P contains the
production rules of the grammar. Each production rule is a
prescription of how the nonterminal symbols of a language can
be replaced or modified. For example, one rule specifies that
the nonterminal symbol Adj can be replaced by one of the
terminal symbols heterogeneous, young, and promising.

As exemplified in Figure 2, sentences can be generated from
this grammar by applying the production rules (depicted as
branched arrows) in a sequential manner. Starting from the
nonterminal symbol S, only a single production rule is available
(S — NP Pre CN). The final sentence is reached when no
nonterminal symbols are left and therefore no more
production rules can be applied. Importantly, this sentence is
only one of many that can be generated by the grammar in
Figure 3. In Table 1, some other examples are shown, along
with random sentences constructed by combining arbitrary
words from the dictionary X. These sentences also serve to
illustrate the distinction between syntax and semantics: The
grammar generates sentences that are syntactically valid. This
does not mean that these sentences are necessarily meaningful

Table 1. Example Sentences Generated with the Grammar
in Figure 3 and by Randomly Combining Five Words from
the Corresponding Dictionary”

grammar

heterogeneous catalysis in grammar school
young violinists in band camp
promising signals in news room
heterogeneous signals in school band
young catalysis in grammar news

random

grammar catalysis school news in
young in promising signals camp

catalysis signals camp news young
camp signals news school band

violinists camp in heterogeneous camp

“The grammar leads to syntactically valid sentences but not necessarily
semantically valid (i.e. meaningful) ones. The random generation
meanwhile produces complete gibberish.

https://doi.org/10.1021/acs.jpcc.1c10285
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(i.e., semantically valid). We are however much more likely to
generate a meaningful sentence with the grammar than with
the random generator, which produces complete gibberish in
most cases.

Catalyst Grammars. While this may seem far removed
from heterogeneous catalysis, string-based representations and
concomitant grammars have actually already found wide
application in the not so distant field of organic chemistry,
e.g, in the form of SMILES strings or the more recent
SELFIES grammar.”'’ The dictionaries of these chemical
languages consists of atoms and bonds that are combined to
form strings representing molecules. Importantly, the corre-
sponding syntax imposes physical and chemical constraints
into what kinds of molecules can be formed. For instance, the
SELFIES grammar is constructed such that all generated
strings by definition fulfill the valence rules of organic
chemistry."”

Despite their undisputed importance in organic chemistry,
strings and grammars are much less developed for the
inorganic and condensed-phase systems of interest in
heterogeneous catalysis, however. Arguably, this results from
the much higher complexity and variability of the correspond-
ing extended materials. Before entering a more differentiated
discussion onto this matter, let us first further motivate why
striving for such grammars could be a worthwhile endeavor.

To this end, we consider the simple toy problem of finding
stable ionic material compositions out of the 28 main group
elements in periods 2—5 and groups 1—17 (i.e., from lithium
to iodine). For simplicity, we assume that each element only
occurs in oxidation states that lead to the closest noble gas
configuration (e.g., Li*, Mg**, CI", etc.). To screen potential
catalysts from these elements we could consider as a simple
rule only those binaries of the type AB with balanced charges
(e.g, Na*Cl", Mg*'0*", Ga**As*", etc.). Unfortunately, this
leads to a disappointingly low total of 55 possible materials and
shows that vaster spaces need to be spanned to possibly
identify new promising materials in the screening. This can be
achieved by expanding our search space up to quaternary
compositions and considering all combinatorial possibilities,
which leads to a much larger library of over 600000
candidates. However, these mostly correspond to unlikely
(electronically unbalanced) compositions such as Na*O;*~ or
AP Ga*In*'F.

To obtain a set of candidates that is less restrictive than the
simple binaries and more physically plausible than the random
combination of elements, we now define a grammar that allows
the systematic composition of strings that correspond to
quaternary compositions with balanced oxidation states (see
Figure 4 for a simplified version of the grammar). The
production rules of this grammar ensure that nonterminal
symbols can only be replaced by the corresponding elements
or combinations of other nonterminal symbols which conserve
the oxidation state (e.g, a halogen can be replaced by
combining an alkali metal and a chalcogen). Furthermore, the
grammar by construction only generates compositions with up
to four elements. In this way, we end up with a significant
screening space of ca. 1,500 systems that exclusively consist of
chemically reasonable materials like Ca**Sr**Ge*~ or Li;"P*".

A quantitative comparison of these approaches shows that
about 30% of the grammatically generated compositions can be
found on the Materials Project (MP) database,® whereas the
same is true for only 1% of the random compositions (see
Figure S). Moreover, for those structures found in the MP

2933

N = {S;m:E;DpDz,ApAz}

Lit,Nat,K*,Rb*
Be?*, Mg?*, Ca?*, Sr2+
0%7,5%7,5e?",Te?~
F~,Cl”,Br~,I~

Y=

§ - D4,
S - DA,
Dy - Dy
Dy — DA
Ay - Ay
A} - DA,

D, - [Li*;Na*;K*;Rb*]
D2 - [Be“,Mg”,Ca“,Sr”]
A, = [0%7,5%7,5¢%7,Te?"]
Ay = [F~,Cl",Br~,I7]

Figure 4. Definition of a simple grammar for ionic compositions. The
production rules ensure that only charge balanced compositions with
at most four elements can be generated.

Simple Binaries
°

100
80

60

40 Grammar

% Known Compositions

20

Random
0 T T T T 2
102 103 104 105

Size of Chemical Space

Figure S. Percentage of compositions found in the Materials Project
database vs size of chemical space for three types of ionic composition
databases, generated by considering only simple binaries, using a
grammatical construction and randomly combining elements,
respectively (see text).

database, the mean energies above the convex hull (indicating
thermodynamic (meta-) stability)'' are 45 and 210 meV/atom
for the most stable structure corresponding to each
grammatical and random composition, respectively.

The “known” structures proposed by the grammar are
therefore significantly more likely to be (meta-) stable,
compared to the ones found through random search. Overall,
the grammar thus produces many systems that are known to be
stable, but about 70% of the generated systems are unknown.
In this sense, it nicely balances between the overly restrictive
“simple-rule” approach and the chemically unreasonable
random approach.

It might be argued that the benefit of using the grammar in
the above example could also be achieved by simply
enumerating all possible compositions and filtering charge-
balanced ones out after the fact. Indeed, this was the strategy
used by Davies et al. in their paper “Computational Screening
of All Stoichiometric Inorganic Materials”.'”"> However, any
such brute-force approach will eventually run into a
combinatorial wall, with the number of quarternary com-
pounds in that paper already exceeding 10'2. This number
would further explode if the multitude of possible crystal
structures for each composition were taken into account.

https://doi.org/10.1021/acs.jpcc.1¢10285
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Meanwhile, using a generative grammar ensures that only more
interesting compositions are produced in the first place.

Additional physical understanding may or may not be
included flexibly as additional production rules, this way
further tailoring the generated chemical search space. In this
respect, the use of a grammar in computational screening also
blurs the boundary between mere discovery and purposeful
design. While (exhaustive) searching in any enumerated space
is a discovery process, production rules in grammars offer the
prospect to introduce partial understanding of design rules (in
the present example, the understanding that balanced
oxidation states favor stability). This partial understanding is
likely not sufficient for a targeted atom-by-atom design.
However, formulation as production rules within a grammar
allows one to focus the search space on those materials that are
consistent with the present understanding and unbiased
regarding the rest.

While this illustrates the potential advantage of working with
a catalyst grammar, the presented example is obviously only of
a toy nature. Clearly, the elemental composition of a bulk
material is an overly simplistic representation of a real catalyst,
with catalytic activity generally driven by surfaces, defects, etc.
In the rest of this Perspective, we therefore want to discuss
some of the challenges and requirements for the development
of a more general grammar of heterogeneous catalysis.

String Representations. Since formal grammars are
intimately connected with strings and languages, one way
forward would be to develop more useful string-based
representation of catalyst materials. The difficulty therein is
that (unlike the elemental composition) the three-dimensional
arrangement of atoms in a solid does not naturally map onto a
one-dimensional string. While this is also true for organic
molecules, the SMILES language uses powerful, domain-
specific abstractions like chemical bonds, implicit hydrogen
atoms and atom-typing to achieve this mapping.’ Defining
such abstractions is strongly simplified by the small number of
elements that are relevant in organic chemistry. Even with
these advantages, nonlocal features like rings still cause
problems with SMILES, e.g., for machine-learning applica-
tions."’ Unfortunately, such features are ubiquitous in solids,
due to the presence of highly coordinated atoms (e.g,
transition metals).

A powerful catalyst string representation must therefore be
able to handle nonlocality and an enormous variety of
elemental compositions. A recently proposed approach to
overcome these challenges is to use a coordinate-free
representation based on crystallographic Wyckoff positions."*
By avoiding the definition of bonds between atoms altogether,
this is potentially a viable route toward powerful string
representations of catalysts. In the field of zeolites and metal—
organic frameworks, the classification of network topologies
offers similar advantages.'”'® If a generally useful representa-
tion could be defined along these lines, this would give access
to the wealth of techniques developed in natural language
processing, both in terms of grammatical inference and
machine learning (e.g, recurrent neural networks and
transformers). Indeed, this type of interdisciplinary approach
has recently led to significant advances in organic synthesis
planning.'”"*

Graph Representations. An alternative route toward a
catalyst grammar would be to use graphs instead of strings to
represent the catalysts. Graphs have a long tradition for
representing chemical structures in terms of atoms and their
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connectivity. Unlike strings, they can easily represent cycles,
branches and other nonlocal features of arbitrary complexity.
Moreover, graphs and nets (their periodic equivalent) are
already used to characterize inorganic solids such as zeolites,
metal—organic-frameworks, and carbon allotropes.w’20 A
further advantage of graphs over strings is that they can in
principle directly encode the relative positions of atoms in
three-dimensional space and are thus overall more expressive.
Furthermore, it is easier to define meaningful measures of
similarity for graphs than for strings, which can be important in
ML applications."

An analogous concept to formal grammars also exists for
graphs. Such graph grammars use production rules that define
how subgraphs can be modified and replaced.22 As a downside,
developing and using graph grammars is significantly more
complicated, however, because they operate on a more
complex type of object. This is particularly true for periodic
graphs. We also note that defining bonds in inorganic solids is
not always unambiguously possible, so that a straightforward
graph representation based on valence rules is not necessarily
equally well suited for all types of materials. However, it has
been shown that graph neural networks are able to learn
powerful graph representations in very diverse settings, without
prior definition of chemical bonds.”> A combination of
generative grammars with graph-based ML may therefore be
a promising route.

Validity. As noted above, the central advantage of using a
grammar in the context of catalyst discovery is that it allows
the exclusive generation of syntactically “valid” candidates, thus
avoiding the unnecessary consideration of “invalid” ones. We
have so far been fairly vague about what is meant by valid
structures, however. Indeed, this is not clear and depends on
the context. In the case of SMILES, validity simply means that
the valence rules of organic chemistry are not violated. This
implies that the corresponding molecules will also be
reasonably stable in most (but not all) cases. Relying on
valence rules alone is unlikely an adequate concept of validity
for the full periodic table though, not least due to the
ambiguous nature of chemical bonds. Similarly, the charge
balance condition used in the toy example above is not
sufficient to guarantee stability and only applies to ionic
materials. Yet another type of validity criterion can be defined
based on atomic or ionic radii, as, e.g., used in the Goldschmidt
tolerance factor for perovskites.”* In principle, a combination
of these different validity measures could be encoded in a
formal grammar, while in general and as noted above “valid”
could simply mean “consistent” with available partial under-
standing.

An alternative approach would be to infer validity from data
instead of defining it a priori. This could be achieved by
treating a database of known “valid” compounds (i.e., stable
compounds or active catalysts) and view these as a corpus of
examples generated from an unknown underlying grammar.
The corresponding grammar could then be learned using the
methods of grammar induction (also known as grammatical
inference).”” In this setting, a broader concept of validity
(beyond, e.g., mere stability) could in principle be obtained.
For example, one could construct the database of examples to
only include systems with certain conditions (such as adequate
band gaps for photocatalysts). This approach could also
incorporate a notion of synthesizability into the grammar,
which has recently been demonstrated to be a learnable

property.26
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Relation to Generative Deep Learning. The above
already implies a close relationship between formal grammars
and generative ML models. In particular, deep learning
approaches like Generative Adversarial Networks or Varia-
tional Autoencoders have recently been the focus of intense
study in materials design.”” While such models can be
extremely powerful tools for exploring chemical space they
tend to require large amounts of data for training.
Furthermore, the generation of unphysical or invalid structures
and so-called “mode collapses” (i.e, models which do not
cover the full space of relevant structures but only generate
highly similar outputs) are frequently observed issues that can
be difficult to debug.

The grammatical approach outlined herein is in many ways
complementary to such deep generative models. A simple
generative grammar can be defined with very little reference
data or derived from physical concepts (partial understanding)
like charge neutrality. Furthermore, “mode-collapse” is not an
issue, as the grammar can simply be sampled uniformly. On the
flipside, deep generative models are currently a much more
powerful and mature technology. In this context, we can again
take cues from the related field of molecular design, where it
has been shown that the robust SELFIES grammar can be used
both to enhance the quality of deep generative models and as a
competitive generative model in its own right.'”**

B CONCLUSIONS

In this Perspective, we have discussed the potential benefits of
using formal grammars to discover new solid catalysts. This
approach is intellectually stimulating, though it may seem
slightly frivolous at first glance. Considering the leading role
that string representations and grammars play in molecular
design, we firmly believe that this can lead to real advances in
catalyst discovery, however. To achieve this goal, we have
sketched several promising research directions. These include
the development of powerful string representations for solids
and surfaces, the use of graph-based grammars, and the
combination of grammars with deep generative models.

Notwithstanding, it is clear that all of this is a long haul.
True catalysts are complex entities that dynamically adapt to
the operation conditions.” They derive their activity from
anything but an ideal bulk crystalline structure. Encoding
surfaces, defects, nonstoichiometries, binding sites, etc. into
grammatical production rules is a daunting task. Navigating
this complex challenge might start with explicitly formulating
grammars for ideal crystalline facets or implicitly deducing a
grammar from emerging databases for adsorption systems (e.g.,
the OC20 data set™”)
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