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Abstract: We consider the Wheeler–DeWitt operator associated with the

bosonic part of the Hamiltonian of D = 11 supergravity in a formulation with

only the spatial components of the three-form and six-form fields, and compare

it with the E10 Casimir operator at low levels, to show that these two operators

precisely match modulo spatial gradients up to and including gl10 level ℓ = 2.

The uniqueness of the E10 Casimir operator eliminates all ordering ambiguities

in the quantum Hamiltonian, at least up to the level considered. Beyond ℓ ≥ 3

the two operators are expected to start to differ from each other, as they

do so for the classical expressions. We then consider truncations of the E10

Wheeler–DeWitt operator for various finite-dimensional subgroups of E10 in

order to exhibit the automorphic properties of the associated wave functions

and to show that physically sensible wave functions generically vanish at the

cosmological singularity, thus providing new and more sophisticated examples

of DeWitt’s proposed mechanism for singularity resolution in quantum gravity.

Our construction provides novel perspectives on several unresolved conceptual

issues with the Wheeler–DeWitt equation, such as the question of observables in

quantum gravity, or the issue of emergent space and time in a purely algebraic

framework. We also highlight remaining open questions of the E10 framework.
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1 Introduction

The Wheeler–DeWitt (WDW) equation [1, 2] is the central equation of quantum gravity

(see [3] for an introduction and many further references). However, notwithstanding the

fact that this equation has been around for more than half a century, only comparatively

little progress has been achieved with it. This is due to conceptual issues (in particu-

lar concerning the proper interpretation of the ‘wave function of the universe’) as well

as to severe mathematical difficulties that have so far thwarted all attempts to prop-

erly formulate this equation in a manageable, mathematically well-defined and physically

meaningful way. To be sure, one can consider simplified versions of the WDW equation,

such as the mini-superspace approximation often invoked in quantum cosmology (see [3]
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for examples), or purely topological theories, such as pure gravity in three space-time di-

mensions (see e.g. [4]), or otherwise exploit the equation for heuristic purposes. However,

none of these simplifications addresses the core technical issue, namely the occurence of

short distance singularities which can be viewed as a non-perturbative manifestation of

the non-renormalisability of perturbative quantum gravity. Furthermore, for pure gravity

no observables in the sense of Dirac are known, that is, quantities commuting with all

constraints, including the Hamiltonian constraint, even though these are expected to be

a central ingredient in any quantum mechanical setting. In addition, there is the crucial

question as to what extent space-time concepts are essential at the most fundamental

level: indeed, many approaches to quantum gravity posit that space and time should be

emergent, rather than fundamental concepts, in which case field theoretic notions would

lose all meaning at the Planck scale.

In this paper we take a new look at these issues and are motivated by unification

and the view that a consistent theory of quantum gravity requires the inclusion of very

specific matter interactions determined by symmetry considerations. More precisely, our

approach is based on the proposal of [5] (see also [6,7] for reviews), according to which the

maximal rank hyperbolic Kac–Moody algebra e10 should play a key role.1 This proposal

builds on an old conjecture [8] according to which this symmetry should appear as an

extension of the Geroch group in the reduction of maximal supergravity [9] to one dimen-

sion. Although the present realisation takes place in a rather different and, in particular,

quantum mechanical context we will see that the one-dimensional reduction fits very well

with the WDW approach.

The standard canonical formulation of the bosonic sector of D = 11 supergravity [9] is

built on the spatial metric and the spatial three-form potential as well as their conjugate

momenta as functions of a spatial coordinate x [10,11]. By contrast, the E10 formulation

has an infinity of fields, but no spatial dependence, because space is hypothesised to be an

emergent concept in this approach [5]. In order to reconcile these two aspects, we strive

to reformulate D = 11 supergravity in a way that brings in new fields in addition to the

usual ones, the first instance being a six-form potential dual to the three-form potential.

Remarkably, there is a formulation, due to [12], that uses only the spatial components of

these two fields rather than a covariant three-form (see also [13] for related work). This

1The hyperbolic Kac-Moody algebra relevant for pure (Einstein) gravity with zero cosmological con-

stant in four space-time dimensions is the Feingold–Frenkel algebra AE3, while higher rank hyperbolic

algebras appear for higher-dimensional (super-)gravities. However, out of these, only e10 possesses a

root lattice with the self-duality properties that we ultimately expect to be required for the quantum

consistency of the theory.
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formulation breaks manifest Lorentz invariance, but because this symmetry is also broken

in the E10 approach, such a formulation is much better suited for comparison with the

E10 model than the standard canonical formulation (which we also review here). More

poignantly, we shall argue that this breaking of manifest Lorentz invariance is a necessary

prerequisite for quantisation, as this is what allows us to treat the three- and six-form fields

as independent degrees of freedom. Being off-shell and not manifestly Lorentz covariant,

our approach differs from covariant ones such as the proposal of [14,15] for covariant and

E11-invariant equations of motions.

We will use this reformulation to bring the bosonic Hamiltonian constraint of D = 11

supergravity closer to an ultra-local form, by which we mean that only field values at a

point enter but not their derivatives. This is done by considering the quantum analogue of

the Belinsky–Khalatnikov–Lifshitz (BKL) limit [16] where now in the operator realisation

of the Hamiltonian constraint spatial derivatives of fields become negligible compared to

functional derivatives rather than to time derivatives (as there is no pre-defined notion of

time in canonical quantum gravity). As we shall explain in more detail in section 2.2, this

is related to the way the conjugate momenta (time derivatives) of the fields, including

their duals, appear in the Hamiltonian constraint. After dropping the spatial gradients,

the Hamiltonian then is ultra-local and depends only on canonical variables evaluated

at one given spatial point x and no longer contains any spatial derivatives that connect

neighbouring spatial points. This form makes it possible to relate to the E10 context. The

proper reinstatement of spatial gradients remains, however, to be clarified. We expect the

other kinematic constraints (diffeomorphism and Gauss-type) appearing in field theory

to play a crucial role in this. However, their final significance in our present approach is

not clear and might necessitate the introduction of extra fields beyond the E10/K(E10)

symmetric space, in the same way that they appear in exceptional field theory [17–19]. A

further indication of the need for extra degrees of freedom is the apparent incompatibility

of the full E10/K(E10) model with supersymmetry [20, 21]. The parts of the Gauss-type

constraints that do not contain explicit spatial derivatives have been investigated in [22,23]

where it was found that they have a resemblance to Sugawara-type constructions, a fact

that is also compatible with the extra fields of exceptional field theory and tensor hierarchy

algebras [24, 19, 25].

The Hamiltonian constraint, to the level checked in this paper and after dropping the

spatial gradients, then coincides precisely with the invariant norm, alias the quadratic

Casimir operator, appearing in the E10 model. By the very definition of the Casimir

invariant, this means that we have access to an infinite number of observables, at least

in principle! We expect our analysis to be extendable to the linearised dual graviton,
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keeping in mind the well known difficulties associated with this field [14, 26, 5, 27, 21].

However, as is evident from our derivation in section 2, a complete analysis of the ℓ = 3

sector is technically even more demanding than the present analysis, because various Dirac

brackets between gravitational and matter variables will then no longer vanish.

Using the relation between the Hamiltonian constraint and the E10 approach we then

proceed to propose a quantisation of D = 11 supergravity that preserves this relation,

i.e., is based on maintaining E10 symmetry. This hinges on a realisation of the Lie algebra

e10 in terms of differential operators acting on the symmetric space E10/K(E10). Due to

the infinite-dimensionality of the symmetric space and the presence of imaginary roots,

the construction of such differential operators is difficult. For this reason we shall content

ourselves with a truncated version where we only consider the fields up to the six-form.

Identifying the WDW-operator with the Casimir operator of e10 in this truncation then

provides an unambiguous quantisation of the system. A further novel aspect is that, with

the restriction to one spatial point, the standard short distance singularities that usually

hamper a proper definition of the WDW operator have entirely disappeared; instead, one

has to cope with an exponentially growing tower of new degrees of freedom. This situation

is reminiscent of the one encountered in string theory: there as well, UV singularities

are completely absent, but at each order in string perturbation theory one must invoke a

‘division’ by a modular group to render physical quantities finite (besides ensuring absence

of tachyons). As we shall explain, there are hints of a similar mechanism at work in the

present construction, which we shall make more explicit by studying certain truncations

of the E10 WDW operator to a finite number of degrees of freedom and by exhibiting the

automorphic properties of the associated wave functions (see [28] for an introduction to

automorphic representation theory with a comprehensive list of references). Such finite-

dimensional truncations are instructive, but it is not clear to what extent they can capture

the full complexity of the E10 model because, for the full theory, the relevant ‘modular

group’ is expected to be something vastly larger than the modular groups so far considered

in string perturbation theory. Besides there are new subtleties for imaginary roots, to be

discussed in section 4.5, that cast doubt on the applicability of standard automorphic

theory. The use of a discretised version E10(Z) of E10(R), based on considerations of

BPS states, was already suggested in [29], and analysed further in relation to M-theory

in [30,31] with a viewpoint somewhat more similar to the one adopted here. Automorphic

forms related to E10 have been studied in relation to scattering amplitudes in [32].

Given the above reformulation of D = 11 supergravity, the central object of interest is

the wave function Φ which is a function on the E10/K(E10) coset space. A key question,

even independently of the question whether extra fields beyond the coset ones are needed
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or not, concerns the parametrisation of this wave function. We label the fields appearing

in Φ according to all elements that appear in the level decomposition of e10 with respect

to its gl10 subalgebra, that was also heavily used in [5–7]. We note that there are different

and inequivalent definitions of Kac–Moody groups available, see [33, 34] for overviews.

The original proposal, now often called the minimal group, consisted of gluing SL(2,R)

subgroups of E10 associated to real roots only [35]. In this parametrisation, a group

element would consist of ‘words’ made out of an infinite alphabet of real roots, together

with appropriate relations inherited from the Serre relations in the Lie algebra [33, 34].

The parametrisation used in physics [5–7] associates one field component to each positive

root generator, for both real and imaginary roots. This picture is much closer to the

maximal Kac–Moody group defined in the literature [34]. Which global parametrisation

and which choice of group E10 is most suitable to physics, and, more specifically, which

choice is best suited for explaining the emergence of spatial dependence, is not clear at

the moment and deserves further study. In this paper we work in level decomposition.

One of the main outcomes of our analysis is a more detailed understanding of the

asymptotic behaviour of the wave function as it approaches what would be a (space-like)

classical singularity. Previous work on this [36, 37] based on a quantisation of only the

cosmological billiard (BKL) approximation of the classical singularity revealed that the

wave function vanishes in this limit, thus realising DeWitt’s idea of a quantum-mechanical

resolution of classical singularities.2 We shall show in section 4 that this result is robust

when including more degrees of freedom compared to BKL. Even though our analysis is

still in a truncated setting we take this as an indication that the full quantum E10 system

(with appropriate discrete symmetries) could be a sensible model of quantum gravity.

The behaviour of the wave function near the singularity may also have implications for

the information paradox. In [39] it is argued that information cannot be lost if it is not

crushed in the singularity (although it remains unclear how it would be released again upon

Hawking evaporation). However, even if the wave function in a BKL type approximation

as in (4.1) vanishes at the singularity, there remains the question as to its behavior when

infinitely many degrees of freedom ‘open up’ at the singularity [40]. The latter possibility

is strongly suggested by the fact that classical geodesics on the E10/K(E10) manifold are

infinitely unstable along directions involving imaginary root spaces [41], although it is an

open question whether and how this instability percolates to the quantised theory.

2We note that this statement, as well as the chaoticity of the classical cosmological billiard rely on the

structure ofD = 11 supergravity which in particular excludes a cosmological constant. Similar statements

hold for pure bosonic D = 4 gravity with zero cosmological constant. Therefore our results are not in

conflict with the no-boundary proposal of [38] which requires a non-zero cosmological constant.
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There remain two major unsolved problems at this point. The first is to understand

the emergence of spatial dependence beyond the use of dual fields, and thus to extend

the ‘dictionary’ of [5] beyond first order spatial gradients. Namely, like all previous ones,

our calculation systematically ignores spatial gradients other than those obtained via

dualisation. A significant observation in this context may be our equation (2.30) which

states that the Dirac bracket between the three- and six-form fields only vanishes up to

spatial gradients (besides being non-local). Discarding the latter is thus consistent with

our level expansion (3.12) and (3.13) for commuting fields. However, in the quantised

theory these two fields can no longer be treated as commuting (c-number) objects, because

[

Âm1m2m3
(x) , Ân1···n6

(y)
]

= −i~GN ε̃m1m2m3n1···n6p∂
pG(x,y) (1.1)

where G(x,y) is the scalar propagator. This result, which ties the appearance of spatial

gradients to an emergent non-commutativity of the basic variables, may indicate the need

for some kind of non-commutative geometry on the E10/K(E10) manifold, as well as for

third quantisation (in the sense that the wave function Φ in (2.42) may become operator

valued). We also notice that the right-hand side of (1.1) brings in both ~ and the Newton

constant GN, and thus a notion of length which is not present in the dimensionless pre-

geometrical setting.

The second open problem concerns the proper incorporation of fermions into the

E10/K(E10) model, in a way that is fully compatible with E10 symmetry (or an even larger

framework), and that can also capture spatial dependence (there are no known analogs

of dual fields for fermions). First steps in this direction were already taken some time

ago, by showing that the gravitino components at a fixed spatial point make up a finite-

dimensional unfaithful spinorial representation of the R-symmetry group K(E10) [42–44,

20], and by re-interpreting the D = 11 Rarita–Schwinger equation as a K(E10) covariant

‘Dirac equation’ [20]. Fermions have also been included in mini-superspace approaches

to N = 1 supergravity in D = 4 in [45, 46] and D = 5 [47] where they were found to

be compatible with singularity avoidance. Treating fermions in the standard way would

modify the WDW equation by fermionic contributions, and thus spoil the identification

of the WDW operator with the E10 Casimir operator already at the very lowest order

(as is evident from the explicit expressions given in [45, 46]). Moreover, even neglecting

spatial dependence, it would blow up the scalar wave function Φ to an object with 2160

components [36, 37]. While fermions are not immediately necessary for arriving at the

E10 conjecture, it seems clear that their inclusion will be essential for the consistency of

the full theory and for singling out better quantum behaviour, much in the same way

that local supersymmetry improves the behaviour of perturbative quantum supergravity,
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and that fermions are needed in string theory for finiteness via modular invariance and

elimination of tachyons. For the present model, the main question is therefore whether

it is possible to include fermions in a way that manifestly preserves the E10 structure of

the WDW Hamiltonian; this may require a novel type of bosonisation, perhaps along the

lines of [48]. In any case, we expect the answer to these questions to also have a bearing

on other outstanding issues.

The structure of this paper is as follows. We first analyse the bosonic sector of D = 11

supergravity canonically, recasting the matter sector in a ‘democratic’ form, where both

a three-form and a six-form appear. The canonical quantisation of the resulting theory

is then studied and the Wheeler–DeWitt equation worked out. In section 3, we then

consider the functional realisation of E10 in terms of differential operators. The formal

Casimir operator is then worked out in this language and compared to the WDW operator

of D = 11 supergravity in section 3.4. We relate our results on full (super-)gravity to

previous work on its cosmological billiards truncation in section 4, where we also highlight

the different effects of real and imaginary roots on solutions and connections to theory of

automorphic forms. Section 5 contains concluding general remarks on properties of the

wave function.

Throughout this paper we employ units with c = 1. For further reference let us record

the dimensions of the various objects. We have [~] = ML (mass×length); with dimen-

sionless fields and coordinates of dimensions L (length), the D = 11 Newton constant has

dimension [GN] = L8M−1, so the Planck length is ℓP = (~GN)
1/9. The conjugate momenta

have dimension [Π] = ML−9. The delta density has dimension [δ(x)] = L−10 which is also

the dimension of the functional derivative [δ/δφ(x)] = L−10 for any dimensionless field φ.

2 Bosonic Hamiltonian of D=11 supergravity

In this section, we analyse the bosonic sector of D = 11 supergravity [9] by first perform-

ing the standard Hamiltonian treatment of the metric and the three-form field (see for

instance [10]). To bring the resulting expressions closer to the E10 model, we then intro-

duce a dual six-form potential and reformulate the canonical theory in a version where

only the spatial components of the three- and six-form fields are retained, following [12].3

In principle this reformulation can also be applied to the gravitational sector, but we leave

this step to future work. The resulting expressions are then quantised canonically as a

further preparation for comparison with a functional realisation of E10.

3This formulation is also sometimes called the Henneaux–Teitelboim form because of [49, 50].
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2.1 Bunster–Henneaux form of D = 11 supergravity

We start from the bosonic part of the D = 11 supergravity Lagrangian in the conventions

of [20]

GNL =
E

4
R − E

48
FMNPQFMNPQ +

2

(144)2
ε̃M1...M11FM1...M4

FM5...M8
AM9M10M11

(2.1)

with FMNPQ ≡ 4∂[MANPQ] and E the determinant of the elfbein EM
A. These fields depend

on eleven coordinates xM ≡ (t,x) (with time t, and where x coordinatises the spatial

hypersurface) which we usually do not write out. We have explicitly written an overall

factor of the Newton constant GN to emphasise that all bosonic field are dimensionless, as

required for the comparison with the E10/K(E10) sigma model where the coset degrees of

freedom are likewise dimensionless. In (2.1), ε̃M1...M11 is the numerical Levi–Civita symbol,

a space-time tensor density for which we use the convention that ε̃0 1...10 = −ε̃0 1...10 = +1.

The Levi–Civita tensor with upper and lower indices given by ǫM1...M11 = E−1ε̃M1...M11

and ǫM1...M11
= Eε̃M1...M11

, with analogous definitions for the purely spatial objects.

For the elfbein we assume the triangular gauge

EM
A =

(

N em
aNm

0 em
a

)

⇒ E = Ne (2.2)

with the lapse function N and the shift Nm, which are, respectively, the Lagrange mul-

tipliers associated to the Hamiltonian and diffeomorphism constraints; e = det em
a is the

volume density of the ten-dimensional spatial slice. We split curved space-time indices

as M = (t,m) and flat ones as A = (0, a). The Levi–Civita symbol on a spatial slice is

induced from that in space-time by ε̃m1...m10 ≡ ε̃tm1...m10 . A further constraint will be seen

to be the Gauss constraint associated to the Lagrange multiplier field Atmn.

For the canonical treatment we first determine the canonical momenta conjugate to

gmn and Amnp, respectively, which are given by4

GN Πmn =
1

2
eeamebn

(

Ω0(ab) − δabΩ0cc

)

,

GNΠmnp = −EF tmnp +
1

216
ε̃tmnpk1...k7Fk1...k4Ak5k6k7 (2.3)

where ΩABC ≡ EA
MEB

N(∂MENC − ∂NEMC) are the D = 11 coefficients of anholonomy

and have only flat indices (see e.g. [51] for further explanations and conventions as well

4The conjugate momenta of N , Nm and Atmn vanish as primary constraints. As is usual for p-forms

coupled to gravity, the fields serve as Lagrange multipliers for the first-class constraints that generate the

corresponding gauge transformations.
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as [52, 10, 11, 53] for canonical treatments of supergravity theories). For obtaining the

above relations we have used the functional derivatives in the normalisations

δgmn(x)

δgpq(y)
= 2δp(mδ

q
n)δ(x,y) ,

δAm1...mp
(x)

δAn1...np
(y)

= p! δn1 ... np

m1...mp
δ(x,y) (2.4)

with δ
n1 ... np
m1...mp = δ

[n1

[m1
· · · δnp]

mp]
and (anti-)symmetrisations of unit strength. The spatial

Dirac deltas δ(x,y) appearing on the right-hand sides are densities with respect to spatial

diffeomorphisms and satisfy
∫

d10yf(y)δ(x,y) = f(x). The momenta defined in (2.3) are

also tensor densities, and likewise for the functional derivative operator δ
δφ(x)

for all fields

φ(x). We also note the appearance of the Newton constant GN in the relation between

the velocities and the canonical momenta. From the way the Newton constant appears in

the definition of the canonical momenta (2.3), we see that it is important for relating the

canonical momenta to spatial derivatives of the fields.

For notational convenience we also define the part of the three-form canonical momen-

tum due to the Chern–Simons term by

Pmnp =
1

216
ε̃mnpk1...k7Fk1...k4Ak5k6k7 , (2.5)

where the ten-dimensional Levi–Civita symbol is related to the eleven-dimensional one

by ε̃m1...m10 ≡ ε̃tm1...m10 . With this definition we have

F tmnp = −E−1 (GNΠ
mnp − Pmnp) . (2.6)

The standard canonical treatment then leads to the Hamiltonian form of the action

Lcan =
1

2
ġmnΠ

mn +
1

3!
ȦmnpΠ

mnp −NH−NmHm − 1

2
AtmnGmn , (2.7)

The (first-class) constraints appearing in (2.7) are

eH = GNGmn|pqΠ
mnΠpq − 1

4GN
e2R(10)

+
1

12GN

(

GNΠ
mnp −Pmnp

)

gmm′gnn′gpp′
(

GNΠ
m′n′p′ − Pm′n′p′

)

+
1

48GN

e2Fm1...m4
gm1n1 · · · gm4n4Fn1...n4

, (2.8)

and

Hm = −gmn∇pΠ
pn +

1

6
Fmnpq(Π

mnp −G−1
N Pmnp) , (2.9a)

Gmn = −∂pΠ
pmn − G−1

N

12 · 144 ε̃
mnk1...k8Fk1...k4Fk5...k8

= ∂p

[

−Πpmn − G−1
N

3 · 144 ε̃
mnpk1...k7Ak1k2k3Fk4...k7

]

, (2.9b)
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where ∇p is the covariant derivative with the Levi–Civita connection for the spatial metric

gmn (note that the gradient in (2.9b) is an ordinary derivative because Πmnp transforms

as a density). They are, in turn, the Hamiltonian (scalar) constraint, the diffeomorphism

(momentum) constraint and the Gauss constraint. These constraints must be imposed

at each point x of the spatial hypersurface, whence we are dealing with a continuous

infinitude of constraints. Observe that we have pulled out a factor of e, as a result of

which the ‘potential terms’ appear with a prefactor e2. The DeWitt metric for D = 11

space-time dimensions is (here without a density factor)

Gmn|pq := gp(mgn)q −
1

9
gmngpq . (2.10)

As is well-known, the equations of motion for the matter field allow the introduction of

a dual six-form potential AM1...M6
on-shell. While it is not possible to write the non-linear

theory covariantly in terms of only the six-form potential [54] (or even both covariant

potentials at the same time), it was shown in [49, 12] that one can write an off-shell

theory without manifest Lorentz and diffeomorphism covariance when using only the

spatial components Am1m2m3
and Am1...m6

of both potentials5; the remaining manifest

symmetry is the SO(10) subgroup of the Lorentz group. We review this formalism in

some detail in appendix A where we follow [12]. Such a formulation is desirable because

these are exactly the fields that appear in the E10 theory which does not exhibit manifest

Lorentz symmetry either. Although the notion of level will be ‘officially’ introduced only

in section 3.1, we already here refer to the metric, three-form, six-form and dual graviton

fields as “level-ℓ fields”, for resp. ℓ = 0, 1, 2, 3, see also (3.5).

As derived in appendix A, the action of [12] involving both spatial potentials in our

conventions is

Lcan =
1

2
ġmnΠ

mn +
G−1

N

2 · 3! · 7!Ȧmnpε̃
mnpk1...k7Fk1...k7 −

G−1
N

2 · 4! · 6!Fmnpqε̃
mnpqk1...k6Ȧk1...k6

+
G−1

N

3! · 864Ȧmnpε̃
mnpk1...k7Ak1k2k3Fk4...k7 −NH−NmHm , (2.11)

where the terms with time derivatives on the three- and six-form result from the replace-

ment of Πmnp by the solution (A.5) of the Gauss constraint (2.9b) which has therefore

disappeared. The Hamiltonian constraint is now given by

eH = GNGmn|pqΠ
mnΠpq − G−1

N

4
e2R(10) +

G−1
N

2 · 4!e
2Fm1...m4

gm1n1 · · · gm4n4Fn1...n4

+
G−1

N

2 · 7!e
2Fm1...m7

gm1n1 · · · gm7n7Fn1...n7
, (2.12)

5For a closely related formulation with an extra vector allowing for a general ‘axial’ gauge see [13].
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and where

Fm1...m7
= 7∂[m1

Am2...m7] − 35A[m1m2m3
Fm4...m7] (2.13)

is the spatial field strength of the six-form potential, including a coupling to the three-

form due to the Chern–Simons term, cf. (A.3). To arrive at this form, the original

Gauss constraint (2.9b) has been solved and this is the step that introduces the spatial

six-form Am1...m6
. In the form (2.12), the Hamiltonian still depends on the magnetic

field strengths Fm1...m4
and Fm1...m7

that contain in particular spatial derivatives. As the

E10 theory does not directly contain spatial derivatives, we now manipulate the theory

further. We note that in the Bunster–Henneaux form (2.11) no temporal components

of the gauge fields appear explicitly. To simplify the subsequent canonical analysis of

the matter sector we now switch to a flat background geometry in the remainder of this

subsection, anticipating that for the final results we can re-convert to general backgrounds

by covariantising the relevant expressions. For this reason we will also set GN = 1 until

the end of this subsection, but re-instate GN in the following sections.

The theory (2.11) contains the primary constraints

Cmnp(x) := Πmnp − 1

2 · 7! ε̃
mnpk1...k7Fk1...k7 −

1

3! · 144 ε̃
mnpk1...k7Ak1k2k3Fk4...k7 , (2.14a)

Cm1···m6(x) := Πm1···m6 +
1

2 · 4! ε̃
m1...m6k1...k4Fk1...k4 , (2.14b)

where now the momenta are defined from the Lagrangian density (2.11).

For the further analysis we need the non-vanishing Poisson brackets of the elementary

variables which are normalised as

{Amnp(x),Π
qrs(y)}PB = 3! δqrsmnpδ(x,y) ,

{Am1···m6
(x),Πn1···n6(y)}PB = 6! δn1···n6

m1···m6
δ(x,y). (2.15)

The Poisson bracket itself carries a dimension of inverse action, i.e., [{·, ·}] = M−1L−1.

The same will be true for the Dirac bracket to be written below.

With this one can work out the matrix of Poisson brackets of the constraints (2.14) as




{

Cm1m2m3(x) , Cn1n2n3(y)
}

PB

{

Cm1m2m3(x) , Cn1···n6(y)
}

PB
{

Cm1···m6(x) , Cn1n2n3(y)
}

PB

{

Cm1···m6(x) , Cn1···n6(y)
}

PB



 (2.16)

=





1
24
ε̃m1m2m3n1n2n3p1···p4Fp1···p4(x)δ(x,y) −ε̃m1m2m3n1···n6p∂pδ(x,y)

−ε̃m1···m6n1n2n3p∂pδ(x,y) 0



 ,

11



where by convention the derivative on the δ-function always acts on the first argument (the

antisymmetry of this matrix under simultaneous interchange of indices and coordinates

follows from ∂xδ(x,y) = −∂yδ(y,x)).

Demanding that the constraints (2.14) be preserved in time leads to conditions on

the associated Lagrange multipliers introduced for them in the canonical formalism. The

Lagrange multipliers are then fixed up to homogeneous solutions that are independent

of the canonical variables. Hence, there are no further (secondary) constraints to be

considered.

The following Hamiltonian density generates the same matter dynamics as the La-

grangian (2.11) when taken in flat space

H =
1

2 · 4!Fn1...n4
F n1...n4 +

1

2 · 7!Fn1...n7
F n1...n7 +

1

3! · 7! ε̃n1n2n3m1...m7
Cn1n2n3Fm1...m7

+
1

6!
Cn1...n6

[

− 1

4!
ε̃n1...n6m1...m4

Fm1...m4 +
1

144
ε̃n1...n6m1...m4

Fm1...m7Am5m6m7

]

+
1

2
λmnGmn +

1

5!
λn1...n5

Gn1...n5 . (2.17)

We emphasise that the dynamics are generated using Poisson brackets and that they are

weakly equal to the Euler–Lagrange equations deduced from (2.11). In particular, the

field dependent coefficients of C··· in (2.17) are chosen in such a way that Ċ··· ≈ 0. The

free gauge parameters λmn and λn1...n5
can also be viewed as being related to the temporal

components of the three- and six-form fields.

As our goal is to quantise the system, we need to follow the Dirac formalism and work

with Dirac rather than Poisson brackets. The transition to Dirac brackets in particular

removes part of phase space and therefore reduces the number of variables, making the

resulting expression closer to the E10 approach. The constraints (2.14) represent a mixed

system of first- and second-class constraints. This can be deduced from the fact that the

matrix (2.16) is degenerate, as one can see by acting with it on the vector6

(

vn1n2n3

∣

∣

∣
vn1...n6

)T

=
(

3∂[n1
λn2n3](y)

∣

∣

∣
6∂[n1

λn2···n6](y) + 15F[n1n2n3n4
(y)λn5n6](y)

)T

.

(2.18)

This null vector corresponds to first-class constraints G according to

G =

∫

dy

[

1

3!
vn1n2n3

Cn1n2n3 +
1

6!
vn1...n6

Cn1...n6

]

=

∫

dy

[

1

2
λmnGmn +

1

5!
λm1...m5

Gm1...m5

]

(2.19)

6This action contains both a contraction of the tensorial indices with the canonical combinatorial

factors 1/3! and 1/6! as well as an integral over y as shown in (2.19).
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for any λm1m2
(y) and λm1...m5

(y) of dimension L. The integrated generator G is only

non-trivial for λm1m2
and λm1...m5

that are non-trivial in de Rham cohomology, i.e., that

cannot be written as λm1m2
= 2∂[m1

σm2] in terms of a one-form σm (and similarly a four-

form σm1...m4
for λm1...m5

). This well-known gauge-for-gauge structure is equivalent to

the reducibility of the gauge constraints. Our analysis will not depend on resolving this

reducible structure.

The local generators of gauge transformations associated with (2.19) can be read off

as

Gmn(x) := −∂pCmnp(x) +
1

24
Cmnp1...p4(x)Fp1...p4(x) , (2.20a)

Gm1···m5(x) := − ∂pCpm1···m5(x) . (2.20b)

In a similar way, one can write a projection to the second-class constraints, that we denote

by S ···, in the form

Sn1n2n3(x) := Cn1n2n3(x)− 3

∫

dy ∂[n1G(x,y) ∂pCn2n3]p(y)

+ Ap1...p3(x)

∫

dy ∂[n1G(x,y) ∂kCn2n3p1...p3]k(y)

− 1

2

∫

dy ∂[n1G(x,y) ∂k
(

Cn2n3]p1...p3kAp1...p3(y)
)

(2.21a)

Sn1...n6(x) := Cn1...n6(x) + 6

∫

dy ∂[n1G(x,y) ∂pCn2...n6]p(y) (2.21b)

where G(x,y) is the spatial (flat) Green function satisfying ∆G(x,y) = ∂m∂
mG(x,y) =

δ(x,y).7 All derivatives act on the first argument of a function unless indicated otherwise.

The dimension of the Green function is L−8. The appearance of the scalar propagator

in these expressions already points to one extra complication with curved backgrounds:

because of the implicit dependence of G(x,y) on the spatial metric the gravitational

momenta Πmn then no longer commute with the Green function.

The true second-class generators (2.21) therefore contain non-local terms. Using the

convolution product defined by (f ⋆ g)(x) ≡
∫

dyf(x,y)g(y), we can thus separate the

7In Cartesian coordinates on ten flat Euclidean dimensions (with vanishing conditions at infinity),

the Green function can be written explicitly as G(x,y) = (vol(S9))−1|x − y|−8, but we shall not rely

on this expression. The properties of it that we use are its defining Laplace equation together with

G(x,y) = G(y,x) and ∂xG(x,y) = −∂yG(x,y).
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original constraints (2.14a) and (2.14b) into first- and second-class constrains as

Cn1n2n3 = Sn1n2n3 − 3 ∂[n1G ⋆ Gn2n3] − Ap1p2p3

(

∂[n1G ⋆ Gn2n3p1p2p3]
)

+
1

2
∂[n1G ⋆

(

Gn2n3]p1p2p3Ap1p2p3

)

, (2.22a)

Cn1...n6 = Sn1...n6 − 6 ∂[n1G ⋆ Gn2...n6] , (2.22b)

where we have also expressed the non-local terms through the Gauss constraints (2.20) in

order to exhibit that the second-class constraints differ from the full constraints by terms

proportional to the first-class constraints.

We note some properties of the first- and second-class constraint that are important

for the further development of the Dirac formalism. First, and by construction of the null

vector, the first-class generators G··· Poisson commute with all constraints (2.14) in the

strong sense, viz.

{

Cmnp(x) , Gq1q2(y)
}

PB
=

{

Cmnp(x) , Gq1···q5(y)
}

PB
= 0 ,

{

Cm1···m5(x) , Gq1q2(y)
}

PB
=

{

Cm1···m5(x) , Gq1···q5(y)
}

PB
= 0 . (2.23)

In particular, the first-class constraints all (strongly) commute with one another. We also

note that the second Gauss-type constraint Gm1...m5 is automatically divergence-free while

Gmn satisfies

∂mGmn =
1

24
∂mCmnp1...p4Fp1...p4 = − 1

24
Gnp1···p4Fp1···p4 . (2.24)

The gauge transformations generated by the first-class combinations (2.20) are

δAn1n2n3
= 3∂[n1

λn2n3] , δAn1...n6
= 6∂[n1

λn2...n6] + 15F[n1...n4
λn5n6] (2.25)

and one can check that they leave the field strengths Fn1...n4
and Fn1...n7

(defined in (2.13))

appearing in the Hamiltonian (2.12) invariant. The appearance of the gauge-invariant field

strength Fm1...m4
means that in this basis the gauge algebra is abelian. This corresponds to

the fact that the first-class constraints G··· strongly Poisson commute with all constraints

and therefore also {Gn1n2 ,Gn3n4}PB = 0 strongly.8

The second-class constraints (2.21) satisfy the relations

−∂pSpmn +
1

24
Smnp1...p4Fp1...p4 = 0 , (2.26a)

−∂pSpm1...m5 = 0 , (2.26b)

8Alternatively, one could also choose a basis where this commutator only vanishes weakly modulo

Gn1...n5 by taking Gn1n2 → Gn1n2 + (∗)Am1m2m3
Gn1n2m1m2m3 , leading to a non-abelian gauge algebra.
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so that inserting them into the projection (2.20) to the first-class constraints gives zero.

In fact, this property is what was used to determine the expressions (2.21). Since the

second-class constraints differ from the full constraints C··· by first-class constraints and the

first-class constraints strongly Poisson commute with all constraints according to (2.23),

we deduce that the matrix of Poisson brackets of the second-class constraints is identical

to (2.16). However, it is now to be thought of as acting on the space of second-class

functions, i.e., those satisfying (2.26).

To determine the Dirac brackets, we shall now invert the matrix (2.16) on this function

space. We repeat that we work on flat space-time in order to render the expressions more

tractable, as the following discussion only concerns the gauge structure in the matter

sector. With the full gravitational couplings, the analysis of the second-class constraints

and the determination of the Dirac brackets become substantially more complicated due

to their dependence on the spatial metric and the resultant non-commutativity with the

gravitational momenta. Nevertheless, we shall see that the relevant expressions can be

covariantised in a straight-forward manner and thus extended to curved space, but we

leave a detailed analysis of the associated subtleties to future work.

The inverse of the matrix (2.16) on the space of second-class functions is given by





0 −ε̃m1m2m3n1···n6p∂
pG(x,y)

−ε̃m1···m6n1n2n3p∂
pG(x,y) Xm1···m6 n1···n6

(x,y)



 , (2.27)

where

Xm1...m6 n1···n6
(x,y) = −20 ε̃km1...m6[n1n2n3

An4n5n6](y)∂
kG(x,y)

− 20 ε̃kn1...n6[m1m2m3
Am4m5m6](x)∂

kG(x,y) (2.28)

satisfies Xm1...m6 n1...n6
(x,y) = −Xn1...n6 m1...m6

(y,x).9

With these preparations one can now work out the Dirac brackets. These become

quite long and they also contain non-local terms that are due to the separation into first-

and second-class constraints we have chosen in (2.22). We shall only give a few salient

ones for the elementary variables and then focus on the gauge-invariant objects whose

Dirac brackets are free of these non-local terms [50]. We have for instance the following

9The matrix operator (2.27) is the inverse of (2.16) on the space of second-class constraints, i.e., its

composition with (2.16) in the sense of footnote 6 acts as the identity on functions (Sn1n2n3 ,Sn1...n6)

satisfying the relation (2.26). It is not the inverse on the space of all functions (Cn1n2n3 , Cn1...n6) where

an inverse does not exist due to the degeneracy of (2.16). Therefore the product of the matrices (2.16)

and (2.27) is not the identity matrix but it acts as the identity on the relevant space.
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Dirac brackets among position and momentum variables

{

Amnp(x) , Π
qrs(y)

}

DB
=

1

2
· 3!
(

δqrsmnpδ(x,y) + 3 δ
[qr
[mn∂p]∂

s]G(x,y)
)

{

Amnp(x) , Π
q1···q6(y)

}

DB
= 0 (2.29)

{

Am1···m6
(x) , Πn1···n6(y)

}

DB
=

1

2
· 6!
(

δn1···n6

m1···m6
δ(x,y) + 6 δ

[n1···n5

[m1···m5
∂m6]∂

n6]G(x,y)
)

as well as non-trivial relations among only position and only momentum variables

{

Am1m2m3
(x) , An1···n6

(y)
}

DB
= −ε̃m1m2m3n1···n6p∂

pG(x,y) , (2.30)

{

Πm1m2m3(x) , Πn1···n6(y)
}

DB
= ε̃m1m2m3n1···n6p∂pG(x,y) .

These Dirac brackets agree with those one would obtain in the free theory without the

Chern–Simons coupling. The other brackets, such as
{

Am1···m6
(x) , Πqrs(y)

}

DB
, are non-

vanishing only for non-zero Chern–Simons coupling. As an example we have

{

Πm1m2m3(x), Πn1n2n3(y)
}

DB
=

1

4 · 6! · 6! ε̃
m1m2m3p1...p7 ε̃n1n2n3s1...s7∂x

p7
∂y
s7
Xp1...p6 s1...s6(x,y) .

(2.31)

Turning to the Dirac brackets involving the gauge-invariant field strengths Fm1...m4
=

4∂[m1
Am2m3m4] and Fm1...m7

defined in (2.13), we find

{

Am1m2m3
(x) , Fn1···n7

(y)
}

DB
= + ε̃m1m2m3n1···n7

δ(x,y) − 3 ε̃pn1···n7[m1m2
∂m3]∂

pG(x,y)

(2.32)
{

Am1···m6
(x) , Fn1···n4

(y)
}

DB
= − ε̃m1···m6n1···n4

δ(x,y) − 6 ε̃pn1···n4[m1···m5
∂m6]∂

pG(x,y) .

The Dirac bracket {Am1...m6
(x), Fn1...n7

(x)}DB is also non-zero in the interacting theory

with Chern–Simons term. However, most important for our analysis are the Dirac brackets

among the gauge-invariant field strengths which take a simpler form, viz.

{

Fm1···m4
(x) , Fn1···n4

(y)
}

DB
= 0 ,

{

Fm1···m4
(x) , Fn1···n7

(y)
}

DB
= −7 ε̃m1···m4[n1···n6

∂n7]δ(x,y) (2.33a)

and

{

Fm1···m7
(x) , Fn1···n7

(y)
}

DB
= − 1

432
ε̃m1···m7p1p2p3 ε̃n1···n7p4p5p6 ε̃

p1···p6q1···q4Fq1···q4(x)δ(x,y) .

(2.33b)
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In particular they are local, in the sense that they contain only δ-functions or derivatives

of δ-functions, but no Green functions. Furthermore, these brackets are straightforward

to convert into generally covariant form since the right-hand sides of the brackets do not

depend on the metric and are tensorial.

We can now rewrite the dynamics by using the Dirac brackets. Referring back to

the Hamiltonian (2.17), we know that it generates the correct dynamics (weakly) when

using Dirac brackets that also allow us to set to zero the second-class constraints in the

Hamiltonian. Since the terms involving the constraints C··· in (2.17) decompose according

to (2.22) into first- and second-class pieces, we see that the first-class Lagrange multiplier

terms in (2.17) acquire additional field-dependent and non-local contributions. As these

are, however, pure gauge transformations, we can absorb their effect in a redefinition of

the Lagrange multipliers. Working out the dynamics in the Dirac formalism up to gauge

transformations, we only need to consider the Hamiltonian density

Hmat =
1

2 · 4!Fn1...n4
F n1...n4 +

1

2 · 7!Fn1...n7
F n1...n7 . (2.34)

If one were to also substitute the second-class constraints into this expression, one would

obtain terms involving Π2 but also non-local terms, and for this reason we keep the

expression above.

Given these Dirac brackets and the Hamiltonian (2.34), we can now check that the

Hamiltonian equations of motion

Ȧmnp(x) ≈
∫

dy
{

Amnp(x), Hmat(y)
}

DB
+ 3 ∂[mAnp]t(x)

Ȧm1···m6
(x) ≈

∫

dy
{

Am1···m6
(x), Hmat(y)

}

DB
− 6 ∂[m1

Am2···m6]t(x)

+ 35A[tm1m2
Fm3···m6](x) (2.35)

reproduce the duality relation (A.2). Here, we have absorbed all gauge terms in the

definition of the temporal component of the matter potentials. Furthermore, the second

relation is consistent with the result for Atmn from the first line.

Our analysis above was restricted to the matter sector and we worked in flat space for

simplicity. For the comparison with E10 beyond level ℓ = 2 one will need to treat gravity

in a similar way, by introducing the dual graviton field Am0|m1···m8
. At the linearised level,

it is possible to perform a similar replacement of the spatial derivatives of the metric by

the momentum conjugate to the dual graviton [14, 26, 55, 56]. As this extension involves

substantial technical complications we leave the inclusion of this field to future work.
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As a final remark we note that is tempting to substitute the full constraints C··· =

0 from (2.14) into the Hamiltonian (2.17). This would lead directly to a form of the

Hamiltonian that is quadratic in the momenta Π and moreover ultra-local in that it only

depends on canonical variables at one spatial point and is free of derivatives (except

for the gauge transformations). This procedure, however, is inconsistent with the Dirac

algorithm.

2.2 Canonical quantisation: a new perspective

Given the Dirac brackets (2.29) and (2.33) we can now proceed to canonical quantisation,

replacing the canonical variables by functional derivative or multiplication operators in

the standard way. For the metric we have the usual substitutions

ĝmn(x) = gmn(x) , Π̂mn(x) = i~
δ

δgmn(x)
(2.36)

where operators are indicated with hats.

For the three- and six-form fields the rules must be adapted in order to account for

the non-vanishing commutators (2.30) and similar non-vanishing Dirac brackets among

the momenta. As these brackets depend on the split of the constraints into first- and

second-class constraints and contain non-local term, we focus rather on the Dirac brack-

ets (2.33) among the gauge-invariant field strengths. For obtaining a quantisation of the

Hamiltonian (2.34), this is sufficient. Operators that realise the algebra (2.33) are

F̂m1...m4
(x) = − 2

6!
i~GN ε̃m1...m4n1...n6

δ

δAn1...n6
(x)

+
10

3
∂[m1

Am2m3m4](x)

F̂m1...m7
(x) = − 2

3!
i~GN ε̃m1...m7n1n2n3

(

δ

δAn1n2n3
(x)

+
1

12
As1s2s3(x)

δ

δAs1s2s3n1n2n3
(x)

)

− 7

3
∂[m1

Am2...m7](x) +
140

3
A[m1m2m3

∂m4
Am5m6m7](x) . (2.37)

We see that these operator realisations involve a mix of functional derivatives and multi-

plicative operators. These expressions are tensorial and hold also on curved spaces. The

Dirac brackets of the non-gauge invariant fields and momenta can be similarly worked

out, but contain non-local contributions. We shall not give the explicit expressions here

as they are not needed.

After replacement of the classical quantities by the above operators the quantum

Hamiltonian can be presented in the simple operatorial form

Ĥ(x) = Ĥ0(x) − 1

4
eR(10)(x) (2.38)
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where

eĤ0(x) = −~
2GNGmn|pq(x)

δ

δgmn(x)

δ

δgpq(x)

+
G−1

N

2 · 4!e
2F̂n1...n4

(x)gn1m1(x) · · · gn4m4(x)F̂m1...m4
(x) (2.39)

+
G−1

N

2 · 7!e
2F̂n1...n7

(x)gn1m1(x) · · · gn7m7(x)F̂m1...m7
(x) .

and where we have separated off the potential term involving the Ricci scalar in (2.38)

because at this point the gravitational sector is described solely in terms of the metric. If

a full non-linear dualisation of gravity were employed one would expect to also distribute

the dynamics more democratically between the metric and its dual field. At the linearised

level, the dual field to the D = 11 metric has tensor structure Am0|m1...m8
[14, 26] and is

well-known to appear in the gl10 level decomposition of e10 [5, 57] as we shall review in

section 3. The ordering of operators in (2.39) is still arbitrary at this point. We take it

to be the one written and this will be seen to agree with the ordering which is uniquely

fixed by the E10 Casimir operator in the next section.

The above differential operators are then supposed to act on the ‘wave function of the

universe’ Ψ, which for the theory (2.11) in question is a functional of the variables gmn(x),

Amnp(x) and Am1···m6
(x) (and eventually also the dual graviton Am0|m1···m8

(x)). Upon

making the requisite operator replacements in the Hamiltonian constraint and assuming

that H(x) can be properly defined as a quantum operator we end up with the WDW

equation

Ĥ(x)Ψ = 0 . (2.40)

In addition, the wave functional Ψ must satisfy the kinematic constraints

Ĥm(x)Ψ = Ĝmn(x)Ψ = Ĝm1···m5(x)Ψ = 0 . (2.41)

These constraints must be imposed for all spatial points labelled by x. Extending the

procedure of the foregoing section also to the gravitational sector would result in another

constraint, supplementing the kinematic constraints (2.41) by a ‘dual’ spatial diffeomor-

phism constraint (corresponding to the Bianchi identity on the spatial curvature tensor).

As we already mentioned there has been only scant progress with these equations due

to conceptual and mathematical problems, such as the ‘clash’ of functional differential

operators at coincident points in (2.39). As we will now see, the present reformulation

offers an entirely new perspective on these problems. Namely, we propose to replace the

wave functional Ψ above by a wave function Φ depending on infinitely many variables
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corresponding to the degrees of freedom in the coset space E10/K(E10), that is

Ψ
[

gmn(x), Amnp(x), . . .
]

−→ Φ
(

gmn, Amnp, Amnpqrs, Am0|m1···m8
, . . .

)

(2.42)

The main step is thus to replace a set of field variables depending on the spatial coordinates

x by an infinite tower of new variables corresponding to the degrees of freedom present in

the E10/K(E10) coset space, and which depend no longer on x; the dots in the argument

of Ψ are included in order to allow for further dual and auxiliary field variables (which,

however, cannot change the on-shell content of the theory). At least in principle, the

arguments in the new wave function Φ are supposed to correspond to the values of gmn(x)

and Amnp(x), and their duals at one fixed spatial point x = x0, as well as possibly other

degrees of freedom. This identification is accompanied by the replacement of functional

differential operators by ordinary partial derivatives according to the rule

δ

δφ(x0)
→ ℓ−10

P

∂

∂φ
for φ = gmn, Amnp, · · · (2.43)

where ℓP ≡ (~GN)
1/9 is the (eleven-dimensional) Planck length. Observe that this is not

a discretisation in any standard sense as there is no underlying space lattice here: rather

the spatial dependence is supposed to get encoded into the infinite tower of dual variables

on which Φ depends.10 This effective reduction to one spatial point is in accord with

the E10/K(E10) sigma model proposal of [5], where the D = 11 theory is reduced to

one dimension, and the (first order) spatial gradients of the basic fields are regarded and

treated as independent degrees of freedom. In other words, spatial dependence has been

traded for an infinity of variables at a fixed spatial point, but these can be associated

directly with spatial gradients only in lowest order of the level expansion [5, 6].

Neglecting spatial gradients is usually associated with the BKL limit in the classical

theory, where the Einstein equations are supposed to be dominated by time derivatives

near the cosmological singularity [16]. When extending such considerations to the quan-

tised theory, it is important to keep in mind that in the WDW approach there is no

a priori ‘time’, unlike for a Schrödinger wave function, and hence also no hidden time

dependence in any of the canonical expressions. Rather, time is supposed to emerge op-

erationally by picking a ‘clock variable’ and by approximating the WDW equation in a

semi-classical expansion by an effective Schrödinger equation, as for instance explained

10This is also suggested by the reduction of maximal supergravity to two space-time dimensions, where

E9 takes the place of E10. There, at least at the level of the equations of motion, the coordinate dependence

of the basic fields can be encoded into an infinite tower of dual potentials, which in principle allows us to

extract the information on spatial dependence from the dependence on the spectral parameter at a given

spatial point (see [58] and references therein).
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in [3]. With regard to (2.37), we therefore take the BKL limit as being equivalent to

neglecting spatial gradients in comparison with the functional differential operators, since

the latter originate from canonical momenta, which themselves are related to velocities.

This limit does not involve the Planck length.

The expression that will be related to E10 in the next section is then (2.37) with the

spatial gradients dropped. Before going into the technical details, we sketch what the

correspondence will be. As a first step, and keeping in mind the caveats mentioned above

and in the introduction, we propose that the standard WDW equation (2.40) should be

replaced by a new constraint equation

ΩΦ = 0 (2.44)

where the original Hamiltonian Ĥ(x) is replaced by the E10 Casimir operator Ω, up to

overall factors, see (3.28) below. This operator, whose differential operator realisation will

be discussed in detail in the following sections, acts on the E10/K(E10) coset space degrees

of freedom which appear as arguments of Φ. Importantly, in this version of the theory any

reference to ‘space’ has disappeared! Likewise there are no short distance singularities any

more, thanks to the replacement of functional derivative operators by ordinary derivatives

with respect to the coset variables, cf. (2.43). Another key feature is that the E10 Casimir

operator is unique [59, 60], and therefore the proper operator ordering is pre-ordained by

E10 symmetry.11 Our main result in (3.28) below then is that the operators Ĥ0(x0) for

fixed x0 and Ω match precisely up to and including level ℓ = 2. This non-trivial agreement

extends partially to level ℓ = 3 if one replaces the spin connection by the ‘dual graviton’

variable Am0|m1···m8
(where however the trace ωbba of the spin connection is missing due

to the constraint A[m0|m1···m8] = 0) and the spatial curvature term in H by yet another

kinetic term. In the same way that the six-form arose from solving locally the Gauss

constraint (2.9b), the linearised dual graviton will arise from solving locally the linearised

diffeomorphism constraint (2.9a).

Of course, many questions remain, even disregarding the issue of fermions. One is the

fact that the matching between H0 and Ω fails starting from level ℓ = 3, reflecting the

incompleteness of the ‘dictionary’ presented in [5]. This incompleteness is also evident

from the fact that the spatial Ricci scalar can assume both positive and negative values,

whereas the E10 Casimir is a positive operator away from the Cartan subalgebra. Fur-

thermore, it seems doubtful that the discrepancies arising at levels |ℓ| ≥ 3 can be resolved

purely within the framework of E10 alone, as already suggested by the absence of the trace

11In contrast to finite-dimensional Lie algebras, E10 admits no polynomial Casimir operators other

than the quadratic one [60].
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of the spin connection. It has been argued from the point of view of exceptional field the-

ory and the tensor hierarchy algebra that an appropriate extension of the E10 coset will

involve an indecomposable structure where E10 is augmented by highest weight represen-

tations where the first one is triggered by the trace of the spin connection [24, 19, 25], a

fact that is also suggested by compatibility with supersymmetry [20, 61].

The present approach thus suggests that the notion of ‘space’ must be extracted in a

similarly ‘operational’ way as the notion of ‘time’. For this we would need to incorporate

the kinematical constraints also into the E10 framework by endowing them with a group

theoretical realisation. First steps in this direction were taken in [22] where an attempt

was made to assign these constraints to a representation of E10 (which however cannot be

a highest or lowest weight representation). If this could be done, we would re-interpret

the group theoretical version of the diffeomorphism constraint operator Hm as a generator

of spatial coordinate dependence, simply by conjugation with the operator exp(ξmHm)
12,

where ξm is some coordinate parametrising the motion away from x0 ≡ x(0). Although

such formulas are familiar from quantum field theory, the crucial difference is that the

operator Hm would here be defined entirely group theoretically, and without reference to

a pre-existing space-time structure, unlike the standard momentum operator in quantum

field theory.

We end this section by observing that in the full theory, the dimensionful constants

GN and ~ appear explicitly in the operator realisations (2.37) in between the functional

derivatives and multiplication parts of the operators. As we shall in the next section

consider the operators at one fixed spatial point and drop all spatial derivatives, the

operators become homogeneous in the dimensionful constant that thus can be eliminated

from the WDW equation (2.40). This is in agreement with the fact that the E10 model

does not contain any dimensionful constants.

3 Functional realisation of E10 at low levels

In this section, we first explain some basic features related to the level expansion of the

hyperbolic Kac–Moody algebra e10, see [60, 67, 5, 57, 6] for more information. Then we

proceed to realise the beginnings of this algebra formally in terms of differential operators

on an infinite-dimensional function space by considering its action on the symmetric space

E10/K(E10). Of course, this is still very far from providing a proper understanding of e10:

continuing with the construction one quickly runs into the very same difficulties as with

12It has been observed that the gauge parameters (ξm, ξmn, ξm1···m5
, · · · ) associated to the kinematic

constraints (2.41) constitute the beginning of the Λ1 representation of E10 [62–66]
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more traditional realisations, because the full differential operators are unmanageable

infinite sums whose summands contain an exponentially growing number of terms..

3.1 E10 commutation relations at levels |ℓ| ≤ 3

There is no known explicit representation of the E10 Lie algebra (this remains the key

unsolved problem in the theory of indefinite Kac–Moody algebras since its inception more

than 50 years ago [68, 59, 60]). Some insight can be gained by decomposing it in terms

of representations of a ‘manageable’ subalgebra. This is achieved by making a level

decomposition, which is a Z-graded decomposition of the infinite-dimensional Lie algebra

e10 =
∞
⊕

ℓ=−∞

e
(ℓ)
10 (3.1)

There are different choices for the ℓ = 0 subalgebra, but here we pick the one best adapted

to the problem at hand, namely

e
(0)
10 = gl10 (3.2)

see [5,57,6] for further details and explanations; we mostly follow notation and conventions

of [6]. Other possible choices for the level-0 subalgebra e
(0)
10 are so(9, 9)⊕ gl1 and gl9 ⊕ sl2

and, respectively, correspond to type IIA and type IIB supergravity [69, 70].

The gl10 generators Km
n obey the standard commutation relations

[

Km
n , K

p
q

]

= δpnK
m
q − δmq Kp

n (3.3)

The associated standard bilinear form 〈·|·〉 reads

〈Km
n|Kp

q〉 = δmq δpn − δmn δ
p
q , (3.4)

where the trace term proportional to δmn δpq is left undetermined by gl10 and gets fixed

only after embedding gl10 ⊂ e10. At levels ℓ = 1, 2, 3 the subspaces e
(ℓ)
10 are, respectively,

spanned by a three-form, a six-form and mixed Young tableau representation, to wit,

Em1m2m3 , Em1···m6 , Em0|m1···m8 (3.5)

The corresponding negative level generators for ℓ = −1,−2,−3 are

Fm1m2m3
, Fm1···m6

, Fm0|m1···m8
(3.6)

with E[m|n1···n8] = F[m|n1···n8] = 0. We note that these representations are in one-to-one

correspondence with the ones encountered in the Hamiltonian analysis of the foregoing
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section. Yet higher level generators in (3.1) can be determined analogously, but the

analysis becomes rapidly more complicated, and actually unmanageable beyond the very

lowest levels, see e.g. [57] for a table of representations up to |ℓ| ≤ 28.13 For |ℓ| ≤ 3 the

commutation relations between positive and negative level generators read

[

Emnp, Eqrs
]

= Emnpqrs ,
[

Emnp, Eq1···q6
]

= 3E[m|np]q1···q6

[

Fmnp, Fqrs

]

= −Fmnpqrs ,
[

Fmnp, Fq1···q6

]

= −3F[m|np]q1···q6 (3.7)

Note that the normalisation of the ℓ = 3 generator differs from [6] by a factor of 3. The

minus sign in the definition of Fmnpqrs and Fm|n1···n8
ensures that (formally) the E’s and

F ’s are each other’s hermitean conjugates: E† = F . These generators transform in the

standard tensorial way under GL(10):

[

Km
n , E

qrs
]

= 3 δ[qnE
rs]m ,

[

Km
n , Fqrs

]

= −3 δm[qFrs]n , etc. (3.8)

For the commutators mixing positive and negative levels we have

[

Fmnp , E
qrs
]

= −18 δ
[qr
[mnK

s]
p] + 2 δqrsmnpK , (3.9)

where K ≡ Km
m, and

[

Fm1m2m3
, En1···n6

]

= 5! δ[n1n2n3

m1m2m3
En4n5n6]

[

Fm1···m6
, En1n2n3

]

= 5! δn1n2n3

[m1m2m3
Fm4m5m6]

[

Fm1···m6
, En1···n6

]

= −6 · 6! δ[n1···n5

[m1···m5
Kn6]

m6] +
2

3
· 6! δn1···n6

m1···m6
K

[

Fm1m2m3
, En0|n1···n8

]

= 7 · 16
(

δn0|[n1n2

m1m2m3
En3···n8] − δ[n1n2n3

m1m2m3
En4···n8]n0

)

[

Fm1···m6
, En0|n1···n8

]

=
1

3
· 8!
(

δn0[n1···n5

m1···m6
En6n7n8] − δ[n1···n6

m1···m6
En7n8]n0

)

[

Em0|m1...m8 , Fn0|n1...n8

]

= −8 · 8!
9

{

(

δm0

n0
δm1...m8

n1...n8
+ δ[m1

n0
δ
m2...m8]
[n2...n8

δm0

n1]

)

K

−δm1...m8

n1...n8
Km0

n0
− δm1 m2...m8

n0[n2...n8
Km0

n1]
− δm0[m2...m8

n1 n2...n8
Km1]

n0

−8δm0

n0
δ
[m1...m7

[n1...n7
Km8]

n8] − 7δm1

n0
δm0m2...m7

n1n2...n7
Km8

n8

}

. (3.10)

13Corresponding tables for e
(0)
10 = so(9, 9) ⊕ gl1 can be found in [69] and for the type IIB case e

(0)
10 =

gl9 ⊕ sl2 in [70].
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The normalisations with respect to the standard bilinear form imply

〈Fm1m2m3
|En1n2n3〉 = 3! δn1n2n3

m1m2m3

〈Fm1···m6
|En1···n6〉 = 6! δn1···n6

m1···m6

〈Fm0|m1···m8
|En0|n1···n8〉 =

8

9
· 8!
(

δn0

m0
δn1···n8

m1···m8
− δ[n1

m0
δn2···n8]n0

m1···m8

)

(3.11)

where the latter normalisation implies unit normalisation for real root generators (for

which two of the indices coincide), e.g. 〈F1|12345678|E1|12345678〉 = 1.

We also recall that the finite-dimensional exceptional algebras e6, e7 and e8 (which are

of course all contained in e10) can be obtained by restricting the indices m,n, ... to the

ranges {1, ..., 6} , {1, ..., 7} and {1, ..., 8}, respectively [71]. The level expansions for e6

and e7 terminate at |ℓ| = 2, while the one for e8 extends up to |ℓ| = 3. These truncations

to finite-dimensional subalgebras of e10 provide useful checks on our formulas, especially

when terms must cancel among themselves that would otherwise be cancelled by higher

level contributions that are absent for the finite-dimensional algebras.

3.2 Induced Actions

We parametrise the E10/K(E10) coset element formally as

V = V0N (3.12)

where V0 ≡ exp(hm
nK

n
m) ∈ GL(10) corresponds to the standard zehnbein em

a, see (2.2),

(but as an E10 ‘matrix vielbein’), and N to the unipotent part:

N = exp

(

1

3!
AmnpE

mnp +
1

6!
AmnpqrsE

mnpqrs +
1

8!
An0|n1···n8

En0|n1···n8 + · · ·
)

(3.13)

Here m,n, p, ... are curved (= GL(10)) indices, while a, b, c, ... are flat (= SO(10)) indices.

We can use the zehnbein em
a and its inverse to convert curved to flat indices on the fields

and on the E10 generators (recall that the fundamental form fields Amnp, etc. are the ones

with curved indices). When dealing with K(E10) it is sometimes convenient to switch to

flat indices on the generators, so as to be able to form linear combinations of type E−F .

For the induced action we note that the above expression corresponds to a parabolic

(‘almost triangular’) gauge where the factor V0 corresponds to the Levi subgroup GL(10),

which gets completed with the unipotent part N to a parabolic subgroup of E10. Note

that with triangular em
a, the factor V0, and with it the parabolic gauge become fully

triangular. For simplicity, and to facilitate the comparison with the standard WDW

approach we thus trade the triangular zehnbein by the metric gmn and its inverse.

25



For any wave function Φ = Φ(V) ≡ Φ(gmn, Amnp, · · · ) we have the induced action

(g ◦ Φ)(V) ≡ Φ
(

g−1Vk
)

(3.14)

where the compensating K(E10) transformation k = k(g,V) is only needed for lower

triangular g to restore the parabolic gauge. To identify the differential operators realizing

the Lie algebra e10 we evaluate this formula for infinitesimal transformations. So we set

gǫ = exp(ǫX) to compute

(gǫ ◦ Φ)(V) = Φ
(

V
(

1− ǫV−1XV + ǫδk
)

)

+ O(ǫ2) (3.15)

Here we can restrict attention to the strictly upper or strictly lower triangular transfor-

mations, as the GL(10) part is straightforward, see (3.19) below. The differential operator

realisation O(X) of the relevant transformation is then obtained in the usual way as

O(X)Φ(V) := lim
ǫ→0

1

ǫ

(

(gǫ ◦ Φ)(V)− Φ(V)
)

(3.16)

Therefore, schematically, the procedure works as follows, where for illustrative purposes

we set the GL(10) submatrix to unity, that is V0 = 1, and as an example consider a

parabolic transformation that does not require compensators. For instance, with ǫ ∗X ≡
1
3!
ǫmnpE

mnp, we have

Φ(N ) ≡ Φ
(

A3, A6, A1,8, · · ·
)

→
→ Φ

(

A3 + ǫ3, A6 + ǫ3A3, A1,8 + ǫ3A6 + ǫ3A3A3, · · ·
)

(3.17)

with appropriate (anti-)symmetrisations which we do not write out. From this formula

one can directly read off the formulas (3.21) below. For the strictly upper triangular

part the calculation of the commutators is thus straightforward, at least in principle, and

leads to the low level results given in the following section. Observe that the resulting

differential operators in principle contain infinitely many terms.

The computation for the lower triangular part is more involved. Taking as an example

X = 1
3!
ǫmnpFmnp, we need an infinitesimal compensator

ǫ ∗ δk =
1

3!
ǫmnp V−1

(

Fmnp − gmqgnrgpsE
qrs
)

V (3.18)

in (3.15), and analogously for all ℓ ≤ −2 generators. While upper triangular transforma-

tions push the level only up, the compensating transformations require levels to go up and

down, though down only by finitely many levels at order O(ǫ), depending on the level of

the F transformation under consideration. Again this computation results in an infinite

number of terms, independently of the level.
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3.3 Differential Operators

Applying the above procedure by including for the non-negative level differential operators

the fields up to Am0|m1...m8
on ℓ = 3, one gets the following gl10 generators from the induced

action

Km
n = −gnp

∂

∂gmp
− 1

2
Anp1p2

∂

∂Amp1p2

− 1

5!
Anp1...p5

∂

∂Amp1...p5

− 1

8!
An|p1...p8

∂

∂Am|p1...p8

− 1

7!
Ap0|p1...p7n

∂

∂Ap0|p1...p7m
+ . . . (3.19)

which implements the standard action of gl10 on tensors. Differentiation for the mixed

symmetry field is normalised in the same way as the generators in (3.11), i.e.

∂Am0 |m1...m8

∂An0|n1...n8

=
8

9
· 8!
(

δn0

m0
δn1···n8

m1···m8
− δ[n1

m0
δn2···n8]n0

m1···m8

)

. (3.20)

For the positive level generators up to ℓ = 3 we obtain

En1n2n3 = − ∂

∂An1n2n3

+
1

12
Ap1p2p3

∂

∂Ap1p2p3n1n2n3

+
1

180
Ap1...p6

∂

∂Ap1|p2...p6n1n2n3

− 1

48
Ap1p2p3Ap4p5p6

∂

∂Ap1|p2...p6n1n2n3

+ . . .

En1...n6 = − ∂

∂An1...n6

+
1

12
Ap1p2p3

∂

∂Ap1|p2p3n1...n6

+ . . . (3.21)

En0|n1...n8 = − ∂

∂An0|n1...n8

+ . . . .

For the negative level generators we only give the generators at levels ℓ = −1,−2 and

only include the contributions from the coordinates up to An1...n6
since the expressions

become very unwieldy for ℓ < −2. Since we have not performed the dualisation of gravity

in D = 11 supergravity, the expressions are sufficient for the results of this paper. We get

Fn1n2n3
= 3gp[n1

An2n3]q
∂

∂gpq
− 1

3
An1n2n3

gpq
∂

∂gpq
(3.22)

− gn1p1gn2p2gn3p3

∂

∂Ap1p2p3

− 1

6
An1n2n3p1p2p3

∂

∂Ap1p2p3

− 1

12
An1n2n3

Ap1p2p3

∂

∂Ap1p2p3

+
3

4
Ap1[n1n2

An3]p2p3

∂

∂Ap1p2p3

+
1

12
gn1p1gn2p2gn3p3Ap4p5p6

∂

∂Ap1...p6

− 1

720
An1n2n3

Ap1...p6

∂

∂Ap1...p6

+
1

80
Ap1...p5[n1

An2n3]p6

∂

∂Ap1...p6

+
1

48
Ap1p2p3Ap4p5[n1

An2n3]p6

∂

∂Ap1...p6

+ · · ·
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Fn1...n6
= −6gp[n1

An2...n6]q
∂

∂gpq
− 2

3
An1...n6

gpq
∂

∂gpq
− 30gp[n1

An2n3n4
An5n6]q

∂

∂gpq

− 5

3
As1s2s3[n1n2n3

An4n5n6]
∂

∂As1s2s3

− 3

2
As1s2[n1

An2...n6]s3

∂

∂As1s2s3

− 1

6
As1s2s3An1...n6

∂

∂As1s2s3

− 5As1s2[n1
An2n3n4

An5n6]s3

∂

∂As1s2s3

− 20An1n2n3
gn4s1gn5s2gn6s3

∂

∂As1s2s3

− 3

5!
An1s1...s5As6n2...n6

∂

∂As1...s6

− 1

3 · 5!An1...n6
As1...s6

∂

∂As1...s6

+
1

12
An1s1...s5As6n2n3

An4n5n6

∂

∂As1...s6

− 5

108
As1s2s3As4s5s6n1n2n3

An4n5n6

∂

∂As1...s6

+
5

24
As1s2s3As4n1...n5

An6s5s6

∂

∂As1...s6

− 5

24
As1s2s3As4s5n1

An2n3n4
An5n6s6

∂

∂As1...s6

− gn1s1 · · · gn6s6

∂

∂As1...s6

− 5

3
As1s2s3An1n2n3

gn4s4gn5s5gn6s6

∂

∂As1...s6

+ · · · (3.23)

Even when not writing out antisymmetrisations explicitly, all terms on the right-hand

sides are understood to be antisymmetrised properly in the ni indices.

Up to e7 for which the indices assume only the values m,n, ... ∈ {1, ..., 7}, the level

decomposition stops at this level and one can check using Schouten identities that all

commutators close correctly. For higher rank en this requires contributions from yet

higher levels that we have not worked out.

We also note that the property that E and F are each other’s Hermitian conjugates

is not manifest in this functional realisation. In principle, this requires an appropriate

measure on the function space that the differential operators are acting on. To the best

of our knowledge, such a measure is not known for the symmetric space E10/K(E10), but

does exist for the finite-dimensional truncations. In section 4 below, we shall investigate

the measure for finite-dimensional subspaces.

3.4 WDW Hamiltonian and the E10 Casimir operator

As is well known [60], one can define a normal ordered Casimir operator for E10 when act-

ing on integrable modules with a highest weight element. The E10 Casimir with parabolic

normal ordering adapted to the GL(10) decomposition is

Ω =
1

2
Km

nK
n
m − 1

18
KK +

23

6
K +

1

3!
FmnpE

mnp +
1

6!
Fm1...m6

Em1...m6 + · · · (3.24)
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The term linear in K is fixed by requiring the Casimir to commute with E10. To determine

its coefficient it is enough to check that Ω commutes with Emnp and Fmnp, as all the higher

level generators are given by multi-commutators of the ones at ℓ = ±1; the remaining

terms are uniquely given by the general expression (B.1). The above expression differs

from the standard one [60] only in its level zero contribution, where instead there appears

a contribution depending on the e10 Weyl vector ̟. This difference is the result of a

partial reordering of the ℓ = 0 generators, since the gl10 generators on level ℓ = 0 are

not normal ordered, unlike the ℓ 6= 0 terms. Taking this difference into account we have

complete agreement with the standard formula, as we will demonstrate in appendix B.

Now let us work out the Casimir up to ℓ = 2 with our explicit expressions for the E10

generators. As it turns out there are numerous cancellations, and after some algebra we

are left with14

Ω =
1

2

[

gmp
∂

∂gnp
gnq

∂

∂gmq
− 1

9

(

gmn
∂

∂gmn

)2
]

− 23

6
gmn

∂

∂gmn
(3.25)

+
1

3!
gmqgnrgps

∂

∂Amnp

∂

∂Aqrs
+

1

6!
gm1n1

· · · gm6n6

∂

∂Am1···m6

∂

∂An1···n6

− 1

36
gmq1gnq2gpq3Aq4q5q6

∂

∂Aq1···q6

∂

∂Amnp

+
1

3!
· 1

144
gk1p1gk2p2gk3p3Am1m2m3

An1n2n3

∂

∂Am1m2m3k1k2k3

∂

∂An1n2n3p1p2p3

+ . . .

Remarkably many cross terms cancel, in particular the ones ∝ δ/δg · δ/δA, and it is an

interesting question whether such cancellations still persist beyond level ℓ = 2. We also

notice that the terms involving the three- and six-form variables can be written more

simply and more suggestively as

Ω
∣

∣

∣

|ℓ|=1,2
=

e2

4!
gm1n1 · · · gm4n4Fm1···m4

Fn1···n4
+

e2

7!
gm1n1 · · · gm7n7Fm1···m7

Fn1···n7
(3.26)

where

Fm1...m4
= − 1

6!
ε̃m1...m4n1...n6

∂

∂An1...n6

,

Fm1...m7
= − 1

3!
ε̃m1...m7n1...n3

(

∂

∂An1...n3

+
1

12
As1s2s3

∂

∂As1s2s3n1n2n3

)

. (3.27)

Comparison of (3.26) with (2.38) now immediately shows that, up to and including

level ℓ = 2, this structure coincides with the bosonic Hamiltonian of D = 11 supergravity.

14The En Casimir for n ≤ 8 was already worked out in [72] in the same truncation.
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That is, at a given spatial point, we have the equality

eĤ0 = −2~2GN

ℓ 20P
Ω
∣

∣

∣

|ℓ|≤2
(3.28)

provided we convert the functional differential operators into ordinary partial derivatives

according to the rule (2.43). We also note that formula (3.28) is consistent with the fact

that Ĥ0 has dimension M · L−10 (= energy density) while Ω is dimensionless. We recall

that ℓP = (~GN)
1/9 and so only two independent fundamental constants appear in (3.28).

We can no longer expect complete matching between the E10 Casimir and the D = 11

Hamiltonian beyond ℓ = 2 without a proper dualisation of gravity. This is already clear

from the absence of the trace of the spin connection ωbba on the E10 side, and from the

fact that the positivity of the E10 Casimir away from the Cartan subalgebra is in conflict

with the fact that the spatial curvature contribution ∝ R(10) in the WDW Hamiltonian

(2.38) can have either sign. There are further mismatches at ℓ = 3 which were already

exposed in [6, 20]. At yet higher levels, the known correspondence (‘dictionary’) breaks

down altogether.

Nevertheless, disregarding the remaining discrepancies, we note that (3.25) has a fixed

ordering of the differential operators which is uniquely prescribed by the form of the E10

Casimir, with all differential operators to the right, except for standard WDW term in

the first line (in cancelling contributions proportional to A3 ∂/∂A3 and A6 ∂/∂A6 the

term 23
6
K again plays a crucial role). We also note that by the very definition of the

Casimir operator we have an infinite number of E10 ‘charges’ that commute with the

Casimir, namely all operators corresponding to the E10 generators. Whether these admit

a space-time interpretation as ‘observables’ remains to be explored.

With the identification (3.28) the WDW operator acquires a ‘dimensionless’ form

since all terms in (2.37) are homogeneous in dimensionful constants after dropping the

terms involving spatial gradients. In this form the semi-classical limit ~ → 0 evidently

cannot be meaningfully discussed, as ~ appears only as an overall factor. The issue of

the semi-classical limit is thus intimately connected to the question of space emergence;

the requisite dimensionful parameters only appear after inclusion of the spatial derivative

terms.

Let us also comment on the remaining constraints. As emphasised in section 2, these

involve spatial derivatives, see for instance (2.9a) and (2.20). Applying the same substi-

tutions of magnetic field strengths (2.14) (or more properly their second-class version)

to the terms not involving explicit spatial derivatives, the first Gauss constraint (2.20)
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becomes for example

Gmn = ∂pΠ
mnp +

1

864
ε̃mnq1...q8Fq1...q4Fq5...q8

→ ∂p
δ

δAmnp
− 1

36 · 6! ε̃q1...q10
δ

δAmnq1...q4

δ

δAq5...q10

+ . . . (3.29)

where we have applied our quantisation from section 2.2 and so converted the constraint

into a functional differential operator in field space up to the explicit spatial derivative.

The ellipses include terms involving spatial gradients of the fields and non-local terms that

are due to solving the second-class constraints. We expect that similar manipulations can

be applied to the diffeomorphism constraint after dualising gravity at the linearised level.

These differential operators have to be applied to the WDW wave functional Ψ. In the

comparison to E10 we drop the explicit spatial derivatives and non-local terms and arrive

at an ultra-local expression that can also be interpreted as a constraint on the E10 wave

function Φ if one transitions according to (2.42). This represents the quantum version

of the classical constraints studied in [22, 23] that can be imposed consistently on the

classical E10 model. We note that, when determining the e10 weight of the components

of the constraints, there seems to be a relation to the indecomposable extension of e10

studied in [19].

4 Comparison with quantum BKL analysis

In this section, we consider the solutions of the E10 WDW equation ΩΦ = 0 and their

relation to previous work on the quantisation of the BKL/cosmological billiards approxi-

mation to D = 11 supergravity in the vicinity of a space-like singularity [16, 73–75]. The

quantisation of the cosmological billiards picture was found to lead to a normalisable

wave function of the Universe that tends to zero when approaching the singularity [36],

thus realising DeWitt’s original idea of the quantum mechanical resolution of classical

singularities [1], see also [76, 77, 45, 39]. We shall review this result that uses only the

Cartan subalgebra of e10 together with the input of the walls locations from cosmological

billiard. We then generalise the analysis to include also root generators but we restrict

mainly to the case of a single root generator for simplicity. This does not alter the physical

conclusions and also connects to the idea of discrete symmetries in string theory.

In group theoretical terms, the BKL approximation corresponds to the restriction

of e10 to its Cartan subalgebra h. Here we shall generalise this setting to larger finite-

dimensional subalgebras of e10

h⊥ ⊕ g(r) ⊂ e10 , 〈h⊥|g(r)〉 = 0 , d ≡ dim h⊥ = 10− r (4.1)
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corresponding to a compactification from D = 11 down to D = d + 1 space-time dimen-

sions. Here, the subalgebra g(r) is of rank r, and the dimension d of the restricted Cartan

subalgebra h⊥ ⊂ h coincides with the dimension of the singular spatial hypersurface. The

relevant modular group is then W⊥×G(r)(Z), where W⊥ is the even subgroup of the Weyl

group associated to the billiard defined by the remaining walls for h⊥, and G(r)(Z) the

appropriate discrete U-duality group for the matter sector. Below we will in particular

consider the cases g(1) ≡ gα = sl2 for arbitrary real and timelike imaginary roots α, as

well as higher rank examples such as g(7) = e7 and g(8) = e8.

4.1 Review of quantum cosmological billiards

In [36, 37], the quantisation of the E10 cosmological billiard was studied. The analysis

is based on the mini-superspace approximation where only the diagonal components of

the spatial metric are retained and their free motion is constrained by hard walls that

are the only remnant of the other components and the matter fields. The ten diagonal

components of the metric are associated with the Cartan subalgebra generators Km
m for

m = 1, . . . , 10 (no sum). As the DeWitt metric (2.10) reduces to a Lorentzian metric ηmn

of signature (1, 9) on diagonal metrics, a convenient set of coordinates for the diagonal

components gmm = exp(−2βm) is given by [74]

βm = ργm , with ρ > 0 and γnηmnγ
n = −1 (4.2)

with the logarithmic scale factors βm, and coordinates γm on the unit hyperboloid and ρ

representing the effective time parameter for the approach to the singularity which is at

ρ → ∞ in these coordinates. Together, ρ and γm parametrise the interior of the forward

light-cone in the space of diagonal spatial metrics. The hard ‘billiard’ walls constrain the

motion in the forward light-cone to a fundamental chamber of the E10 Weyl group [73].

Quantum-mechanically, one has to solve the wave equation on this Lorentzian space with

Dirichlet boundary conditions corresponding to the hard walls.15

The wave operator is invariant under the E10 Weyl group and given by

1

2

10
∑

m=1

(Km
m)

2 − 1

18

(

10
∑

m=1

Km
m

)2

= −ρ−9∂ρ(ρ
9∂ρ) + ρ−2∆LB , (4.3)

where we now suspend the summation convention by writing out sums explicitly. Here

∆LB is the Laplace–Beltrami operator on the unit hyperboloid of dimension nine. These

15For a discussion of other boundary conditions and related ideas see [76–78].
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terms are recognised as the restriction of the E10 Casimir (3.24) to the Cartan genera-

tors, except for the normal-ordering term 23
6
K. The latter breaks E10 Weyl symmetry

on its own. However, together with all root generators in (3.24) (full, continuous) E10

symmetry is restored. The restriction of the full wave equation ΩΦ = 0 to dependence

only on diagonal metric components therefore differs from the wave equation coming

from the cosmological billiard (with boundary conditions given by the hard walls) by the

normal-ordering term. One may wonder whether the addition of this term will modify

the conclusion of [36] regarding the vanishing of the wave function at the singularity.

In order to investigate this we recall from [36] that the spectrum of the Laplace–

Beltrami operator on the unit hyperboloid in d = 10 dimensions (with Dirichlet boundary

conditions) is bounded by

−∆LB ≥ 16 , (4.4)

which, together with a separation ansatz Φ(ρ, γm) = R(ρ)Φ0(γ
m) for the wave function

leads to the result that

Φ(ρ, γm) ∼ ρ−4eiµ log ρΦ0(γ
m) , (4.5)

where (−∆LB − 16)Φ0 = µ2Φ0 and the reality of µ is guaranteed by (4.4). Therefore the

full wave function vanishes (and oscillates) for ρ → ∞.

For later reference we recall that for singular spatial hypersurfaces of dimension d, the

relevant operator is −ρ1−d∂ρ(ρ
d−1∂ρ) + ρ−2∆LB. Then the bound in (4.4) becomes

−∆LB ≥ 1

4
(d− 2)2 (4.6)

and the wave function decays as ρ−(d−2)/2 [36]. The conserved invariant measure for the

quantum cosmological billiards is just given by the standard Klein–Gordon inner product

(f |g) = i

∫

dΣaf ∗
↔

∂a g (4.7)

where the integral is over the unit hyperboloid inside the forward light-cone in β-space.

We stress that these statements are true for D = 11 supergravity, but similar results

hold for other gravitational theories such as pure D = 4 gravity without a cosmological

constant.

4.2 Extension with a single root

Since considering the full E10 system is too complicated (and possibly hard to define

properly), we consider the case when only a single positive root generator Eα is active
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along with its associated negative root generator in addition to the Cartan subalgebra.

This means that the algebra we are considering is

h⊥ ⊕ gα ⊂ e10 , g(1) ≡ gα = {Eα, Fα, Hα ≡ αiHi} , 〈h⊥|gα〉 = 0 . (4.8)

whence the e10 symmetry is broken to h⊥⊕ gα. Physically, this truncation corresponds to

a situation with one compactified dimension, where the dimension of the singular spatial

hypersurface is reduced by one.

The three-dimensional algebra gα is isomorphic (over R) to sl2(R) if α
2 6= 016 and iso-

morphic to a Heisenberg algebra if α is a null root. The direct sum in the Lie algebra (4.8)

is one of Lie algebras. We use the normalisation

〈Eα|Fα〉 = 1 , 〈Hα|Hα〉 = α2 . (4.9)

This bilinear form is invariant under the commutation relations

[Hα, Eα] = α2Eα , [Hα, Fα] = −α2Fα , [Eα, Fα] = Hα . (4.10)

Classical cosmological solutions to the E10 sigma model in such a set-up have been studied

in [79], but we are here interested in the quantisation.

The Casimir operator for the algebra (4.8) is likewise a truncation of the full E10

Casimir operator to a finite-dimensional differential operator, and decomposes as

Ω1 = Ω⊥ + Ωα , (4.11)

where Ω⊥ is the part along h⊥ and Ωα along gα. From now on we only consider the case

α2 6= 0 such that the bilinear form (4.9) is non-degenerate and the Casimir reads

Ωα =
1

2
EαFα +

1

2
FαEα +

1

2α2
HαHα = FαEα +

1

2
Hα +

1

2α2
HαHα . (4.12)

Choosing coordinates χ and φ on an Iwasawa patch of the symmetric space associated

with gα with representative Vα = eχEαeφHα we have the differential operators

Eα = −∂χ , Hα = −∂φ − α2χ∂χ ,

Fα = χ∂φ +

(

1

2
α2χ2 − e2α

2φ

)

∂χ (4.13)

and therefore

Ωα =
1

2
α−2∂2

φ −
1

2
∂φ + e2α

2φ∂2
χ =

1

2
α2y2∂2

y + y2∂2
χ , (4.14)

16The induced bilinear form has non-standard signature for time-like α.
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where we have defined y = eα
2φ in the last step to make the expression coincide with the

usual SL(2,R) Laplace operator on the upper half-plane for real roots (α2 = 2).

In order to solve the WDW equation

Ω1Φ1(β⊥, φ, χ) = 0 (4.15)

we use separation of variables, with Φ(β⊥, φ, χ) = Φ⊥(ρ, γ)F(φ, χ) as well as Φ⊥(ρ, γ) =

R(ρ)Φ0(γ). If ΩαF(φ, χ) = −EF(φ, χ) we are left with

Ω⊥Φ⊥(β⊥) = EΦ⊥(β⊥) . (4.16)

We analyse the case of real roots and time-like imaginary roots separately.

We note that for all α2 6= 0 the integration measure on the homogeneous space asso-

ciated with gα the integration measure is given by

(f |g) =
√

2

|α2|

∫

dχdy

y2
f(χ, y)g(χ, y) (4.17)

and the operators (4.13) all satisfy X† = −X with respect to this integration measure.

The constant overall normalisation factor is conventional and could be dropped. This

measure supplements the billiard measure (4.7) to provide a measure for the full wave

function Φ1(β⊥, φ, χ). What is important is that the patch where the coordinates χ ∈ R

and y > 0 are defined is of infinite volume in the measure (4.17). This can be remedied

by considering a quotient of the homogeneous space by a discrete subgroup such that

quotient has finite volume. A standard example for this is the modular group SL(2,Z)

acting on the upper half-plane which makes contact of the present set-up to the theory

of automorphic forms. As mentioned in the introduction, such discrete symmetries arise

naturally in an M-theory context, and here we see a different need for them in quantum

gravity.

4.3 The case of a real root

If α is a real root, the associated symmetric space is SL(2,R)/SO(2), the two-dimensional

hyperbolic plane. The orthogonal space h⊥ is a Lorentzian space of dimension 9 and we

can choose coordinates β⊥ = ργ⊥ similar to (4.2). Separating the equation (4.16), we find

a total elementary solution to (4.15) of the form

Φ1(ρ, γ⊥, φ, χ) = ρ−
7

2R(ρ)Φ0(γ⊥)F(φ, χ) (4.18)
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with ∆LBΦ0(γ⊥) = −EΦ0(γ⊥) on the eight-dimensional unit hyperboloid inside h⊥ and

R(ρ) a bounded function of ρ that is given by the solution to an (ordinary) Bessel differ-

ential equation. More precisely, R(ρ) satisfies the equation

ρ2∂2
ρR+ ρ∂ρR+

(

Eρ2 + E − 49

4

)

R = 0 , (4.19)

where the contribution 49
4

corresponds to d = 9 in (4.6). After rescaling Eρ2 → ρ2 this

becomes the standard Bessel equation, but with imaginary index. An explicit solution is

provided by the formula [80]

R(ρ) = Jν(E−1/2ρ) =
2(1

2
E−1/2ρ)ν√

πΓ(ν + 1
2
)

∫ 1

0

(1− t2)ν−
1

2 cos(E−1/2ρt)dt (4.20)

valid for Re(ν) > −1
2
. The index

ν = i

√

E − 49

4
. (4.21)

is purely imaginary because E ≥ 49
4
, which is the appropriate bound for the spectrum of

the Laplacian −∆LB for d = 9 by (4.6), under the assumption that there is a restricted

cosmological billiard with Dirichlet boundary conditions. Moreover, we have that E ≥ 1
4

under the assumption of a duality symmetry acting on SL(2,R)/SO(2) with Dirichlet

boundary conditions for normalisable solutions F(φ, χ). This bound makes the rescaling

of the variable real. In the range

E ≥ 49

4
and E ≥ 1

4
(4.22)

we then have that Φ1 is normalisable. In addition, the Bessel function R(ρ) is complex,

oscillating and decays as ρ−1/2 for ρ → ∞ in the same range of parameters. Therefore,

the full wave function Φ1 retains the property that it vanishes in an oscillating manner

for ρ → ∞ when one simple real root is turned on.

The variable ρ used in (4.18) is the one associated only to the space h⊥ rather than

to all of h as in (4.5). The reason for this change is that turning on the root generator

Eα and the associated variable χ removes one hard billiard wall and the BKL geometry

is therefore changed, with a singular spatial hypersurface of dimension d = 9.

Let us also recall that there are infinitely many real roots for E10 (like for other

hyperbolic Kac-Moody algebras), whose associated root generators can be used to build

what is often referred to as the ‘minimal group’, corresponding to a special prescription

for exponentiating the Lie algebra e10 [35]. While we have no general statement about the

behavior of the full E10 wave function, this observation already takes us some way towards

establishing the generic vanishing of the wave function at the space-like singularity.
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4.4 Automorphic aspects with several real roots

For deriving the range (4.22), we used that there are discrete symmetries acting on the

variables. On the space h⊥ the discrete symmetry was the remnant of the E10 Weyl

symmetry. This is an infinite order symmetry since the stabiliser of any real root inside

the infinite E10 Weyl group is of finite order.

For the SL(2,R)/SO(2) symmetric space associated with the real root α we assumed a

discrete symmetry such as SL(2,Z) with a fundamental domain of finite volume, together

with Dirichlet conditions.17 The mathematical reason is that under these assumptions the

derivation of the bound on E is straight-forward [82] while without this assumption the

bound is only almost always satisfied [83]. More importantly, the physical reason for this

assumption is that in string theory and supergravity, maximal supersymmetry together

with Dirac charge quantisation implies the existence of such discrete U-duality groups [29]

that are associated with space-time, at least for D = d+ 1 ≥ 4.

The arguments above can be extended to the case when gα is replaced by any finite-

dimensional subalgebra h⊥ ⊕ g ⊂ e10, e.g. g = e7 in which case h⊥ would be of dimension

three. For finite-dimensional g ≡ g(r) semi-simple of rank r such that dim h⊥ = 10−r, the

same separation ansatz

Ωr = Ω⊥ + Ωg (4.23)

applies, and we can first solve ΩgF = −EF . The appropriate generalisation of the

measure (4.17) exists on the finite-dimensional symmetric space associated with g by

standard results, i.e., computing the invariant metric and taking its determinant. For the

unipotent part associated with the positive roots this is given by the usual Haar measure.

For instance, for g = e7 this corresponds to a situation with a singular spatial hyper-

surface of dimension three, and seven compactified dimensions. For doing this, we assume

again the existence of discrete U-duality and require the square integrable functions on a

locally symmetric space. Although the precise general bound on the Laplace spectrum is

not known for E7(Z) to the best of our knowledge, one can still show that E ≥ 0. One

instance of a such a function F for E7 or E8 is provided by the automorphic realisation

of the minimal unitary representation [84–86, 28].

For E > 0 we are then led again to solutions of the type (4.18) where the difference

is that ρ−7/2 is replaced by ρ−(8−r)/2 and the solution to the Bessel equation provides

an additional falloff, still ensuring that the wave function of the Universe vanishes when

17Under these conditions, the bound E ≥ 1
4 can actually be strengthened [81], but we do not require

this here. In fact, all that we require is that E is non-negative.
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approaching the singularity as a stable property of the solution. Here, we assume implicitly

that r ≤ 8 to have a meaningful geometric picture of the singularity when using the

dictionary.

4.5 The case of an imaginary root

For (time-like) imaginary roots α (which obey α2 < 0) new subtleties arise. A first diffi-

culty is that the ‘dictionary’ of [5,6] does not work for imaginary roots, hence there does

not exist an obvious geometric interpretation for this situation, unlike for cosmological

billiards. While for real roots the geometry of the coset is that of SL(2,R)/SO(2), the

symmetric space associated with an imaginary root is SL(2,R)/SO(1, 1), which is now of

Lorentzian signature. For α2 = −2 (or any time-like root after a suitable rescaling of the

coordinates), the metric reads

ds2 = y−2
(

−dy2 + dχ2
)

(4.24)

and represents a Poincaré patch of Lorentzian AdS2 space that was computed using one

Iwawasa patch where y > 0 and χ ∈ R. As is well-known, this is not a global coordinate

system of AdS2 and, in particular, the action of the AdS2 isometry group SL(2,R) does

not preserve this patch, unlike for the Euclidean case, see below. By thinking of the

embedding in the ambient space R
1,2, we can think of all of AdS2 as the above Poincaré

patch, also allowing values y < 0. This still misses the (light-like in R
1,2) hyperplane y = 0

where the metric becomes singular, but this will be of no relevance in our discussion.

The spectral problem of Ωα for α2 = −2 is then recognised as being related to the

scalar d’Alembertian on AdS2 where it is known that normalisable solutions

ΩαH(χ, y) = −EH(χ, y) (4.25)

exist for E < 1
4
by the Breitenlohner–Freedman bound [87]. This is the other side of

the bound for real roots α. Since the space associated with α now is Lorentzian, the

orthogonal space is Euclidean and therefore the corresponding operator −Ω⊥ becomes

elliptic. The remaining equation Ω⊥F = EF then has oscillating solutions. However, in

this case it is not clear what variable now plays the role of ρ that is the variable ‘towards

the singularity’ as the geometric interpretation of the solutions involving purely imaginary

roots is already unclear at the classical level [79]. This is due to the lack of a dictionary

beyond level ℓ = 3.

There are also mathematical subtleties, related to the ones already discussed in [88],

that cast doubt on the existence of a proper automorphic theory for this case. Namely, the
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action of SL(2,R) in the coordinate system (4.24) can be worked out from the ambient

space and gives

(

a b

c d

)

· y =
y

(cχ+ d)2 − (cy)2
,

(

a b

c d

)

· χ =
ac(χ2 − y2) + (ad+ bc)χ + bd

(cχ+ d)2 − (cy)2
,

This formula resembles the one for Möbius transformations, except for a ‘Wick rotation’

of the y variable, as a consequence of which the coordinate range y > 0 is no longer

preserved. Independently of the non-preservation of the Poincaré patch, we see that for

the generators T and S of the discrete subgroup SL(2,Z), this formula implies

T =

(

1 1

0 1

)

: (χ, y) → (χ+ 1, y)

S =

(

0 1

−1 0

)

: χ± y → − 1

χ± y
(4.26)

Hence T and S act as in the Euclidean case, but separately on the real null coordinates

χ ± y, as already noted in [88]. As explained there, one can compactify the space by

considering χ±y ∈ R∪{∞} so that the space has the topology a two-torus S1×S1. Now

it is known that the action of SL(2,Z) on the real axis with the point at infinity added is

dense (any rational number can be mapped to any other by means of a discrete Möbius

transformation). Because the action on the two defining circles is dense there is therefore

no sensible fundamental region, unlike for real roots. We are not aware of a discussion of

the consequences of this fact for the theory of automorphic forms on such a space, nor its

implications for the proper definition of the hypothetical discrete duality group E10(Z).

5 General comments on E10 wave function

In the previous section we have presented several examples of truncations of the E10 WDW

equation to finitely many variables. In this final section we want to return to the general

case and collect some more general statements. More specifically, the E10 wave function

Φ being part of a functional representation of E10, one can ask the question what type of

representation component it belongs to if it solves ΩΦ = 0. As we will see, all indications

point towards the necessity of an enlargement of the E10 framework.

The first observation is that if Φ belonged to an irreducible highest or lowest weight

representation of E10, then ΩΦ = 0 would imply that Φ = 1 is the trivial representation

(a statement that is, of course, familiar from standard group and representation theory).
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This is actually in agreement with our findings for the finite-dimensional truncations

studied in the previous sections, as already for the simplest case of sl2 the relevant eigen-

functions belong to unitary representations which are neither of highest or lowest weight

type.

More generally, this can be seen by recalling that for such representations we have [60]

ΩΦ =
1

2

(

(Λ|Λ) + 2(̟|Λ)
)

Φ (5.1)

where Λ is the relevant highest or lowest weight, and ̟ the Weyl vector. Now for the

fundamental e10 weights Λi, which obey (Λi|αj) = δij we have (see e.g. [67])

(Λi|Λj) ≤ 0 (5.2)

with equality if and only if Λi = Λj = Λ1 = −δ, the fundamental weight of the ‘hyperbolic’

node. Furthermore, for any non-trivial weight Λ =
∑

j p
jΛj we have (Λ|̟) < 0 and thus

(Λ|Λ) + 2(̟|Λ) < 0 (5.3)

This argument shows that for any non-trivial such representation we have ΩΦ 6= 0,

hence the WDW equation cannot be satisfied. This conclusion is also in accord with

indefiniteness of WDW operator (which here appears with peculiar and unique ordering

prescribed by (3.24)): highest (or lowest) weight representations are unitarisable [60],

whereas for standard WDW equation we have the usual indefinite metric Hilbert space,

just like for the Klein–Gordon wave function. This again leads to the conclusion that Φ

cannot belong to a highest or lowest weight representation of E10.

In the foregoing section, we have considered differential operators that only depend

on the E10 coordinates up to gl10 level ℓ ≤ 2. Such a truncation breaks E10 symmetry,

but it is possible to solve the equation ΩΦ = 0 in such a truncation consistently. This

statement is analogous to the statement for the classical E10 coset model that one can

truncate the geodesic equation such that only finitely many coset velocity components

are non-zero but this provides a solution to the full geodesic equation [6]. At the level of

induced representations and automorphic forms it corresponds to considering restricted

Fourier coefficients, i.e., to perform the Fourier integral over all variables of ℓ > 2 [28].

Although such truncations are thus all consistent, it is another question whether they

are also stable in the full configuration space w.r.t. small perturbations along the trun-

cated directions. A relevant fact here is that, as shown in [41], classical geodesics on the

E10/K(E10) coset manifold are infinitely unstable. We recall that the geodesic deviation

equations governing the relative evolution of two neighbouring geodesics are determined
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by the sectional curvatures (see e.g. [89]). Consequently, for a geodesic with tangent

vector v ∈ h in the Cartan subalgebra, and a deviation in the direction of the generator

E+
α ≡ Eα + Fα for an arbitrary root α, the deviation of the two geodesics is determined

by (see appendix of [41])

R(v, E+
α , v, E

+
α ) = −

(

α(v)
)2

< 0 (5.4)

This expression decreases without bound for imaginary roots. This is because for every

imaginary root α, any integer multiple nα is also a root. Hence, replacing α by nα on

the r.h.s., (5.4) can be made arbitrarily negative by taking n → ∞, with an exponentially

increasing number of unstable directions (labeled by the multiplicity index of the root

nα) for time-like imaginary roots. It is not clear how this instability is reflected in the

E10 WDW operator, although the usual formal path integral representation of the ‘wave

function of the universe’ (see e.g. [90]) would suggest that the instability should manifest

itself via the saddle point approximation. It is also unclear how the inclusion of fermions

and third quantisation might affect these conclusions.

Finally, we should point out that the picture here with a wave function that vanishes at

the singularity is very different from the one suggested by the no boundary proposal of [38]

(see also [40] and [39] for related discussions). The latter hypothesises a creation of the

universe ‘out of nothing’ in terms of a Euclidean instanton, where in particular the BKL

analysis and chaotic oscillations play no role. The absence of an initial singularity hinges

on the presence of a positive cosmological constant (which is known to suppress chaotic

oscillations [74]). By contrast, D = 11 supergravity does not admit a non-vanishing

cosmological constant. While a cosmological constant is almost always generated by

spontaneous compactification, it generically turns out to be negative. By contrast, the

(classical) E10/K(E10) model has been shown to not admit static solutions, but rather

gives rise to a time-dependent cosmological evolution of quintessence type [79].
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A Theory with both three-form and six-form

In the covariant theory (2.1), the matter equation of motion

∂S(EF SMNP ) = − 1

576
ε̃MNPK1...K8FK1...K4

FK5...K8
(A.1)

allows for the introduction of a dual seven-form field strength according to

FM1...M7
=

1

4!
ǫM1...M7N1...N4

FN1...N4 ⇔ FM1...M4
= − 1

7!
ǫM1...M4N1...N7

FN1...N7 , (A.2)

where the seven-form field strength is given by

FM1...M7
= 7∂[M1

AM2...M7
]− 35A[M1M2M3

FM4...M7] (A.3)

and satisfies the modified Bianchi identity

8∂[M1
FM2...M8] = −70F[M1...M4

FM5...M8] (A.4)

As usual, the duality relation exchanges Bianchi identities and equations of motion and

the extra term in the definition of the seven-form field strength is chosen such that duality

is compatible with the three-form equation of motion above.

It was shown in [49, 13, 12] that such a six-form potential can already be introduced

at the level of the action by breaking manifest space-time covariance.18 As a six-form

potential appears in the E10 theory (which does not exhibit manifest Lorentz symmetry

either), we now switch to this formulation, following [12]. We focus solely on the matter

sector and will leave the gravitational sector untouched in this appendix.

The first step is to explicitly solve the Gauss constraint (2.9b) in terms of the differ-

ential of a dual six-form19

Πmnp +
1

3 · 144 ε̃
mnpk1...k7Ak1k2k3Fk4...k7 =

1

6!
ε̃mnpk1...k7∂k1Ak2...k7 , (A.5)

which is similar to the duality relation (A.3). Inserting this solution leads to the canonical

action

Lcan =
1

2
ġmnΠ

mn +
1

3!
Ȧmnpε̃

mnpk1...k7

(

1

6!
∂k1Ak2...k7 −

1

3 · 144Ak1k2k3Fk4...k7

)

−NH−NmHm (A.6)

18Writing the non-linear theory solely in terms of the six-form is not possible [54].
19Here, we work locally and thus there are no topological obstructions to this application of the Poincaré

lemma.
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that depends only on the spatial components of the three-form Amnp and its dual six-form

Am1...m6
. The matter Hamiltonian eH(mat) from (2.8) can now be written as

1

12

(

Πmnp −Pmnp
)

gmm′gnn′gpp′
(

Πm′n′p′ −Pm′n′p′
)

+
1

48
e2Fm1...m4

gm1n1 · · · gm4n4Fn1...n4

=
1

2 · 7!e
2Fm1...m7

gm1n1 · · · gm7n7Fn1...n7
+

1

2 · 4!e
2Fm1...m4

gm1n1 · · · gm4n4Fn1...n4
, (A.7)

where

Fm1...m7
= − 1

3!
ε̃m1...m7n1n2n3

(Πn1n2n3 − Pn1n2n3)

= 7∂[m1
Am2...m7] − 35A[m1m2m3

Fm4...m7] , (A.8)

and where we used (A.5) on the solution of the Gauss constraint, an answer that is

consistent with the spatial components of (A.3). Note that Fm1...m7
is tensorial.

The variation of the matter part of the action (A.6) with respect to Amnp and Am1...m6

gives the equations of motion

0 = − 1

3! · 6! ε̃
mnpk1...k7∂k1

(

∂tAk2...k7 − 20Ak2k3k4∂tAk5k6k7 +
E

4!
ε̃k2...k7n1...n4

F n1...n4

)

(A.9a)

+
1

216
ε̃mnpk1...k7Ak1k2k3∂k4∂tAk5k6k7 +

E

72
Fmnpk1...k4Fk1...k4

− 1

36
∂s(EF smnpk1k2k3)Ak1k2k3 ,

0 = ∂m

(

1

3!
ε̃k1...k6mn1...n3Ȧn1n2n3

+ EFmk1...k6

)

. (A.9b)

We reiterate that we focus on the matter sector only here and we also work in flat space-

time for simplicity. The second equation is solved locally by

EFmk1...k6 +
1

3!
ε̃k1...k6mn1...n3Ȧn1n2n3

=
1

2
ε̃k1...k6mn1n2n3∂n1

Atn2n3
(A.10)

for some function Atn2n3
. Rewriting this formula leads to

EF k1...k7 = − 1

3!
ε̃k1...k7n1n2n3Ftn1n2n3

⇔ Ftn1n2n3
= − 1

7!
ǫtn1n2n3k1...k7F

k1...k7 , (A.11)

where we have reintroduced the time index on the Levi–Civita symbol and turned it into

the Levi–Civita tensor by absorbing E in order to recognise this equation as the time

component of the second way of writing the duality equation (A.2).

Using (A.9b) and its solution (A.10) in the first equation of motion (A.9a) we get an

exterior derivative

0 = − 1

3! · 6! ε̃
mnpk1...k7∂k1

(

∂tAk2...k7 − 35A[tk2k3∂k4Ak5k6k7] +
E

4!
ε̃k2...k7n1...n4

F n1...n4

)

,

(A.12)

43



where in particular the term with the bare Atk2k3 inside the derivative comes from us-

ing (A.10). The above equation can be solved locally by

∂tAk2...k7 − 35A[tk2k3∂k4Ak5k6k7] +
E

4!
ε̃k2...k7n1...n4

F n1...n4 = −6∂[k2Ak3...k7]t (A.13)

introducing a function that plays the role of the time component of the six-form potential.

Rewriting the equation we then find

Ftn1...n6
=

1

4!
ǫtn1...n6k1...k4F

k1...k4 , (A.14)

where we have introduced the time index and turned the Levi–Civita symbol into its

tensor form. This agrees perfectly with the time component of the first way of writing

the duality equation (A.2).

The kinetic term can be brought into a slightly more symmetric form by using inte-

gration by parts

1

3!
Ȧmnpε̃

mnpk1...k7

(

1

6!
∂k1Ak2...k7 −

1

3 · 144Ak1k2k3Fk4...k7

)

=
1

2 · 3! · 7!Ȧmnpε̃
mnpk1...k7Fk1...k7 −

1

2 · 4! · 6!Fmnpqε̃
mnpqk1...k6Ȧk1...k6

+
1

3! · 3! · 144Ȧmnpε̃
mnpk1...k7Ak1k2k3Fk4...k7 (A.15)

In this form both fields appear with time derivatives and have non-vanishing canonical

momenta.

Starting then from the action

L =
1

2 · 3! · 7!Ȧmnpε̃
mnpk1...k7Fk1...k7 −

1

2 · 4! · 6!Fmnpqε̃
mnpqk1...k6Ȧk1...k6

+
1

3! · 3! · 144Ȧmnpε̃
mnpk1...k7Ak1k2k3Fk4...k7 (A.16)

−N

[

1

2 · 7!eFm1...m7
gm1n1 · · · gm7n7Fn1...n7

+
1

2 · 4!eFm1...m4
gm1n1 · · · gm4n4Fn1...n4

]

we get the canonical momenta

Πmnp =
1

2 · 7! ε̃
mnpk1...k7Fk1...k7 +

1

3! · 144 ε̃
mnpk1...k7Ak1k2k3Fk4...k7

Πm1...m6 = − 1

2 · 4! ε̃
m1...m6k1...k4Fk1...k4 . (A.17)

They represent primary constraints of the theory and are analysed in detail in section 2.
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B More details on the E10 Casimir

The E10 Casimir with parabolic normal ordering was given in (3.24). The terms involving

the GL(10) generators Km
n were not fully normal-ordered there, and therefore the coef-

ficient of the linear term is not the same as for the standard expressions for the Casimir

operator. Up to normalisation, when acting on integrable highest weight modules, the

latter is generally given by the fully normal ordered expression [60]

Ω =
1

2
GabHaHb + Gab̟aHb +

∑

α>0

mult(α)
∑

s=1

Es
−αE

s
α (B.1)

where ̟ is the Weyl vector, and the sum on the r.h.s. runs over all positive roots together

with their multiplicities. In this appendix we show that for E10 the two expressions (3.24)

and (B.1) are, in fact, the same.

Normal-ordering the GL(10) terms in (3.24) yields

1

2
Km

nK
n
m − 1

18
KK +

23

6
K (B.2)

=
∑

m>n

Km
nK

n
m +

1

2

∑

m<n

[Km
n, K

n
m] +

1

2

∑

m

Km
mK

m
m − 1

18
KK +

23

6
K

=
∑

m>n

Km
nK

n
m +

1

2

∑

m<n

(Km
m −Kn

n) +
1

2

∑

m

Km
mK

m
m − 1

18
KK +

23

6
K

Now we use

1

2

∑

m<n

(Km
m −Kn

n) +
23

6
K =

1

2

(

9K1
1 + 7K2

2 · · · − 9K10
10

)

+
23

6
K

=
1

3

(

25K1
1 + 22K2

2 + · · ·+K9
9 − 2K10

10

)

= Gab̟aHb (B.3)

where in the last expression we have used the E10 Weyl vector in the wall basis

̟ = (−30,−31, · · · ,−39) . (B.4)

together with [6]

H1 = K2
2 −K1

1 , · · · , H9 = K10
10 −K9

9 , H10 = K8
8 +K9

9 +K10
10 −

1

3
K (B.5)

The quadratic terms are as they should be for the fully normal ordered E10 Casimir. In

conclusion, after normal ordering the GL(10) contribution, our expressions for the Casimir

precisely coincide.
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The coefficient 23
6

multiplying K in (3.24) can be generally understood as follows.

We explain the calculation for any ED decomposed with respect to its obvious GL(D)

subgroup. The linear term arises from normal-ordering all terms with roots on GL(D)

levels ℓ > 0, therefore it equals

β ≡ 1

2

∑

α>0
ℓ>0

α =
1

2

∑

α>0

α− 1

2

∑

α>0
ℓ=0

α = ̟ED
− 1

2

∑

α>0
ℓ=0

α (B.6)

For Kac–Moody ED, the sums are divergent over infinitely many positive roots are ill-

defined but the Weyl vector is well-defined, so β is a well-defined element. The sum over

the positive roots on level ℓ = 0 gives the GL(D) Weyl vector whose form in a simple

root basis is

1

2

∑

α>0
ℓ=0

α =
1

2

(

D − 1 , 2(D − 2) , 3(D − 3) , . . . , 2(D − 2) , D − 1 , 0
)

. (B.7)

The inner product of β with all simple roots can be computed as

β · αD = 1 +
1

2
3(D − 3) =

3D − 7

2
, β · αi = 0 for i 6= D (B.8)

since the exceptional node attaches three nodes from the end of the GL(D) line. These

inner products identify β = 3D−7
2

ΛD in the basis of fundamental weights. Using moreover

that K = 3Λ∨
D we deduce that the linear term is 3D−7

6
K that for D = 10 gives the claimed

value.
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