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Supplement 

S1 Spatial Pattern of scaled parameters in VEG 

 

Figure S1 Global distribution of the median vegetation fraction pVeg after calibration of the VEG experiment. 

 

 

Figure S2 Global distribution of the maximum water capacity of the 2nd soil layer wSoilmax(2) after calibration of the VEG 

experiment. 
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Figure S3 Global distribution of the maximum water capacity of the 2nd soil layer contributed by each data stream after 

calibration of their scaling parameters in the VEG experiment. RD1 = maximum rooting depth by Fan et al. 2017; RD2 = 

effective rooting depth by Yang et al. 2016; RD3 = maximum soil water capacity by Wang-Erlandsson et al. 2016; RD4 = plant 

available water capacity by Tian et al. 2019.  

 

S2 Effective Alpha Coefficient 

 

 

Figure S4 Global distribution of the median effective alpha coefficient (αVeg * pVeg) in the Priestley-Taylor formula after 

calibration of the VEG experiment. 
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Figure S5 Daily time series and mean seasonal dynamics of the area weighted average, median and standard deviation of the 

grid-wise effective alpha coefficient in the Priestley-Taylor formula of the calibrated VEG experiment. 

S3 Parameter Correlation  

 

Figure S6 Correlation (≥ |0.5|) between model parameters for the B and VEG experiment. 
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S4 Regional IAV TWS Composition 

 

Figure S7 Global and regional average inter-annual variability of simulated total water storage (wTotal) and its components 

(wSoil, wDeep, wSlow, wSnow) for B, including the regional Impact Index I for each storage. 
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Figure S8 Global and regional average inter-annual variability of simulated total water storage (wTotal) and its components 

(wSoil, wDeep, wSlow, wSnow) for VEG, including the regional Impact Index I for each storage. 
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S5 T over ET  

 

Figure S9 Global and regional average mean seasonal cycles of modelled transpiration (T) over evapotranspiration (ET) for B 

and VEG experiments. 

 

Figure S10 Global distribution of modelled transpiration (T) over evapotranspiration (ET) for B and VEG experiments, as well 

as the difference between both (lower right). 
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S6 Q Components 

 

Figure S11 Global and regional average mean seasonal cycle of observed grid-wise runoff from GRUN (Q) and simulated total 

runoff (Qtotal), as well as its components Qslow and Qfast, for the B and VEG experiments. corr is the Pearson correlation 

coefficient of the respective simulation with observed Q. 

S7 Comparison of VEG & VEG without capillary rise 

 

Figure S12 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for VEG and VEG-

noGW2Soil, which is a variant of the VEG experiment, in with the capillary rise from wDeep to wSoil is turned off prior to 

model calibration. 

 

 

Figure S13 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the inter-annual anomalies of total water storage, for VEG and VEG-

noGW2Soil, which is a variant of the VEG experiment, in with the capillary rise from wDeep to wSoil is turned off prior to 

model calibration. 
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Figure S14 Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) and delayed 

water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total water storage, for VEG 

and VEG-noGW2Soil, which is a variant of the VEG experiment, in with the capillary rise from wDeep to wSoil is turned off 

prior to model calibration. 

S8 Comparison of VEG & VEG with fixed kTransp at 0.05 

 

Figure S15 Grid-wise Pearson’s correlation coefficient for total water storage (TWS), evapotranspiration (ET) and runoff (Q) 

between 1) observations and VEG, and 2) observations and VEG-nok2, as well as differences between 1) and 2) (brown color, 

i.e., negative values indicate higher correlations for VEG-nok2, while purple color, i.e., positive values indicate better 

correlation values for VEG). VEG-nok2 is a variant of the VEG experiment, in which the kTransp parameter is not calibrated 

but fixed at a low value of 0.05. 
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Figure S16 Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and runoff (Q) for 

VEG and VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is not calibrated but fixed at a 

low value of 0.05, compared to the observational constraints by GRACE (TWS), FLUXCOM (ET) and GRUN (Q). 

 

Figure S17 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for VEG and VEG-nok2, 

which is a variant of the VEG experiment, in which the kTransp parameter is not calibrated but fixed at a low value of 0.05. 

 

 

Figure S18 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the inter-annual anomalies of total water storage, for VEG and VEG- 

VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is not calibrated but fixed at a low value 

of 0.05. 
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Figure S19 Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) and delayed 

water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total water storage, for VEG 

and VEG-nok2, which is a variant of the VEG experiment, in which the kTransp parameter is not calibrated but fixed at a low 

value of 0.05. 

S9 PFT experiment 

The following shows an experiment similar to the traditional approach of global hydrological models, in which vegetation-

dependent parameters are defined and calibrated for different plant-functional type (PFT) classes separately and then 

model performance and TWS composition is analyzed in comparison to the B and VEG experiments. The results show 

that the larger number of parameters (due to different sets for different PFT) does not lead to marked improvements of 

model performance, but instead increases parameter uncertainty possibly due to overparameterization. In terms of TWS 

composition, we see substantial differences in the PFT experiment compared to B and VEG, which underlines our 

conclusions that the representation of vegetation in GHMs is critical for interpreting TWS variations. 

Based on the GSWP2 land cover classification (Dirmeyer et al. 2006), we consider 12 PFT classes (Fig. S20), for which 

we define individual values of wSoilmax(2) (maximum available water capacity of the 2nd soil layer) and sberg (scaling 

parameter to derive the runoff/infiltration coefficient). Since state-of-the-art global hydrological models (GHMs) usually 

include seasonal dynamics of leaf area index (LAI) to calculate, e.g., transpiration, we decided to keep the definition of 

the active vegetation fraction as a function of seasonal EVI data as in the VEG experiment. For the PFT experiment, we 

focus (i) on wSoilmax(2) because GHMs usually apply a PFT specific rooting depth, and (ii) on sberg because this is similar to 

the runoff coefficient γ which is tuned in some GHMs (e.g., the WaterGAP model (Müller Schmied et al. 2021)).  

When considering these 12 PFT classes, the number of calibration parameters increases from 12 (in B) and 16 (in VEG) 

to 34 (in PFT). Analysis of parameter uncertainty shows high uncertainties for a set of parameters common with B, while 

optimized parameter values are between those of B and VEG (Table S1). Additionally, and unlike B and VEG, PFT has 

high uncertainty of wSoilmax(2) for all PFT classes, and high correlation between each PFT’s wSoilmax(2) and sberg (Fig. S21). High 

uncertainty of wSoilmax(2) is an indication that having one wSoilmax(2) per PFT may not explain the within-PFT variability. On 

the other hand, high correlation between each PFT’s wSoilmax(2) and sberg is systematic, as both parameters are based on the 

same spatial distribution of PFT classes - and highlights an advantage of the VEG experiment, in which both are based 

on independent data sets.  

In terms of model performance, Fig. S22 shows a partial improvement for TWS and ET in the PFT experiment. Especially 

in the Humid and Sub-humid regions, TWS simulation in PFT matches GRACE observations better. These regions 

include tropical regions, where data for maximum plant available water capacity by Tian et al. 2019 (RD4) are not 

available. While we filled the missing values for tropical regions with the same wSoilmax(RD4) value as in the Northern 
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latitudes, the improved performance in the PFT experiment suggests that at least 2 different wSoilmax(RD4) fill values seem 

necessary for different climate regions. In contrast to TWS and ET, PFT performance of Q is poorer than in B and VEG, 

with a clear underestimation of the seasonal variability. To consider model performance in relation to the number of 

calibration parameters, we calculated the Akaike information criterion (AIC). Since low values of AIC indicate better 

performance compared to the other experiments, PFT only performs superior regarding ET, while the increased number 

of model parameters isn’t advantageous regarding TWS and Q simulations. Also, note that the increased number of model 

parameters comes at an additional computational cost. 

Furthermore, the results of the PFT experiment confirm that changing the representation of vegetation has a marked 

impact on the simulated TWS composition (Fig. S23-S25). In PFT, among the liquid water storages wSoil contributes 

most to mean seasonal TWS variability, with Impact Index values between those of B and VEG (Fig. S23, Fig. S25). 

Compared to VEG, wSlow is in general less important in PFT, while wDeep has a less impact on mean seasonal TWS, 

but its contribution to inter-annual TWS variability increases.  

Overall, this analysis underlines that including continuous fields of vegetation parameters is preferable than the 

‘traditional’ PFT-based approaches of defining parameters for distinct PFT classes (and their calibration) - in terms of 

model calibration and the uncertainty of calibrated model parameters, but also regarding model performance in relation 

to the number of model parameters. Furthermore, we could highlight that the representation of vegetation in hydrological 

models is crucial for the partitioning of simulated TWS.  

 
Figure S20 Classes of plant functional type used in the PFT experiment. (Sea (PFT0); Ice=Continental Ice (PFT1); 

BEF=Broadleaf Evergreen Forest (PFT2); BDF=Broadleaf Deciduous Forest & Woodland (PFT3); MixedF=Mixed Coniferous 

& Broadleaf Deciduous Forest & Woodland (PFT4); CF= Coniferous Forest & Woodland (PFT5); DF=High Latitude 

Deciduous Forest & Woodland (PFT6); WGrass= Wooded C4 Grassland (PFT7); Shrubs=Shrubs & Bare Ground (PFT8); 

Tundra (PFT9); Cult=Cultivation (PFT10); Desert (PFT11)).  
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Table S1 Calibrated parameter values and their uncertainty for B, VEG and PFT. Red font indicates a calibrated parameter 

that hits the parameter bounds, and red background indicates parameter uncertainty ≥ 20%. 

parameter calibrated values ± uncertainty 

 B VEG PFT 

vegetation fraction 

pveg 0.37 ± 0.05     

sEVI  3.89 ± 0.05 3.75 ± 0.03 

evapotranspiration 

pint 1 ± 0.08 0.6 ± 0.02 0.71 ± 0.02 

kSoil 0.1 ± 0.01 0.4 ± 0.08 0.27 ± 0.04 

αveg 2.25 ± 0.15 0.92 ± 0.00 0.87 ± 0 

kTransp 0.12 ± 0.32 0.48 ± 1.76 0.5 ± 4.32 

deep soil 

sDeep 9.1 ± 461317 5.6 ± 0.21 8.48 ± 0.24 

fmax 1.5 ± 0.00 5.1 ± 0.01 11.77 ± 0.02 

dDeep 1 ± 5.61 0.01 ± 0.00 0.03 ± 0 

delayed water storage 

rfSlow 0.78 ± 1.72 0.68 ± 0.01 0.62 ± 0.05 

dSlow 1 ± 2329 0.02 ± 0.03 0.03 ± 0.19 

infiltration/runoff 

pberg 1.32 ± 0.02     

sberg   3.08 ± 0.02   

sberg_PFT0     3.7 ± 0.45 

sberg_PFT1     3.11 ± 0.32 

sberg_PFT2     1.87 ± 0.01 

sberg_PFT3     2.57 ± 0.09 

sberg_PFT4     2.04 ± 0.03 

sberg_PFT5     4.31 ± 0.05 

sberg_PFT6     0.5 ± 0.01 

sberg_PFT7     2.9 ± 0.03 

sberg_PFT8     0.48 ± 0.01 

sberg_PFT9     0.69 ± 0.01 

sberg_PFT10     1.36 ±0.01 

sberg_PFT11     2.5 ± 0.11 

soil moisture 

wSoilmax(2) 752 ± 0.02     

sRD(1)   0.01 ± 0.00   

sRD(2)   0 ± 0.00   

sRD(3)   0.15 ± 0.06   

sRD(4)   0.15 ± 0.07   

wSoilmax(RD4)   145 ± 0.08   

wSoilmax_PFT0     1.57 ± 8.94 

wSoilmax_PFT1     0.78 ± 10.23 

wSoilmax_PFT2     1.01 ± 0.41 

wSoilmax_PFT3     1.27 ± 1.42 

wSoilmax_PFT4     0.5 ± 0.5 

wSoilmax_PFT5     0.54 ± 0.32 

wSoilmax_PFT6     0.85 ± 2.53 

wSoilmax_PFT7     01.01 ± 0.57 

wSoilmax_PFT8     1.45 ± 2.72 

wSoilmax_PFT9     0.56 ± 1.07 

wSoilmax_PFT10     0.39 ± 0.2 

wSoilmax_PFT11     0.7 ± 3.23 
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Figure S21 Correlation of calibrated parameters for the PFT experiment. Shown are only correlation coefficients |r|≥0.5.  

 

 
Figure S22 Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and runoff (Q) for 

the B, VEG and PFT experiments compared to the observational constraints by GRACE (TWS), FLUXCOM (ET) and GRUN 

(Q). For each, the Pearson correlation (r²) and Akaike information criterion (AIC) are calculated to compare model 

performance in terms of seasonal dynamics and of mean standard error in relation to the number of calibration parameters.   
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Figure S23 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the mean seasonal cycle of total water storage, for B, VEG and PFT.  

 

 
Figure S24 Global distribution of the Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water 

storage (wDeep) and delayed water storage (wSlow) to the inter-annual variability of total water storage, for B, VEG and PFT.  
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Figure S25 Impact Index I for the contribution of simulated snow (wSnow), soil (wSoil), deep water storage (wDeep) and 

delayed water storage (wSlow) to the global average mean seasonal cycle and inter-annual variability of total water storage, 

for B, VEG and PFT. 

S10 Consistency Check of Observational Data 

In the following, we check for possible inconsistencies between the different observational data products. Similar to 

Rodell et al. 2015, we calculate the monthly water (im)balance, WB, from the observations for the period 01/2004-

11/2010 (the time period in which none of the observation data has missing monthly values):  

 

WB = PGPCP1DD - ETFLUXCOM - QGRUN - dSGRACE       Eq. (S1) 

 

with ideally WB = 0.  

Fig. S26 shows the average monthly water imbalance scaled by each grid’s average monthly precipitation PGPCP1DD. While 

regionally large differences exist, the global mean and median are around 0. The global mean value of - 0.05 corresponds 

to a water balance residual of ~ 5% of precipitation - which is similar to the global residual of 4.3 % of precipitation 

reported in Rodell et al. 2014. Also temporally, the global average (Fig. S27) varies around 0, suggesting no major 

systematic inconsistency at the global scale, yet with a small imbalance with a tendency to negative values. This suggests 

that more water leaves the system than comes in when looking at the observational data. In comparison, there is obviously 

no imbalance for the simulations from B and VEG as they close the water balance by definition of the model - which 

represents the major advantage of using models instead of observational based data from different sources. 

We also calculated each variable in Eq. (S1) by solving the water balance with the other observed components and we 

compared the resulting water-balance-derived variable with the actual observed one. Differences between both indicate 

inconsistencies between a particular observed variable and the remaining observational variables. For ET, Q and TWS, 

we additionally plot the modelled fluxes and storage changes from B and VEG to evaluate the effect of observational 

inconsistencies on model simulations (Fig. S27). The modelled fluxes are smoother and closer to the observations than 

the same estimate of the variable from the water balance. Therefore, we find that the model allows to potentially bridge 
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the inconsistencies between the different data products. However, for dS, B and VEG show a time shift compared to the 

observed storage change, that is not reflected in dS calculated from P, ET and Q observations. Accordingly, this underlines 

that the phase lag between observed and modelled TWS variations is not caused by data inconsistencies, but rather related 

to the potential deficiencies in the model structure, as already discussed in the main text of the manuscript. 

Fig. S28 compares the residuals of the simulated and observed ET, Q and dS (mod-obs), and the ones of the water-balance 

derived and the observed variables (WB-obs). Large residuals of WB-obs point again to data inconsistencies among the 

observed variables. When the residuals WB-obs and mod-obs in a region agree, it implies that the multi-criteria calibration 

approach prevents overfitting of the model(s) to an observed variable that is inconsistent with the remaining observed 

variables. Therefore, the model performance in these regions might be relatively poor in view of the inconsistent data 

streams, which is in fact a desirable behavior in the model calibration (e.g., ET in the Semi-arid region and dS in 

Temperate and Humid region).  

When the residuals of mod-obs are considerably smaller than WB-obs, the model fits an observed variable well although 

it is inconsistent with the remaining observed variables (e.g., Q and dS in the Semi-arid region). Further, when the 

residuals of mod-obs are large but WB-obs does not indicate data inconsistencies, it points to issues related to model 

structure and parameter identifiability (e.g., Q in the Cold region, where the model(s) lacks the representation of 

permafrost, freeze/thaw dynamics and ice jam in rivers). 

 

 
Figure S26 Mean water imbalance scaled by mean precipitation.  
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Figure S27 Global average time series of the water imbalance calculated from the observations (top row), and of water balance 

variables calculated from the other observations by resolving the water balance equations (from obs) vs the observed variable 

(obs) vs the simulated variable of the B and VEG simulations.  
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Figure S28 Global and regional mean seasonal cycles of the difference between the simulations of ET, Q and dS with B and 

VEG and the respective observations (B-obs, VEG-obs), as well as difference between observed variables and the same variables 

calculated via the water balance from the other observations (WB-obs). 

S11 Analysis for Koeppen-Geiger Zones 

Additionally to the hydroclimatic cluster analysis shown in the main text, we performed a regional analysis for Koeppen-

Geiger climate zones. To do so, we aggregated Koeppen-Geiger subgroups considering the main climate group and 

distinguishing between humid and semi-arid conditions. The resulting zones are shown in Fig. S29. Fig. S30 evaluates 

model performance for the Koeppen-Geiger regions and Fig. S31 shows the composition of seasonal TWS variations 

therein. Note that most parts of the Polar and Boreal Koeppen-Geiger (KG) zone are included in the Cold region (R1) of 

the hydroclimatic cluster classification. We find that the regional averages are very similar for both classification schemes 

in terms of model performance and composition of seasonal TWS variations.  

The Northern Hemisphere Temp and Boreal-sa KG zones are both included in the Temperate hydroclimatic region (R2). 

Temp KG and the Temperate region (R2) agree well regarding model performance and seasonal cycles, although we see 

a slightly better performance for the Temp KG regarding TWS and Q. In the Boreal-sa KG, B and VEG do not reproduce 

the spring peak of Q and precede the observed TWS significantly, decreasing model performance slightly when combining 

the Temp and Boreal-sa KG zones in one hydroclimatic region. Therefore, it would make sense to further split up the 

Temperate hydroclimatic cluster region. However, Boreal-sa KG spans Northern China, where poorer model performance 

is also evident from the performance maps in Fig. 4 of the main manuscript. 

However, as mentioned in the main text, the advantage of the hydroclimatic cluster regionalization becomes obvious 

when interpreting results of the Arid and Temp-sa KG zones. This is because these climate zones are distributed across 

the Southern and Northern Hemisphere, causing 2 peaks in the regional seasonal cycles for TWS, ET and Q, due to 

opposing seasonal dynamics. The Arid KG zone includes the Semi-arid cluster regions (R5) in the Southern Hemisphere, 

as well as parts of the Temperate region (R2) (mainly in North America). The Temp-sa KG zone covers a rather small 

fraction of the study area, that is spread over the Temperate region (R2) in the Northern Hemisphere and the Semi-arid 

region (R5) of the Southern Hemisphere.  

The effect of opposing seasonal cycles also exists in the Tropic KG zone, although less pronounced due to the proximity 

to the equator where the climate is more homogeneous and seasonality is low. The Tropic KG corresponds to the Humid 
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cluster region (R3) on the Southern Hemisphere, and parts of the Sub-humid region (R4) on the Northern Hemisphere. 

Compared to the hydroclimatic cluster regions, the Tropic KG has less seasonal variation (a smaller amplitude) of TWS, 

ET and Q, due to its larger area North and South of the equator. Both, B and VEG underestimate the ongoing depletion 

of TWS from September to December in Tropic KG, which is likely related to the opposing seasonal cycles of TWS in 

the Humid (R3) and the Sub-humid (R4) cluster regions. In the Tropic KG, Q peaks in March (as in Humid (R3)) and has 

a second, smaller peak in September (when Q peaks in the Sub-humid region (R4)). However, model performance is very 

similar for Tropic KG and the Humid and Sub-humid cluster regions. 

 
Figure S29 Regions based on Koeppen-Geiger climate zones (Trop = Af, Am, As, Aw; Arid = BSh, BSk, BWh, BWk; Temp = 

Cfa, Cfb, Cfc, Dfa, Dfb; Temp-sa = Csa, Csb, Csc, Cwa, Cwb, Cwc; Boreal = Dfc, Dfd; Boreal-sa = Dsa, Dsb, Dsc, Dwa, Dwb, 

Dwc, Dwd; Polar = EF, ET). 

 
Figure S30 Global and regional mean seasonal cycles of total water storage (TWS), evapotranspiration (ET) and runoff (Q) for 

the B and VEG experiments compared to the observational constraints by GRACE (TWS), FLUXCOM (ET) and GRUN (Q). 

 
Figure S31 Global and regional mean seasonal cycles of simulated total water storage and its components for B and VEG, 

including the regional Impact Index I for each storage. 


