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Figure S1. Comparison between experimental and GCMC simulated single-component C2H4 and C2H6

uptakes at 1 bar (296 K for MOF-505 [1] and UTSA-20 [1], 298 K for Mg-MOF-74 [2] and ZIF-7 [3], 303 K

for ZIF-8 [4], and 316 K for MAF-49 [5]).
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Figure S2. An example of MOF structure decomposition, feature integration, and predictive modeling.

 Atoms in organic linker, metal node, and topology are separately encoded by the word

embedding;

 We did not pre-assign any physical features for each atom such as atom weight, aromaticity, etc.

Instead, after distinguishing atoms by their atomic and bond types, we first assign a fixed-length

vector of arbitrary features for each type of atom, and these features are later updated or

optimized during model training to minimize ML prediction error;

 Three graph convolution layers are used to update atomic features;

 The global pooling strategy, Set2Set in PyTorch Geometric, is used to obtain the feature of the

entire organic linker;

 The embedded metal node, embedded topology, organic linker features obtained from the global

pooling, and geometric properties are concatenated into a one-dimensional vector for each MOF;

 The concatenated vector is used as MOF input feature for the final prediction of adsorption

capacities by an FNN with three hidden layers.
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Figure S3. Relations between MOF geometric properties and the H2 uptake at 2 bar and 77K: (a) void

fraction, (b) pore limiting diameter, (c) volumetric surface area, and (d) gravimetric surface area. Data

points are colored by the H2 deliverable capacity.
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Figure S4. Comparison between ML predictions and GCMC simulations for the top 100 MOFs with the

highest H2 deliverable capacity identified by the ML-assisted large-scale screening.

Figure S5. Comparison of GCMC-based and ML-predicted H2 deliverable capacity for the top 100 MOFs.
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Figure S6. Relations between MOF geometric properties and the C2H6/C2H4 selectivity at 1 bar and 298 K:

(a) void fraction, (b) pore limiting diameter, (c) volumetric surface area, and (d) gravimetric surface area.
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Figure S7. Comparison between ML predictions and GCMC simulations for top 100 MOFs with the

highest C2H6/C2H4 selectivity identified by the ML-assisted large-scale screening.
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Table S1. Lennard-Jones parameters for framework atoms.

Atom C O H N F Cl Br Zn Cu V Zr

σ (Å) 3.47 3.03 2.85 3.26 3.09 3.52 3.52 2.46 3.11 2.80 2.78

ε/kB (K) 47.86 48.16 7.65 38.95 36.48 142.56 186.19 62.40 2.52 8.05 34.72

Table S2. Hyper-parameters considered for the ML model configuration.

Hyper-parameter Setting

Hidden layer width 8, 16, 24, 32

Activation function Tanh, ELU, ReLU, Sigmoid, Softplus

Batch size 64, 128, 256

Graph convolution method [6] GINConv, GCNConv, AGNNConv, ClusterGCNConv,
GATConv, GraphConv, LEConv, MFConv, SAGEConv

Table S3. Optimal hyper-parameter combinations for ML models.

Case Prediction target Optimal hyper-parameters

Case 1 – H2 storage
H2 uptake at 100 bar/77 K 32, Sigmoid, 64, GCNConv

H2 uptake at 2 bar/77 K 16, Sigmoid, 256, ClusterGCNConv

Case 2 – C2H4/C2H6

separation
C2H4 uptake at 1 bar/298 K 16, Tanh, 256, GINConv

C2H6 uptake at 1 bar/298 K 16, ELU, 256, GINConv
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Table S4. Model performance in the prediction of H2 uptakes.

Prediction target Model type Dataset MAE
(g/L) R2

H2 uptake at 100 bar/77 K w/ chemical features Training 1.04 0.984

Validation 1.24 0.975

Test 1.25 0.976

w/o chemical features Training 1.35 0.972

Validation 1.41 0.968

Test 1.33 0.974

H2 uptake at 2 bar/77 K w/ chemical features Training 1.03 0.961

Validation 1.29 0.927

Test 1.29 0.928

w/o chemical features Training 1.88 0.873

Validation 1.98 0.852

Test 2.02 0.842

Table S5. Optimal hyper-parameter combinations for ML models without chemical features.

Case Prediction target Optimal hyper-parameters*

Case 1 – H2 storage
H2 uptake at 100 bar/77 K 16, Softplus, 64, -

H2 uptake at 2 bar/77 K 16, Tanh, 128, -

Case 2 – C2H4/C2H6

separation
C2H4 uptake at 1 bar/298 K 32, Softplus, 64, -

C2H6 uptake at 1 bar/298 K 24, Sigmoid, 128, -
         * The hyper-parameter "graph convolutional layer" is not applied.
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Table S6. Model performance in the prediction of C2H4 and C2H6 uptakes.

Prediction target Model type Dataset MAE
(cm3/g) R2

C2H4 uptake at 1 bar/298 K w/ chemical features Training 5.00 0.926

Validation 6.03 0.887

Test 5.79 0.896

w/o chemical features Training 8.63 0.776

Validation 9.33 0.739

Test 9.00 0.742

C2H6 uptake at 1 bar/298 K w/ chemical features Training 0.62 0.942

Validation 0.80 0.899

Test 0.77 0.897

w/o chemical features Training 1.12 0.796

Validation 1.21 0.768

Test 1.17 0.772
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