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1  |  INTRODUC TION

Insects are able to detect thousands of different chemical cues that 
convey important information about the environment, including 

plant volatiles, microbial odours and pheromones (Dahanukar et al., 
2005; Hansson & Stensmyr, 2011; Kandasamy et al., 2019; Stensmyr 
et al., 2012). This sophisticated discernment of odours is possible via 
large suites of odorant receptors (ORs), which bind and detect odor 
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Abstract
Insects are able to detect a plethora of olfactory cues using a divergent family of 
odorant receptors (ORs). Despite the divergent nature of this family, related species 
frequently express several evolutionarily conserved OR orthologues. In the largest 
order of insects, Coleoptera, it remains unknown whether OR orthologues have con-
served or divergent functions in different species. Using HEK293 cells, we addressed 
this question through functional characterization of two groups of OR orthologues 
in three species of the Curculionidae (weevil) family, the conifer- feeding bark beetles 
Ips typographus L. (“Ityp”) and Dendroctonus ponderosae Hopkins (“Dpon”) (Scolytinae), 
and the pine weevil Hylobius abietis L. (“Habi”; Molytinae). The ORs of H. abietis were 
annotated from antennal transcriptomes. The results show highly conserved response 
specificities, with one group of orthologues (HabiOR3/DponOR8/ItypOR6) respond-
ing exclusively to 2- phenylethanol (2- PE), and the other group (HabiOR4/DponOR9/
ItypOR5) responding to angiosperm green leaf volatiles (GLVs). Both groups of or-
thologues belong to the coleopteran OR subfamily 2B, and share a common ances-
tor with OR5 in the cerambycid Megacyllene caryae, also tuned to 2- PE, suggesting a 
shared evolutionary history of 2- PE receptors across two beetle superfamilies. The 
detected compounds are ecologically relevant for conifer- feeding curculionids, and 
are probably linked to fitness, with GLVs being used to avoid angiosperm nonhost 
plants, and 2- PE being important for intraspecific communication and/or playing a 
putative role in beetle– microbe symbioses. To our knowledge, this study is the first to 
reveal evolutionary conservation of OR functions across several beetle species and 
hence sheds new light on the functional evolution of insect ORs.
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molecules in peripheral olfactory sensory neurons (OSNs), trigger-
ing neuronal signals to be processed by the central nervous system 
(Brand et al., 2018; Clyne et al., 1999; Sato et al., 2008; Vosshall 
et al., 1999; Wicher et al., 2008). These seven- transmembrane pro-
teins form heteromeric complexes with a highly conserved corecep-
tor (Orco), which is necessary for odour responses in most insects 
by contributing to the formation of a ligand- gated ion channel 
(Butterwick et al., 2018; Larsson et al., 2004).

The OR gene family evolves according to a birth- and- death model, 
in which duplication events represent the birth of genes, and dele-
tion or pseudogenization their death (Nei et al., 2008). Accordingly, 
OR genes are often found in tandem arrays on insect chromosomes, 
with significant variation in the size of OR repertoires between 
species (Andersson et al., 2015; Benton, 2015; Brand & Ramírez, 
2017). Frequently, the majority of ORs in a given species are present 
within species-  or taxon- specific phylogenetic OR- lineage radiations 
(Mitchell et al., 2020). Within such radiations, novel olfactory func-
tions may evolve due to relaxed constraints or positive selection after 
gene duplication, provided the duplicated gene is retained and ex-
pressed (Andersson et al., 2015; Hou et al., 2021). Despite the general 
divergent nature of this receptor family, certain ORs are conserved 
across species, with simple (1:1) orthologous OR- pairs typically being 
present among related species. However, such clear orthology is 
usually rare or absent when comparing more distantly related insect 
species from different families, which has been shown in, for exam-
ple, beetles (Coleoptera) (Mitchell & Andersson, 2020; Mitchell et al., 
2020). Whether OR orthologues share the same or similar olfactory 
functions, or if functions have diverged in different species, has been 
studied primarily in Lepidoptera and Diptera (e.g., Bohbot et al., 2011; 
M. Guo, Du, et al., 2021). Such studies are important for advancing 
our understanding of the functional evolution of the insect OR family, 
as they may inform shared ecological relevance of certain compounds 
in different species, and hence shared selection pressures acting on 
the olfactory sense of insects. For example, the host and oviposition 
cues 1- octen- 3- ol, indole and skatole, respectively, are detected by 
orthologous groups of ORs across several mosquito species (Dekel 
et al., 2016; Ruel et al., 2019). In moths, some olfactory functions are 
widely conserved among OR orthologues, including both the detec-
tion of specific plant odours and sex pheromone compounds, whereas 
other orthologues are functionally different (Gonzalez et al., 2015; H. 
Guo et al., 2021; M. Guo, Du, et al., 2021).

In contrast, nothing is known about the functions of OR ortho-
logues in beetles, which is not surprising given the very few ORs 
that have been functionally characterized in this large order. The 
response profiles of seven ORs have been characterized from the 
Eurasian spruce bark beetle Ips typographus L. (“Ityp”; Curculionidae) 
(Hou et al., 2021; Roberts et al., 2021; Yuvaraj et al., 2021), two 
ORs from the red palm weevil Rhynchophorus ferrugineus Olivier 
(Curculionidae) (Antony et al., 2021; Ji et al., 2021), one OR from the 
dark black chafer Holotrichia parallela Motschulsky (Scarabaeidae) 
(Wang et al., 2020), one OR from the Adonis ladybird Hippodamia 
variegata Goeze (Coccinellidae) (Xie et al., 2022) and three ORs from 
the hickory borer Megacyllene caryae Gahan (“Mcar”; Cerambycidae) 

(Mitchell et al., 2012). Among the characterized ORs of this ceramby-
cid, McarOR5 responded strongly to the male- produced pheromone 
component 2- phenylethanol (2- PE) (Mitchell et al., 2012). McarOR5 
belongs to the beetle OR subfamily named Group 2B, which con-
tains conserved OR lineages with receptors from several beetle 
families, including the large family of true weevils, Curculionidae 
(Mitchell et al., 2020). This beetle family harbours the damaging 
conifer- feeding bark beetles of the subfamily Scolytinae and many 
other weevils that are pests of agriculture and forestry, such as the 
pine weevil Hylobius abietis L. (“Habi”; Molytinae) (Shin et al., 2018). 
2- PE is ecologically relevant for several conifer- feeding beetles. For 
instance, it is part of the attractive odour bouquets released by the 
fungal symbionts of I. typographus (Kandasamy et al., 2019) and the 
compound has also been identified from the hindgut of male beetles, 
where it may be produced by yeasts (Leufvén et al., 1984), in highest 
amounts before the acceptance of females (Birgersson et al., 1984). 
The compound is the primary odorant for one of the characterized 
OSN classes of I. typographus (Kandasamy et al., 2019), suggesting 
that this species is likely to have an OR tuned to this compound. 
In addition, Dendroctonus bark beetles produce this compound 
(Sullivan, 2005), including the mountain pine beetle D. ponderosae 
Hopkins (“Dpon”; Curculionidae), in which 2- PE reduces the attrac-
tion to the aggregation pheromone (Pureswaran et al., 2000). In the 
pine weevil H. abietis, 2- PE operates as a strong antifeedant pres-
ent in deterrent nonhost plants (Eriksson et al., 2008). Interestingly, 
2- PE is also produced by gut bacteria of H. abietis, and the behaviour 
of this species, to cover their laid eggs with faeces and frass contain-
ing deterrent compounds, may protect the eggs from being eaten by 
conspecifics (Axelsson et al., 2017; Borg- Karlson et al., 2006).

Due to the widespread use of 2- PE in the ecologies of conifer- 
feeding curculionids, we hypothesized that the compound may be 
detected by evolutionarily and functionally conserved ORs and that 
these receptors may be related to McarOR5. To test this hypothesis, 
we used HEK293 cells to functionally characterize two clades with 
simple OR orthologues from three curculionids (I. typographus, D. 
ponderosae and H. abietis), that is the orthologues in OR Group 2B 
that are positioned closest to McarOR5 in the OR phylogeny. The 
OR repertoires of the two bark beetle species have been previously 
reported (Andersson et al., 2013, 2019; Yuvaraj et al., 2021); how-
ever, to obtain the OR sequences from H. abietis we sequenced, ana-
lysed, and annotated male and female antennal transcriptomes. Our 
results show that 2- PE is indeed detected by functionally conserved 
and highly specific OR orthologues in all three curculionids. These 
ORs share a common ancestor with McarOR5, suggesting functional 
conservation also across two beetle superfamilies (Curculionoidea 
and Chrysomeloidea). Additionally, green leaf volatile (GLV) alcohols, 
abundant in nonhost angiosperm plants and generally avoided by 
conifer- feeding beetles (Zhang & Schlyter, 2004), were detected by 
the second assayed clade of curculionid ORs. These receptors share 
evolutionary history with the ORs detecting 2- PE. Altogether, our 
findings suggest strong functional conservation in ORs detecting eco-
logically important odours, and thereby expand our knowledge of the 
functional evolution of the OR family in the largest order of insects.
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2  |  MATERIAL S AND METHODS

2.1  |  Sequencing, assembly, annotation 
and analyses of the Hylobius abietis antennal 
transcriptome

Wild beetles were collected by hand at Balungstrand's sawmill in 
Enviken, close to Falun in mid- Sweden, and kindly provided by Prof. 
Göran Nordlander (Swedish University of Agricultural Sciences). 
The antennae from 20 males and 20 females were excised and 
collected separately in tubes kept on dry ice and then stored at 
−80°C. The antennae were homogenized using a Tissue- tearor 
model 98370- 365, and total RNA was isolated using the RNeasy 
Minikit (Qiagen). Extractions yielded 4.8 and 3.1 µg of high- quality 
total RNA from male and female antennal samples, respectively. 
These RNA samples were used for both transcriptome sequencing 
and molecular cloning.

The RNA samples were DNase- treated and then underwent po-
ly- A enrichment and library construction using a TruSeq v2 Library 
Preparation Kit (Illumina), followed by 150- bp paired- end sequenc-
ing on an Illumina HiSeq 3000 platform at the Max Planck- Genome 
centre. The sequencing produced 36,455,021 and 35,770,733 
paired- end reads from the male and female samples, respectively. 
Adaptor sequences and low- quality reads were removed using trim-
momatic (version 0.36) (Bolger et al., 2014) with a custom screening 
database, before performing de novo assemblies with trinity version 
2.4.0 (Grabherr et al., 2011). Reads from males and females were as-
sembled separately, and also combined. Contigs from the trinity out-
put were clustered to reduce the number of redundant transcripts 
using cd- hit- est (version 4.6.8) (Li & Godzik, 2006) with a sequence 
identity threshold of 0.98. Primarily, the sex- combined nonredun-
dant assembly was used for downstream annotation of OR- encoding 
transcripts, and comprised 46,669 predicted protein- coding “genes” 
with their respective isoforms and together with other noncoding 
genes totalled 199,035 transcripts. The average transcript length 
was 824 bp with an N50 of 1570 bp. The completeness of the sex- 
combined assembly was first assessed using the Benchmarking 
Universal Single- Copy Orthologs (busco version 5.2.2; https://busco.
ezlab.org/) tool performed against the Insecta odb10 data set, in-
cluding 1367 reference genes (Manni et al., 2021). This analysis re-
vealed 96.6% complete (C) BUSCOs, of which 59.8% were present 
as single copy genes (S) and 40.2% as duplicated genes (D). Only 30 
(2.3%) BUSCOs were missing (M) from the assembly and 17 (1.3%) 
BUSCOs were fragmented (F), indicating the majority of transcripts 
were represented and were full length. Mapping of the clean reads 
to the nonredundant assembly resulted in an overall alignment rate 
of 94.06%, further demonstrating a high level of completeness for 
this assembly. The RNA sequencing (RNAseq) reads have been de-
posited in the SRA database at NCBI under the BioProject accession 
no. PRJNA783427.

Hylobius abietis OR genes were annotated through exhaus-
tive tblastn searches against the assemblies at an e- value cut- off 
at 1.0. The OR query sequences were obtained from Ips typogra-
phus (Andersson et al., 2013; Yuvaraj et al., 2021), Dendroctonus 

ponderosae (Andersson et al., 2013, 2019), Anoplophora glabripennis 
(McKenna et al., 2016), Megacyllene caryae (Mitchell et al., 2012) 
and Leptinotarsa decemlineata (Schoville et al., 2018). All annotated 
HabiOR sequences were included in additional tblastn searches 
against the H. abietis assemblies until all novel OR hits were ex-
hausted. Except for the HabiOrco gene, which was only assembled 
to full length in the male- specific assembly, all OR genes were an-
notated from the sex- combined assembly, and no OR genes were 
uniquely found or assembled to higher completeness in the two sex- 
specific assemblies. A few partial OR genes could be extended by 
joining overlapping transcripts with identical sequences. The names 
of these genes were given a “JOI” suffix according to established 
nomenclature (Andersson et al., 2019, and references therein). 
Likewise, OR genes missing the N- terminus or C- terminus were 
given the suffixes “NTE” and “CTE,” respectively, to their names. 
Single letter abbreviations were used in combinations (i.e., J, N, C) 
for genes with multiple suffixes. Transcripts encoding partial OR se-
quences of <170 amino acids and those that that did not overlap 
with other OR sequences in multiple sequence alignments were dis-
carded as they may not represent unique genes. Likewise, for ORs 
sharing >96% amino acid identity, only one transcript was kept in 
the data set to exclude potential assembly isoforms or allelic vari-
ants. The identified HabiOR genes were given names from HabiOR1 
to HabiOR78 following their groupings in the OR phylogeny, with 
consecutive numbering within the major coleopteran OR clades 
(Mitchell et al., 2020).

To analyse the expression levels of OR genes in male and female 
antennae, clean reads were mapped to the open reading frames 
(ORFs) of annotated HabiOR genes using the align_and_estimate_
abundance.pl script from the trinity version 2.4.0 software package 
(Haas et al., 2013) with default parameters except for - - est_method 
RSEM- - aln_method bowtie2 - - trinity_mode. The rationale for map-
ping to the ORFs of OR genes, and not to all transcripts in the as-
sembly, was because some OR transcripts contained misassembled 
fragments in noncoding regions, which could bias the estimated ex-
pression level of the OR gene.

The HabiOR amino acid sequences were aligned with the OR se-
quences from D. ponderosae (Andersson et al., 2019), I. typographus 
(Yuvaraj et al., 2021) and M. caryae (Mitchell et al., 2012) using mafft 
version 7.450 (Katoh et al., 2002; Katoh & Standley, 2013), imple-
mented in geneious prime version 2020.0.5 (Biomatters). The align-
ment of a few partial OR sequences were corrected manually. Three 
misaligned partial McarOR sequences (McarORs 41PAR, 50PAR and 
53PAR) were excluded from analysis since their alignments could not 
be corrected with confidence. Uninformative regions were excised 
using trimal version 1.2 (Capella- Gutiérrez et al., 2009) with the fol-
lowing settings: similarity threshold 0, gap threshold 0.7 and mini-
mum 25% conserved positions. The trimmed alignment was used to 
construct a phylogenetic tree of ORs using fasttree version 2.1.11 at 
default settings (Price et al., 2010). Local node support values were 
calculated using the Shimodaira– Hasegawa (SH) test implemented 
within fasttree. The tree was rooted with the Orco lineage, and co-
lour coded in figtree version 1.4.3 (Rambaut, 2014). Final graphical 
editing was performed using Adobe illustrator.

https://busco.ezlab.org/
https://busco.ezlab.org/
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2.2  |  Molecular cloning and generation of HEK293 
cell lines

The protocols for cloning, cell line generation and culturing have 
been previously described (Andersson et al., 2016; Corcoran et al., 
2014; Yuvaraj et al., 2021). Briefly, OR (and Orco) genes with added 
5′ ApaI and 3′ NotI restriction sites, cacc Kozak sequence, and N- 
terminal epitope tags (Myc for Orco, V5 for ORs) were ligated into 
the pcDNATM4/TO (Orco) or pcDNATM5/TO (ORs) mammalian ex-
pression vectors (Thermo Fisher Scientific). For OR genes that re-
quired codon optimization for functional expression in HEK293 cells 
(Roberts, Yuvaraj, et al., 2021), the nucleotide sequences were sub-
mitted to the Thermo Fisher Scientific GeneArt Portal and codon- 
optimized for Homo sapiens, excluding the start methionine and 
the epitope tag, then synthesized and ligated into the pcDNATM5/
TO expression vector. Because we had no access to biological ma-
terial from D. ponderosae, the two functionally assayed DponOR 
genes were synthesized as codon- optimized versions directly, and 
also because several wild- type beetle OR genes are not function-
ally expressed in HEK cells (Roberts, Yuvaraj, et al., 2021). A codon- 
optimized gene of HabiOR4 was also tested because Western blots 
(below) failed to detect this protein from cells transfected with the 
wild- type gene. Receptors encoded by wild- type genes that were 
detected by Western blot were not codon- optimized because they 
all showed band intensities similar to, or higher than, several ORs 
previously characterized in this system (Yuvaraj et al., 2018, 2021). 
Sequences of codon- optimized genes from the two species are 
provided in Table S1. Sequences of OR genes cloned from anten-
nal cDNA (ItypOR5, ItypOR6, HabiOR3 and HabiOR4) have been 
deposited in GenBank under accession nos. OL865310– OL865313.

OR genes in expression vectors were transformed into HB101 
ampicillin- resistant competent cells (Promega), plated on ampicillin- 
containing agar and incubated overnight at 37°C. Resulting colonies 
were polymerase chain reaction (PCR)- screened with vector- specific 
primers, spread onto a new plate and incubated at 37°C for 4– 6 h. 
Positive colonies were subcultured overnight at 37°C in LB broth 
containing ampicillin. Plasmid DNA from the overnight cultures was 
harvested via extraction with the PureLinkTM HiPure Plasmid Filter 
Midiprep kit (Thermo Fisher Scientific), and insert sequence was 
confirmed by Sanger sequencing at the on- site DNA Sequencing 
Facility (Department of Biology, Lund University) using the BigDye 
Terminator v1.1 Cycle Sequencing Kit (Thermo Fisher Scientific). 
Positive plasmids were linearized with FspI, PciI or BstZ17I (New 
England Biolabs [NEB]) restriction enzymes and incubated overnight 
at 37°C.

Linearized plasmids containing the ItypOrco gene were trans-
fected into HEK293 cells containing a tetracycline- inducible 
repressor (TREx) using Lipofectamine 2000 (Thermo Fisher 
Scientific) (Corcoran et al., 2014). Twenty- four hours post- 
transfection, antibiotics (blasticidin for TREx, zeocin for Orco; both 
NEB) were added to select successfully transfected cells. Once a 
stable cell line was generated, protein expression of the ItypOrco 
gene was confirmed via Western blot analysis and functionality 

of Orco was confirmed using the Orco agonist VUAA1 (described 
below) (Jones et al., 2011). We recently found that the DponOrco 
gene is not functionally expressed in HEK cells (Roberts, Yuvaraj, 
et al., 2021); we therefore co- expressed the DponOR genes with 
the ItypOrco gene to allow functional characterization of these 
ORs. For consistency, the HabiOR genes were also tested together 
with the ItypOrco. Due to the conserved function of Orco and 
the relatedness among the three beetle species, we assumed that 
this strategy would not affect the OR response specificities. This 
assumption is supported by previous studies showing that com-
binations of OR and Orco proteins from different taxa assemble 
into functional receptor complexes responding properly to known 
ligands (Corcoran et al., 2018). The linearized OR gene- containing 
plasmids were transfected into the stably expressing TREx/
ItypOrco cell line as described above, and cultured with the antibi-
otic hygromycin (Gold BioTech) to select successfully transfected 
cells. The resulting cell lines were frozen at −80°C before func-
tional assays.

2.3  |  Protein extraction and Western blot analysis

Cells were cultured without antibiotics for 24 h before the expres-
sion of Orco and OR genes was induced with doxycycline (Sigma). At 
16 h post- induction, cells were pelleted via centrifugation and total 
protein extraction was performed as described by Corcoran et al. 
(2014). Protein extractions from noninduced cells served as nega-
tive controls. Western blot was performed using 25 µg of total pro-
tein from each sample and standard protocols for mixed molecular 
weight proteins. Primary antibodies (rabbit anti- Myc for Orco, rabbit 
anti- V5 for ORs) were added at a ratio of 1:2000, and the secondary 
antibody (anti- rabbit +IgG, horseradish peroxidase [HRP]- linked for 
both Orco and ORs) was added at a ratio of 1:5000 (all antibodies 
from Cell Signaling Technology), as described by Andersson et al. 
(2016).

2.4  |  Functional characterization of 
odorant receptors

Ligand- binding activity of cell lines co- expressing Orco and ORs was 
tested via a calcium fluorescence assay using a CLARIOstar Omega 
plate reader (BMG Labtech) according to previously described pro-
tocols (Andersson et al., 2016; Corcoran et al., 2014; Yuvaraj et al., 
2021). Briefly, cells were plated in black- walled poly- d- lysine- coated 
96- well plates (Corning Costar) and incubated overnight. Cells in half 
the wells were treated with doxycycline to induce expression of ex-
ogenous Orco and OR genes 16 hr prior to testing, leaving the nonin-
duced cells as negative controls. The calcium- sensitive fluorophore 
Fluo- 4AM (Life Technologies) was loaded into all wells, and plates 
were incubated in the dark at room temperature for 30 min before 
being washed with assay buffer, then incubated for another 30 min 
in the dark at room temperature prior to the assay.
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The test odour panel included 62 compounds (Table S2) that are 
ecologically relevant for conifer- feeding curculionids, including pher-
omone compounds, volatiles from conifers and angiosperms, as well 
as odorants produced by bark beetle fungal symbionts (Kandasamy 
et al., 2019, 2021; Yuvaraj et al., 2021). The Orco agonist VUAA1 was 
tested (at 50 µm) on each cell line as a positive control for functional 
Orco expression. Test odours were diluted in DMSO and assay buf-
fer with a final concentration of 30 µm in the plate wells for screen-
ing experiments. Compounds were tested over a minimum of three 
biological replicates (plates), and were pipetted into three induced 
and three noninduced wells per plate, creating three technical rep-
licates per plate. A negative control of 0.5% DMSO in assay buf-
fer (vehicle) was tested on each cell line. Background fluorescence 
was measured for both induced and noninduced cells immediately 
before compounds were added to the wells, with ligand- binding re-
sponse of cells measured as the percentage increase in fluorescence 
from background readings 10 s post- stimulation. Mean responses 
of cells to the added ligands were calculated using graphpad prism 6 
(GraphPad Software).

A response of ≥1% increase in fluorescence in induced cells was 
required for a compound to be considered active, provided a sig-
nificantly higher response in induced compared to noninduced cells. 
Hence, a general linear model (GLM) with “induction” as a fixed fac-
tor and “plate” as a random factor (to account for interplate varia-
tion) was performed using IBM spss statistics version 25. Bonferroni 
correction to maintain the α- level at 0.05 (for up to 12 multiple com-
parisons within a cell line) was undertaken to avoid reporting false 
positives (Type I statistical error). Compounds eliciting an increase 
in fluorescence of 3% or more at the 30 µm screening concentra-
tion were tested in subsequent dose– response experiments. Half- 
maximal effective concentrations (EC50) were calculated using the 
nonlinear curve fit regression function in graphpad prism (version 6). 
Calculations of EC50 values were only performed for compounds 
with (reasonably) sigmoid dose– response curves.

3  |  RESULTS

3.1  |  HabiOR annotation, expression and 
phylogenetic analysis of ORs

The HabiOrco gene and 78 HabiOR genes were annotated from the 
antennal transcriptome assembly, of which 51 transcripts encoded 
full- length proteins. The 28 partial HabiORs encompassed 174– 397 
amino acids. Three of the ORs were extended by joining overlapping 
sequences from two different transcripts. Annotation details and se-
quences of the HabiORs are presented in Table S3. Sequence reads 
from the male and female samples were mapped to the ORFs of 
annotated OR genes for estimation of relative OR gene expression 
levels. This analysis showed that the HabiOrco gene is clearly more 
highly expressed than any of the 78 HabiORs (Table S3). The ORs 
showed a range of expression levels (from 0.03% to 4.2% of the Orco 
expression in males; from 0% to 5.7% in females), with no specific 

OR standing out as being particularly highly expressed compared to 
the others. Expression was similar in the two sexes; the only pu-
tative exceptions were the partial HabiOR27NC and HabiOR46NC 
that showed twice the expression in females compared to males, and 
HabiOR48 with twice the expression in males compared to females. 
Expression levels of the functionally characterized HabiOR3 and 
HabiOR4 were intermediate, with a somewhat higher estimate for 
HabiOR4 in both sexes.

Recently, a phylogenetic analysis of the ORs across several cole-
opteran superfamilies defined and revised nine main monophyletic 
groups of ORs (Mitchell et al., 2020). Our phylogenetic analysis in-
cluding ORs from the Curculionidae and Cerambycidae shows that 
the distribution of HabiORs among the nine OR groups is similar to 
that of the other two curculionids (Ips typographus and Dendroctonus 
ponderosae) in the analysis (Figure 1), with most (55) ORs located 
within Group 7, followed by Group 1 (nine ORs), Group 5A and 2A 
(five ORs in each), and 2B (four ORs). The main differences between 
Hylobius abietis and the two bark beetle species are the stronger bias 
of HabiORs towards Group 7, including a large HabiOR- radiation 
of 26 receptors (HabiOR23– HabiOR48), and comparatively few 
HabiORs in Group 5A. The latter may be explained by the generally 
poor antennal expression of Group 5A ORs (Yuvaraj et al., 2021); 
indeed, the vast majority of Group 5A ORs from D. ponderosae were 
not found in the initial transcriptome analyses (Andersson et al., 
2013), but later recovered from the genome (Andersson et al., 2019). 
As with other curculionids, our analysis indicates that H. abietis en-
tirely lacks ORs from Groups 3, 4, 5B and 6. Similar to our previ-
ous study, the OR phylogeny did not recapitulate the monophyly 
of Group 2B, which is probably explained by the few species and 
narrow taxonomic range analyzed in this study (Yuvaraj et al., 2021).

Our OR phylogeny suggests 12 highly supported clades of sim-
ple (1:1:1) OR orthologues conserved across the three curculion-
ids (Figure 1). We also found that two of the McarORs appear to 
have representative orthologues in at least some curculionids; that 
is, McarOR2 grouped together with HabiOR1 and ItypOR11, and 
McarOR4 with DponOR6NTE and ItypOR51 (Figure 1). Within OR 
Group 2B, two orthologous groups of curculionid ORs (ItypOR5/
DponOR9/HabiOR4 and ItypOR6/DponOR8/HabiOR3) were posi-
tioned close to McarOR5, responding to 2- PE— a pheromone com-
ponent in this species (Figure 1). Hence, these six ORs were targeted 
for functional characterization to investigate whether evolutionarily 
related beetle ORs within and between coleopteran superfamilies 
may have the same response specificities. The amino acid identities 
between ItypOR5, DponOR9 and HabiOR4 range from 50.5% to 
57.8%, and for ItypOR6, DponOR8 and HabiOR3 between 60.0% 
and 67.5%.

3.2  |  Conserved responses to GLVs and 2- PE in 
OR orthologues

The HEK cells transfected with each of the six above- mentioned 
beetle OR genes were analysed for OR protein detection using 
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Western blots. Except for HabiOR4, the OR proteins were clearly 
detected, and only from cells induced to express the exogenous 
receptor genes, demonstrating proper regulation by the repressor 
system (Figure S1). Gene sequences codon- optimized for expression 

in human cells were used for the DponORs because we had no ac-
cess to biological material from this species (Roberts, Yuvaraj, et al., 
2021). Additionally, because the HabiOR4 protein was not detected 
from cell lines transfected with the wild- type OR gene, this gene was 

F I G U R E  1  Maximum- likelihood phylogeny of odorant receptors (ORs) from beetles of Curculionidae and Cerambycidae. Included are OR 
amino acid sequences from the curculionids Hylobius abietis (“Habi”; red), Ips typographus (“Ityp”; blue), Dendroctonus ponderosae (“Dpon”; 
orange) and the cerambycid Megacyllene caryae (“Mcar”; black). The tree is based on a mafft alignment, constructed using fasttree, and rooted 
with the conserved Orco lineage. The major coleopteran OR groups are indicated by the black arcs (Mitchell et al., 2020). The 12 groups 
of simple (1:1:1) OR orthologues across the three curculionids are highlighted in yellow; two clades housing putative simple orthologues 
shared by the cerambycid M. caryae and two of the curculionids are highlighted in purple. Receptors in OR group 2B that were functionally 
characterized in the present study and the previously characterized McarOR5 (Mitchell et al., 2012) are labelled by the compounds that 
activate them (GLV- OHs = green leaf volatile alcohols; 2- PE =2- phenylethanol). Local node support values were calculated using the 
Shimodaira– Hasegawa (SH) test implemented in fasttree, and are indicated on branch nodes by the shaded circles; support increases with 
the brightness of the circles. The scale bar indicates the number of amino acid substitutions per site. The sources of sequence data and 
explanation of receptor suffixes are detailed in the Materials and Methods section
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also codon- optimized and used in functional assays. The superscript 
HsCO (Homo sapiens Codon Optimized) was added to the names of 
codon- optimized OR genes.

In the OR phylogeny, the orthologous curculionid ORs HabiOR4, 
ItypOR5 and DponOR9 group most closely to the 2- PE recep-
tor in the cerambycid Megacyllene caryae (McarOR5; Figure 1). 
Screening experiments testing 62 ecologically relevant compounds 
at 30 µm concentration showed that neither of these curculionid 
ORs responded to 2- PE. Instead, HabiOR4HsCO responded to five 
six- carbon GLV alcohols, abundant in angiosperm nonhost plants, 
with significantly stronger responses in induced vs. noninduced 
cells (Figure 2a). Z3- hexenol elicited the strongest response in the 
screening experiments (7.3% increased fluorescence; F1,14 = 183.8; 
p <.001), followed by slightly weaker and similar responses to each 
of E2- hexenol, Z2- hexenol and 1- hexanol (5.2%– 5.7%; F1,14 = 48.9– 
118.8; all p <.001), and a yet weaker response to E3- hexenol (3.6%; 
F1,14 = 40.5; p <.001). Subsequent dose– response experiments 
largely recapitulated the screening data in terms of response mag-
nitudes elicited by the five compounds at the higher concentrations 
(Figure 2b). Nevertheless, these experiments indicated similar sen-
sitivities to the four most active ligands (EC50 values: Z3- hexenol 
7.99 µm, E2- hexenol 3.88 µm, 1- hexanol 2.85 µm, Z2- hexenol 7.34 µm), 
whereas the sensitivity to E3- hexenol was lower as shown by its 
weaker response at most tested concentrations and the nonsigmoid 
shape of the dose– response curve (EC50 could not be estimated).

A similar response profile was apparent for DponOR9HsCO 
(Figure 2c). Again, Z3- hexenol elicited the highest response in the 
screening experiments (4.5%; F1,14 = 51.5; p < .001), followed by E2- 
hexenol (3.2%; F1,14 = 44.2; p < .001), Z2- hexenol (2.3%; F1,14 = 48.3; 
p < .001) and 1- hexanol (2.0%; F1,14 = 24.6; p < .001). The slightly 
increased fluorescence seen upon stimulation with E3- hexenol was 
not statistically significant after correction for multiple statistical 
comparisons. In contrast to HabiOR4, (+)- trans- 4- thujanol elicited a 
significant response in DponOR9HsCO (3.5%; F1,14 = 17.0; p = .001); 
however, half of this response was also evident in the noninduced 
control cells, suggesting that factors unrelated to the DponOR 
contributed to the cells’ response. The two GLV compounds elic-
iting responses above 3% increased fluorescence in the screening 
were further examined in dose– response trials, showing somewhat 
stronger responses to Z3- hexenol as compared to E2- hexenol at 
the higher concentrations but similar responses at intermediate and 
lower concentrations (Figure 2d). EC50 values could not be estimated 
due to the nonsigmoid shape of the dose– response curves, which 
is commonly seen for ORs with comparatively low response magni-
tudes (Roberts, Yuvaraj, et al., 2021).

ItypOR5 responded to the same four GLV alcohols as did 
DponOR9HsCO, albeit with overall lower response magnitudes 
(Figure 2e), which is in accordance with this OR being detected as 
a fainter band on Western blot (Figure S1) compared to the other 
orthologues (see also Roberts, Yuvaraj, et al., 2021). The rank order 
between compounds was slightly different, with E2- hexenol elic-
iting the highest response (3.3%; F1,24 = 39.8; p < .001), followed 
by Z2- hexenol (2.2%; F1,23 = 19.3; p < .001), and similar responses 

to Z3- hexenol (1.6%; F1,24 = 27.9; p <.001) and 1- hexanol (1.6%; 
F1,24 = 30.5; p < .001). As with DponOR9HsCO, the slightly increased 
fluorescence elicited by E3- hexenol in induced cells was not sta-
tistically significant after correction for multiple comparisons. E2- 
hexenol activated ItypOR5 in a dose- dependent manner (Figure 2f; 
EC50 could not be estimated due to the shape of the dose– response 
curve); the other GLVs were not assayed in dose– response experi-
ments due to their screening responses being below 3%.

Compared to the GLV- responding ORs, the orthologous recep-
tors HabiOR3, ItypOR6 and DponOR8 are positioned slightly further 
away from McarOR5 in the OR phylogeny, yet they are part of the 
same OR clade (Figure 1). The three ORs all responded exclusively to 
2- PE, with significantly stronger responses in induced compared to 
noninduced cells. The highest response was recorded for HabiOR3 
(10.5% increased fluorescence; F1,19 = 324.7; p < .001; Figure 3a), 
followed by ItypOR6 (5.7%; F1,14 = 85.9; p < .001; Figure 3e) and 
DponOR8HsCO (4.0%; F1,14 = 80.4; p <.001; Figure 3c). Each of these 
receptors responded to 2- PE in a dose- dependent manner with esti-
mated EC50 values at 8.54, 3.45 and 5.12 µm for HabiOR3, ItypOR6 
and DponOR8HsCO, respectively (Figure 3b,d,f).

4  |  DISCUSSION

To allow for functional characterization of Hylobius abietis ORs, an-
tennal transcriptomes were sequenced and the ORs annotated, sug-
gesting a similarly sized OR repertoire (79 ORs) as in Ips typographus 
(73 ORs) and Dendroctonus ponderosae (86 ORs) (Andersson et al., 
2019; Yuvaraj et al., 2021). The largest number of HabiORs was 
found in OR Group 7, and H. abietis stands out by its large OR radia-
tion within this group. This differs from both the bark beetles and 
the red palm weevil Rhynchophorus ferrugineus, but displays similar-
ity with the large radiation of Group 7 ORs in the sweetpotato weevil 
Cylas formicarius (Antony et al., 2016; Bin et al., 2017). Our previous 
study indicated that the two scolytine bark beetles I. typographus 
and D. ponderosae share 17 highly supported simple OR orthologues 
(Yuvaraj et al., 2021). Here, we included also the pine weevil from 
the subfamily Molytinae in the analysis, and found that 12 simple 
orthologues are conserved across these three species. The observa-
tion of fewer orthologues in this broader analysis is consistent with 
the general positive correlation between species relatedness and oc-
currence of OR orthology (Mitchell et al., 2020). Our OR phylogeny 
also supports the notion that OR orthology is rare across beetle su-
perfamilies (Mitchell & Andersson, 2020; Mitchell et al., 2020).

To investigate whether OR orthologues are functionally con-
served in the three curculionids, and whether evolution of OR func-
tionality may be traced beyond the beetle superfamily level, we 
characterized two curculionid OR clades within beetle OR subfam-
ily 2B, both of which are evolutionarily related to the cerambycid 
2- PE receptor McarOR5 (Mitchell et al., 2012). Our results show 
conserved functions across the tested OR orthologues, with one 
group (HabiOR3/DponOR8/ItypOR6) responding exclusively to 2- 
PE, even though several structurally similar compounds were also 
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tested (Table S2). The other group (HabiOR4/DponOR9/ItypOR5) 
responded to several six- carbon GLV alcohols. Our results further 
show that the 2- PE receptors in the curculionids share a common 
ancestor with McarOR5, which is also the case for their GLV- 
responding ORs. Interestingly, the GLV receptors in the curculionids 
are the most closely related to McarOR5, while their 2- PE receptors 
are part of a sister clade. This suggests that the response to 2- PE 
may be ancestral and that new functions such as GLV responsive-
ness have subsequently evolved (neofunctionalization) in the more 
recent OR lineages of the curculionids. Another possibility would be 
that the ancestral receptor was broadly tuned to both 2- PE and GLVs 
and that the more recent OR lineages, derived from gene duplication, 
may have evolved higher specificity for either GLVs or 2- PE in the 
process of subfunctionalization (Andersson et al., 2015). Revealing 
the responses of the remaining six related McarORs (McarORs 8, 
10, 13, 22, 39 and 56; see Figure 1) is needed to conclusively in-
form the evolutionary history of these OR functions; in particular in 
this context, it could be enlightening to search for GLV- responding 
ORs among the orphan McarORs. The clade containing the curculi-
onid 2- PE receptors is also intriguing due to the presence of ortho-
logues in numerous additional species from several beetle families, 
including Anoplophora glabripennis (Cerambycidae), R. ferrugineus 
(Curculionidae), Leptinotarsa decemlineata (Chrysomelidae), Tribolium 
castaneum (Tenebrionidae), Nicrophorus vespilloides (Silphidae) and 
Onthophagus taurus (Scarabaeidae) (Antony et al., 2021; Mitchell 
et al., 2020). Unravelling the functions of the orthologues in these 
species should inform how widely conserved the ORs for 2- PE are 
across the Coleoptera. In moths, it was shown that OR orthologues 
detecting the flower compound phenylacetaldehyde were func-
tionally conserved across 11 species from several families of the 
suborder Glossata although the majority of the other investigated 
orthologues were functionally divergent, even among related spe-
cies (M. Guo, Du, et al., 2021).

The strong functional conservation among the examined OR or-
thologues suggests that 2- PE and GLV alcohols convey important 
fitness- related information to the three curculionids. Indeed, GLVs 
are abundant in the leaves of angiosperms and less so in conifers, 
and are regarded as nonhost cues that typically inhibit the attraction 
of conifer- feeding bark beetles to their aggregation pheromones 
(reviewed in Zhang & Schlyter, 2004). Hence, GLVs are probably 

used by the beetles to avoid colonizing angiosperm trees in which 
they cannot reproduce (Dickens et al., 1992; Schiebe et al., 2011). 
A role of GLVs in host choice has also been proposed for H. abietis 
(Kännaste et al., 2013; Pettersson et al., 2008).

In addition, 2- PE is tightly connected to the chemical ecologies— 
and potentially reproductive fitness— of the three investigated spe-
cies. In H. abietis it is a potent antifeedant, present in the gut of the 
beetle and in nonhost plants (Axelsson et al., 2017; Eriksson et al., 
2008). Through deposition of faeces containing 2- PE over the laid 
eggs, the compound may contribute to reducing egg predation by 
conspecifics (Axelsson et al., 2017; Borg- Karlson et al., 2006). It is 
also present in the guts of both D. ponderosae and I. typographus. 
2- PE inhibits attraction to the aggregation pheromone in the former 
species, suggesting it may contribute to termination of aggregation 
and induction of dispersal (Pureswaran et al., 2000). In contrast, 2- PE 
appears to have no effect on pheromone attraction in I. typographus 
(Schlyter et al., 1987); however, it is part of the odour blends re-
leased by several species of ophiostomatoid symbiotic fungi, which 
are attractive to beetles in laboratory bioassays (Kandasamy et al., 
2019). These fungi, inoculated by beetles inside their galleries under 
the tree bark, are likely to benefit beetles by providing nutrients and 
through metabolism of the tree's chemical defences (Kandasamy 
et al., 2019, 2021).

Since the ORs underlie the responses of the OSNs in the insect 
antennae, it is of interest to compare OR responses from in vitro 
heterologous systems with those of putatively corresponding OSN 
classes. Among the study species, I. typographus provides the best 
example due to the extensive electrophysiological studies that have 
been conducted (Andersson et al., 2009; Kandasamy et al., 2019, 
2021; Schiebe et al., 2019; Tømmerås, 1985). In relation to the GLV 
alcohols, one OSN class (named “GLV- OH”) that responds most 
strongly and with similar sensitivity to E2- hexenol, Z3- hexenol and 
1- hexanol has been identified in I. typographus (Andersson et al., 
2009; Kandasamy et al., 2019). This response profile resembles 
those from the GLV- responsive ORs characterized here, although 
several additional compounds elicited weaker secondary responses 
in the OSN. These secondary compounds include six- carbon alde-
hydes, eight- carbon alcohols as well as 2- PE (a detailed OR/OSN 
comparison is shown in Table S4). The fact that 2- PE is one of the 
secondary compounds for the GLV- responsive OSN class may 

F I G U R E  2  Conserved responses to green leaf volatile (GLV) alcohols in curculionid odorant receptor (OR) orthologues. (a) Response 
of Hylobius abietis OR4 (Homo sapiens codon optimized; HabiOR4HsCO) to select compounds in the screening experiments (30 µm stimulus 
concentration; n = 3 biological replicates, ntotal =9). (b) Dose- dependent response of HabiOR4HsCO to the five active GLVs, indicating similar 
sensitivities to four of the compounds (see main text for EC50 values; n = 3– 5 biological replicates, ntotal =9– 15). (c) Screening responses of 
Dendroctonus ponderosae OR9 (H. sapiens codon- optimized; DponOR9HsCO; n = 3 biological replicates, ntotal =9), and (d) dose- dependent 
responses of DponOR9HsCO to the two most active ligands (n = 5 biological replicates, ntotal =15). (e) Screening response of Ips typographus 
OR5 (ItypOR5; n = 3– 5 biological replicates, ntotal =9– 15), and (f) dose- dependent response of ItypOR5 to the most active ligand (n = 6 
biological replicates, ntotal =18). Ligand- induced activation was recorded from cells induced (+) to express the exogenous Orco and OR 
genes and from noninduced (−) control cells. VUAA1 was tested at 50 µm as a control for functional Orco expression. Asterisks indicate 
significantly stronger responses in induced compared to noninduced cells (at p <.001; see main text for details on statistics). Ligands eliciting 
<3% increased fluorescence in screening assays were excluded from dose– response trials. Error bars show SEM. All data from induced and 
noninduced cells to all 62 test compounds are reported in Data S1
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support the above- mentioned scenario that higher specificity in the 
extant ORs towards GLVs or 2- PE may have evolved from a more 
broadly tuned ancestral receptor. The three OSN- active GLVs have 
similar inhibitory effects on pheromone attraction of I. typographus 
and the use of a single compound (e.g., 1- hexanol) can replace a 
three- component GLV mixture at an equivalent release rate with-
out compromising the inhibitory effect (Unelius et al., 2014; Zhang 
& Schlyter, 2003). This effect on the behaviour may be explained 
by the rather indiscriminate response of ItypOR5 to several struc-
turally similar GLV compounds (Andersson et al., 2009; Raffa et al., 
2016). Indeed, I. typographus has no other known OSN class that pri-
marily responds to GLVs, although these compounds also activate 
OSNs primarily tuned to the less volatile compounds 3- octanol and 
1- octen- 3- ol (OSN class “C8an”) (Andersson et al., 2009, 2012). In 
D. ponderosae, coupled gas chromatographic- electroantennographic 
detection (GC- EAD) demonstrated antennal detection of the GLV 
alcohols that activate DponOR9 (Huber et al., 2000; Wilson et al., 
1996). The strongest inhibitory effect on pheromone attraction was 
observed for Z3- hexenol and E2- hexenol (Wilson et al., 1996), the 
two compounds that elicited the strongest responses in DponOR9. 
However, because (to our knowledge) no single sensillum recordings 
(SSRs) have been performed, it remains unknown whether D. pon-
derosae also has only one OSN class that responds most strongly 
to six- carbon GLV compounds. Likewise, SSR studies testing GLV 
compounds in H. abietis appear to be missing in the published liter-
ature (Wibe et al., 1997). In contrast to I. typographus, beetles feed-
ing on angiosperms typically possess several different OSN classes 
primarily tuned to GLVs, each with their unique response specificity 
(Andersson, Larsson, et al., 2012; Carrasco et al., 2019; Hansson 
et al., 1999; Larsson et al., 2001).

Ips typographus also has an OSN class that primarily responds 
to 2- PE and secondarily to 2- phenethyl acetate and a few more 
compounds with weaker activity, including 1- hexanol (Kandasamy 
et al., 2019). Similar to ItypOR5, the secondary OSN responses were 
not evident in any of the three 2- PE receptors characterized in the 
present study (Table S4). Higher response specificities in ORs when 
tested in HEK293 cells as compared to those seen in putatively cor-
responding OSN classes have been observed also previously, such 
as for ItypOR46 and ItypOR49, responding to the beetle- produced 
compounds ipsenol and ipsdienol, respectively (Yuvaraj et al., 2021). 
The reasons for the discrepancies in specificity remain unknown but 
could potentially be due to lower sensitivity of the HEK cell assay 
as compared to SSR or a consequence of the “unnatural” cellular 

environment in HEK cells, which may affect protein folding and 
hence access of ligands to their binding sites (see also Hou et al., 
2020; Yuvaraj et al., 2022).

In conclusion, we report the functional characterization of six 
ORs from three species of the family Curculionidae, including the 
first characterized ORs from the devastating forest pests H. abietis 
and D. ponderosae. We reveal highly conserved responses to ecolog-
ically relevant odours within the two groups of assayed OR ortho-
logues, suggesting that the detection of 2- PE and GLVs is important 
for the fitness of conifer- feeding curculionids. The characterized 
ORs were shown to be evolutionarily related to the 2- PE receptor 
in M. caryae, sharing a common ancestral OR protein. Our findings 
demonstrating conserved responses among beetle ORs from two 
taxonomic superfamilies provide new insight into the functional 
evolution of the OR family in this large insect order.
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