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Direct Bound-Electron g-Factor Difference Measurement of
Coupled Ions at Alphatrap

Abstract – The Alphatrap experiment is a cryogenic Penning-trap setup with the
main objective to determine the g factor of the electron bound to heavy nuclei. Within
this thesis, the results of several such measurements are presented. Among these, the
measurement of the g factor of 20Ne9+ exhibits a 3𝜎 discrepancy between theory and
experimental value, which has been attributed to the required input parameter of the
atomicmass of 20Ne. An independentmeasurement has recently confirmed the deviation
of the mass, fully resolving the discrepancy. Furthermore, a measurement of 22Ne9+ can
be used to improve the precision of the atomic mass of 22Ne by a factor 8 compared to the
literature value, when using the theoretically predicted g factor as an input. However,
the main focus of this thesis is the development of a novel technique, which, based upon
the coupling of two ions as an ion crystal, enables the most precise determination of
a g-factor difference to date. This difference, determined for the isotopes 20Ne9+ and
22Ne9+ with a relative precision of 5.6 × 10−13 with respect to the g factor, improves the
precision for isotopic shifts of g factors by about two orders of magnitude. Based upon
the agreement with theory, the quantum electrodynamic contribution to the nuclear
recoil can be confirmed. Alternatively, the result can be applied to improve the precision
of the charge radius difference of the isotopes by about one order of magnitude or to
constrain new physics by limiting a potential fifth-force of the Higgs-portal mechanism.



Direkte g-Faktor Differenzmessung des gebundenen Elektrons
von gekoppelten Ionen in Alphatrap

Zusammenfassung – Das Alphatrap Experiment ist ein kryogener Penningenfallen
Aufbau mit dem Hauptziel, den g Faktor des an schwere Kerne gebundenen Elektrons
zu messen. In dieser Arbeit werden die Ergebnisse von mehreren solcher Messungen
präsentiert. Bei einer dieser, weist die Messung des g Faktors von 20Ne9+ eine 3𝜎 Diskre-
panz zwischen Theorie und experimentellem Wert auf, die der als Eingangsparameter
benötigten atomaren Masse von 20Ne zugeschrieben wurde. Eine unabhängige Messung
konnte kürzlich die Abweichung der Masse bestätigen und damit die Diskrepanz gänz-
lich auflösen. Weiterhin kann eine Messung des g Faktors von 22Ne9+ dazu verwendet
werden, die Genauigkeit der atomare Masse von 22Ne um einen Faktor 8 gegenüber dem
Literaturwert zu verbessern, wenn die theoretische Vorhersage des g Faktors als Ein-
gangsparameter verwendet wird. Der Schwerpunkt dieser Arbeit liegt jedoch auf der
Entwicklung einer neuartigen Technik, welche, basierend auf der Kopplung zweier Io-
nen zu einem Ionenkristall, die bislang genauste Messung einer g Faktor Differenz er-
möglicht. Diese Differenz, gemessen für die Isotope von 20Ne9+ and 22Ne9+ mit einer
relativen Genauigkeit von 5.6 × 10−13 bezüglich des g Faktors, verbessert die Genauig-
keit der Isotopieverschiebung von g Faktoren um ungefähr zwei Größenordnungen. Ba-
sierend auf der Übereinstimmung mit der Theorie kann der quantenelektrodynamische
Beitrag zum Kernrückstoß verifiziert werden. Alternativ kann das Ergebnis verwendet
werden, um entweder die Genauigkeit der Ladungsradiendifferenz der Isotope um ei-
ne Größenordnung zu verbessern oder um Einschränkungen für neue Physik zu liefern,
indem eine mögliche fünfte Kraft des Higgs-Portal Mechanismus limitiert wird.
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Introduction

The Simple Picture

As a side-effect of my PhD time over the last four years, I have gained certain insights
on how to best explain what I have been working on to non-physicists.
The main gist of working with a Penning trap as a tool to store and work with single
charged particles in electric and magnetic fields for several months seems to be general
enough to understand. At this point it becomes slightly more complicated, as the elec-
tron spin has to be introduced. This works well, when over-simplified to picture the
electron as a rotating charged sphere, but is less helpful when explaining that classical
physics fails to predict the implications of such an assumed rotation already by about a
factor of 2 – the so-called g factor.
Therefore, it has proven to work significantly better to simplify and explain our measure-
ments as to how magnetic an electron is, which is expressed by the g factor. The purpose
of this work can than be summarized as the hunt to measure the precise deviation of the
g factor from 2, which is where relativistic corrections and quantum electrodynamics
(QED) enter. The theory of QED is best described as the theory of interaction between
light and matter and manages to predict this value to extreme precision. This unfailingly
results in the follow-up question, why this value is of such importance to justify all of
my work.
Well, that’s where you can begin to smile as your listener has now entered the realm
of physicists. We do not care about the exact value. We do however care about how
precise this value can be determined. This becomes important when considering the
aforementioned prediction of the g factor by theoretical calculations based upon QED,
in the framework of the Standard Model (SM) of particle physics. As it is now possible
to compare the measured value with the prediction, the combined precision for theory
and experimental values directly yields a benchmark for the performance of QED.
This concept is the defining principle of much of the work performed in physics in gen-
eral – taking a theory and testing it with ever increasing precision until a deviationmight
be observed.
While there are many reasons why such a search is of interest, the most straightforward
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Introduction

one might be the missing explanation for the imbalance between existing matter and
anti-matter. The current SM predicts a symmetry, or at least a much better balance, for
the existence of both. Therefore, having such a discussion in an obviously existing uni-
verse whose very existence is not explained by a theory that otherwise works rather
well, should be motivation enough to try to advance our understanding.
If this is not yet convincing enough, and your listener is astronomically inclined, the
observations of dark matter [1] and dark energy [2] are related to the movement of as-
tronomical bodies, that cannot be explained by the gravity of the observable mass alone,
which has already been pointed out almost 150 years ago by Lord Kelvin [3]. Despite
dedicated experiments [4], no conclusive signal to allow for a direct detection of such
dark matter could be observed yet. This is intriguing, as its very existence might influ-
ence properties of atoms and ions, for example again the g factor. As the coupling to
normal matter for such an influence is expected to be extremely weak or would already
have been observed otherwise, precision measurements are required. Within this the-
sis, I will show that specifically the difference of g factors is a sensitive probe for new
physics, that goes beyond the current SM. Such a g-factor difference and the methods I
have developed to access it with unprecedented precision and finally the results of this
measurement are the main topic covered within this thesis.

Testing QED and the Hunt for Precision

The SM is considered to be the most complete theory of physics, as it currently combines
three of the four known forces of our universe in a unified model of quantum field theo-
ries. While this works astoundingly well for the electromagnetic, weak and strong force,
the gravitational force resists these unification attempts into a single such framework
and can only be described by general relativity.
Within the SM, the most stringently tested theory is QED, which describes the interac-
tion of charged particles and electromagnetic fields by means of exchanges of photons.
This theory links different fields of physics by predicting experimentally accessible val-
ues. This began with the introduction of QED to explain the observed Lamb shift [5] in
the fine-structure of hydrogen and culminates in the spectroscopy of the 1𝑆 − 2𝑆 transi-
tion in hydrogen [6].
Furthermore, one of the properties that can be predicted by this theory is the g factor of
the electron, which expresses the magnetic moment of an electron in terms of the Bohr
magneton. The measurement of the free electron g factor [7] in combination with QED
theory [8], yields one of the most precise values for the fine-structure constant 𝛼 . The
agreement of the thus extracted fine-structure constant, based upon the framework of
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the SM, with the measured fine-structure constant via a recoil measurement of rubidium
atoms [9] yields a stringent test for QED and confirms the electron to be an elementary
particle without substructure, as the value would have to differ if that were the case [10].
It has to be noted however, that there is still an open question left as a 5𝜎 discrepancy
from the value obtained in the rubidium measurement compared to the fine-structure
constant obtained in caesium recoil measurements [11] is currently unexplained. An-
other improved determination of the fine-structure constant could help to resolve this
discrepancy. Additionally, a large deviation compared to the prediction of the SM has
been observed in the muon g - 2 experiment [12] with a 4.2𝜎 discrepancy at the time of
writing this thesis. This intriguing result might be a hint for physics beyond the SM and
further investigation is required to determine the source of this deviation.
While the so far mentioned g-factor measurement have been performed for the free
electron and muon, the theoretical prediction is also possible for the g factor of an elec-
tron bound to a nucleus, which is therefore considered as bound-state QED (BS-QED).
Compared to the free electron, the most important difference can be seen in the addi-
tional electric field due to the nucleus the electron is bound to. Specifically in the case of
hydrogen-like ions, with only a single electron left, it is subject to the extremely strong
electric field in close proximity (or even overlap) with this nucleus. This field can range
up to 1016 V

cm in the case of 238U91+, which is close to the Schwinger limit [13], where
the field strength becomes strong enough for the vacuum to break down and electron-
positron pairs can be created.
However, despite such extreme conditions, for example in themeasurements of the Lamb
shift in 238U91+ [14], the hyperfine splitting in 208Bi80+ [15, 16] or the g factor of hydrogen-
like 28Si13+ [17], no deviations between experiment and theory have been found, making
the latter the most stringent test of BS-QED in strong fields.
To further advance such tests in the strongest fields, the Alphatrap experiment [18]
has been built. As a Penning-trap setup, it is designed to perform measurements of the g
factor of heavy highly charged ions (HCI) and, for this purpose, is connected to external
ion sources. Combined with the ability to store and work with single ions for several
months, the setup is well equipped to perform high-precision measurements.
While there have been several such measurements of an absolute g factor performed
during this thesis, the main focus will rest upon the development and application of a
novel measurement technique, based upon coupled ions in a magnetron crystal. This
method has enabled the extraction of the isotopic difference of the g factors of the neon
isotopes 20Ne9+ and 22Ne9+ with unprecedented precision in our field and overcome lim-
itations such as inherent fluctuations of the magnetic field or the requirement of precise
ion masses as external input parameters.
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Content

I will begin this thesis with a brief introduction to g factors, different contributions and
the basic knowledge required to understand the subsequent measurements and their
motivation. Subsequently, Penning-trap physics will be discussed at a level required to
make this thesis self-consistent. Here, important terminology used throughout this the-
sis will be introduced and potential sources of frequency shifts and the corresponding
systematic uncertainties will be investigated.
I will then move on to describe the experimental setup to allow the reader to gauge the
measurement possibilities of Alphatrap and to gain an idea of the layout of the experi-
ment. In this part, I will also briefly describe the additions made to the setup during the
course of this thesis.
Subsequently, the measurements and results of the individual g factors of 12C5+, 22Ne9+

and 20Ne9+ will be presented. These measurements have yielded important information
about the performance of the trap and the scope of systematic uncertainties, improve-
ments to atomicmasses as well as parameters that will be important for themeasurement
with the coupled ions.
Thereafter, I will discuss the dynamics of coupled ions to derive the expected behaviour
of such a system. This will be important to understand the principle of the main mea-
surement to determine the g-factor difference as well as the systematic uncertainties of
the obtained result.
Following this, the basic measurement procedure is explained, with a focus on the tech-
niques that have been developed and applied to enable such a measurement. Finally,
the data analysis and how the coherent signal of a Larmor frequency difference can be
obtained will be explained. This will include the results and what their implications and
applications are.
I will then conclude this thesis with a brief summary of all obtained results and provide
an outlook on further possibilities of how the method can be improved and applied.
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1 The g Factor . . .

In the following chapter I will discuss the basics concerning the g factor of the free and
bound electron. This will be kept brief, but detailed enough to ensure a self consistent
work and allow the reader to understand the measurements and impacts of the results
performed in the context of this thesis. For a much more complete overview, see for
example [19–21].

1.1 . . .of the Free Electron

The g factor of the free electron 𝑔𝑒 is a proportionality constant to express the intrinsic
magnetic moment 𝝁𝒆 of an electron in units of the Bohr magneton 𝜇𝐵 as

𝝁𝒆 = −𝑔𝑒𝜇𝐵
𝑺

ℏ
(1.1)

with the spin 𝑺 and the reduced Planck constant ℏ = ℎ/2𝜋 . The Dirac equation [22],
already including the spin property of an electron, predicts the value for a free electron
to be exactly 𝑔𝑒 = 2.
However, with increasing experimental precision and the discovery of the Lamb shift [5]
in hydrogen, a deviation from that value was established over the following years [23].
The most precise measurement of this deviation to date, known as the electron 𝑔 − 2
measurement [7], has determined the anomalous magnetic moment 𝑎𝑒 of a free electron
to be

𝑎𝑒 =
𝑔 − 2
2

= 0.001 159 652 180 73(28) (1.2)

with a relative precision of 2.4 × 10−10 (or 2.8 × 10−13 relative to the absolute g factor ).
To theoretically derive this value, QED contributions have to be evaluated in several or-
ders, foremost correcting for the effects of the charged electron on its environment due
to its own field (self-energy) and the interaction with vacuum surrounding it (vacuum
polarization). The first correction, the Schwinger term [24], achieves this by taking a
virtual emission and absorption of a photon into account. Evaluating this to ever higher
orders [8, 25] by taking more such emission and absorption vertices into account, the
theory today is able to accurately predict this anomalous magnetic moment to compara-
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1 The g factor

ble precision as the experimental values [26]. Combined with the precise experimental
access this allows for stringent tests of the Standard Model, search for deviations as indi-
cation for physics beyond the Standard Model or for determining fundamental constants
such as the fine-structure constant 𝛼 [7].

1.2 . . .of the Bound Electron

While the absolute precision of the free-electron g-factor measurement cannot easily be
challenged, an electron bound to a spinless nucleus offers access to an entirely different
regime. The extremely strong field an electron experiences when bound to a highly
charged ion (HCI), poses the potential to discover new effects that cannot be observed
in weaker fields. When only a single electron is left bound to the nucleus, the ion is
described as hydrogen-like and the electrostatic potential of the nucleus changes the
wave function from a plane wave for the free electron to the hydrogenic wave functions
instead. The solution of such a system, when assuming a point-like charge distribution,
an infinite mass and therefore stationary nucleus, known as the Furry picture [27], can
be written in terms of the nuclear charge 𝑍 and the fine-structure constant 𝛼 as

𝑔𝑒,𝑏𝑜𝑢𝑛𝑑 =
2
3

[
1 + 2

√
1 − (𝑍𝛼)2

]
(1.3)

and was first derived by Breit, therefore often called the Breit term [28]. This term, de-
rived from the relativistic solution of the Dirac equation for the 1𝑠 electron leads to the
g factor of hydrogen-like ions becoming smaller for larger proton numbers 𝑍 .

1.2.1 Radiative Correction

Similar to the free electron, the radiative corrections as described by QED theory have
to be included in the bound electron case as well. Here however, the coupling of the
electron to the binding potential of the nucleus changes the Dirac equation and has to
be included by a series expansion in terms of (𝑍𝛼). There are two main approaches on
how to treat this in the theoretical calculation.
In the regime of low 𝑍 , the calculation can be performed by keeping these effects as sep-
arate pertubative contributions to the general solution, treating each individually. Due
to the scaling with (𝑍𝛼), this approach is only feasible for small 𝑍 , where the series does
converge quickly.
For higher 𝑍 , bound-state QED (BS-QED) deals with this problem by using the full solu-
tion of the Dirac equation in an idealized Coulomb potential instead. While this signifi-
cantly reduces the amount of Feynman diagrams that have to be calculated, the quickly
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1 The g factor

(a) (b) (c)

(d) (e) (f     )

Figure 1.1: The six first order QED contributions to the bound-state g factor . The double
line represents the combination of electron propagator in presence of the Coulomb
field of the nucleus, with the pertubating field interaction indicated by the triangle.
Graphs (a) to (c) show self-energy and (d) to (f) vacuum polarization contributions.
Figure taken from [18].

growing complexity requires a numerical calculation of each diagram, making the pro-
cess very time consuming. The estimation of the uncalculated contribution of higher
order diagrams is the dominant uncertainty of the theoretical g-factor determination for
high 𝑍 , hydrogen-like systems. In first order, or one-loop QED, there are six diagrams
that have to be evaluated. These are shown in Fig. 1.1.

1.2.2 Nuclear Effects

The approximation of treating the nucleus as point-like and of infinite mass results in
further corrections that need to be calculated when describing a real ion. The finite size,
mass and internal structure of the nucleus lead to deviations from a static Coulomb po-
tential, which can be categorized into different parts. Calculating these effects for the g
factor is considered to be beyond the Furry picture and requires a fully relativistic treat-
ment [29].
The nuclear size can be modelled via a charge radius in different ways, the most com-
monly used for QED calculations [30] is the root-mean-square (RMS) value of the radius,
describing the nucleus as an uniformly charged sphere, that would produce the same
charge distribution as experimentally observed if it had the identical charge and radius
𝑟RMS. This leads to a correction of the energy level of the bound electron, changing the
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interactionwith the field and giving rise to a relative g factor correction of about 2 × 10−9

in the case of hydrogen-like neon which scales as [30]

Δ𝑔, FNS =
8
3
(𝛼𝑍 )4

(𝑚𝑒𝑐

ℏ

)2
𝑟 2RMS (1.4)

for electronic s-states with the mass of the electron𝑚𝑒 and the speed of light 𝑐 .
Nowadays, measurements of charge radii are utilizing optical spectroscopy to increasing
precision [31], but are still limited in precision due to the requirement of the field shift
factor, which is used to translate the measured transition frequency change to a change
of radii. Due to this limitation, the charge radii of the neon isotopes – the main protag-
onists of this thesis – are still based on the evaluation of muonic spectroscopy [32] and
the conversion to an 𝑟RMS value [33]. This conversion is required for the corresponding
QED calculations of electronic systems and can possibly give rise to problems, which
will be discussed in more detail in the section regarding the experimental results and
possible sources of error.
Another contribution arises from the finitemass of the nucleus and the resultingnuclear
recoil, when the nucleus cannot be considered stationary anymore due to the interac-
tion with the electron. The leading order, non-QED contribution due to this effect can
be expressed as [29]

Δ𝑔1𝑠 =
𝑚𝑒

𝑚𝑛𝑢𝑐𝑙𝑒𝑢𝑠

[
(𝛼𝑍 )2 − 1

12
(𝛼𝑍 )4 + ...

]
. (1.5)

For 20Ne9+, this equates to a relative shift of 7.3 × 10−9 in first order, dominating the
nuclear contributions by far. This contribution has been experimentally verified by mea-
suring the isotopic shift of g factors in lithium-like calcium 40Ca17+ and 48Ca17+ ions [34].
Additionally, as the nucleus has only been treated as a source of a classical electromag-
netic field, a QED treatment of the nucleus itself yields an additional correction. This
treatment correctly accounts for the quantized momentum exchange between nucleus
and bound electron, but does require a fully relativistic evaluation [29]. This QED con-
tribution to the nuclear recoil, albeit small compared to the total nuclear recoil (about
2.4 × 10−10 relative shift for 20Ne9+), is interesting in itself as it has not been experimen-
tally resolved so far since either theory [17] or additionally required parameters such as
ion masses [34] were insufficient in precision. However, as it does already contribute
on the level of the current theoretical precision, an experimental confirmation would be
beneficial to allow further advancement of similar calculations for even heavier systems.
Depending on the examined ion species, additional nuclear effects may have to be con-
sidered. For the current considerations atAlphatrap , ions with a nuclear magnetic mo-
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1 The g factor

20Ne9+ 22Ne9+

Dirac value (point nucleus) 1.996 445 170 898(2) 1.996 445 170 898(2)
Finite nuclear size, FNS 0.000 000 004 762(7) 0.000 000 004 596(12)
QED, one loop (𝛼) 0.002 325 473 294(1) 0.002 325 473 294(1)
QED, two loop (𝛼)2 −0.000 003 547 780(117) −0.000 003 547 780(117)
QED, ≥three loop (𝛼)3+ 0.000 000 029 524 0.000 000 029 524
Nuclear recoil
Non-QED 0.000 000 146 093 420 0.000 000 132 810 693
QED 0.000 000 000 478 954 0.000 000 000 434 499
(𝛼/𝜋)(𝑚/𝑀) −0.000 000 000 113 2(6) −0.000 000 000 102 9(5)
(𝑚/𝑀)2 −0.000 000 000 044 1(2) −0.000 000 000 036 5(2)

Hadronic effects 0.000 000 000 003 0.000 000 000 003
g factor total theory 1.998 767 277 114(117) 1.998 767 263 640(117)
Difference (in 10−9)
FNS 0.166(11)
Recoil, non-QED 13.283
Recoil, QED 0.043
Recoil, 𝛼 (𝑚/𝑀) −0.010
Recoil, (𝑚/𝑀)2 −0.0076
Deformation < 0.0001
Polarization < 0.002

Δ𝑔 Total theory 13.474(11)FNS
Δ𝑔 Experiment 13.47524(53)stat(99)sys

Table 1.1: Contributions to the calculation [36, 37] of the g factors of 20Ne9+ and 22Ne9+
and their differences.

ment other than zero are excluded from this discussion for now. This leaves the effects
of the nuclear susceptibility, deformations of the nucleus and the nuclear polarizability
[35]. Table 1.1 shows a full exemplary overview of all significant contributions to the
theoretical calculation of the g factor of 20Ne9+ and 22Ne9+ and their differences [36]. For
the individual g factors, the uncertainty stems almost exclusively from the uncalculated
two-loop contributions (𝛼2) of orders (𝑍𝛼)6 and higher. However, when looking at the
difference, or the isotopic shift of the g factor, the uncertainty of this contribution be-
comes irrelevant since they are identical. The main contribution is then the relativistic
part of the nuclear recoil, which has so far been tested to about 10 % [34]. The remaining
uncertainty is now only dependant on the uncertainty of the charge radius difference
of the isotopes. The QED contribution to the nuclear recoil has to date not been experi-
mentally resolved, making this one of the goals of the work performed during this thesis.
To perform a test of a contribution with a relative size of 5 × 10−12, being visible with
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1 The g factor

only four sigma compared to the uncertainty of the calculation due to the FNS, the ex-
perimental result needs to be of at least similar, preferably better precision to enable a
stringent test. Since the relative precision of the masses of these ions is only 8.0 × 10−11

for 20Ne9+ and 8.6 × 10−10 for 22Ne9+ [38], a test of this contribution via an approach
where the masses are required impossible. As this is the case for the determination of
absolute g factors, as will be shown in the next chapter, a different method to determine
such a difference has to be applied.
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2 The Penning Trap

To determine the g factor to extreme precision, a Penning trap is used. In this chapter I
will introduce how such a trap can be used to store and manipulate ions. Furthermore,
I will establish terms and definitions that are to be used throughout this thesis. How-
ever, as many detailed descriptions of Penning-trap physics have already been given, for
example in [39, 40] or more recently by both F. Köhler [41] and M. Höcker [42], these
works should be considered as a much broader basis for general Penning traps instead.
Here, I will first discuss the simplest case of an ideal trap with a single charged particle,
then further expand the description to treat imperfections. For an in-depth description
and derivation of This will also serve as a basis to derive and understand the coupled
motion of two ions later on.

2.1 The Ideal Penning Trap

To radially confine a charged particle, a Penning trap uses a magnetic field of the form

𝑩 = 𝐵0𝒆𝑧 . (2.1)

The the free-space cyclotron frequency𝜔𝑐 is the angular frequency of the circularmotion
of a charged particle perpendicular to such a homogeneous magnetic field. It is given
with the particle charge 𝑞 and mass𝑚 as

𝜔𝑐 =
𝑞

𝑚
𝐵0. (2.2)

The plane of this motion is defined as the radial direction. As the particle is not confined
parallel to the magnetic field yet, an electric field along the magnetic field direction is su-
perimposed. This prevents the escape of the particle along this axial direction, trapping
it in all directions. Ideally, this electric potential is solely of quadratic order, thus achiev-
ing a harmonic oscillation. This can be well approximated by a cylindrical design, when
adding additional correction electrodes, designed to null higher order contributions to

11
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UE2 UC2 LE2

LC1

LE1

UC1 RE

LC2UE1

Half-split electrodesQuarter-split electrode

18 mm
z0

r0

Figure 2.1: The precision trap (PT) of the Alphatrap setup, consisting of ring electrode
(RE), two sets of upper and lower correction electrodes (UC & LC), and two sets of
upper and lower endcaps (UE & LE). Figure adapted from [18].

the electric field. Such an ideal potential can then be written as

Φ(𝑧, 𝜌) = 𝑉𝑟
2

𝐶2

𝑑2char

(
𝑧2 − 𝜌2

2

)
(2.3)

with an applied ring electrode voltage𝑉𝑟 , an electrode geometry dependent𝐶2 parameter.
Furthermore, the characteristic trap size is defined as 𝑑char =

√
1/2(𝑧20 + 𝑟 20/2), with the

dimensions 𝑧0 from the centre of the trap to the beginning of the first endcap electrode
and 𝑟0 as the radius of the electrodes as shown in Fig. 2.1.

While this field exerts a confining force in axial direction with a resulting axial fre-
quency of

𝜔𝑧 =

√
𝑞

𝑚

𝑉𝑟𝐶2

𝑑2char
(2.4)

it also introduces an outwards directed radial force. In combination with the Lorentz
force of the magnetic field, this gives rise to the so-called 𝑬 ×𝑩 drift due to the repeated
acceleration and deceleration of the ion. The full equation of motion can then be split
and described by three individual harmonic oscillations, with the axial frequency 𝜔𝑧 as
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2 The Penning Trap

given above and the two radial frequencies

𝜔± =
1
2

(
𝜔𝑐 ±

√
𝜔2
𝑐 − 2𝜔2

𝑧

)
. (2.5)

Here,𝜔+ is called modified cyclotron frequency and𝜔− is the magnetron frequency. The
stability criteria for a Penning trap can be derived from this equation as well, requiring
𝑤2
𝑐 − 2𝜔2

𝑧 > 0, which is often referred to as a weak electric field in comparison to the
magnetic field. Typical values for ions at Alphatrap are 𝜔+ ≈ 2𝜋 · 25MHz, 𝜔𝑧 ≈ 2𝜋 ·
650 kHz and 𝜔− ≈ 2𝜋 · 8 kHz. These frequencies are directly related to the free-space
cyclotron frequency via the so called invariance theorem by Brown and Gabrielse [39]

𝜔2
𝑐 = 𝜔2

+ + 𝜔2
𝑧 + 𝜔2

−. (2.6)

Using this relation, the derived 𝜔𝑐 becomes invariant to possible imperfections, such as
a trap tilt with respect to the magnetic field axis or an ellipticity of the electric potential
[39]. The kinetic energy of each mode is given as [43]:

𝐸+ =
1
2
𝑚(𝜔2

+𝑟
2
+ −

1
2
𝜔2
𝑧𝑟

2
+) ≈

1
2
𝑚𝜔2

+𝑟
2
+ (2.7a)

𝐸− =
1
2
𝑚(𝜔2

−𝑟
2
− − 1

2
𝜔2
𝑧𝑟

2
−) ≈ −1

4
𝑚𝜔2

𝑧𝑟
2
− (2.7b)

𝐸𝑧 =
1
2
𝑚𝜔2

𝑧𝑧
2, (2.7c)

where the negative sign of the magnetron mode should be noted. This is due to the
applied electric field pushing the ion outward, resulting in a metastable motion, as the
energy is larger for smaller magnetron radii. The same potential energy also applies to
the cyclotron mode, but due to the much higher frequency the energy is mainly given
by the kinetic term.
In addition to the motion of the ion in the Penning trap, one has to consider the effects
on the electron bound to the nucleus. Specifically, upon placing the ion in a magnetic
field, the spin-state𝑚𝑠 = ±1

2 of the electron results in an energy splitting Δ𝐸 = ℏ𝜔𝐿 due
to the Zeeman effect, with the Larmor frequency given as

𝜔𝐿 =
𝑔

2
𝑒

𝑚𝑒
𝐵. (2.8)

providing the relation to the g factor.
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2.2 The Real Penning Trap

While the ideal-trap treatment is instructive for the definition of all frequencies, all possi-
ble contributions that induce shifts of those frequencies have to be considered. Here, the
electric and magnetic inhomogeneities are first discussed separately. Combined effects,
which are usually significantly smaller, will only be treated subsequently. While all these
effects are derived for a single particle, most will directly correlate to the coupled ion
measurement as well.

2.2.1 Electric Field Imperfections

The most natural way to achieve an electric quadrupole field is to use hyperbolic shaped
electrodes, directly producing the required potential shape. This does however restrict
axial access into the trap, making loading and transporting of ions as well as optical
access into the trap, as already used in Alphatrap for optical spectroscopy [44], more
challenging. An alternative is to use a cylindrical stack of of electrodes as shown in
Fig. 2.1. The idea is to implement a specific geometry that achieves cancellation of
higher order contributions to the electric potential caused by a single ring electrode
by adding sets of correction electrodes. To this end, the measurement trap or Precision
Trap (PT) of Alphatrap consists of a seven-electrode design with ring electrode, two
sets of correction electrodes and two sets of end-cap electrodesa. The general potential
(assuming rotational symmetry) in the centre can be written in terms of dimensionless
coefficients 𝐶𝑛 as [45]

Φ(𝑟, 𝜃 ) = 𝑉𝑟
2

∞∑
𝑛=0

𝐶𝑛𝑟
𝑛

𝑑𝑛char
𝑃𝑛 (cos(𝜃 )) (2.9)

with the Legendre polynomials 𝑃𝑛 and the angle cos(𝜃 ) = 𝑧/𝑟 . To achieve the desired po-
tential with only a 𝐶2 contribution, the geometry of a seven-electrode trap (see Fig. 2.1)
allows for tuning the even-ordered coefficients 𝐶4 = 𝐶6 = 𝐶8 = 𝐶10 = 0 by design and
corresponding applied voltages. However, due to machining or assembly imperfections,
this will not hold true in the actual setup. Here, the two sets of correction electrodes will
always allow to experimentally tune 𝐶4 = 𝐶6 = 0 by varying the applied voltages sym-
metrically. Due to the geometrical symmetry and symmetric voltages, this also allows
us to neglect odd order coefficients, which are then typically small and also do not re-
sult in first-order frequency shifts [45]. Residual odd order coefficients can however still
arise from patch potentials, when a charge accumulates on the surface of an electrode
due to non-conductive contaminations or manufacturing imperfections. While these are

aThe end-caps are split into two sets to simplify the transport of ions, but are treated as a combined
electrode as they are typically all set to 0V during measurements.
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2 The Penning Trap

typically neglected, during this thesis asymmetric potentials have been used to axially
shift the ion position out of the centre of the ring electrode, thus breaking the symmetry.
The benefits of such a positional shift will be discussed much later, but, as it results in
significant odd order contributions, the related frequency shifts have to be considered
as well.
The tuning of even order coefficients is achieved by varying the voltage ratio of cor-
rection to ring electrodes, the so called tuning ratio (TR), while measuring the axial fre-
quency dependence on different magnetron radii. Such measurements will be discussed
in chapter 4.2.5 and are shown in Fig. 4.7. The first order frequency shifts from such
electrostatic imperfections in a symmetric potential are given as [45]

Δ𝜔𝑧

𝜔𝑧
=
3
4

𝐶4

𝐶2𝑑2char
(𝑧2 − 2𝜌2+ − 2𝜌2−) (2.10)

Δ𝜔±
𝜔±

= ∓3
2

𝐶4

𝐶2𝑑2char
(2𝑧2 − 𝜌2± − 2𝜌2∓). (2.11)

The next orders have been derived similarly and can be found in [45] as well. An asym-
metric potential in cylindrical coordinates can be written as

Φ(𝑧, 𝑟 ) = 𝑉𝑟
2

[
𝐶2

𝑑2char

(
𝑧2 − 𝑟 2

2

)
+ 𝐶3

𝑑3char

(
𝑧3 − 𝑟 2±𝑧

2

)]
(2.12)

using the above definitions. When no further forces along the axial directiona are present,
a trapped ion moves about the equilibrium position where 𝐶1 = 0. Therefore, care has
to be taken to evaluate the electric potential around this position, rather than simply
using the geometrical symmetric position in the centre of the ring electrode which will
typically yield different results.
An analytical solution [46] of such a potential shows, that this can be described by a har-
monic oscillator with a shifted equilibrium position Δ𝑧, compared to harmonic case [47].
The shift is dependent on the individual energies of the modes of the ion. For simplicity,
here only the cases where either 𝑧 � 𝑟± or 𝑟± � 𝑧 are considered. In the case of large
axial amplitudes (neglecting the 𝑟 2± term), this yields

Δ𝑧 ≈ −3
4

𝐶3

𝐶2𝑑char
𝑧2. (2.13)

A series expansion around the new equilibrium position of the asymmetric potential

aThese can stem from a 𝐵1 or 𝐵2, which will be discussed shortly
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yields the corresponding frequency shift as

Δ𝜔𝑧

𝜔𝑧
≈ −15

16
𝐶2
3

𝐶2
2𝑑

2
char

𝑧2. (2.14)

In the case of large radial amplitudes (neglecting the 𝑧3 term), the positional shift
evaluates to

Δ𝑧 ≈ 3
4

𝐶3

𝐶2𝑑char
𝑟 2± (2.15)

and performing a series expansion around the new motional equilibrium gives the rela-
tive frequency shift as

Δ𝜔𝑧

𝜔𝑧
≈ 9

8
𝐶2
3

𝐶2
2𝑑

2
char

𝑟 2±. (2.16)

One has to take note of the scaling of the axial frequency shift with 𝑟 2±, which is the
identical scaling as for the 𝐶4 shift as in equation (2.10). When optimizing the axial
frequency shift observed as a function of 𝑟±2 one does therefore not achieve 𝐶4 = 0
but will rather end up with 𝐶4 = 3𝐶2

3/4𝐶2 for the quadratic dependency. This can become
a significant source of error when not using symmetric potentials, so that the 𝐶3 term
becomes large. Due to this, a full optimization of all frequency shifts depending on the
different motional amplitudes can be necessary to fully tune – or at least limit – both,
𝐶3 and 𝐶4.

2.2.2 Magnetic Field Imperfections

When charging the magnet, the goal is to achieve a homogeneous field 𝐵0 in the cen-
tral area of the magnetic coil, where the measurement trap will be located. To achieve
this, a superconducting magnet typically accommodates additional shimming coils be-
side the main coil that are used to correct for magnetic field inhomogeneities. When the
magnet is first charged or needs to be tuned, an NMR probe can be used to characterize
the magnetic field in the critical volumea of the magnet and the residual magnetic field
inhomogeneities can be reduced. Here, the linear magnetic field gradient 𝐵1 as well as
the quadratic dependency 𝐵2 are of most interest, as defined and discussed in more de-
tail in [45]. For the Alphatrap PT these values are [18] 𝐵1 = 2.638(24) mT

m and 𝐵2 =

64.3(32) mT
m2 . These values are measured with the complete setup in the magnet and dif-

ferent from the shimming, mostly due to the ferromagnetic ring electrode of the AT.

aAt the very least for the PT
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A linear gradient 𝐵1 can be written in cylindrical coordinates as

𝑩1 = 𝐵1

(
𝑧𝒆𝑧 −

𝑟

2
𝒆𝑟

)
. (2.17)

While odd order magnetic inhomogeneities do not produce frequency shifts in first order
[45], they should be considered for their quadratic contribution in case they become large
and, more importantly, in combination with effects causing an axial positional shift. An
ion on a circular motion, here for the magnetron and cyclotron mode, can be described
as a circular current 𝐼± = 𝑞𝜔±/2𝜋 . This current produces a magnetic moment

𝜇± = −𝐼±𝜋𝑟 2±. (2.18)

This magnetic moment causes an additional force 𝐹𝑧 = 𝜇±𝐵1 in 𝑧-direction in a gradi-
ent field, thus shifting the equilibrium position depending on the radii of magnetron or
cyclotron motion by

Δ𝑧 ≈ −𝐵1

𝐵0

𝜔±𝜔𝑐

2𝜔2
𝑧
𝑟 2±. (2.19)

For the full calculation, see App. 8.3.1. The relative shift of the magnetic field now scales
as Δ𝐵/𝐵 = 𝐵1/𝐵0Δ𝑧, resulting in quadratic frequency dependence on 𝐵1.
The next higher order, a quadratic contribution𝐵2 to themagnetic field, can be parametrized
in similar fashion as

𝑩2 = 𝐵2

[(
𝑧2 − 𝑟 2

2

)
𝒆𝒛 − 𝑧𝑟𝒆𝒓

]
. (2.20)

Contrary to the 𝐵1 contribution, this contribution does produce first order frequency
shifts on all modes, given as [41, 45, 48]

Δ𝜔𝑧

𝜔𝑧
=

𝐵2

4𝐵0

𝜔+ + 𝜔−
𝜔+𝜔−

(𝑟 2−𝜔− + 𝑟 2+𝜔+) (2.21a)

Δ𝜔+
𝜔+

=
𝐵2

2𝐵0

𝜔+ + 𝜔−
𝜔+ − 𝜔−

(
𝑧2 − 𝑟 2+ − 𝑟 2−

(
1 + 𝜔−

𝜔+

))
(2.21b)

Δ𝜔−
𝜔−

= − 𝐵2

2𝐵0

𝜔+ + 𝜔−
𝜔+ − 𝜔−

(
𝑧2 − 𝑟 2+

(
𝜔+
𝜔−

+ 1
)
− 𝑟 2−

)
(2.21c)

Δ𝜔𝐿

𝜔𝐿
=

𝐵2

2𝐵0

𝜔+ + 𝜔−
𝜔+ − 𝜔−

(
𝑧2 − 𝑟 2+ − 𝑟 2−

(
1 + 𝜔−

𝜔+

))
, (2.21d)

where the identical scaling for 𝜔+ and 𝜔𝐿 should be noted. Thus, when measuring
these frequencies simultaneously – or at the very least on the same radii – only the
additional influence on the axial and magnetron modes have to be considered for the
ratio of Larmor to cyclotron frequency. To measure this anharmonicity, one typically
excites the modified cyclotron mode, 𝑟+, to a known radius and measures the resulting
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shift of the axial frequency. However, one has to take care to exclude other effects that
scale with ∝ 𝑟 2+ as well, to not accidentally cancel frequency shifts against each other.
The shift of the axial frequency stems from the same effect as discussed for the positional
shift due to 𝐵1. The ions magnetic moment, depending on the radial energies, gives rise
to an additional force in z-direction. Instead of a positional offset however, the quadratic
𝐵2 contribution gives rise to an increased or decreased effective potential that directly
affects the frequency scaling linearly with the 𝐵2 contribution.
The resulting force from the total magnetic moment is given as 𝐹𝑧 = 2𝜇𝑧𝐵2𝑧. Adding this
to the force from the electrostatic potential, the frequency shift can then also be written
as

Δ𝜔𝑧

𝜔𝑧
=
𝜇𝑧𝐵2

𝑚𝜔2
𝑧
. (2.22)

2.3 Combined Effects

While most of the higher-order contributions stemming from the mixed effects are typ-
ically neglected, they will have to be considered in the context of this thesis. The effect
of a shifted equilibrium position due to a𝐶3 and the resulting frequency shift depending
on both, axial and radial energies has already been discussed. Similarly, 𝐵1 does produce
a shift of the position, but does not shift the axial frequency directly.
However, the same analysis as for the positional shift due to𝐶3 in a𝐶3 potential, leading
to a quadratic dependency (Eq. (2.16)) has to be considered. Here, the shifted position
due to 𝐵1 in a𝐶3 potential will give rise to a shift depending on 𝐵1 ·𝐶3. This is evaluated
by using a series expansion of the potential in the position given by Eq. (2.19). For sim-
plicity 𝑟± � 𝑧 is again assumed, neglecting the 𝑧3 contribution. The resulting frequency
shift is given as

Δ𝜔𝑧

𝜔𝑧
= − 3𝐵1𝐶3𝜔𝑐𝜔±

4𝐵0𝐶2𝑑𝑐ℎ𝑎𝑟𝜔
2
𝑧
𝑟 2±. (2.23)

The scaling with 𝑟 2+ allows for an error when trying to determine the 𝐵2 coefficient via
cyclotron excitation and simply observing the axial frequency shift. Therefore, the un-
certainty of 𝐶3 will directly determine the uncertainty on 𝐵2 as well, scaling with the
size of 𝐵1.

2.4 Measurement of Frequencies

To extract any information about the ion stored in the trap, the individual frequencies
have to be measured. To non-destructively do so, one typically uses the image current
induced by the moving ion. This current is typically in the range of some fA, depending
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Figure 2.2: The axial signal of a single 20Ne9+ ion in the PT, fully thermalized with the
tank circuit. The signal is mixed down to about 15 kHz to allow for the use of an FFT
audio analyser to produce this spectrum. The small inset shows the same spectrum
but without an ion in the trap, which consists only of the signal of the resonance
circuit excited by thermal noise.

on the trap size, ion species and the electrode geometry used to detect it. To measure
such a tiny current, a large impedance is required to produce a measurable voltage drop
which can be achieved by a using resonant tank circuit that is matching the ion’s fre-
quency.
While axial and magnetron frequency can be tuned over a large range by simply chang-
ing the applied ring voltage, the axial frequency has to match the resonator frequency to
allow for a detection of the ion, basically fixing both frequencies. Themodified cyclotron
frequency is fully determined by the chosen ion and the magnetic field which cannot be
simply changed in our case. While some ideas allow to slightly tune the resonating
circuits in frequency even after installation [49], different ions would still require differ-
ent resonators for the cyclotron frequency, making the detection of the axial frequency
the most practical as the voltage can be adjusted accordingly. Exactly at the resonance
frequency 𝜔𝑅 of the tank circuit, the impedance consists only of the real part with an
effective ohmic resistance 𝑅eff = 𝑄𝜔𝑅𝐿, with the quality factor𝑄 and the inductance 𝐿 of
the tank circuit. The alternating current now produces a voltage drop over the effective
resistance, which can be amplified and finally measured by an external device [49].
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2 The Penning Trap

This electric current through the resonator, induced by the ion, effectively results in
the ions motion being damped by the effective resistance of the resonator until a ther-
mal equilibrium between ion and resonating circuit is achieved. While the resonator is
cooled by liquid helium to about 4.2 K, additional noise produced by the required ampli-
fier and other electronics can increase the actual ion temperature. The definition and the
measurement of the ion temperature will be discussed in chapter 4. Fig. 2.2 shows the
measured voltage after performing a fast Fourier transformation (FFT) of the amplifieda

and down-mixedb signal. The inset figure shows the case without an ion in resonance,
when only the thermal Johnson noise [51] is measured. If the ion is tuned into reso-
nance, it produces the drop in amplitude, called dip, by shorting the noise at its motional
frequency once it is fully thermalized with the tank circuit. In the case of 20Ne9+, this
corresponds to an axial amplitude of 𝑧 ≈ 20 µm. The lineshape of the noise density
from the combination of ion and resonator can be calculated and fitted, allowing for a
frequency determination with a precision of some 10mHz [17], while directly compen-
sating for shifts such as frequency pulling and pushing [52]. While there is a dedicated
resonator for cyclotron measurements in the Alphatrap setup, the frequency has been
tuned for 40Ar13+ and can only be used for very similar 𝑞/𝑚 ratios making it irrelevant
for this thesis.

2.5 Measurement of the Radial Frequencies

Since the radial frequencies cannot bemeasured directly for all ions that will be discussed
in this thesis, a different approach has to be taken. The radial modes can be coupled to
the axial mode by applying a radio-frequency drive via dedicated split electrodes [53],
which are indicated in Fig. 2.1. This process will generally be called sideband coupling
throughout this thesis. Depending on how an electrode is split and on the position of
that electrode, different electric-field contributions are achieved when a drive is applied.
A dipolar excitation in the radial 𝑥 direction 𝐷𝑥 can be applied via the half-split ring
electrode. Any offset of this electrode with respect to the geometric trap centre will
additionally result in a contribution 𝐷𝑧 in axial direction which can also used to excite
the ion axially. These drives are applied at the frequency of the mode, resulting in the
amplitude of that mode to linearly changec over the duration of the drive. The rate of this

aDetails about the cryogenic detection electronics can be found in the thesis of Dr. A. Weigel [49].
bA single-sideband mixer [50] is used to shift the frequency of the amplified signal into a range that is
covered by an audio analyser.

cIf the drive is 90° shifted relative to the ion’s phase (as there is an additional 90° phase lag), it will first
decrease the amplitude to zero, then increase it again. Otherwise, it will result in a linear displacement
in combination with the initial radius.
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change depends linearly on the applied amplitude 𝑈𝐷 . The general form of the applied
electric field can be written as

𝐸𝐷 = −𝑈𝐷

𝑑eff
cos(𝜔rf𝑡 + 𝜙rf) (2.24)

with the parameter 𝑑eff given by the geometry of the electrode that is used for the ex-
citation. If the excitation is much larger than the initial amplitude of the ion, its phase
is determined by the applied drive, lagging 90° behind the phase of the excitation 𝜙𝑟 𝑓 .
Such an excitation can, when starting with a cold ion, be used to excite it to a known
amplitude with a fixed phase, which will be used in phase sensitive measurements, as
will be discussed in the next chapter. One should note that the interaction with the res-
onator will strongly affect the behaviour for excitations of the axial frequency. This is
due to the coupling between ion and resonator, while the resonator itself is excited by a
drive applied at a close-by frequency as well. Simultaneously, it is still cooled due to its
coupling to the liquid helium (LHe) reservoir, which makes a calibration of the excita-
tion amplitude complicated as one has to consider the different time-scales and coupling
strengths of these interactions. For precision measurements, the radial excitations are
more crucial and significantly less affected by this effecta.
Similarly to this, another excitation that can be used is of quadrupolar geometry. Such
an excitation can be achieved by applying the drive to an electrode that is both, split in
half and offset from the geometrical trap centre, breaking radial and axial symmetry at
the same time, optimized to achieve a𝑄𝑥𝑧 excitation. Contrary to the dipolar field, such
a type of drive does depend on the position of the ion and can be written as

𝐸𝑄xz = −𝑈xz

𝑑2eff
cos(𝜔rf · 𝑡 + 𝜙RF)

©«
𝑧

0
𝑥

ª®®®¬ . (2.25)

While the individual contributions can be used to excite the ion in axial or radial direc-
tion, depending on which frequency 𝜔𝑟 𝑓 is applied, the main purpose of this drive is the
coupling of the normally independent modes. This is achieved by choosing 𝜔rf as any
of the sidebands of 𝜔+ ±𝜔𝑧 or 𝜔𝑧 ∓𝜔−. Depending on the chosen sideband, this induces
either a Rabi oscillation between the modesb or an exponential increase of both modes
[18]. The former can be used to cool the radial modes, as energy is transferred with the

aFor highest precision, one still has to be careful as an active drive might cause a heating of resonator,
increasing the axial temperature. This can influence temperature measurements, determined from the
thus thermalized modes.

bWhen the quantum mechanical model is studied, it can be shown that the coupling (or the Rabi oscilla-
tion) actually occurs for the quantum numbers 𝑛𝑧 and 𝑛± of the modes [54].

21



2 The Penning Trap

-30 -20 -10 0 10 20 30

z - z,0  (Hz)

-95

-90

-85

-80

-75

-70
A

m
pl

itu
de

 (d
BV

rm
s)

Axial dip
Double dip

l r

z

Figure 2.3: Spectrum of a modified cyclotron double-dip with 20Ne9+ (blue), the ion’s
spectrum without an applied drive (grey).

Rabi frequency to the axial mode, which is still coupled to the resonator and therefore
permanently dampened.
The thus achieved coupling leads to a splitting of the single dip spectrum into a so-called
double-dip as shown in Fig. 2.3, which can be used to infer the modified cyclotron fre-
quency as

𝜔+ = 𝜔𝑙 + 𝜔𝑟 − 𝜔𝑧 + 𝜔RF, (2.26)

where𝜔RF is the frequency of the applied drive, 𝜔𝑙 and𝜔𝑟 are the left and right dips, and
𝜔𝑧 is the axial frequency. The determination of the axial frequency is crucial for mea-
surements based on this method, as it directly enters the modified cyclotron frequency.
When coupling the modes, the radial energy in thermal equilibrium is given by the ex-
pectation value of the axial energy and the frequency ratio:

< 𝐸± >=
𝜔±
𝜔𝑧

< 𝐸𝑧 > . (2.27)

The sideband causing an exponential increase of both modes is used for example during
phase sensitivemeasurements, where it allows to transfer the phase information of radial
to axial mode where it can then be measured via an axial detection.
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2.5.1 Phase Sensitive Measurements

While the dip detection, combined with sideband coupling, allows for the measurement
of all motional frequencies, it is limited in resolution by the long sampling time required
to resolve the dip spectrum in the recorded thermal noise spectrum as well as the re-
quired knowledge of the exact line shape used fitting the measured signal. With the
modified cyclotron frequency being the most critical to measure as it contributes most
to the determination of the cyclotron frequency 𝜔𝑐 , it is beneficial to keep the measure-
ment time as short as possible to minimize all effects due to drifts and jitter.
To this end, the measurement technique of pulse and amplify (PnA) introduced in [55]
has been applied for the determination of the g factors of the neon isotopes. Here, the
ion is excited in the modified cyclotron mode to a radius significantly exceeding the typi-
cal thermal radius 𝑟𝑝 ≈ 2 µm, here typically chosen to be 16 to 19 µm, where the trade-off
between resolution and introduced systematic shifts is most reasonable. By exciting this
mode, a fixed phase is imprinted on the motion, which then is allowed to evolve freely
for a fixed time. At the end of the evolution period, the current phase is transferred into
the axial motion by applying a quadrupolar (sideband) pulse.
The recorded axial phase will then depend on the phase of the modified cyclotron fre-
quency at the time of this pulse. With a typical phase resolution, including all sources of
phase jitter stemming from the initial thermal distribution of the ion amplitude as well
as all additional jitter introduced by measurement devices, a phase stability of about 20°
is achieved for an evolution time of about 8 s. This corresponds to a relative frequency
resolution of

Δ𝜔+
𝜔+

=
20°
360°

1
8 s · 25 × 106Hz

≈ 3 × 10−10 (2.28)

for a singlea measurement. While this method has been developed and used in theMainz
HCI g factor experiment (Liontrap now) for several years already, it was only incorpo-
rated into the measurement routines of Alphatrap during the course of this thesis.

2.6 Measurement of the Larmor Frequency

The spin magnetic moment of the electron, projected on the 𝑧-axis can be written in
terms of the g factor and the Bohr-magneton 𝜇𝐵 = 𝑒ℏ/2𝑚𝑒 as

𝜇𝑧 = ∓1
2
𝑔𝜇𝐵 . (2.29)

aThis is a very simplified description; in reality this measurement does require an input frequency, which
is determined via a double-dip as well as multiple shorter evolution time measurements to correctly
unwrap the total phase. The measurement of the frequency is done over a much shorter time interval,
however, reducing drifts and fluctuation effects compared to the double-dip.
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Figure 2.4: The analysis trap, with the much smaller diameter of 6mm compared to the
PT (18mm) and a ferro-magnetic ring electrode to produce a strong 𝐵2. Figure taken
from [18].

Similar to the ion’s magnetic moment, as discussed in section (2.2.2), the axial frequency
is dependent on the magnetic moment of the electron spin. This frequency shift can be
expressed as

Δ𝜔𝑆𝐹
𝑧 = ± 𝑔𝜇𝐵𝐵2

2𝑚𝑖𝑜𝑛𝜔𝑧
. (2.30)

The orientation of the spin (or spin state) and therefore the spin magnetic moment
can be reversed, if a photon of frequency 𝜔𝐿 is absorbed or emitteda. To this end, the
required microwave frequency can be irradiated into the trap to achieve such a reversal,
typically referred to as spinflip. However, the PT has already been discussed with the
requirement of a very homogeneous magnetic field, where the resulting axial frequency
change would not be detectable. The approach to solve this is the double-trap technique,
which utilizes a second Penning trap, the analysis trap (AT), where the 𝐵2 is large. In
our case, this is achieved by using a ferro-magnetic CoFe (Vacoflux50) ring electrode as
shown in Fig. 2.4 to achieve a 𝐵2 ≈ 44 kT

m2 [18]. With these values, Eq. (2.30) predicts a
frequency change of Δ𝜈𝑆𝐹𝑧 ≈ 1.8Hz or Δ𝜈𝑆𝐹𝑧 ≈ 1.6Hz in the cases of 20Ne9+ and 22Ne9+

respectively, which can easily be resolved. A sequence of microwave irradiations and
the observed change in axial frequency of 22Ne9+ is shown in Fig. 2.5.

One has to note, that not only changes of the magnetic moment due to the spin ori-
entation, but also due to changes of the amplitudes of the radial modes of the ion will

aBy stimulated emission, spontaneous emission is highly improbable for these states.

24



2 The Penning Trap

„Down“

„Up“

Figure 2.5: Axial frequency change due to spinflips in the analysis trap. At each point,
the microwave is irradiated for a few seconds and the axial frequency is compared
with the one measured before.

now affect the axial frequency. The observed axial frequency shift of the ion between
subsequent measurement cycles is mostly caused by the varying cyclotron radius. This
frequency shift is generally much larger compared to that of a spinflip. However, the
cyclotron radius is typically stable enougha during the time in the AT to allow for a de-
tection of the instantaneous frequency change in case of a spinflip.
Especially for heavier ionswhere the frequency change due to a spinflip becomes smaller,
the axial frequency stability can pose serious problems for the determination of the spin
state. For all purposes discussed here, this is however not of concern.
While the Larmor frequency can be measured in the AT by determining the most likely
irradiated microwave frequency to achieve a spin transition, the large 𝐵2 does not allow
for precise measurements. Therefore, rather than measuring the Larmor frequency in
the AT, the idea is to prepare the ion with a known spin state by observing a transition
in the AT first, the subsequently transporting it to the PT. Here, one can measure the
cyclotron frequency while simultaneously irradiating the microwave frequency again.
Finally, the ion is brought back to the AT and the spin orientation is compared to the
initial one, which then allows to infer if a spin transition has been achieved during the
irradiation in the PT.
The probability of a spinflip occurring in the PT is maximized, when the irradiated mi-
crowavematches the Larmor frequency. Since the Larmor frequency is dependent on the
magnetic field, this is typically expressed instead in terms of the frequency ratio Γ = 𝜔𝐿

𝜔𝑐
.

The g factor can then be expressed in terms of the ratio, where the maximum probability

aHeating effects can cause a random fluctuation of the mode.
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of a spin transition to occur has been observed as

𝑔 = 2Γ
𝑞ion
𝑒

𝑚𝑒

𝑚ion
, (2.31)

For such a determination, the knowledge of the precise ratio of ion mass 𝑚ion to elec-
trons mass𝑚𝑒 is additionally required from independent measurements. The process of
actually extracting the g factor will be described in the sections corresponding to the
individual measurements (4).

2.7 Measurement of Amplitudes and Temperatures

The knowledge of the ion temperature as well as the radii after an excitation are impor-
tant parameters to correct for systematic shifts or simply calibrate excitations to achieve
a certain amplitude deterministically. To determine the amplitude of the ion after an
excitation, the easiest way is to make the axial frequency dependent on that radius. This
can be achieved by applying an anharmonic electric field contribution, typically a𝐶4. Ac-
cording to formula (2.10), if the𝐶4 is known, there is a direct relation between amplitude
and the observed axial frequency. The additional𝐶4 contribution for a certain deviation
from the ideal potential is extracted from an electrostatic Comsol model of the trap.
Another approach is to use the magnetic 𝐵2 frequency shift of the axial mode, which is
dependent on the magnetic moment of the ion and therefore mainly on the cyclotron
radius. To utilize this for a temperature measurement, the axial mode can be coupled to
the cyclotron mode in the PT until the modes are thermalized. After transporting the ion
back to the AT, the observed axial frequency each cycle despite identical voltages then
allows to determine the cyclotron radius and thus its energy. Recording the distribution
of such shifts, the temperature of cyclotron and axial temperature can be extracted. Such
a measurement is shown later in section 4.2.5.
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3 Experimental Setup

In this chapter I will describe the experimental setup. This will include information to
gauge the possibilities of the Alphatrap experiment and understand how the external
infrastructure is operated to produce, transport and load ions. There will also be expla-
nations of modifications made to the setup during the course of this thesis, including the
connection to two new ion sources. Furthermore, the specifics that differ in the setup
during this work from the much more extensive description that can be found in our
Review paper [18], which comprises parts of this thesis, will be covered.

3.1 The Trap(s)

The heart of the setup is, as suggested by the name Alphatrap , the Penning trap. The
trap actually consists of a stack of three separate trap sections. The analysis trap (AT) has
already been briefly discussed in section 2.6 and is mostly distinguished by a 𝐵2 ≈ 44 kT

m2 ,
produced by the ferromagnetic ring electrode. The purpose of the AT is mainly the elec-
tronic spin-state detection (see 2.6), it can however also be used to measure temperatures
(see 4.2.5) or to separate coupled ions (see 6.2.6). However, while essential for the mea-
surements performed atAlphatrap, the huge 𝐵2 makes it impossible to achieve the high
precision frequency measurements that are aimed for.
For the purpose of such measurements the other main trap, the precision trap (PT) as
introduced in section 2, is utilized. The extremely homogeneous magnetic field here al-
lows for such precise frequency measurements. With a seven-electrode design, both the
𝐶4 and the𝐶6 contribution to the electric potential can effectively be tuned to zero, while
the geometry is designed such, that even 𝐶8 and 𝐶10 are supposed to be very small [56].
Therefore, the PT is optimized to be used for all spectroscopic measurements.
The third part is the capture trap (CT), which is mostly distinguished by the first three
electrodes where the applied voltage can be changed rapidly. While all other trap elec-
trodes are filtered to allow only slow voltage changes on the order of somems, the three
topmost electrodes can be pulsed to a different voltage quickly (≈ 1 µs) by several 100V
to facilitate the capture of injected ions. This capture process and the layout of the trap
is shown in Fig. 3.1.
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The black cone shown on the left in Fig. 3.1 is made of PEEK, infused with carbon nano-
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Figure 3.1: The CT and the capture process of injected ions. Electrodes C1 to C3 can
be quickly pulsed to a different voltage to trap incoming ions. For such a trapping,
the potential is altered starting from the blue curve, which is still allowing the ions
to surpass the initial potential while slowing them down. Once they have passed,
the potential is pulsed to a higher voltage (indicated by the green dashed lines) and
achieves the shape as represented by the yellow curve, resulting in the ions to be
trapped in the C4 electrode. Figure adapted from [18].

tubes [57], meant to absorb the microwaves irradiated from the other end of the trap.
Thus, reflections should be prevented which might otherwise cause a standing wave in
the trap cavity.
After injection, the CT can be used as a storage trap, keeping a cloud of ions ready to
extract single ones for the measurement without having to reload from external sources
every time an ion is lost. This happens mostly due to the erroneous handling of the ions
or device crashes, as losses due to recombinations with residual gas typically only occur
after months of storage time, depending on the charge state of the ions. The complete
trap tower is shown in the inset of Fig. 3.2.
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3.2 The Cryostat

The trap stack and all electronics are situated in a 4 T super-conducting magnet with a
warm bore. However, as the trap is meant to be operated at cryogenic temperatures, a
dedicated cryostat is required for cooling it and the detection electronics to liquid he-
lium temperature of around 4 K. The design of this cryostat, as inserted into the magnet,
is shown in Fig. 3.2. It consists of an outer 70 K shield at liquid nitrogen temperature
(blue), and an inner 4 K section (pink), which is thermally coupled to the LHe vessel. The
cryogenic valve (white) [49] allows for a connection to a room temperature ultra-high
vacuum (UHV) beamline without impairing the cryogenic vacuum quality when it is
closed. This design allows the flexibility of being able to externally produce and inject
the desired ions while still achieving storage times of several months for the captured
ions. The trap and the detection electronics are shown in the central area of the magnet
[18, 49].
The complete 4 K section, with trap and electronics, can be lifted out of the cryostat sep-
arately to access and modify these parts without having to remove the complete cryostat
from the magnet. Additionally, the warm bore of the magnet also facilitates access to the
trap from below. This is used for both, optical [44, 58] and microwave access as shown
in the Fig. 3.2.

3.3 The Beamline and Ion Sources

The main part of the UHV room temperature beamline of the Alphatrap experiment is
situated at the floor above the magnet room. Here, three different ion sources are con-
nected to allow for the production of different ions.
The most commonly used source thus far has been a Heidelberg compact electron beam
ion trap (HC-EBIT) [60], where ionization energies of around 4 keV have been reached.
This source operates by emitting and accelerating electrons to ionize gas upon impact
in the centre of a magnet field, produced by permanent magnets. Additional electrodes
(called drift-tubes) allow for control and ejection of the thus produced ions by pulsing
the applied voltages. The application of this source is highly versatile, as it can be used
for any species that can be injected in a gaseous phase via a needle valve. This allows
for switching to different ion species within only a few hours.
The second ion source, a laser ion source [61], has been connected and used to inject

9Be+ ions during the course of this thesis. First laser cooling tests of these ions have
been successfully conducted [44] and will be used for sympathetic laser cooling in the
Alphatrap setup in the future. The ion source operates by using an external Nd:YAG
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Figure 3.2: The Alphatrap cryostat setup, consisting of a 70 K section (blue), a 4 K sec-
tion (pink), the trap stack (inset), the electronics and resonators in the centre and a
cryogenic valve (grey). The inner 4 K section can be removed independently, together
with the hat flange (green) that supports the complete section with low-thermal con-
ducting Vespel®[59] rods. Figure adapted from [18].

laser [62], which ablates material and ignites a plasma when a laser pulse is shot onto a
target. In combination with an applied voltage, ions can be extracted and guided towards
the trap. However, without additional means of ionization, mostly singly charged ions
are produced here.
The third ion source is the Heidelberg EBIT (HD-EBIT), a functionally much larger scale
versiona of the HC-EBIT. While the working principle is identical, this EBIT instead uses
a superconducting magnet and can currently be used with ionization energies of up to
50 keV. The connection to this EBIT has been established via a 5m beamline section
as part of this thesis. This connection has already been used to load ions, first 40Ca17+

aIt is placed in a separate large container building of about 7m × 8m, required due to the high-voltage
operation.
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Figure 3.3: TheAlphatrap beamline with connections to three separate ion sources (see
text). The beamline facilitates several ion optical elements as well as units for beam
diagnostics. The ions are transported with energies of some keV qion

C towards the trap.
When they are close to the magnet, they are first slowed down by a pulsed drift tube
in the vertical section before entering the cryostat region. They are then captured in
the CT section of the trap stack.

and later on also 118Sn49+, where the g factor has been measured as part of the thesis of
J. Morgner (ongoing). The new part of the beamline consists of a straight connection,
with ion diagnostic units on both ends. The largest tube also includes two sets of Einzel
lenses, one at either end of the tube. In between, two sets of steering plates allow for
a deflection of the beam before entering the first of the two electrostatic benders at the
main beamline. Here, the ions are first steered 90° to the left, then again 90° down to-
wards the setup as seen from the direction of the ions.
This new beamline also features the possibility of a future connection to our neighbour-
ing experiment Pentatrap [63], enabling them to access ions produced by the HD-EBIT.
To this end, a currently empty cross, meant to house an electrostatic quadrupolar bender,
is already included in the design. To facilitate craning of the Pentatrap setup through a
hole in the floor underneath this connection, the tube above their experiment is designed
to be easily removable. An overview of the complete Alphatrap beamline is shown in
Fig. 3.3.
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3 Experimental Setup
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Figure 3.4: The schematic microwave setup. For details see text.

3.4 Microwave Setup

Themicrowave setup used during the course of this thesis consists of several devices and
safeguards to ensure a stable operation. Especially in case of the coupled ions measure-
ment, both pulse times and microwave power have to remain consistent over the course
of the measurement campaign of several weeks. To monitor this during the measure-
ment, a 10:90 power splitter and microwave diode [64] is used to monitor the irradiated
microwave pulse shape and amplitude for every run. The schematic setup is shown in
figure 3.4. The Anritsu [65] produces a microwave at a frequency of 1/3𝜔𝐿 , as it is con-
nected to an active multiplier chain (AMC) [66] with a frequency multiplication of 3.
The nominal output power of this amplifier is 20 dBm when the input is saturated. Next
in line is a motorized and calibrated microwave attenuator [67] which can be used to
reduce the power in a controlled way. The 10MHz unit is connected to all measurement
devices, including the microwave generator, FFT analyzer and all function generators.
This ensures a stable operation and provides a reference to enable the measurement of
absolute frequencies.
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4 Measurements and Results: Single
Ion Measurements

In this chapter, I will discuss the results of all the single ion g-factor measurements.
These consist of a total of almost 20 individual resonances of three different hydrogen-
like ion species, which will be presented in the chronological order they were measured
in. This begins with a systematic test performed with a carbon ion, followed by the g-
factor measurements of the neon isotopes 20Ne9+ and 22Ne9+, throughwhich it is possible
to improve the precision of the atomic mass of the latter by almost an order of magnitude
when using the theoretical calculation of the g factor as an input.
During the campaign on 20Ne9+, a tension of a combined 3𝜎 between experimental and
theory values of the g factor have been observed and were had been attributed to the
atomic mass of 20Ne. While this could initially not be resolved, further investigation
is being conducted as of finishing this thesis. Preliminary results of the measurement
performed by the Pentatrap group strongly indicate that the deviation of the atomic
will soon be confirmed, leading to an agreement between experiment and theory for the
g factor .
This section will also include systematic studies related to the two-ion method, as the
characterization of the trap was performed during this campaign, preparing everything
for the measurement on the coupled ions. Note, that all specified shifts (or systematic
effects) are given as relative shifts with respect to the frequency ratio Γ0 =

𝜔𝐿
𝜔𝑐

as

Δrel =
Γ′ − Γ0
Γ0

, (4.1)

where Γ0 is the true value and Γ′ the measured (uncorrected) value, shifted by the given
amount. Therefore, the correction that has to be applied is of opposite sign as the given
shifts.
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4 Measurements and Results: Single Ion Measurements

4.1 Carbon g Factor

The measurement of the g factor of 12C5+ is the first that has been performed during
the course of this thesis, after I became responsible for the control of the trap. At this
stage, the measurement campaigns of Dr. I. Arapoglou, with the g factor of 40Ar13+ [56],
as well as the laser-spectroscopic measurement of the fine-structure of the same ion by
Dr. A. Egl [58], had both been finished. However, as Alphatrap was still quite new, the
choice for the initial measurement fell on the g factor of 12C5+ as an accuracy check.
This ion had been used to extract the most precise value for the electron mass in the
predecessor experiment of Alphatrap in Mainz [68, 69] and remeasuring it therefore
provides both, a decent starting point to learn to operate the trap as well as information
about the performance of our setup and possible unknown systematic effects.

4.1.1 Measurement Procedure

The measurement begins with the cold ion in the AT. Here, the microwave is irradiated,
until a spinflip is observed, thus allowing to determine the spin state the ion is in now.
Subsequently, the ion is transported to the PT, where one waits for a short time to allow
the voltages to settle after the transport.
After cooling both radial modes by shortly coupling them to the axial mode, the first axial
dip is recorded. Afterwards, the microwave is irradiated at a pre-determined value close
to the expected Larmor frequency. Simultaneously, a cyclotron double-dip is recorded,
which will serve to determine the magnetic field during this irradiation. Finally, a second
axial dip is recorded to determine, if the frequency has drifted during the measurement
of the modified cyclotron frequency. After again cooling both radial modes, the ion is
transported back to the AT, where the spin state is again determined.
The resulting 10 resonances recorded during this measurement campaign are summa-
rized in Tab. 4.1, including their systematic uncertainties. Those only applicable to this
specific carbon measurement are explained in the following, the general systematic ef-
fects that have to be considered for any g-factor measurement are discussed at the end
of this chapter.

4.1.2 Axial Frequency Drift

The measurement has been performed using the double-dip technique (see section 2.5)
for the determination of the modified cyclotron frequency as PnA had not been imple-
mented into the setup yet. This means that after preparing the spin state in the AT, the
ion is transported to the PT, where, after a waiting time to allow voltages to settle, the ax-
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4 Measurements and Results: Single Ion Measurements

Combined (uncorrected) Γ′ 4376.210 499 27(116)
shifts and error budget
ICS 1.5(1) × 10−11
rel. shift 3(1) × 10−12
𝜈𝑧 drift 0(2) × 10−10
Lineshape dip 0(1) × 10−10
𝐶4 shift < 0(6) × 10−13
≥ 𝐶𝑛≥6 < 0(3) × 10−16
𝑇𝑧 7.1(4) K
corrected Γ0 4376.210 499 19(116)stat(94)sys
stat. uncert. 2.7 × 10−10
sys. uncert. 2.1 × 10−10

Γ𝑒mass 4376.210 500 872(102)stat(69)sys [69]
combined deviation 1.4𝜎
Electron mass
𝑚𝑒,exp 5.485 799 093 3(15)stat(12)sys × 10−4 u
𝑚𝑒,CODATA 5.485 799 090 65(16) × 10−4 u
Input parameters
g factor 2.001 041 590 179 8(47) [69]
Mass of 12C5+ 11.997 257 680 291 7(18) u [69]

Table 4.1: The combined analysis for the determination of the electron mass at
Alphatrap by means of measuring the 12C5+ g factor .

ial frequency is measured first. Directly after, a double-dip is sampled for roughly 3min,
during which the microwave is continuously irradiated. Finally, a second axial dip is
recorded to check for potential drifts. Since this drift was one of the former limitations
[56, 70], care has been taken to further minimize the effect. This is mainly achieved by
simply waiting longer for the voltage to settle after the ion transport, combined with an
increased sampling time for the individual dips.
To verify the systematic effect of the axial frequency drift, the sequence has been modi-
fied to sample three individual axial dips in the same period during which in the actual
measurement the first axial frequency, then a double-dip and finally another axial fre-
quency have been recorded. The result of this study is shown in Fig. 4.1. The complete
drift between first and second axial dip of the measurement could already be signifi-
cantly reduced to 44mHz and 29mHz for two different settings respectively, compared
to previously almost 100mHz [70]. However, this measurement shows, that a correction
of 9(4)mHz and 7(5)mHz of the axial frequency is still required, where the uncertainty
is the standard deviation of the mean observed drift. This corresponds to a 2 × 10−10
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4 Measurements and Results: Single Ion Measurements

Figure 4.1: The modified measurement sequence to determine the axial frequency drift
for two different waiting times after transport. The centre frequency measurement
happens here during the exact time where the double-dip was recorded in the reso-
nance measurements. The indicated measurement time for each point corresponds
to the end of the interval during which the spectrum was recorded.

systematic uncertainty on 𝜈𝑐 since, in the double-dip measurement, the axial frequency
contributes linearly to the determination of 𝜈𝑝 (see Eq. (2.26)). The measurement time is
given as the end of each interval during which a dip has been recorded. As the times are
chosen to be identical when compared to the actual measurement point, each frequency
gives the average of that interval, where the centre one would be the true average axial
frequency, during which the double-dip has been recorded.
To further improve upon this problem, the development of a dedicated transport switch
box has been started. This will allow to switch between two voltage sources, which will
enable us to keep the voltage of the precision supply StaReP [71] unchanged. The device
then used for transport does not have to be as stable, completely eliminating the problem
of the thermal voltage drift after ion transports. As the drift is much less critical when
using PnA however, both because of a reduced dependency on the axial frequency as
well as longer times before the actual modified cyclotron frequency measurement, the
box has not yet been integrated into the setup.

4.1.3 Dip Lineshape and Resonator Frequency

The second factor limiting the precision of a double-dip measurement is the uncertainty
associated with the fit and line shape of the axial dip and cyclotron double-dip. There
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4 Measurements and Results: Single Ion Measurements

have been recent investigations considering shifts associated with an erroneous determi-
nation of the resonance frequency of the tank circuit, as well as the ion being not exactly
centred on the resonator [72], with both effects leading to an increased uncertainty of the
axial frequency determination. These issues are mostly critical for double-dip measure-
ments and only of diminishing concern when using phase sensitive techniques as the
modified cyclotron frequency can be determined independently of the axial frequency
which is one of the main advantages.
To study the dip line shape effects, all fitting parameters of the resonator are varied to
check for variations of the derived modified cyclotron frequency. With most of these
concerns only arising well after this measurement campaign had been concluded, there
have been no specific investigations performed with the carbon ion, such as for exam-
ple comparing the determined cyclotron frequency on resonance frequency versus a
determination of the centre. Following the evaluation performed by S. Rau [72], the fit-
ted frequency of the resonator is varied within the observed range of the results and
dependencies of the input parameters. For the parameters of Alphatrap, one finds a
dependency of the axial frequency on the resonator frequency offset Δ𝜈res as

Δ𝜈𝑧 = −17 mHz
Hz

Δ𝜈𝑟𝑒𝑠 . (4.2)

To translate this into an uncertainty of the extracted axial frequency, the uncertainty of
the fitting of the resonator frequency is evaluated by modifying the fitting range for the
resonator frequency determination as well as the Q-factora, which yields a shift of up
to Δ𝜈res = 140mHz and 12mHz, respectively. This contributes to the uncertainty of the
fitted axial frequency as 2.5mHz, or 1 × 10−10 as a relative uncertainty on 𝜈𝑐 , as the axial
dip is required to determine 𝜈+ via the double-dip technique. The change of the Q-factor
can additionally influence the determined axial frequency directly, however this effect
seems to be small compared to the effect of the uncertainty of the resonance frequency,
which already mostly depends on the chosen fitting range, rather then the Q-factor. This
correction, of less than 1mHz within reasonable values for Q, can be neglected for the
study conducted here.
Additionally, a related effect arises for the fitting of the double-dip itself. The shift of the
fitted ion frequency with respect to the resonator frequency seems to be related to the
width of the dip, as both the left and right dip are only shifted by about half as much
as the axial frequency. Therefore, one finds a (partial) cancellation in the effect when

aThe quality factor of a resonator.

37



4 Measurements and Results: Single Ion Measurements

determining the modified cyclotron frequency via the relation

𝜈+ = (𝜈𝑙 + Δ𝜈𝑙 ) + (𝜈𝑟 + Δ𝜈𝑟 ) − (𝜈𝑧 + Δ𝜈𝑧) + 𝜈RF, (4.3)

as given in Eq. (2.26). Ideally, if Δ𝜈𝑙 + Δ𝜈𝑟 = Δ𝜈𝑧 , a full cancellation of the systematic
shift would be observed. However, the extend of this cancellation seems to be further
related to the position of the dip with respect to the resonator and working best, when
being exactly at resonance frequency. Since this has not been considered at the time of
the measurement, this effect cannot be treated as a systematic correction but rather as a
worst-case estimate, as the position of the dips with respect to the resonator vary over
time and from measurement to measurement. Therefore, the full effect is treated as a
systematic uncertainty, labelled Lineshape Dip in Tab. 4.1 and is mostly specific to the
carbon measurement but will be briefly revisited for the neon measurements. To be able
to discuss and minimize the systematic effect further, a dedicated measurement, compar-
ing the cancellation for different dip positions with respect to the resonance frequency
of the tank circuit, coupling strengths and different ions to achieve different widths of
the dip would have to be conducted. As the phase sensitive techniques achieve both
higher precisions and partially circumvent the problem however, this study is unlikely
to be performed soon.

4.1.4 Resonance Lineshape

To achieve an unsaturated resonance where the observed spinflip probability is well
below 50% despite the long irradiation time of the microwave, multiple measurements
were performed with subsequently reduced microwave power, adjusted via a manual at-
tenuator. Consequently, over a range of a total of 10 recorded resonances, each roughly
1 × 10−9 in precision, the resonance lineshape changes from a Lorentzian lineshapewhen
fully saturateda to a Gaussian shape when well below the saturation thresholdb. In be-
tween, a Voigt fit of the form

𝑃SF(Γ) =
∫ +∞

−∞
𝐺 (Γ′)𝐿(Γ − Γ′, 𝛾)𝑑Γ′ (4.4)

aThat means, the Rabi frequency is much larger than the statistical fluctuations
bWhen the Rabi frequency is much smaller, the shape is mostly determined by statistical fluctuations
and the uncertainty of 𝜈𝑐
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with

𝐺 (Γ) = 1
2
𝑒
− Γ2

2𝜎20 and (4.5a)

𝐿(Γ, 𝛾) = 𝑃max ·
𝛾

𝜋 (Γ2 + 𝛾2) (4.5b)

has been applied by using a Maximum-Likelihood fitting routine. Here, the Gaussian
contribution 𝜎0, interpreted as all statistical influences from double-dip fitting to mag-
netic field jitter, has been fixed to reduce the amount of free parameters. The value of
this is determined from the unsaturated resonances, evaluated using a pure Gaussian
lineshape, where the statistical fluctuations are expected to be similar. It should also be
noted that each resonance has been evaluated using all three lineshapes, with the result-
ing Γ only changing by about 0.3𝜎 of the combined statistical precision. This is to be
expected, as all lineshapes are symmetrical, restricting the possible change of the centre
value. Fig. 4.2 shows the decrease of amplitude and width corresponding to the reduced
microwave power and the resulting change of lineshape from a Lorentzian (top), Voigt
(middle) and finally Gaussian (bottom) profile. Γused is the ratio of Larmor to cyclotron
frequency that has been irradiated for each specific attempt, normalized by the fitted
value Γfit. The green and red dots show the individual attempts, indicating successful
(green) and unsuccessful (red) spinflip attempts respectively for each run. The green
line represents the best fit according to Maximum-Likelihood optimization for the indi-
vidual lineshapes, with the shaded area around being the 1𝜎 confidence interval of the
fit. The error bars only visualize one possible binning but are not used for fitting. The
final result agrees within a combined 1.4𝜎 difference to the result of the measurement
performed in Mainz [69] well enough, that systematic shifts larger than low 10−10 for a
double-dip measurement can be safely excluded and shows that our setup is operating
as expected.

4.2 Neon g Factors

In this section, the g factors that have been measured individually for the two neon iso-
topes, 20Ne9+ and 22Ne9+ will be discussed. These measurements have been performed
as an initial test of the system with the PnA method (see section 2.5.1) implemented into
the measurement routine after the 12C5+ campaign. Additionally, with the mass of 20Ne
known to only 8 × 10−10 relative precision [38], a g-factormeasurement of this ion has
the potential to significantly improve upon the precision of the ion mass, which is of
particular interest as a discrepancy of the mass had been observed in the former THe-
trap experiment [73]. The there reported combined deviation of 4.2𝜎 with respect to
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Figure 4.2: Comparison of different resonances, recorded for 12C5+ with the microwave
power being gradually lowered from top (Lorentzian), middle (Voigt) to bottom
(Gaussian). For details see text.

the AME value could potentially be resolved by performing a g-factor measurement to
extract the mass.
Here, first the measurement procedure will be described, which is similar for all six
recorded resonances, three for each of the two isotopes. Subsequently, the possible
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sources of systematic errors, the impact of these results and potential future improve-
ments will be discussed.

4.2.1 Measurement Procedure

The measurement cycle again begins with a single ion in the AT, where the initial spin
state is determined as described in section 2.6. Upon successfully observing a spinflip to
thus determine the spin state of the ion, it is transported into the PT by adiabaticallya

ramping the electrode potentials. Due to this transport and the uncertainty linked to the
subsequent voltage drift observed in the carbon measurement, the waiting time upon ar-
riving in the PT has been increased to 100 s instead of 60 s during former measurements.
This allows for the voltages to settle, which ensures that the axial frequency is stable
during the PnA measurement.
After briefly cooling both radial modes via sideband coupling, an axial dip spectrum is
recorded and automatically evaluated to determine the axial frequency. If this is found
to be different from the desired value by more than 1.5Hz, the voltage is automatically
adjusted to shift the ion exactly to the resonance frequency and yet another axial dip
spectrum is recorded. While the axial frequency is not required to be of any specific
value other than close to the frequency of the resonator, the phases of the signal during
the PnA routine are always extracted from the same 2Hz wide frequency bin.
The modified cyclotron frequency is first determined via a double-dip measurement,
which is directly evaluated with the prior determined axial frequency to calculate the
required frequencies for the PnA measurement sequence (2.5.1). This additional sam-
pling of these two spectra adds yet more time to the sequence after the transport. The
residual drift of the axial frequency is of no concern for these frequencies, and the actual
determination of the cyclotron frequency begins subsequently with the PnA sequence.
Here, the phases of both pulses of the sequence as well as the order of evolution times
are randomized for each set, which helps to minimize possible systematic effects. One
such effect is for example a dipole contribution of the second PnA pulse, [41] which is
averaged when using random phases.
During the longest phase evolution time, 8.2 s for all measurements discussed here, the
microwave is irradiated. This ensures, that the critical partb of the cyclotron frequency
measurement occurs concurrently with the irradiation of the microwave, which makes
the determination of the ratio of those frequencies as precise as possible. Finally, a sec-
ond axial dip is recorded, that is used for the actual calculation of the free cyclotron
frequency 𝜈𝑐 and compared to the first recorded one to exclude frequency drifts during
aThe transport has been tested for possible heating effects during the work of I. Arapoglou [70]
bWith respect to the magnetic field, as this frequency is used to ”cancel” the magnetic field dependency
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the PnA routine of more than some mHza. The magnetron mode is cooled by coupling
it to the axial mode before transporting the ion back to the AT, concluding the measure-
ment cycle. The magnetron frequency itself is only recorded every 24th cycle, which
corresponds to roughly 9 hwith a single cycle taking on average 22min. While the mag-
netron frequency is stable enough during a measurement campaign to not affect the
derived cyclotron frequency, it significantly changes when the ring voltage is changed.
This has to be kept in mind as the resonator frequency can experience shifts when filling
the apparatus with liquid helium. If the ion is brought back into axial resonance then,
the magnetron frequency should be updated correspondingly.
After concluding themeasurement, aMaximum-Likelihood fit is performed to determine
the ratio of Larmor to cyclotron frequency Γ. Here, all frequency pairs where a spinflip
has been observed versus the ones without spinflip are evaluated using a lineshape ac-
cording to microwave power and observed amplitude of the resonanceb. For all fitting
results, the parameters of amplitude, sigma and centre are additionally examined for
possible correlation, which could allow for the centre to change when fitting a different
amplitude or width, resulting in a nearby alternative optimum. This check is represented
by 2D landscapes, where for each pairing of two parameters the optimal point of the third
parameter is taken. For each of these points, the change of the Likelihood estimator is
recorded. In Fig. 4.3, the change of the Likelihood function for each combination of
parameters is colour coded to show the change in terms of 𝜎 compared to the optimum
value. Each axis is scaled to show the change in that parameter in terms of its respec-
tive uncertainty 𝜎 . Ideally, one finds ellipses whose axis are aligned with the coordinate
axes, indicating the correct convergence of the fit. A strong tilt or deviation from the
ideal shape indicates a correlation between the parameters. Slight deviations from the
ideal case are already included in the uncertainty of each parameter while fitting and
can mainly be seen in the combination of 𝜎 and amplitude, where this is to be expected.
Most importantly, the dependency of the centre value Γ0 shows almost perfectly aligned
axes with respect to both 𝜎0 and amplitude.

4.2.2 Resonances of 22Ne9+

The measurements for 22Ne9+ have been performed in the centre of the PT using the
sixfold microwave multiplier over the course of three weeks. The first two resonances
have been stopped with relatively low statistics of only 103 and 274 attempts to subse-
quently reduce the microwave power by several dB directly via the Anritsu microwave

aA drift of 5mHz would for example correspond to a 5 × 10−12 relative shift on 𝜈𝑐
bHere, the microwave power is adjusted to achieve about 30% maximum SF amplitude, which is well
described by a Gaussian lineshape
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Figure 4.3: Investigation of parameters for a Maximum-Likelihood fit of a Gaussian pro-
file, here for the example of a resonance for 20Ne9+. While the two parameters on 𝑥
and 𝑦 axis are varied, shown here in terms of their respective uncertainty 𝜎 , the best
value for the third parameter is taken, while recording the change of the Likelihood
estimator compared to the best fit. The color scaling shows the overall Likelihood
change normalized in terms of total uncertainty 𝜎𝑡 for all three plots.

generator output. Due to the highly non-linear behaviour of the multiplier in the non-
saturated regime, this cannot be quantitatively translated to an actual reduction of irra-
diated power. However, the change can be qualitatively observed in both a reduction
of resonance width and spinflip probability. With this probability thus adjusted to well
below 50%, 594 attempts were recorded for resonance 3, which is shown in Fig. 4.4. Tab.
4.2 shows the evaluation summary of all recorded resonances and uncertainties, as well
as the result for the atomic mass of 22Ne.

To derive the atomic mass, Eq. (2.31) is re-written as

𝑚ion =
𝜔𝐿

𝜔𝑐

𝑞ion
𝑒

𝑚𝑒

𝑔
, (4.6)
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Figure 4.4: The main resonance for 22Ne9+. The green dots indicate the irradiated Γ
where a spinflip has been observed, red ones indicate attempts without spinflip. This
green line is the Maximum-Likelihood fit as a Gaussian distribution, the binned data
is shown only for reference. The black lines around the shaded area show the 1𝜎
confidence interval.

determining the mass of the ion first. Taking the theoretical prediction of the g factor
and the electron mass as input parameters, one gains access to the atomic mass when
correcting for the mass of the missing electrons and their binding energies. As this yields
perfect agreement (within one combined 𝜎) with the AME2020 and AME2016 value, the
discrepancy seen in [73] seems to be stemming from other sources. Furthermore, this
mass measurement yields an improvement to the current best value, taken from the
AME2020 [38], by one order of magnitude, with the measurement being of similar pre-
cision as the state-of-the-art theoretical calculation [36, 37].

4.2.3 The Turbopump Setback

Just before starting the final measurement on coupled ions, one of our main (large!
CF160, 600 L

s ) turbopumps [75] of our room temperature beamline spontaneously bursta.
The inner rotor was completely destroyed, producing tiny metal flakes and dust which
covered most of the parts in the vertical part of the beamline, following the inrush of

aThats the technical term, apparently. Extremely loud and violent explosion fits my experience more
closely, though.
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Resonance 1 Resonance 2 Resonance 3
Start date 15.05.2020 20.05.2020 27.05.2020
Data points 103 274 594
stat. uncert. 3 × 10−10 2.2 × 10−10 1.1 × 10−10
fitted Γ′ 4450.460 395 95(133) 4450.460 398 90(99) 4450.460 396 97(49)

relative shifts and uncertainties
𝜈𝑧 drift 0(5) × 10−12 0(4) × 10−12 0(1) × 10−11
spec. rel. shift 5.1(13) × 10−11
ICS 2.8(1) × 10−11
Lineshape dip 0(2) × 10−12
𝑇𝑧 5.0(3) K
𝐶4 shift < 3 × 10−13
𝐶𝑛≥6 < 6 × 10−15
𝐵2 (𝜈𝑧 PnA) −3(1) × 10−12
Cryo switch 0(3) × 10−11
corrected Γ0 4450.460 395 61(133) 4450.460 398 56(99) 4450.460 396 63(49)
Mean Γ 4450.46039687(42)𝑠𝑡𝑎𝑡 (14)𝑠𝑦𝑠
stat. uncert. 9.4 × 10−11
sys. uncert. 1.6 × 10−11

g (Theory) 1.998 767 263 640(117) [36]
Masses
22Ne𝑒𝑥𝑝 21.991 385 098 4(20)stat(7)sys(13)theo u
22Ne𝐴𝑀𝐸 21.991 385 114(19) u
Input param.
g factor 1.998 767 263 640(117) [37]
𝑚𝑒 5.485 799 090 65(16) × 10−4 u [74]

Table 4.2: The measurements performed for the single ion 22Ne9+ g factor. Rows with
a single entry are valid for all three resonances. For the explanation of individual
contributions see text.

air due to the ripped off pre-vacuum connection. Additionally, an electrically insulating
ceramic vacuum part was broken, most probably due to the mechanical shocka of the
beamline. This left the cryogenic section exposed to room pressure until the pneumatic
valve, connected to an interlock system, was able to close. This seemed like an unfortu-
nate and immediate end to the measurement campaign with the ions lost, trap and setup
in an unknown state, but the next measurements already planned.
However, the help I received from all my colleagues, not only of the Alphatrap team,
was amazing – we managed to clean the beamline, get the HC-EBIT back online (which
had been vented while the cathode was heated) and our setup back into operation. Just

aA CF160 part was actually deformed and the rotating flange managed to turn quite a bit.
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Figure 4.5: Sad left-overs of an Edwards STP-603 CF160 [75] turbo pump. Most pieces
are completely stuck to the inner wall of the pump or to each other.

four weeks later, neon ions had already been loaded again and somewhat surprisingly,
everything seemed to be still working. Being slightly shaken and not fully trusting the
setup anymore, I decided to further delay the coupled ions measurement campaign again
to record another single ion resonance, ensuring enough data to finish this thesis and to
compare the state of the experiment to the prior one. As one of the most defining (or at
least remembered) pictures of my PhD time, Fig. 4.5 shows the leftovers of this pump.

During the last weeks of writing this thesis, another pump of identical type burst as
well, showing the same behaviour almost exactly one year later. The second pump burst
without anyone directly present, but alarmed the technicians due to the explosion being
heard in the complete building. The pump is from a different production batch according
to the serial number. It is now planned to replace the last four identical pumps left in
the setup as soon as possible.

4.2.4 The 20Ne9+ Resonances

In this section, the three individual measured resonances for the g factor of 20Ne9+ are
presented. Fig. 4.6 shows the last and most precise of the recorded resonances for the
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Figure 4.6: The most precise of the resonances for 20Ne9+, again with green dots for an ir-
radiated ratio Γ, where a spinflip was observed, red ones without spinflip. The green
line shows a Maximum-Likelihood fit of a Gaussian distribution, the binned data is
shown only for reference. The shaded area indicates the 1𝜎 confidence interval of
the fit.

20Ne9+ g factor, after the trap had been fully characterized again following the turbop-
ump incident. The complete results are summarized in Tab. 4.3.

The last resonance is not only the most precise of the single ion measurements, but
also still in agreement with the those measured initially, indicating that the setup is not
unexpectedly performing in a different manner. While the mass determination from the
combined value of all resonances is of similar precision as the current best value [38],
a deviation of a combineda 3𝜎 is observed. The same tension, already present with the
combined first two resonances, triggered the further investigation of potential system-
atic effects as this is the first measurement performed at Alphatrap using PnA. Further-
more, it is also the first result that can be directly compared to literature values at similar
precision.
Even after rigorous checks of both, the recorded data as well as the experimental param-
eters, no indication for a potential systematic shift to explain this deviation was found.
It should also be noted, that the final resonance was recorded with different parameters,
foremost after fixing a potential problem of the cryogenic switches (see section 4.2.5).
This problem revolves around a transient DC voltage being generated by the switch

aThis includes AME value, experimental and theory uncertainties
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Resonance 1 Resonance 2 Resonance 3
stat. uncert. 4.7 × 10−10 2.7 × 10−10 8.9 × 10−11
Start date 29.04.2020 08.05.2020 20.11.2020
Data points 361 384 421
fitted Γ′ 4045.837 342 07(190) 4045.837 341 89(110) 4045.837 341 95(36)a

relative shifts and uncertainties
𝜈𝑧 drift 0(2 × 10−11) 0(3.5 × 10−12) 0(1 × 10−11)
spec. rel. shift 3.7(12) × 10−11 6.1(15) × 10−11 5.3(11) × 10−11
ICS 2.5(1) × 10−11
Lineshape dip 0(2) × 10−12
𝑇𝑧 5.7(3) K
𝐶4 shift < 2 × 10−13 < 2 × 10−13 < 3 × 10−13
𝐶𝑛≥6 shift < 4 × 10−15 < 7 × 10−15 < 6 × 10−15
𝐵2 (𝜈𝑧 PnA) −3(1) × 10−12 −3(1) × 10−12 0(1) × 10−12
Cryo switch 0(3) × 10−11
corrected Γ0 4045.837 341 83(190) 4045.837 340 85(110) 4045.837 341 63(36)
Mean Γ 4045.837 341 56(34)stat(13)sys
stat. uncert. 8.3 × 10−11
sys. uncert. 1.5 × 10−11

Masses
20Neexp 19.992 440 167 7(17)stat(6)sys(12)theo u
20NeAME 19.992 440 175 3(16) u [38]
comb. diff. 3𝜎
20NePenta 19.992 440 169 5(6) u (Preliminary [76])
Input param.
g factor 1.998 767 277 114(117) [36, 37]
𝑚𝑒 5.485 799 090 65(16) × 10−4 u [74]

Table 4.3: The results for the individual measurements performed for the single ion
20Ne9+ g factor . Rows with a single entry are valid for all three resonances.

aThis measurement has been performed in the asymmetric trap with 𝐵2 ≤ 8 mT
m2 , reducing all related

shifts even further.

upon starting and stopping an excitation drive. This leads to a shift of the axial fre-
quency during the PnA pulses and immediately after, which affects the measured phase.
The pragmatic solution was to keep the switch off a but use a longer pulse time and
increased drive amplitude to achieve a similarly strong second PnA pulse for the ion.
Additionally, resonance 3 was recorded in the asymmetric trap (see section 6.3.1), shift-

aWith off I refer to it being of high impedance state for the applied drive, highly dampening it but not
yielding the otherwise problematic DC potential anymore
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ing the electrostatic minimum into a different and much smaller 𝐵2, which also included
a re-optimization of the electric potential. Due to the turbopump incident, this measure-
ment was also done after a complete, involuntary thermal cycle of the cryogenic section,
a reloading of ions and using a new, different microwave multiplier [66] combined with
a programmable attenuator [67]. Despite all of these modifications, the last measured
Γ is still in agreement with the ones measured initially, showing the same discrepancy,
which was at that point considered to be most likely due to the wrong atomic mass of
20Ne.
The unresolved deviation triggered a further investigation into the atomic mass of 20Ne
by our neighbouring experiment Pentatrap [63]. This Penning trap based mass spec-
trometer setup is currentlya in the process of measuring the mass ratio of 20Ne with
respect to 12C. First preliminary measurements indicate a likely deviation of 3.4𝜎 with
respect to the AME2020 value [38] and will most probably result in a reduction of the
mass. The currently best preliminary result yields 20NePenta = 19.992 440 169 5(6) u,
which would show agreement within a combined 0.8𝜎 with the result of the measure-
ment performed here. If this value is to be officially confirmed once the final evaluation
is finished, the result of the g factor of 20Ne9+ can instead by interpreted as a BS-QED
test on the level of 9 × 10−11.
Furthermore, this likely agreement highlights the performance of the setup and the
newly implemented PnA technique. With the upcoming verification, the improvement
of the 22Ne atomic mass will further gain in credibility as well.

4.2.5 Discussion of Systematic Effects

In this section, all considered sources of systematic effects and measurements performed
to evaluate these will be discussed. Many of these measurements will also apply for the
characterization of the asymmetric trap as used in the coupled ions measurement 6.3.1.

Electric Anharmonicities

The discussion of systematic effects begins with the optimization of the electrostatic po-
tential, as the first essential requirement to perform high precision measurements and
determine the magnitude of other potential systematic contributions. The potential is
optimized before each resonance measurement with a new ion by performing a tuning
ratio measurement, where the ratios of the voltages applied to the correction electrodes
versus the ring electrode voltage are varied. This is done as patch potentials, electro-
static variations across the electrode surfaces due to non-conducting depositions, could

aAs of one week prior to handing in this thesis
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Figure 4.7: A tuning ratio scan performed with 20Ne9+, where the left hand side shows
the axial frequency shift Δ𝜈𝑧 measured for different tuning ratio settings, where the
ratio of voltages is changed by the offset𝑑𝑇𝑅, different for each set of colouredmarks.
Each slope is fitted with a combined polynomial for 𝐶4 and 𝐶6, with the extracted
contributions shown on the right hand side.

be altered when injecting ions or modify the harmonic potential, when working with
significantly different ring voltages.
Despite this optimization, the residual uncertainties of 𝐶4 or even 𝐶6 have to be consid-
ered. One suchmeasurement is shown in Fig. 4.7. Here one compares the axial frequency
of the cold ion to an ion excited to a certain magnetron radius, while varying the tun-
ing ratio. Each curve corresponds to a slightly altered tuning ratio, with the frequency
shift Δ𝜈𝑧 being measured at the corresponding radius 𝑟− compared to a thermalized ion.
These points are then fitted with a polynomial fit to extract the 𝐶4 and 𝐶6 of the indi-
vidual settings. Finally, the individually extracted anharmonicities are compared to the
change in tuning ratio to extract the point where this contribution becomes zero. The
uncertainty for this value determines the potential systematic shift when performing a
PnA measurement. With a residual uncertainty for |𝐶4 | ≤ 3 × 10−5 and |𝐶6 | ≤ 7 × 10−3,
the corresponding relative frequency shift on the free cyclotron frequency is less than
6 × 10−15 (for PnA, even less for double-dip) and can be safely neglected here. Addition-
ally, the axial frequency is shifted during the PnA measurement, due to the excitation
of the cyclotron mode. This amounts to a potential shift of Δ𝜈𝑧 = 0.3mHz due to 𝐶4,
which causes the calculation of the free cyclotron frequency, performed with the axial
frequencymeasuredwith a cold ion, to bewrong by about 3 × 10−13. Withmore than two
orders of magnitude below the statistical error, also this effect can be safely neglected
here.
In principle, the observed axial frequency shifts also depend on other contributions,

specifically 𝐶3 and 𝐵2. As these measurements are done with the magnetron mode in
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the PT where our 𝐵2 contribution is small anyway, the additional effect of the magnetic
field contributions can be neglected. It is helpful to remember that the axial frequency
shifts caused bymagnetic inhomogeneities are related to themagneticmoment of the ion
and therefore small for magnetron excitations but considerably larger for the cyclotron
mode.
Furthermore, as has already been pointed out in the beginning (see section 2.2.1), a
𝐶4 = 0 is not actually achieved for zero observed shifts, but rather only the point where
𝐶4 = 3𝐶2

3/4𝐶2. For the symmetric trap, the 𝐶3 contribution can be assumed to be small, as
all voltages are applied symmetrically. The derived uncertainty for the additional 𝐶4 is
far below what can be resolve.
For the single measurement in the asymmetric trap, simulations of the electrostatic po-
tential already yield 𝐶3 = 2 × 10−3, which translates into a possible 𝐶4 ≈ 5 × 10−6. If
when assuming a 100 % uncertainty for the simulation based 𝐶3 contribution, this does
not result in an additional uncertainty at this point but will be of interest when consid-
ering the coupled ions.

Relativistic Shift and Cyclotron Radii Calibration

Having thus optimized the electrostatic potential, the effect on the axial frequency can
be compared between excitations of the magnetron mode and modified cyclotron mode.
The latter is subject to the additional effects of magnetic inhomogeneities and the rel-
ativistic mass increase. As the effect of this mass increase only has a tiny impact on
the axial frequency (single mHz even with several 100 µm of modified cyclotron radius),
the comparison between the shifts can be used to place limits on the magnetic inhomo-
geneities.
However, the required radii to achievemeasurable axial frequency shifts are significantly
larger than the radius of the modified cyclotron mode during PnA, which culminates in
the requirement of a linear interpolation from the large measured radii to the small radii
then used. To limit the effect of a possible non-linear dependency of the radii on the
excitation, one only scales the time of the excitation pulses rather than their amplitude,
as one expects a possible non-linear transfer functions to be more likely to depend on
applied power rather than time. This process, combined with possible magnetic inho-
mogeneities, leads to the error being conservatively estimated to 10% of the determined
radius, based on simulations and the observed robustness for different ion species.
The mass increase during the measurement sequence of PnA results in a smaller cy-
clotron frequency, which in turn leads to a measurement of a too large Γ. The resulting
relative shift of about 5(1) × 10−11 is included as a systematic correction and contributes
the second largest single systematic uncertainty due to the dependency on precisely de-
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termined radii.
To independently verify those radii, the cyclotron frequency dependence on the radius
can be compared to the expectation of the relativistic shift. To this end, PnA is used to
measure the phase evolution for different excitation radii. Here, one expects the shift of
the modified cyclotron frequency 𝜈+ to follow [77]

𝛿𝜈+
𝜈+

= − 𝜈+
𝜈+ − 𝜈−

𝑣2

2𝑐2
≈ − (2𝜋𝜈+𝑟+)2

2𝑐2
, (4.7)

with the corresponding radius 𝑟+, the magnetron frequency 𝜈− and the vacuum speed
of light 𝑐 . This is fit to the data shown in upper part of Fig. 4.8. When comparing the
scaling of this fit to the one expected from Eq. (4.7), one finds that the thus measured
radii seem to be too small by 3.7%. This is well in agreement with the calibration of the
𝐶4 method, given the assigned error of 10%. The small curvature that can be observed in
the lower part of Fig. 4.8 is a quartic dependency, stemming from either a𝐶6 or a 𝐵4 con-
tribution. If this correction is extrapolated to radii around 20 µm, the relative shift is of
less than 4 × 10−14, assuming a scaling of at least ∝ 𝑟 4 and can be neglected here. Finally
it should be noted, that the uncertainty of the relativistic shift (or its correction) can be
significantly improved by recording resonances for different PnA radii and then fitting
the expected quadratic behaviour of the relativistic shift versus the chosen cyclotron ra-
dius. When extrapolating the thus obtained values for Γ to the zero radius point, this
uncertainty can be strongly reduced as shown for example in [69], Fig. 17. As this was
not performed here, the relativistic correction poses the second largest systematic un-
certainty of these measurement, however still about one order of magnitude below the
statistical precision. Finally, it has to be noted that the effect of special relativity also
has an impact on the Larmor frequency. However, this effect is suppressed by a factor of
Γ = 𝜈𝐿/𝜈𝑐 ≈ 4000 [48]. This leads to a correction of 1.5 × 10−14 and can also be neglected
for these measurements.

Magnetic Inhomogeneities

The modified cyclotron frequency is shifted due to the enlarged radius during PnA and
the effective different magnetic field due to a 𝐵2 contribution. This is mostly compen-
sated by the Larmor frequency undergoing the same relative shift (see Eq. (2.21)). How-
ever, the axial frequency is shifted during the measurement of the modified cyclotron
frequency due to the additional magnetic moment (see Eq. (2.22)) during the PnA cy-
cle. This frequency shift amounts to roughly Δ𝜈𝑧 ≈ 3mHz and requires a correction of
the free cyclotron frequency of −3 × 10−12 for all but the measurement performed in the
asymmetric trap with a significantly reduced 𝐵2.
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Figure 4.8: The change in measured phase for different excitation radii and the residuals
when compared to the expected behaviour. For details see text

Image Charge Shift

The image charge shift (ICS) arises due to the image charges induced into the electrodes
by the ion. This introduces an additional potential, that due to the back action on the
motion of the ion results in shifted frequencies. This shift has been discussed extensively
in [78] and is assumed to be predictable to 5% precision. It can be calculated as

Δ𝜈𝑐
𝜈𝑐

≈ −0.994 𝑚ion

4𝜋𝜖0𝑟 3𝐵2
0

(4.8)

with the radius of the trap 𝑟 and the correction factor stemming from the trap geometry
[56]a. As the sign can be a bit confusing, depending on which derivation one follows,
let’s clarify: the measured cyclotron frequency will be measured too small, leading to a
Γ that is too large (positive shift). This means, that the corrected Γ has to be smaller. It
has been corrected for all measured resonances, with the residual systematic uncertainty
being in the low 1 × 10−12 regime.

Temperature Measurements

The temperature of the ions has been evaluated by performing a Maximum-Likelihood
fit to the observed axial frequency offset in the AT for each cycle of the respective mea-
surement. These shifts encode the cyclotron energy according to Eq. (2.21), after being

aUsing 𝜖𝑟 = 1964(98) µV
m2 for our trap and comparing the results from Eq. (14) and (17) in [78]
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Figure 4.9: Maximum-Likelihood fit for a Boltzmann distribution of the measured axial
frequencies, to extract the lowest possible frequency shift and cyclotron temperature
during the PTmeasurement. The distribution occurs due to the ion having a different
cyclotron temperature each cycle in the strong magnetic bottle (𝐵2) of the AT.

coupled to the axial mode in the PT. This allows to determine the temperature via [41]

𝑝 (Δ𝜈𝐴𝑇𝑧 ) = Θ(𝜈𝐴𝑇𝑧 − 𝜈𝑧,0)𝛼𝑒−𝛼 (𝜈
𝐴𝑇
𝑧 −𝜈𝑧,0) with (4.9a)

𝛼 =
4𝜋2𝐵𝐴𝑇0 𝑚𝑖𝑜𝑛𝜈𝑧,0

𝐵𝐴𝑇2 𝑘𝐵𝑇+
, (4.9b)

where 𝜈𝑧,0 corresponds to the frequency which would be observed for a ground-state
cyclotron energy, producing no shift. The Heaviside function Θ restricts 𝜈𝑧,0 to values
smaller than the actual observed ones, effectively excluding negative energies or making
sure that𝜈𝑧,0 cannot be larger than any actuallymeasured value. Now, both the frequency
for the coldest possible ion as well as the cyclotron temperature can be extracted, which
is related to the axial temperature by

𝑇𝑧,PT =
𝜈𝑧,PT
𝜈+,PT

𝐵0,AT

𝐵0,PT
𝑇+,AT. (4.10)

One exemplary evaluation, here for the g factor of the last 20Ne9+ measurement, is shown
in Fig. 4.9, while the carbonmeasurement showed on average𝑇𝑧,PT = 7.1(4) K and 22Ne9+

was evaluated to an average of𝑇𝑧,PT = 5.0(3) K. Neither temperature results in necessary
systematic corrections.
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Resonance Lineshape with 𝐵2

All resonances have been evaluated using a symmetric resonance lineshape, of either
Gaussian, Lorentzian or Voigt type. However, the continuous thermalisation of the ion
in its axial mode during the irradiation of the microwave, combined with a residual 𝐵2,
leads to a convolution of the lineshape with a Boltzmann distribution. This arises from
the fact, that the cyclotron frequency is determined individually each run, while the
Larmor frequency can only be extracted from the full set of measurements. As this is
not a symmetric distribution, the centre value of the resonance can be shifted. This shift
has been evaluated by Verdú [79] and Köhler [41] extensively. In the case of a Lorentzian
distribution, this can be written as

𝑝𝑠 𝑓 (Γ∗) =
1
2

∞∫
0

𝛾2

𝛾2 + (Γ0 + 𝛼𝐵2 (𝐸𝑧 − 𝐸𝑧) − Γ∗)2
1

𝑘𝐵𝑇𝑧
𝑒
− 𝐸𝑧
𝑘𝐵𝑇𝑧,𝐴𝑇 𝑑𝐸𝑧, (4.11)

with 𝛼𝐵2 =
𝐵2

𝐵0𝜔2
𝑧𝑚ion

Γ0. The shifted centre value of this modified distribution (compared
to the 𝐵2 = 0 case) can be used to infer the error made by using a symmetric distribution
to a relative 1.5 × 10−16 with measured temperatures of 5.7(3) K (see Fig. 4.9) and can be
neglected here. This is due to the combination of a low axial temperature, and the small
𝐵2 = 0.0643(32) T

m2 (symmetric trap) [18], and is even lower in the asymmetric trap.
Currently, effects due to a 𝐵2 contribution in combination with the irradiated microwave
power are again under further investigation. Specifically, as the resolution (or width) of
the resonances become ever smaller due to an increased cyclotron frequency resolution,
more stable magnetic fields and reduced axial temperatures, the width is already close
to the Lorentzian line-width, given by the microwave power or Rabi frequency. While
a Boltzmann distribution convoluted with a drastically broader Gaussian distribution
does not produce significant shifts, the asymmetry of the Boltzmann distribution be-
comes more important for narrower resonances. These effects are currently considered
numerically and preliminary results predict the effects to be tiny still for the specific
parameters of microwave power, 𝐵2 and ion masses used within this thesis.
However, these considerations might become more important for lighter ions due to the
increased axial amplitudes or when working with significantly larger 𝐵2 contributions
or temperatures. Experimentally, neither for the carbon measurement compared to the
experiment performed in the Mainz setup [69], where 𝐵2 was larger by about one order
of magnitude, nor for the 20Ne9+ measurement, performed in the symmetric (Resonance
1 & 2) and asymmetric trap (Resonance 3) where the 𝐵2 was reduced by an order of
magnitude, could a dependency on 𝐵2 be observed. Therefore, while the 𝐵2 contribution
does not affect the results of the g-factor measurements here, it should not be generally
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discarded.

Dip Lineshape

The extraction of the axial frequency by performing a fit with a fixed lineshape requires
full understanding of the system and in principle also of the transfer function of all elec-
tronics used to extract the signal. Possible frequency shifts have been more extensively
evaluated in combination with the frequency dependency of the resonator in the case
of carbon. Similarly, such an evaluation is repeated here, yielding an uncertainty of
1.5mHz for the axial frequency determination for the neon ions, slightly less compared
to the carbon case. This is due to the measurement being performed in the low Q mode,
where the resonator Q-factor is reduced via a Q-switch [49] from roughly 40 000 to only
about 8000, reducing the dip width as well. Furthermore, as the axial frequency only
enters via the invariance theorem (see Eq. (2.6)) and the reduced cyclotron frequency
has been determined via the PnA method, the effect on the free cyclotron frequency is
only 2 × 10−12 and not relevant on the current level of precision.

DC Voltage of Cryogenic Switch

During the measurement campaign of the last resonance, an axial frequency shift just
after applying an excitation was observed. As the effect vanishes quickly, it went by
unnoticed in the long time-averaged spectra that are normally observed. The effect be-
came visible only in a direct comparison of amplitudes recorded directly after the PnA
sequence for short times.
The shift has been investigated after observing a change of the axial frequency directly
after applying an excitation. The origin of this effect could ultimately be traced to the
cryogenic switches, which are used to change the coupling strength of the external exci-
tation lines to the electrodes. The layout of these cryogenic switches (see Fig. 4.10 [49])
is such, that an applied drive is always capacitively coupled to the excitation electrodes.
The switch is then operated by changing the behaviour of the capacitive voltage divider
by achieving a strong suppression (closed or off ) or allowing for a stronger coupling
(open or on). Unfortunately, the switch rectifies part of the signal due to the non-linear
characteristics of the JFET, which generates a DC burst. This voltage will momentarily
couple to the electrode. This in turn will shift the axial frequency at the start and end
of the coupling pulses of a PnA sequence. The behaviour can be qualitatively simulated,
when approximating the time constant of the system. This depends on several 100MΩ
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Figure 4.10: The design of the cryogenic excitation switches. Figure taken from [49].

to 200MΩa resistors, connected between the split electrode used for excitation and to
the connected voltage supply. With a capacity of the complete system in the range of
about 200 pF, a time constant of several 10ms to a few 100ms can be expected. During
this time, the axial frequency chirps back to its nominal frequency, while the voltage
equalizes back to the applied DC voltage.
This behaviour can best be visualized, when observing the time-domain signal, shown
in Fig. 4.11. This shows the axial frequency dependence in the case where both switches
are on, while a 10MHz pulse is applied to the 𝑄𝑥𝑧 electrode for 0.5 s with an amplitude
of 𝑉𝑝𝑝 = 6V. While this is a significantly stronger pulse compared to what normally is
applied (about a factor of 10 stronger, actually), the frequency is detuned from any of
the ion’s modes and or their combinations. This ensures, that any observed effect is only
related to the drive but not in any direct interaction with the ion. To be able to observe
the ion’s behaviour, it is first detuned from the centre of the resonator and axially excited
to observe the axial frequency as a peak amplitude, now visible as the horizontal yellow
line. The first vertical yellow line corresponds to the 𝑄𝑥𝑧 drive being applied, causing
a spectrally broad signal in the beginning. The ion is detuned to lower frequencies, but
cannot be easily identified while the drive is still applied. The second line corresponds
to the drive finishing and being switched off, causing another broad excitation as ob-
vious from the increased signal in all frequencies. Directly after, the ion can then be
observed to chirp back to its original frequency over a time period of about 500ms, until
the resolution is too low to still observe a frequency difference. The amplitude at the
end is lower due to the slow thermalisation of the ion with the resonator during this
sequence. The effect is strongly suppressed when the switch is off, which however also
results in a strongly reduced strength of the drive reaching the ion. To compensate, a
significantly stronger drive and an increased pulse duration are used instead, calibrated
to achieve a comparable signal strength for the phase readout. Unfortunately, this has

aThis is only approximate due to the strong change in resistance when cooled from room temperature
(100MΩ) to 4 K, where they are closer to 200MΩ in resistance.
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Figure 4.11: Behaviour of the axial frequency during and after a 𝑄𝑥𝑧 pulse. Despite the
excitation being far detuned from all ion modes, the ion can be observed to shift and
chirp back to its original axial frequency at the end of the pulse. For details see text.

only been done for the second PnA pulse of the last recorded resonance, leading to the
requirement of intensive comparisons of the measured phase depending on the state of
the switch. The other resonances have been recorded with both switches on, however
the phase has only been recorded 150ms after the 𝑄𝑥𝑧 pulse, after which the voltage
offset had diminished to not be noticeable anymore when using lower drive amplitudes.
Possible effects related to

• the waiting time after the second PnA pulse

• the differences between switch off vs switch on

• effects on the shortest evolution time, to exclude effects of the first PnA pulse

have been investigated.
To exclude effects due to different waiting times before the SR1 is triggered at the end
of the PnA cycle, two separate phase differences are recorded and compared. This is
done by measuring for two evolution times, 𝜏1,0 = 0.2 s and 𝜏1,1 = 8.2 s. For the first
phase difference, the FFT sampling begins 1ms after the end of the second pulse for
both evolution times. The second phase difference is recorded for identical evolution
times, however the signal is now recorded starting 150ms after the end of the second
pulse.
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The comparison of these two phase differences is found to be identical within 1𝜎 of the
statistical resolutiona of about 1°, which corresponds to a relative resolution of the cy-
clotron frequency of 1.4 × 10−11, averaged over 100 cycles. The result is shown in Fig.
4.12, inset (A). Therefore, dependencies on the waiting time after the second PnA pulse
can be excluded.
Similarly, such measurements have been performed for all possible combinations of
switch on versus switch off. However, since none of the times of the sequence have
to be changed, the phases recorded for individual settings of the switches can be directly
compared instead of having to compare pairs of phase differences as before.
Insets B, C and D show the recorded differences for 240 cycles of each of the correspond-
ing measurement settings. The four possible settings (resulting in three graphs of their
respective differences) are all compatible with zero within 1𝜎 , for simplicity all graphs
show the direct comparison with respect to the off-off setting, corresponding to the 𝐷𝑥

switch off and the 𝑄𝑥𝑧 switch off, respectively. If any related effect is assumed to be
completely covered within the used measurement time of 𝜏 = 4.2 s, one can postulate
that the absolute difference observed here is the same if measuring for the full evolution
time of 𝜏 = 8.2 s as used in the actual measurements. This results in a lower standard
deviation due to the reduced magnetic field jitter as the time is shorter, while the full res-
olution of the examined effect when scaling it to the full measurement time is achieved.
The thus derived upper limit for a potential systematic shift is 2.6 × 10−11 and is included
for the measurements of both neon isotopes as a systematic uncertainty. For future mea-
surements, further care has been taken by J. Morgner to optimize the PnA routine. To
this end, a pulse shaping routine has been implemented, to allow smoother applications
of the drive, especially when using excitation pulses starting with anything but a zero
phase. This new scheme has been found to yield consistent results compared to the
routine applied here and will be discussed in his thesis more closely.

aThe standard deviation of all differences, divided by the square-root of the amount of data points, the
difference is consistent with zero.
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Figure 4.12: Tests for potential systematic effects based on the dependency of different
switch and PnA settings. Inset (A) compares the measurement of the phase directly
after the second pulse versus a delay time of 150ms. Insets (B) to (D) directly compare
the phase difference for all different combinations of switch states. Systematic effects
can be excluded here on a level of about 2 × 10−11.
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5.1 The General Idea

The idea of using coupled ions in a Penning trap is not new and ion crystals are com-
monly used for laser spectroscopic measurements [80, 81]. This technique, or more
specifically, the adaptation of the method developed in the context of this thesis, is
strongly based upon the work performed at MIT by S. Rainville [82, 83] and J. Thomp-
son [84]. They have shown that two ions, coupled as a magnetron ion crystal, can be
used to perform extremely precise mass comparisons based on the groundwork laid by
E. Cornell in the early 90s [85]. The main motivation there was to suppress the inherent
magnetic field fluctuations, stemming from both external sources as well as the magnet
itself, which were severely limiting their possible measurement time and ultimately also
the final precision. While these restrictions are not quite as severe for our setup and
do not limit our possible measurement time to only certain hours during the night, the
magnetic field fluctuations still restrict the possibility of how the Larmor frequency can
be obtained. Furthermore, the masses of the measured ions are additionally required
to be of sufficient precision to enable the comparison of absolute g factors, as they are
direct input parameters.
Despite the advances of phase sensitive techniques [55], the measurement time (or phase
evolution time) required to determine the cyclotron frequency precisely enoughb renders
it impossible to coherently measure the Larmor frequency in the same time frame. This
is due to inherent (and external) magnetic field fluctuations, which induce a loss of co-
herence with respect to an externally applied microwave drive. This culminates in the
need of a statistical evaluation, where the frequency ratio can only be extracted from a
fit to the complete distribution, mostly given by these fluctuationsc .
Ultimately, this limits the precision that can be achieved, depending on how far one is
willing to split the line – or how precise one wants to determine the centre of a distri-
bution. Related to this is the time one requires to achieve the statistical precision to

bIt takes about 10 s of evolution time to achieve relative precisions of low 10−10, see Eq. (2.28).
cThis is at least the case if the measurement parameters are chosen to not let other effects, such as power
broadening, determine the line shape.
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measure a distribution of some 1 × 10−9 FWHM to low 1 × 10−11 for the centre value.
Here, we want to get around both of these restrictions, while, as an added benefit, re-
moving the need of precise masses for the ions and the electron. Also the need of an
extremely precise magnetic field measurement is strongly relaxed, typically by a factor
of order Δ𝜈𝐿/𝜈𝐿, with Δ𝜈𝐿 = (𝜈𝐿,2 − 𝜈𝐿,1) � 𝜈𝐿

a. Finally, having the ions in the same po-
tential results in them experiencing the same fluctuations of the electric potential due to
the applied voltage. While not yet of concern during typical measurements, this benefit
will become useful when one is also interested in precise cyclotron frequencies.
The method developed, implemented and successfully applied during the course of this
thesis is meant to measure the difference of g factors as opposed to masses which was
the case in the Ion Balance [83]. As already successfully shown at MIT, the magnetic
field fluctuations can be strongly suppressed in the ratio of the cyclotron frequencies
when looking at the two ions in close proximity where coherence could be shown for
several 100 s despite a noisy magnetic field environment. This works as long as both
ions experience identical fluctuations, which poses some restrictions for both, possible
ion candidates as well as a maximum spatial separation where this assumption is still
valid.
As a final note, one should remember that the Larmor frequencies are several orders
of magnitude larger than cyclotron frequencies. Therefore, the coherence for the spin
states might be subject to effects that are not related to the time-scale of the cyclotron
motions of the ions. When starting to develop this method is has thus been unclear if a
similar cancellation could also be achieved for the Larmor frequencies of such coupled
ions and which level of coherence of the quantum states could be obtained.

5.2 An Introduction to Coupled Ions

The complete measurement scheme rests on the principle of coupling the ions as a mag-
netron ion crystal, with the purpose of getting the ions spatially as close as possible
without designing specialized traps at micrometer scales. Even if small distances of some
10 µm can be achieved, the typical 𝐵1 gradients are of order of mT

m . Therefore, even such
distances would result in relative frequency shifts of order 1 × 10−8. Thus it has to be
ensured, that the ions will be placed in the identical position, or more specifically, the
identical average magnetic field. This can be achieved in a magnetron crystal, where it
will be possible to describe the system of coupled ions mostly by the dynamics of their
respective magnetron modes while axial and modified cyclotron frequency will experi-

aThis definition will make sense later on. 20Ne9+ will receive index 2, while 22Ne9+ is index 1, such that
the difference frequency remains positive.
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ence shifts, but can otherwise be treated as independent modes.
In this chapter I will focus on the dynamics and physics of such a coupling, deriving
the related shifts and consequences for the motions of the ions. First, an understanding
on how to characterize the motion and which properties have to be measured (or are
accessible) to verify the state of such a coupled ion crystal will be established. Building
upon this, methods to manipulate the coupled system will be derived and potential sys-
tematic effects for a Larmor frequency difference measurement will be considered. The
main difference compared to the mass measurements of the Ion Balance [82] that has to
be kept in mind while reading this, is that there is no interest in any of the motional
frequencies, or specifically, the cyclotron frequency. To extract the g-factor difference,
it suffices to measure the difference of Larmor frequencies, where the absolute magnetic
field does only enter in a strongly relaxed manner as the required precision is suppressed
by the ratio of the frequency difference to the absolute Larmor frequency. For the ex-
ample of the chosen neon isotopes, this translates to more than 8 orders of magnitude
suppression with respect to the absolute magnetic field. Furthermore, one should note
that this scheme was initially developed to compare almost identical masses, whereas
here a system of ions where the mass is roughly 10% different will be used. However,
the relative difference in Larmor frequencies is in this specific case only about 7 × 10−9.

5.3 Rabi Frequencies and Coupling

To follow this study, it is helpful to understand the general concept that will be applied
throughout this chapter. The modes will always be assumed to be independent first and
then examined for how strongly they influence each other. Here, an analogy to the side-
band coupling or the general Rabi process is very helpful. To this end, one ion can be
considered to drive the other one with the frequency of its own mode, which makes it
an effective RF drive exerted on the other ion. If this drive frequency is far detuned from
the mode it might interact with, this is the weak coupling regime where the frequency is
slightly shifted, but no effective coupling takes place. This is analogous to applying a far
detuned drive for a Rabi oscillation, where the effective (or generalized) Rabi frequency
can be defined as Ω̃𝑅 =

√
Ω2
𝑅 + Δ2, with the actual Rabi frequency Ω𝑅 and the detuning

Δ. While this frequency becomes very large, the exchange rate or amplitude of the mod-
ulation becomes tiny, scaling as Ω2

𝑅/Ω̃𝑅 . No matter how fast the modulation becomes, if
the coupling is weak there is no effective exchange between the modes – they remain
uncoupled. Only in the regime where the coupling becomes strong, due to the detuning
being small compared to the Rabi frequency, the modes are considered to be coupled. In
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terms of the ions, that means one can study the strength of the interaction, mediated by
the Coulomb force compared to the frequency difference of the respective ion modes.
Therefore, there is a tendency to consider the observed frequency shifts as Rabi frequen-
cies, independent of the modes actually coupling. This is somewhat equivalent to the
argument, that if they were coupled, the modes would decompose into two new normal
modes, with a frequency difference of this Rabi frequency between them.

5.3.1 Definitions

First, a few concepts have to be introduced and definitions made, which will occur from
here on to simplify the description of the motions. These loosely follow the conventions
used in [84, 85]. Further, the identical charge 𝑞 for both ions is assumed, saving the
indices here.
The average mass𝑚0 is given as

𝑚0 =
1
2
(𝑚1 +𝑚2), (5.1)

which can be used to express the imbalance of the masses with the parameter 𝜂 as

𝑚1 =𝑚0(1 + 𝜂) (5.2)

𝑚2 =𝑚0(1 − 𝜂). (5.3)

For this measurement case,𝑚1 to chosen be the mass of 22Ne9+ and𝑚2 that of 20Ne9+.
Further, the frequencies of a fictitious ion of the mean mass𝑚0 can be defined analogous
to the normal frequencies in a Penning trap as

𝜔𝑐,0 =
𝑞𝐵

𝑚0
(5.4)

𝜔𝑧,0 =

√
𝑞

𝑚0

𝑉𝑟𝐶2

𝑑2char
(5.5)

𝜔±,0 =
1
2

(
𝜔𝑐,0 ±

√
𝜔2
𝑐,0 − 2𝜔2

𝑧,0

)
, (5.6)

which will mostly be used to generalize and simplify the equations.
Finally, it will prove to be useful to think of the interaction strength of the coupled ions
in terms the Coulomb force expressed as an interaction frequency as

Ω𝐸 =

√
1

4𝜋𝜖0
𝑞2

𝑚0𝑑3sep
, (5.7)

64



5 Coupled Ions: The Coupled Motion

with the distance between the ions 𝑑sep and assuming the charge of the ions 𝑞 to be iden-
tical.

5.3.2 Coupling of the Modes

As already mentioned above, the interaction of the individual modes can be qualitatively
described when comparing the interaction strength, given as an effective Rabi frequency,
to the frequency difference of the modes. The Rabi frequencies of the individual modes
will be derived in the following pages, but it simplifies the understanding of the general
idea when already comparing these frequencies to the interaction frequency before fur-
ther developing this model.
For the neon isotopes 20Ne9+ and 22Ne9+, on a separation distance of 𝑑sep = 411 µm,
which will be the distance mostly used later on, these Rabi frequencies of each mode are
given as

Ω+ =
Ω2
𝐸

𝜔𝑐
= 7.5Hz · 2𝜋 (5.8a)

Ω𝑧 =
Ω2
𝐸

𝜔𝑧
= 301Hz · 2𝜋 (5.8b)

Ω− =
2Ω2

𝐸

𝜔𝑐
= 15Hz · 2𝜋. (5.8c)

These can now be compared to the difference of the individual frequencies of the two
ions. Here, the voltages are assumed to be adjusted such that 22Ne9+ is tuned into
resonance with the axial resonator at 𝜈𝑧 ≈ 651 kHz. The differences in frequencies
𝜈20Ne − 𝜈22Ne are then

𝛿𝜈+ ≈ 2.5MHz � Ω+
2𝜋

(5.9a)

𝛿𝜈𝑧 ≈ 31.8 kHz � Ω𝑧

2𝜋
(5.9b)

𝛿𝜈− ≈ −330mHz � Ω−
2𝜋

(5.9c)

𝛿𝜈𝐿 ≈ 758Hz. (5.9d)

At this point one can see, that the differences of axial and modified cyclotron frequen-
cies are several orders of magnitude larger than the Rabi frequencies of the respective
modes. Therefore, they basically remain independent of each other. However, the mag-
netron frequencies of the ions are almost identical as they only depend on the applied
voltage to first order, their difference amounts to only Δ𝜈− ≈ −330mHz and is signifi-
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cantly smaller than the magnetron Rabi frequency Ω−. Therefore, while both axial and
modified cyclotron motion will be perturbed by the presence of the respective other ion,
they are not coupled to each other. For the magnetron mode however, the ions will be
locked in phase relative to each other on opposite sides of the trap due to their strong
interaction, resulting in a strongly coupled system in this mode only.

5.4 The Axial Frequency Shift

The first order axial frequency shift for both ions can be directly inferred when one
considers the additional repelling Coulomb force the ions exert onto each other (see
Appendix 8.3.1). Here, a large separation distance compared to small axial and cyclotron
modes is assumed. This is valid as the magnetron separation distance will typically be
of several 100 µm, while both axial and cyclotron mode will be at their thermal radii of
𝑧 ≈ 16 µm and 𝑟+ ≈ 2 µm, respectively. The frequency shift Δ𝜔𝑧,𝑖 for the individual ions
𝑖 compared to the unperturbed system is given by

Δ𝜔𝑧,𝑖 = − 1
4𝜋𝜖0

𝑞2

2𝑚𝑖𝑑3sep𝜔𝑧,𝑖
(5.10a)

= −
Ω2
𝐸

2𝜔𝑧,𝑖
(5.10b)

= −Ω𝑧,𝑖

2
. (5.10c)

This is instructive, showing that the axial frequency will always be shifted to lower value
and that the shift scales with ∝ 𝑑−3sep. The second order contribution one has to consider
stems from the dynamic interaction of the ions. The ions experience the Coulomb force
modulated by the axial motion of the other ion respectively, which results in an effective
excitation below resonance for the higher frequency ion, and above resonance for the
lower frequency ion [84]. This breaks the symmetry in the sign of this shift and one can
write the individual axial frequency shifts as

Δ𝜔𝑧,1 = −Ω𝑧,1

2
− Ω2

𝑧

8𝜋𝛿𝜈𝑧

Δ𝜔𝑧,2 = −Ω𝑧,2

2
+ Ω2

𝑧

8𝜋𝛿𝜈𝑧
.

(5.11a)

(5.11b)

This additional contribution is a correction of less than 0.5% to the total frequency shift
and can in principle be neglected. However, these shifts yield the first crucial measure-
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ment parameter, as by comparing the shifted frequency versus that of a single cold ion,
the separation distance between the ions can be immediately inferred. Therefore, the
frequency of a single cold ion has to be measured for a given voltage prior to coupling
the ions.

5.5 The Magnetron Motion

Due to the coupling, the magnetron mode is of largest interest here. As it is also the
most complex, the dynamics will be treated more carefully. The complete system will be
treated classically, as all quantum numbers are of 𝑛𝑖 > 100 000 for the respective modes.
First, it will be shown that the coupled magnetron motion can be well described with
the new normal modes, the separation mode, described by the parameter 𝑑sep as well as
a common mode motion with radius 𝑟com.

5.5.1 Conservation of Energy and Angular Momentum

Here, the focus will be on the conclusions that can be drawn from conserved quantities.
It is of most interest, how well the coupled system can be approximated by assuming the
motion to be correctly parameterized by the constants 𝑑sep and 𝑟com .
As shown by Cornell et al. [85], conservation of the total canonical angular momentum
as well as the conservation of energy can still be assumed in the case of two coupled ions
in the trap. Here, I will follow this derivation, however it will be adapted to the present
case. For now, both cyclotron and axial amplitudes are assumed to be zero, leaving only
the magnetron radii, described by the vectors 𝝆1 and 𝝆2 from the trap centre to the
position of the ions. One can then define the vectors

𝒅sep = 𝝆1 − 𝝆2 and (5.12a)

𝒓com =
𝝆1 + 𝝆2

2
. (5.12b)

Note, that the interest typically rests upon the norm of these vectors, where 𝑟com is the
radius of the centre of mass motion of the coupled systemwith respect to the trap centre,
while 𝑑sep is the complete separation distance between the two ions. The total canonical
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angular momentuma for two such ions can then be written as

𝐿𝑧 =
𝑞𝐵

2
(𝝆2

1 + 𝝆2
2) +𝑚1𝝆1 × ¤𝝆1 +𝑚2𝝆2 × ¤𝝆2 (5.13)

with the vectors 𝝆1 and 𝝆2 pointing from the trap centre to the respective ion. The total
energy for the magnetron motion (using Eq. (2.7c)), including the additional potential
energy of the Coulomb interaction of the two ions, is

𝐸 = −1
4
𝑚1𝜔

2
𝑧,1𝝆

2
1 −

1
4
𝑚2𝜔

2
𝑧,2𝝆

2
2 +

1
2
𝑚1 ¤𝝆1

2 + 1
2
𝑚2 ¤𝝆2

2 + 1
4𝜋𝜖0

𝑞2

𝑑sep
. (5.14)

While it is more elegant to write the parts of the equation related to the trapping po-
tential in terms of axial frequency 𝜔𝑧 and mass, these are actually independent of the
mass. Separating the terms for the individual ions and using the unperturbed magnetron
velocities instead [85], one obtains

𝐿𝑧 = 𝝆2
1

(
𝑞𝐵

2
−𝑚1𝜔−,1

)
+ 𝝆2

2

(
𝑞𝐵

2
−𝑚2𝜔−,2

)
+ 𝜖𝐿 (5.15)

and

𝐸 = 𝝆2
1

(
−
𝑚1𝜔

2
𝑧,1

4
+
𝑚1𝜔

2
−,1

2

)
+ 𝝆2

2

(
−
𝑚2𝜔

2
𝑧,2

4
+
𝑚2𝜔

2
−,2

2

)
+ 1
4𝜋𝜖0

𝑞2

𝑑sep
+ 𝜖𝐸 ,

(5.16)

with the corrections for the substitution error 𝜖𝐸 and 𝜖𝐿 . These errors can be shown to
be of order Ω2

𝐸

𝜔2
𝑐,0
and

𝜔2
2,0

𝜔2
𝑐,0
[85] and can therefore be neglected. Furthermore, the magnetron

frequencies are assumed to be identical, treating them as 𝜔−,0. Then, the definition of
𝑚1,𝑚2 and the mass imbalance 𝜂 is applied which yields

𝐸 = (𝝆2
1 + 𝝆2

2)
[
−
𝑚0𝜔

2
𝑧,0

4
+
𝑚0𝜔

2
−,0

2

]
+ (𝝆2

1 − 𝝆2
2)

[
𝜂𝑚0𝜔

2
−,0

2

]
+ 1
4𝜋𝜖0

𝑞2

𝑑sep
. (5.17)

The canonical angular momentum is treated similarly resulting in

𝐿𝑧 = (𝝆2
1 + 𝝆2

2)
[
𝑞𝐵

2
−𝑚0𝜔−,0

]
+ (𝝆2

1 − 𝝆2
2)

(
−𝜂𝑚0𝜔−,0

)
. (5.18)

aThis uses the Lagrangian generalized momentum, adding the dependency on the magnetic field, instead
of only the kinetic momentum, see Appendix A.1 in [43]
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Figure 5.1: Here, the change in position of the two ions is shown to illustrate the maxi-
mum possible change of the quantity 𝝆2

1 − 𝝆2
2.

The critical argument is now to allow the individual radii 𝝆1 and 𝝆2 to evolve with time,
but noting that the changes in 𝝆2

1 + 𝝆2
2 and 𝝆2

1 − 𝝆2
2 must be related due to the required

conservation of both, energy and angular momentum. From Eq. (5.18) it can therefore
be derived that

𝛿 (𝝆2
1 + 𝝆2

2) = 𝛿 (𝝆2
1 − 𝝆2

2)
2𝜂𝜔−,0

𝜔𝑐,0 − 2𝜔−,0
. (5.19)

Similarly, the conservation of energy leads to

𝛿

(
𝑞2

4𝜋𝜖0𝑚0𝑑sep

)
= 𝛿 (𝝆2

1 + 𝝆2
2)

[
𝜔2
𝑧,0

4
−
𝜔2
−,0
2

]
− 𝛿 (𝝆2

1 − 𝝆2
2)

(
𝜂𝜔2

−,0
2

)
, (5.20)

after dividing by mass𝑚0. When now inserting Eq. (5.19), this yields

𝛿

(
𝑞2

4𝜋𝜖0𝑚0𝑑sep

)
= 𝛿 (𝝆2

1 − 𝝆2
2)

[
2𝜂𝜔−,0

𝜔𝑐,0 − 2𝜔−,0

(
𝜔2
𝑧,0

4
−
𝜔2
−,0
2

)
−
𝜂𝜔2

−,0
2

]
. (5.21)

When applying the approximations of𝜔𝑐,0 � 𝜔−,0 as well as𝜔2
𝑧,0 ≈ 2𝜔−,0𝜔𝑐,0, this results

in

𝛿

(
𝑞2

4𝜋𝜖0𝑚0𝑑sep

)
= 𝛿 (𝝆2

1 − 𝝆2
2)
𝜂𝜔2

−,0
2

. (5.22)

The maximum length for each of these vectors is reached, when 𝝆 𝒊 = 𝒅sep/2± 𝒓com, added
linearly. The maximum possible change of 𝝆2

1 − 𝝆2
2 is therefore related to the common

mode radius and limited to 𝛿 (𝝆2
1 − 𝝆2

2)max = 4𝑑sep𝑟com when the ions change positions.
This is illustrated in Fig. 5.1.
As will be shown later on (see section 6.2.4), the common mode radii can be verified
to be 𝑟com ≤ 100 µm, or to simplify, 𝑟com ≲ 𝑑sep/4, after preparing the ions. When
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additionally using the ion interaction frequency from Eq. (5.7), as well as the relation
𝛿 1
𝑑sep

= − 1
𝑑2sep

𝛿𝑑sep the relative change for the separation distance is limited to

����𝛿𝑑sep𝑑sep

���� ≤ 𝜂𝜔2
−,0

2Ω2
𝐸

, (5.23)

which becomes zero when there is no commonmode or for equal masses. The additional
factor of 2 (compared to [84, 85]) stems from the stronger restriction for the magnitude
of common mode radius. For this measurement case, where the ions are prepared with
𝑑sep ≈ 400 µm, this yields a maximum possible change of

���𝛿𝑑sep𝑑sep

��� = 0.008.
This restriction allows us to assume the separation distance to be a constant of the mo-
tion, which makes the treatment as a static system possible and allowing for a much
simpler derivation of the further dynamics of the system. Furthermore, due to the con-
servation laws, a constant separation distance directly implicates that the commonmode
has to remain constant as well.

5.5.2 Cyclotron Frequency Shift

The measurement of the Larmor frequency difference will to a large extend be indepen-
dent of the actual cyclotron frequencies of the ions. Therefore, it suffices to only examine
these shifts to first order. To this end, the interaction is first treated as a monopole shift,
assuming a stationary guiding centre and the separation 𝑑sep. The system has already
been treated similarly to determine the resulting force experienced by the other ion to
derive the axial frequency shift (see appendix 8.3.1). As the standard EOM of a single
trapped particle is still valid, albeit with a now shifted axial frequency, this can be writ-
ten in terms of modified axial frequency 𝜔2

𝑧,0. Further, the radial mode vector 𝝆, given
as

𝝆 =

(
𝑥

𝑦

)
(5.24)

is now expressed using the function 𝑢 (𝑡) = 𝑥 (𝑡) + 𝑖𝑦 (𝑡). This yields the expression for
the modified motion with the inclusion of Coulomb repulsion as

¥𝑢c,0 = −𝑖𝜔𝑐,0 ¤𝑢c +
1
2

(
𝜔𝑧,0 −

Ω2
𝐸

2𝜔𝑧,𝑖

)2
(5.25)

= −𝑖𝜔𝑐,0 ¤𝑢c +
1
2
�̃�2
𝑧,0. (5.26)

Interestingly, it can be shown that combining the thus shifted frequencies in the invari-
ance theorem (Eq. (2.6)) the shift completely cancels for the first order contributions.
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Furthermore, one can show that tuning the ion back to its original axial frequency by
changing the applied trap voltage, this also changes the modified cyclotron frequency
mostly back to the original value. To express the actual shift of the modified cyclotron
frequency in the coupled system when the trap voltage is not adjusted to account for the
axial frequency shift, this can be written as

Δ𝜔+ =
Ω2
𝐸

2𝜔2
𝑐,0

=
Ω𝑐

2
,

(5.27a)

(5.27b)

where Ω𝑐 can be interpreted as the Rabi frequencya of the modified cyclotron mode and
amounts to about Δ𝜈+ ≈ 3.5Hz.
The next order, or first mass dependent shift is only a small correction, yielding [84]

Δ𝜔+ =
Ω𝑐

2

(
1 +

𝜔2
𝑧,0

𝜔2
𝑐,0

)
, (5.28)

which amounts to about 2mHz in the case discussed here. If one wants to investigate
ratios or differences of the cyclotron frequencies, the shift is even further suppressed
since both frequencies are shifted almost identically, therefore still allowing for a precise
comparison.

5.5.3 Equations of Motion

The EOMs for the radial direction can be considered similarly as those of a single ion by
adding the additional Coulomb repulsion. They can then be written as

𝑚1 ¥𝝆1 = 𝑞1𝐵0 ¤𝝆1 × 𝑧 + 1
2
𝑚1𝜔

2
𝑧,1𝝆1 +

𝑞2(𝝆1 − 𝝆2)
4𝜋𝜖0𝑑3sep

and (5.29a)

𝑚2 ¥𝝆2 = 𝑞2𝐵0 ¤𝝆2 × 𝑧 + 1
2
𝑚2𝜔

2
𝑧,2𝝆2 −

𝑞2(𝝆1 − 𝝆2)
4𝜋𝜖0𝑑3sep

. (5.29b)

Using the definitions of 𝑑sep and 𝑟com and assuming the masses to be equal (𝑚0 = 𝑚1 =

𝑚2) for now (which also means all frequencies would be identical), the difference of Eq.

aThis is an analogy if the modes were coupled: if the cyclotron frequencies difference would be smaller
than this Rabi frequency, one would also observe a frequency splitting there. However, as this fre-
quency is much smaller than the difference between the cyclotron frequencies, one only observes a
constant frequency shift.
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(5.29a) and (5.29b) yields

¥𝒅sep = 𝜔𝑐,0 ¤𝒅sep × 𝑧 +
[
1
2
𝜔2
𝑧,0 + 2Ω2

𝐸

]
𝒅sep, (5.30)

while the sum gives the equation for the common mode as

¥𝒓com = 𝜔𝑐,0 ¤𝒓com × 𝑧 + 1
2
𝜔2
𝑧,0𝒓com. (5.31)

Even though only the specific case of equal masses is considered here, the decompo-
sition of the coupled magnetron motion into a separation and common mode motion
can be nicely observed here and will only be slightly adjusted for the case of different
masses. Interestingly, the common mode frequency is identical to the frequency of a
single unperturbed particle with mass𝑚0, while the separation mode is slightly faster,
scaling with the interaction strength between the ions. This holds true as long as the
interaction can be described by neglecting axial and cyclotron amplitudes, with the ef-
fective distance between the ions mostly given by 𝑑sep. The coupled system with these
new modes is illustrated in Fig. 5.2.
The frequency difference between these modes will lead to a modulation of the effective
magnetron radius, or the actual distance to the trap centre, of each ion. This will become
important when the magnitude of each mode via a detuning of the trap is measured, sim-
ilarly to the TR scan described in section 4.2.5. Here, the axial frequency will be made
dependent on the magnetron radius by introducing a 𝐶4 contribution. As the effective
magnetron radius is now modulated, this in turn leads to a frequency modulation of the
axial signal with this frequency difference between separation and common mode, with
the modulation index depending on the ratio of separation to common mode radius. If
such a modulation can be observed, a rough estimate for the size of the common mode
as well as the absolute value of the separation distance can be deduced. While this is not
of similar resolution as the observed axial shift introduced in Eq. (5.10c), it provides an
additional parameter to confirm our understanding of the coupled system.
Finally, the difference between the frequencies of these new normal modes Ω− =

𝜔−,𝑠 − 𝜔−,𝑐 can be deduced, when considering the faster separation mode to be the re-
quired speed-up of the common mode to compensate for the additional electric field of
the second ion [84]. As the Lorentz force is already cancelled by the common mode
motion, one of the ions can be considered moving on a circle, where the radius is half
the separation distance 𝜌sep/2, and the frequency is Ω−. The equation of motion (EOM),
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Figure 5.2: The coupled magnetron motion of the two ions. Both figures show the same
model, however (a) shows the motion as the separation mode of the ions and their
centre of mass motion as the common mode. (b) shows the vectors to the position
of the individual ions, where they both perform a coherent separation and common
motion. This leads to an effective centre of mass motion around the trap centre with
the common mode. As the frequencies differ slightly by Ω−(see text), the effective
magnetron radius of each ion is modulated with this difference frequency when a
common mode radius is present.

adapted from Eq. (5.30) can then be written as

−Ω2
−
𝒅sep

2
= −Ω−𝜔𝑐,0

𝒅sep

2
+ Ω2

𝐸𝒅sep. (5.32)

In this frame, rotational frequency is slow and the contribution of the centrifugal force
on the left hand side can be neglected. This then yields

Ω− =
2Ω2

𝐸

𝜔𝑐,0
. (5.33)

This difference can also be derived by studying the separation motion as given in Eq.
(5.30). With the definition of the shifted axial frequency �̃�2

𝑧 = 𝜔2
𝑧 + 4Ω2

𝐸 , the frequency
of the separation mode𝜔−,𝑠 can be directly given analogous to the magnetron frequency
of a single ion (see Eq. (2.5)) as

𝜔−,𝑠 =
𝜔𝑐,0

2
− 1
2

√(
𝜔2
𝑐,0 − 2𝜔𝑧,0 − 8Ω2

𝐸

)
. (5.34)
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Using the approximations of 𝜔𝑐,0 � 𝜔𝑧,0 and 𝜔2
𝑐,0 � Ω2

𝐸 , this can be written as

𝜔−,𝑠 =
𝜔𝑐,0

2
− 1
2

√(
𝜔2
𝑐,0 − 2𝜔𝑧,0

) (
1 +

4Ω2
𝐸

𝜔2
𝑐,0

)
(5.35a)

= 𝜔−,𝑐 +
2Ω2

𝐸

𝜔𝑐,0
(5.35b)

⇒ Ω− =
2Ω2

𝐸

𝜔𝑐,0
, (5.35c)

yielding the same result with the common mode frequency given by the centre of mass
motion for the mean mass. The separation mode frequency is again found to be larger
than the common mode frequency by the beat frequency Ω−.
For the neon ions, with a typical separation distance of 𝑑sep ≈ 400 µm, the frequency
difference amounts to Ω− ≈ 2𝜋 · 15Hz. This leads to multiple swapping cycles, changing
which of the ions is closer to the trap centre or further away, for our typical measure-
ment times of several 100ms up to 2.2 s. The swapping is helpful to ensure that both
ions experience identical magnetic fields on average. Even if a common mode is present,
magnetic field differences due to a radial gradient of the field will be averaged over as the
ions change their position relative to the trap centre several times even during the short-
est measurement times. Additionally, both phase and magnitude of the common mode
will be different for of each measurement cyclea, leading to an averaging over multiple
measurement cycles.

5.5.4 Ions of Different Mass

When looking at a system with ions of different masses, these equations do not decom-
pose as nicely into fully independent modes as shown before. Instead, equation (5.3) can
be used to achieve an expression in terms of their mass difference 𝜂 after dividing the
sum and difference of Eq. (5.29a) and Eq. (5.29b) by the mean mass𝑚0 as

¥𝒅sep = 𝜔𝑐,0 ¤𝒅sep × 𝑧 +
[
1
2
𝜔2
𝑧,0 + 2Ω2

𝐸

]
𝒅sep − 2𝜂¥𝒓com (5.36a)

¥𝒓com = 𝜔𝑐,0 ¤𝒓com × 𝑧 + 1
2
𝜔2
𝑧,0𝒓com − 𝜂

2
¥𝒅sep. (5.36b)

aThe ions are at the same relative position to each other, but we do not have control over their absolute
magnetron phases and the common mode is cooled but cannot be ensured to be zero or identical each
cycle.
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The additional terms 2𝜂¥𝒓com and 𝜂
2
¥𝒅sep are of order 𝜂𝜔2

𝑚,0 and therefore smalla compared
to the other terms. Furthermore, since the frequencies of separation and common mode
are different, the interaction between them is non-resonant, only inducing a small driven
oscillation. Thus, the respective influence of the modes can be treated as a small pertur-
bation to the normal mode system, where only the first order effect has to be considered.
Effectively, only the direct action on each motion of zeroth order of the other is consid-
ered to derive the first order solution.
To put it simply, the influence of the separation motion due to the commonmode motion
is considered, as well as vice versa. However, the back-action of the modified separation
motion back onto the common mode is neglected, as well as the other way around.
When again using the substitution𝑢 (𝑡) = 𝑥 (𝑡) +𝑖𝑦 (𝑡) for the representation of the radial
vectors 𝒅sep and 𝒓com in the x-y-plane and ¥𝑢com = −𝜔2

−,𝑐𝑢com, as well as ¥𝑢sep = −𝜔2
−,𝑠𝑢sep

this can be written as

¥𝑢 (1)
sep = −𝑖𝜔𝑐,0 ¤𝑢 (1)

sep +
[
1
2
𝜔2
𝑧,0 + 2Ω2

𝐸

]
𝑢 (1)
sep + 2𝜂𝜔2

−,𝑐𝑢
(0)
com (5.37a)

¥𝑢 (1)
com = −𝑖𝜔𝑐,0 ¤𝑢 (1)

com + 1
2
𝜔2
𝑧,0𝑢

(1)
com +

𝜂𝜔2
−,𝑠
2

𝑢 (0)
sep, (5.37b)

with the common mode frequency 𝜔−,𝑐 and the separation mode frequency 𝜔−,𝑠 . This
assumes the solutionwithout an interaction of themodes to be𝑢 (0)

sep and𝑢
(0)
com, respectively.

The terms denoted with the superscript (1) correspond to the first order solution with
the modes non-resonantly action upon each other. The actual EOM can then be written
as the linear combination of these solutions.
To derive the individual modes, under assumption that only the first order effects have
to be considered, 𝑢 (0)

sep = 𝑑sep𝑒
−𝑖𝜔−,𝑠𝑡 and 𝑢 (1)

sep = 𝑎∗sep𝑒
−𝑖𝜔−,𝑐𝑡 are used, where 𝑎∗sep is the

amplitude dependent on 𝑟com.
Similarly, for the common mode the equations𝑢 (0)

com = 𝑟com𝑒
−𝑖𝜔−,𝑐𝑡 and𝑢 (1)

com = 𝑎∗com𝑒
−𝑖𝜔−,𝑠𝑡

can be defined. The tilde notation indicates the vector to be complex, which simplifies
the equation by eliminating the need of additional phases in the exponents. For the

asmaller by about 5 orders of magnitude, actually
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separation mode this yields

−𝜔2
−,𝑐𝑎

∗
sep = −𝑖𝜔𝑐,0

(
−𝑖𝜔−,𝑐

)
𝑎∗sep +

1
2
𝜔2
𝑧,0

(
1 +

4Ω2
𝐸

𝜔2
𝑧,0

)
𝑎∗sep + 2𝜂𝜔2

−,𝑐𝑟com (5.38a)[
−𝜔2

−,𝑐 + 𝜔𝑐,0𝜔−,𝑐 −
1
2
𝜔2
𝑧,0 − 2Ω2

𝐸

]
𝑎∗sep = 2𝜂𝜔2

−,𝑐𝑟com (5.38b)[
−𝜔2

−,𝑐 +
(
𝜔+,0 + 𝜔−,𝑐

)
𝜔−,𝑐 −

1
2
𝜔2
𝑧,0 − 2Ω2

𝐸

]
𝑎∗sep = 2𝜂𝜔2

−,𝑐𝑟com (5.38c)[
−2Ω2

𝐸

]
𝑎∗sep = 2𝜂𝜔2

−,𝑐𝑟com (5.38d)

⇒𝑎∗sep = −
𝜂𝜔2

−,𝑐
Ω2
𝐸

𝑟com (5.38e)

after dividing by 𝑒−𝑖𝜔−,𝑐𝑡 and using 𝜔𝑐 = 𝜔+ + 𝜔−,𝑐 as well as 𝜔+𝜔−,𝑐 = 1/2𝜔2
𝑧,0.

Similarly, the amplitude 𝑎∗com can be derived for the common mode as

𝑎∗com = +
𝜂𝜔2

−,𝑠
4Ω2

𝐸

𝑑sep , (5.39)

when neglecting the two terms of Ω2
− and Ω−𝜔−,𝑠 compared to the much larger Ω−𝜔+,0.

Finally, one applies that Ω−𝜔+ ≈ 2Ω2
𝐸 as one finds from Eq. (5.33). From here, the actual

EOMs can be written as

𝑢𝑠 (𝑡) = 𝑒−𝑖𝜔−,𝑠𝑡
[
𝑑sep − 2𝛿mag𝑟com𝑒

𝑖Ω−𝑡
]

(5.40a)

𝑢𝑐 (𝑡) = 𝑒−𝑖𝜔−,𝑐𝑡

[
𝑟com + 1

2
𝛿mag𝑑sep𝑒

−𝑖Ω−𝑡

]
, (5.40b)

where

𝛿mag =
𝜂𝜔2

−,0
2Ω2

𝐸

(5.41)

has been chosen and will be put into more context shortly. The EOM for each individual
ion can now be rewritten in terms of the common and separation mode, following their
definition of Eq. (5.12b) as

𝑢1(𝑡) = 𝑢𝑐 (𝑡) +
1
2
𝑢𝑠 (𝑡)

= 𝑟com
(
1 − 𝛿mag

)
𝑒−𝑖𝜔−,𝑐𝑡 + 1

2
𝑑sep

(
1 + 𝛿mag

)
𝑒−𝑖𝜔−,𝑠𝑡 (5.42)

76



5 Coupled Ions: The Coupled Motion

and

𝑢2(𝑡) = 𝑢𝑐 (𝑡) −
1
2
𝑢𝑠 (𝑡)

= 𝑟com
(
1 + 𝛿mag

)
𝑒−𝑖𝜔−,𝑐𝑡 − 1

2
𝑑sep

(
1 − 𝛿mag

)
𝑒−𝑖𝜔−,𝑠𝑡 . (5.43)

This is especially instructive when considering the special case 𝑟com = 0, where the
motion is fully defined by the separation modea. Then, the heavier ion will be on a
slightly larger, the lighter ion on a smaller orbit due to their difference in centrifugal force.
This imbalance is given by the parameter 𝛿mag. In the case of the neon isotopes 20Ne9+

and 22Ne9+ for a nominal separation distance of 𝑑sep = 411 µm where 𝛿mag = 8.6 × 10−3,
the asymmetry of the modes is 𝝆1 − 𝝆2 ≈ 3.5 µm. The validity of this approach has been
verified by Thompson [84] by performing a more rigorous analytical approach as well
as numerical simulations, that have been verified . The result will prove to be crucial as
this imbalance of radii yields the dominant (and the only relevant) systematic shift and
uncertainty for the difference measurement of two Larmor frequencies, which will be
shown momentarily.

5.6 Axial Equilibrium Position

While it has been shown that the ions are only coupled in their magnetron mode, it is
essential to examine the common equilibrium position of the axial motion. With our
𝐵1 = 2.648(24) mT

m even a tiny asymmetry would result in large relative frequency shifts.
To this end, the potential energy of the system can be studied to determine the global
minimum with respect to the axial equilibrium positions of the ions, under the assump-
tion of a constant separation distance. The combined axial potential energy of the ions
can be written as

𝑊pot =
𝑉𝑟𝐶2

2𝑑2char
𝑞

(
𝑧21 + 𝑧22

)
+ 𝑞2

4𝜋𝜖0
1√

𝑑2sep + Δ𝑧2
, (5.44)

where Δ𝑧 = 𝑧1 − 𝑧2 is the difference between the axial position of the ions. These terms
are simply the potential energy due to the position of the ions, as well as the Coulomb
potential energy from their respective repulsion. Using 𝑧21 + 𝑧22 = (Δ𝑧)2 + 2𝑧1𝑧2 and the

aThis is the ideal case we strive for.
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definition of 𝜔𝑧 , the individual minima of the potential energy are given as

𝜕𝑊pot

𝜕𝑧1
=
𝑉𝑟𝐶2𝑞

𝑑2char
𝑧1 −

𝑞2

4𝜋𝜖0
Δ𝑧(

𝑑2sep + Δ𝑧2
)3/2 !

= 0 and (5.45a)

𝜕𝑊pot

𝜕𝑧2
=
𝑉𝑟𝐶2𝑞

𝑑2char
𝑧2 +

𝑞2

4𝜋𝜖0
Δ𝑧(

𝑑2sep + Δ𝑧2
)3/2 !

= 0. (5.45b)

For the totalminimumof the potential energy 𝜕𝑊pot
𝜕𝑧1

=
𝜕𝑊pot
𝜕𝑧2

= 0 has to be valid. Therefore,
it follows that

𝜕𝑊pot

𝜕𝑧1
+
𝜕𝑊pot

𝜕𝑧2
=
𝑉𝑟𝐶2𝑞

𝑑2char
(𝑧1 + 𝑧2)

!
= 0 (5.46a)

⇒ 𝑧1 = −𝑧2 and (5.46b)
𝜕𝑊pot

𝜕𝑧1
−
𝜕𝑊pot

𝜕𝑧2
=
𝑉𝑟𝐶2𝑞

𝑑2char
(𝑧1 − 𝑧2) −

2𝑞2

4𝜋𝜖0
Δ𝑧(

𝑑2sep + Δ𝑧2
)3/2 !

= 0 (5.46c)

⇒ Δ𝑧 = 0 or (5.46d)

(Δ𝑧)2 =
(

2𝑞2

4𝜋𝜖0𝑚𝜔2
𝑧

) 2
3

− 𝑑2sep (5.46e)

where the definition of the axial frequency is applied. This result can then be further
simplified by using the definitions of Ω𝐸 (5.7) and the axial Rabi frequency Ω𝑧 (5.8c),
yielding

Δ𝑧 = ±𝑑sep

√√√√(
2Ω2

𝐸

𝜔2
𝑧

) 2
3

− 1 (5.47a)

= ±𝑑sep

√(
2Ω𝑧

𝜔𝑧

) 2
3

− 1. (5.47b)

As the axial Rabi frequency Ω𝑧 is significantly smaller than the axial frequency 𝜔𝑧
a for

all used parameters, any solution for differences in Δ𝑧 remains imaginary and the only
physical solution is when Δ𝑧 = 0. Combined with the other condition, 𝑧1 = −𝑧2, this
restricts the axial motion to be symmetric about a 𝑧 position in the same horizontal plane.
Furthermore, this is only fulfilled for both individual positional shifts 𝑧 = 0.
Additionally, the critical separation distance can be estimated below which also other

minima are allowed. This is reached when
(
2Ω𝑧
𝜔𝑧

) 2
3 ≥ 0, which can be expressed in terms

aBy more than three orders of magnitude.
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of 𝑑sep as

𝑑sep,crit ≤ 3

√
𝑞2

2𝜋𝜖0𝑚𝜔2
𝑧

(5.48a)

≤ 40 µm (5.48b)

This marks the critical distance below which a transition from a magnetron crystal to
an axial crystal occurs when it becomes energetically favourable. However, this estima-
tion is based upon neglected axial amplitudes. While this is fine for large separation
distances, this approximation is no longer valid when approaching the critical distance
and the dependency of Ω2

𝐸 (𝑧) has to be considered. The result is still instructive to de-
scribe the general behaviour and, more importantly, to show that the ions move about
the same axial equilibrium position when 𝑧 � 𝑑sep .

5.7 Systematic Effects due to Magnetron Imbalance

The purpose of coupling two ions is to measure the difference of Larmor frequencies
directly. Compared to measuring masses or their ratios, which are extracted by deter-
mining the motional frequencies of the ion and therefore inherently depend on all sorts
of disturbances to the motion, the Larmor frequency depends only on the magnetic field.
All interactions between the ions are thus only relevant if they induce a breaking of the
symmetry, thus changing the effective magnetic field each ion experiences. There are
two dominating shifts to consider here. The first is a radial 𝐵2 gradient combined with
the magnetron imbalance 𝛿mag. The second is the effect of a𝐶3, resulting in a magnetron
radius dependent axial equilibrium position shift (see (2.19)), which combined with an
axial 𝐵1 gradient, may change the effective magnetic field. Before diving into the rigor-
ous calculation, the rough size of these effects are estimated first.
The 𝐵2 contribution, as defined in Eq. (2.20) has been measured to be 𝐵2 = 64.3(32) mT

m2

[18] in the centre of the PT. This would, with the aforementioned parameters of the
motion (and specifically no common mode) result in a relative shift of

Δ𝜈𝐿,2 − Δ𝜈𝐿,1
𝜈𝐿

=
𝐵2

2𝐵0

(
𝜌22 − 𝜌21

)
= −1 × 10−11,

(5.49)

where 𝜌1 = (1+𝛿mag)
𝑑sep
2 and 𝜌2 = (1−𝛿mag)

𝑑sep
2 , and 𝜈𝐿 is the mean Larmor frequency.

Similarly, one has to consider the𝐶3 positional shift, though it is significantly more com-
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plicated to measure or predict the absolute size of this contribution. Nominally, only
symmetric voltages are applied and any𝐶3 would only be given by imperfections of the
trap assembly, asymmetric voltage offsets or patch potentials. However, to tackle the
already sizeable shift due to 𝐵2, I have opted to try to improve upon this by shifting the
electrostatic equilibrium positiona to achieve a more favourable 𝐵2. This is possible as
the main source of the 𝐵2 in the PT still stems from the ferromagnetic ring of the AT. In
the (successful!) attempt to reduce this effect, a compensation ring was introduced [49],
meant to counteract the 𝐵2 in the centre of the PT. The size and position was calculated
in COMSOL and, with the measured 𝐵2 being small, seems to be working rather well.
The 𝐵3 contribution to the magnetic field, resulting from this assembly, generates a local
𝐵2 ≈ 0 about 1mm shifted from the nominal centre of the PT towards the CT (see section
6.3.1). To exploit this, an asymmetric tuning ratiob has been used to shift the ion position
into the position of the zero crossing of 𝐵2. This comes however at the cost of the odd
contributions to the electrostatic potential becoming sizeable, which necessitates the in-
vestigation of the 𝐵1𝐶3 shift (see Eq. (2.23)) as well as the differential axial shift due to
𝐶3 (see Eq. (2.15)).
Generally, the simulation of the electrostatic potential is found to be correct to better
than an absolute ±1 × 10−3, as observed from the comparison of the prediction and the
measured optimal tuning ratio. Assuming similar behaviour for the potential simula-
tion in the shifted position, approximate values for 𝐶3 can be calculated. Additionally,
shifts of the axial frequency after excitations of both, magnetron and cyclotron radii are
measured. This will become even more crucial when discussing the systematic effects
in depth soon, which will allow to set constraints on the combinations of electrostatic
and magnetic inhomogeneities. It is however hard to assign absolute values to the mag-
netic inhomogeneities. This is mainly due to the identical scaling of many effects with
excitation radii which, in principle, would allow for a cancellation of shifts despite large
imperfections. For a 𝐶3 ≈ 2(2) × 10−3, derived from the simulation of the electric field
and a 𝐵1 = 2.648(24) mT

m [18], this would translate into shifts of the Larmor frequencies
by means of differences in the respective axial position shift Δ𝑧0 as

Δ𝜈𝐿,2 − Δ𝜈𝐿,1
𝜈𝐿

= Δ(𝑧0,2 − 𝑧0,1)𝐵1 =
3
4

𝐶3

𝐶2𝑑char

(
𝜌22 − 𝜌21

)
𝐵1

≈ −3 × 10−13.
(5.50)

aNote, this effects both ions in an identical fashion
bThis is a fancy way of stating that asymmetric voltages are used to shift the electrostatic centre of the
trap while trying to keep the potential harmonic
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The 𝐵2 at the shifted position (about 1mm towards the CT) has been significantly re-
duced compared to the centre of the PT, however as the related shifts that are measured
with single ions are ranging into the 10mHz regime, only upper limits can be given. The
thus observed shifts, combined with the limits of the simulation placed on 𝐶3 were able
to set an upper limit of 𝐵2 ≤ 8 mT

m2 (see section 6.3.1), which already reduces the maxi-
mum relative shift of the Larmor frequency into the 10−13 regime.

5.7.1 Combined Systematic Analysis

There is, however, a more thorough treatment of all these correlated effects possible.
When considering the combined shifts of the individual Larmor frequencies and their
impact on the measured difference frequency, it can be shown this difference becomes
independent of the individual contributions. More importantly, when the trap would be
tuned such that the axial frequency is invariant with respect to the excitation of both,
cyclotron and magnetron radii, the measured Larmor frequency difference too becomes
invariant to effects of 𝐶3, 𝐶4, 𝐵1 and 𝐵2 (see Appendix B).
As a change of the 𝐵2 contribution can only be achieved by altering the tuning ratio
and thus the electrostatic minimum, each such change requires the optimization of the
new tuning ratio. Therefore, the process of tuning tiny residual shifts quickly becomes
tiresome and iterative work. Furthermore, the 𝐵1 contribution cannot be tuned at all
with the current setup. It is thus not possible to fully eliminate all frequency shifts.
In the combined systematic analysis these shifts are instead treated as residual effect,
incorporating all, the small measured frequency shifts, their uncertainties and the higher
order contributions.
It is then further shown in Appendix A, that the relative shift of the difference frequency
is directly related to the sum of the relative axial shifts measured for magnetron and
cyclotron excitations.
For the Larmor frequency difference Δ(Δ𝜈L,tot) = Δ𝜈𝐿,2 − Δ𝜈𝐿,1 the relative systematic
shift can then be expressed as

Δ(Δ𝜈𝐿,𝑡𝑜𝑡 )
𝜈𝐿

= −𝑣
2
𝑧

𝑣2+

𝜖mag

𝑟 2+

(
𝜌22 − 𝜌21

)
= 6 × 10−13,

(5.51)

where 𝜖mag is the sum of these relative axial frequency shifts observed for subsequently
measured excitations of magnetron and cyclotron to the identical radii 𝑟+ = 𝑟−. The
index mag indicates, that the shift solely depends on the magnetic contributions.
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5.7.2 Different Axial Amplitudes

The Δ𝜈𝐿 measurement is performed by first thermalizing the axial mode of the 20Ne9+

ion, then changing the ring voltage to a higher value to bring 22Ne9+ into resonance with
the tank circuit. This voltage increase will slightly decrease the axial amplitude of the
20Ne9+ ion. This order is chosen as the axial amplitude of lower mass ions is nominally
larger compared to heavier ions when they are of identical temperature.
This can be important, as in the presence of a 𝐵2, the average magnetic field experienced
by the ion is dependent on the axial amplitudea. The residual axial amplitude difference
results in a shift that has been evaluated to about 3 × 10−14 and can therefore be neglected
at the current level of precision.

aContrary to odd order magnetic field inhomogeneities, which will average out.
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6 Coupled Ions: Tools and Methods

After having introduced the mathematical framework to understand the coupled ions
motion, here I will introduce the general idea of the Δ𝑔 measurement. After going
through the measurement routine, similar as has been done for the single ion g factors,
the necessary tools and methods to implement such a routine will be explained. I will
further provide technical details and general ideas, which will likely find applications in
other scenarios as well. Along this chapter, I will also discuss and motivate the specific
choices of parameters made for this measurement to give the reader a better understand-
ing of the challenges one faces when trying to implement a similar measurement scheme.
Finally, this chapter will be concluded by going through the characterization measure-
ments of the system, such as a Rabi frequency determination, tuning ratio and magnetic
field inhomogeneity scans and a measurement on the stability of the separation distance
in the coupled state.

6.1 The Measurement Routine

The measurement idea revolves around two main principles. First, it is assumed that
the spins of two ions in close proximity, here achieved by coupling them on a common
magnetron orbit, behave coherently to a large extend. Secondly, that the coherent, or
common behaviour of the spins can be used to determine their Larmor frequency differ-
ence. However, while the actual measurement is to be performed in the coupled state,
the readout of the individual spin states of the ions is only possible when the ions are
separated. Therefore, the measurement sequence can be characterized by four main
consecutive steps. First, the spinstates of the individual ions have to be determined. Sub-
sequently, the ions will be mixed and prepared on a common orbit, which should be as
similar as possible for each cycle of the measurement. Thirdly, the actual measurement
sequence based on simultaneous Ramsey-type excitation scheme of both spin states can
commence. Finally, the ions have to be separated again to facilitate the determination of
the individual spinstates once more, concluding a measurement cycle. In the following,
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such a fully automatizeda sequence will be described in more detail.
The measurement sequence begins with both ions at their thermal radii and stored in
separate traps, one in the AT and one in the PT. Here, the ion starting in the AT will be
referred to as the lower ion, which makes the ion in the PT the upper ion, according to
their positions in the trap stack. As there is no distinction between the ions after the
mixing process, the order can be chosen arbitrarily. More importantly, as the order does
not matter, it can be kept the same throughout the measurement procedure, which sig-
nificantly simplified the adaptation of the control system of the trap, which initially did
not account for two measurement ions.
The measurement begins with the determination of the spin state of the ion in the AT
by irradiating the microwave to induce a spin transition. The difference in the magnetic
fields between AT and PT, stemming from the ferromagnetic ring in the AT, with 𝐵0,AT ≈
3.86 T versus 𝐵0,PT ≈ 4.02 T is crucial. It ensures, that the applied microwave can only af-
fect the ion in the AT while not addressing the ion in the PT. With a difference of Larmor
frequencies of about 4GHz due to the magnetic field difference and a Rabi frequency of
only about 2.5 kHz, this can safely be assumed here.
After the spin state of the lower ion has been determined, it is transported to one of the
lowest electrodes below the AT (𝑇2), while the second ion is now brought into the AT.
The magnetic field in 𝑇2 is very similar to the one in the PT, or even a bit larger due to
the 𝐵2 contribution. When irradiating the microwave frequency for the upper ion now
in the AT, the spin state of the lower ion (𝑇2) is again not affected.
After determining the spin state, the upper ion is transported back into the PT and ex-
cited to 𝑟− ≈ 600 µm to prepare for the mixing process. This process is initiated by
bringing the lower ion into an electrode close to the PT (LE1). The upper ion is now
moved further down again, until the ions are only separated by a single grounded elec-
trodeb.
Now, this electrode is set to a voltage of −98V, which is the most negative voltage avail-
able for StaReP [71]. Here, the electronic filters with a combined time constant of 6.8ms
[49] restrict the maximum speed of voltage changes to an adiabatic range, such that the
ions cannot gain significant axial energy from this process. This is achieved, when the
change of the axial frequencies (or voltages) is occurring on much slower time-scales
than the axial motion itself. While this is a useful implementation to make typical trans-
port processes safe, it poses some limitations for the mixing of the ions. The change of
aWhile this achievement is now boiled down to a simple footnote, I still want to highlight that getting
the complete sequence to run without having to manually interfere has been one of the major efforts
of this work. The necessary control and understanding of the behaviour of coupled ions to allow such
an automatic process can only be hinted at here.

bFor this, LC2 was used as the field penetration is much larger than for the smaller ring electrode and
thus simplifies the application of symmetric potentials.
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the voltage by the largest available amount achieves the transit through the state where
the potential exhibits a 𝐶2 ≈ 0 as fast as possible. This is critical because at that point
an uncontrolled increase of the ions magnetron modes is possible, as without a𝐶2, both,
magnetron and axial frequency become very small. Therefore, any patch potential, a
charge on a non-conducting part of the assembly, could cause the ions to enlarge their
radius until they hit the electrode and are lost. Furthermore, any change of the potential
cannot be adiabatic anymore when the frequencies are small, making a fast transition
of this range the best solution. With the thus optimized mixing routine, no excessive
change of the magnetron modes has been observed, as the combination of initial separa-
tion distance and common mode radiusa has been roughly similar every cycle. However,
an increase of the axial energy is typically observed. In order to dissipate the excess
energy, the ions are alternatingly brought into resonance by changing the ring voltage
several times until the axial modes are thermalized.
At this point, the ions are situated in a common potential well and are coupled on a
common magnetron orbit, described by a combination of common mode radius 𝑟com and
separation distance 𝑑sep (see section 5.5.1), with the individual parameters varying to
some degree. The magnetron excitation prior to the mixing of the ions has proven to be
crucial to prevent them from starting with a too small separation distance, which can re-
sult in a strongly coupled system, where it becomes impossible to detect the ions due to
large frequency shifts combined with a strongly degraded signal. This will be discussed
shortly (see section 6.2.1). However, with the routine thus optimized, this problem did
not occur for the over 500 subsequent attempts. With both ions axially thermalized, the
separation distance can now be determined from the observed axial frequency shift as
given by Eq. (5.10c), when compared to the frequency of a single cold ion at identical
voltages.
Now, the ions are ready to be transferred into their intended measurement state with a
separation distance of typically around 𝑑sep ≈ 400 µm and ideally zero common mode
radius. The preparation of such a state is achieved by a combination of a direct cooling
of the separation mode in combination with a transfer of the undesired common mode
radius to the separation mode. The latter process is described in more detail in section
6.2.3. The combination of these techniques facilitates a gradual reduction of the separa-
tion distance to within ±15 µm of the intended distanceb, while also guaranteeing 𝑟com ≤

aOnly the separation distance can initially be observed and is varying within 350 to 500 µm, no infor-
mation about the common mode can be inferred yet. An excessive change of the radii during mixing
would have led to the initial separation distance becoming to small to even detect the ions for some
of the cycles. This has not been observed.

bThis can be further optimized, however resulting in a significantly increased cycle time as the process of
carefully cooling and again determining the radius has to performed iteratively. By choosing a weaker
cooling, the resulting distribution will be smaller but takes much longer to achieve.
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100 µm. The complete process of preparation will be explained in more detail in section
6.2.
Finally, both ions are cooled in their respective cyclotron modes via a double-dip, which
can also be used to monitor the approximate magnetic field. With the ions thus prepared,
the irradiation of the microwave can commence, following a Ramsey-type scheme. This
process is illustrated in Fig. 6.1 (C) and consists of a 𝜋/2 pulse, the evolution time 𝜏evol
followed by a second 𝜋/2 pulse. Note, that the 𝜋/2 pulse is defined here to achieve a 50 %
spin flip probability. This definition can equivalently be described as a rotation of the
Bloch vector to the equatorial plane or the projection of the spin vector onto the 𝑧−axis
becoming zero.
Subsequently, the individual spin states have to be determined again. While it was pos-
sible to intermittently detect the ions in the coupled state in the AT, the resolution and
reproducibility was far too low to allow for any automatic measurement routine to even
deterministically detect them, much less to consistently quantify the axial frequency
change to determine their spin states. Therefore, the ions have to be separated again at
the end of each cycle.
To this end, one iona is resonantly pulsed to a cyclotron radius of about 𝑟+ ≈ 800 µm.
Subsequently, both ions are cooled in their respective magnetron modes. This results in
a configuration, where one ion is at thermal amplitudes in all modes, while the second
ion is on a large cyclotron radius. The additional cyclotron magnetic moment of the
ion on a large radius causes an additional axial force when combined with a magnetic
gradient. To utilize such a force for the means of a separation, a modified version of the
transport process into the AT is applied. The additional force experienced by only one of
the ions upon entering the magnetic bottle, combined with precisely tuned potentials is
used to deterministically separate the ions again. The separation will be covered in more
detail in section 6.2.6. After cooling the thus separated ions, they are back in the initial
configuration and the cycle is repeated. The complete measurement cycle is schemati-
cally illustrated in Fig. 6.1, the evaluation of the signal as shown in (E) is explained in
the following chapter.

6.2 Working with Coupled Ions

In this section, the above introduced ideas of workingwith coupled ionswill be discussed
in more depth, while at the same time providing practical and technical details how the
corresponding methods have been implemented for the work with 20Ne9+ and 22Ne9+.
The section is structured such as to describe the situation beginning after the ions have

aThe one you wish to become/stay the upper one.
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6 Coupled Ions: Tools and Methods

been mixed and will then follow the important steps of the measurement sequence until
the ions are separated again.
After the ions have been mixed, they first have to be prepared into the state intended
for the measurement. It has already been mentioned that both ions are repeatedly (and
alternatingly) brought into axial resonance, to ensure that they are both thermalized in
their axial mode. This is necessary, as it has been observed that the ions can gain signif-
icant axial energy during the mixing process, possibly due to a ”collision” (or the ions
coming close to each other) or due to the change of the potential. As long as significant
axial energy is present in either ion, an exchange of axial energy between the coupled
ions has been observed. However, even in a state with large axial amplitudes they are
already strongly coupled in the magnetron mode, as the magnetron Rabi frequency Ω−

(see Eq. (5.8c)) remains significantly larger than the difference of the magnetron frequen-
cies even at separation distances up to about 1mm.
This results in a rather uncontrolled behaviour, where the ions are changing in frequency
depending on their respective axial amplitudes. As the energy is seemingly exchanged at
random between the ions, the frequencies do not remain stable due to their interaction
and the constant coupling with the resonator and the further resulting change of the
effective distance. The result is a chaotic system, in which it might be possible to cool
one ion and observe a dip, only to then bring the second ion into resonance and have the
signal chirp away while the ion cools in its axial mode. By intermittently cooling both
their axial modes until they are fully thermalized, this can be brought back under control.
Only then, the frequencies become stable and a deterministic approach to achieve the
desired state is possible.

6.2.1 Determining and Controlling the Initial Mixed State

After the mixing of the ions, once stable frequencies can be observed, the initial state of
the coupled magnetron motion has to be determined. This state consists of a distribution
of common mode radius and separation distance, which is varying to some extend every
cycle. Foremost, the interest lies in the separation distance between the ions, which can
be directly inferred from the observed respective axial frequency shifts with respect to
the nominal frequency that would be observed at the same voltage for a single, cold ion
(see Eq. (5.10c)).
The suitable range of separation distances is mostly governed by practical limits. Too
small separation distances lead to a deterioration of the signal quality and make it signif-
icantly harder or impossible to detect and work with the ions, while too large distances
increase the systematic uncertainty. The lower limit is illustrated in Fig. 6.2. Here, the
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signal shape of an axial dip (blue) and cyclotron double-dip (red) for a single, uncoupled
ion (left plot) is compared to the same ion in a coupled state with a separation distance
of 𝑑sep = 410 µm (centre plot) and a separation distance of 𝑑sep = 360 µm (right plot). The
ring voltage has been adjusted for each measurement such that the ion is in resonance
with the tank circuit, the sampling time is identical for each spectrum.
The degradation of the signal is clearly visible. It is caused by the permanently chang-
ing axial amplitude of the observed iona in combination with an amplitude dependant
frequency shift. In the first approximation it was shown that the axial frequency shift is
mostly determined by the separation distance (see section 5.10c or Appendix Eq. (8.7)).
However, for decreasing separation distances the effective distance starts to become
more and more dependent on the axial amplitude as well. Therefore, the thermalisa-
tion of the observed ion modulates the frequency shift by a small amount, leading to a
frequency jitter. With a less stable axial frequency, the dip appears to be smeared out.
Practically, this limits the separation distance to a minimum of 𝑑sep = 340 µm for 20Ne9+

and 22Ne9+, where the automatic fitting routines become unstable and frequency un-
certainties excessive, thus making it the smallest separation distance for which a mea-
surement could still be performed. Furthermore, the time to prepare the ions to smaller
separation distances starts to increase, as the cooling has to be performed in ever smaller
steps to avoid the distance becoming too small. A further reduction of the separation
distance would require significant modifications to the automatized methods that have
been applied for this measurement. After these discussions, the initial excitation of the
upper ion to 𝑟− ≈ 600 µm before mixing can also be understood. While the exact distri-
bution of the angular momentum into common and separation mode is different every
cycle, the large initial radius results in the ions not coupling on very small initial sepa-
ration distances, where they would not be visible anymore. The additional magnetron
excitation chosen here has proven to be large enough, as, with the exception of a few
single runs, the initial separation distance has always been larger than the intended 𝑑sep
= 410 µm.
For the upper limit of separation distances, one finds that both, the imbalance of the
radii 𝛿mag ∝ 𝑑3sep as well as the absolute difference in radii becomes larger, leading to an
increased systematic uncertainty. One should therefore measure at the smallest possible
separation distance to minimize systematic effects, while larger separation distances can
serve as a consistency check.

aThe observation is only possible due to the coupling of the ion to the resonator. Even in thermal equi-
librium, the instantaneous axial amplitude then follows a Boltzmann distribution. As the second ion
is far detuned from the resonator, its axial amplitude is constant.
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Figure 6.2: Comparison of the dip (blue) and double-dip (red) signal for a single ion (left)
versus the same ion but in a coupled state for two different 𝑑𝑠𝑒𝑝 values. While the
signal is already visibly worse for 𝑑𝑠𝑒𝑝 = 410 µm, the shape quickly deteriorates for
distances below that, making the 𝑑𝑠𝑒𝑝 = 360 µm already difficult to process automat-
ically.

6.2.2 Preparation of the Separation Distance

Once 𝑑sep has been verified to be larger or closea to what is aimed for, the preparation of
the mixed state can begin. For very large initial separations (more than 510 µm), the sep-
aration mode is immediately cooled by performing weak sweeps around the magnetron
sideband coupling frequency 𝜈RF = 𝜈𝑧 +𝜈−,𝑐 . A sweep with an amplitude of 30mV is once
applied from −20Hz to +20Hz for a duration of 10 s around the coupling frequency. As
the separation mode and common mode difference frequency is Ω−

2𝜋 ≤ 10Hz for such
large separations, such a drive will affect both modes and cool them, but will not allow
an accidental cooling to too small separation distances, as the coupling stops once the
axial frequency becomes smaller due to the reduced separation distance. The second
drive is then applied again with the same amplitude, but now sweeping in the opposite
direction in the range of +50Hz to −5Hzwith respect to the coupling frequency of axial
and common mode.
The drive therefore begins above the coupling frequency of the separation modeb and an
energy transfer to the axial mode begins when coming closer to the coupling frequency.
As a smaller separation distance results in a lower axial frequency, this sweep effectively
follows the resulting chirp of the ion if the ion is allowed to cool sufficiently fast. This
requires the coupling to be weak since an additional axial amplitude increases the effec-
tive distance between the ions and results in the axial frequency becoming larger again.
Ultimately, this requires the drive to be weak with respect to the cooling time of the ion

aIt is fine to be slightly below the intended separation distance as I will discuss tools to enlarge it soon.
bThe coupling frequency for magnetron is 𝜈𝑧 + 𝜈−, the common mode frequency is basically identical to
the normal magnetron frequency and the separation mode frequency is at most 25Hz larger than the
common mode even at the smallest used separation distances.
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and restricts the possible range of the sweep to a small frequency range around the res-
onance frequency of the tank circuit, where the shortest cooling times are achieved. If
the axial amplitude is not damped sufficiently fast, the coupling drive can stay resonant,
thus reducing the separation distance too far. If the sweep is correctly calibrated how-
ever, it offers a rough control of the final separation distance as the coupling drive can
simply be stopped, when the axial frequency has shifted to the corresponding frequency.
To this end, the ion is brought back into resonance by adjusting the ring voltage and the
sweep can be repeated. Once the thus accumulated axial frequency shift corresponds to
the desired separation distance, the process can be stopped.
If the cooling has been too strong or the separation distance was already too small ini-
tially, a state can be reached where the ions are not detectable anymore as the dip signal
is too far deteriorated in addition to the axial frequency being shifted far away from res-
onancea. In these cases, the ions cannot be detected without any additional excitations.
Here, a few strong excitations have been repeatedly successful to remedy the situation.
To this end, a strong and fast sweepb over a range starting below the lower magnetron
sideband 𝜈𝑧 − 𝜈−, which causes an exponential increase of both, axial and magnetron
amplitudes, to a few hundred Hz above the axial frequency typically serves to allow a
detection of the ions again. At the end of the sweep, the excited ion should roughly be
observable at the stop frequency of the sweep with significant axial amplitude. During
the subsequent cooling of the axial mode due to the interaction with the resonator, the
frequency will slowly chirp to lower values once more as the coupling with the second
ion becomes stronger again. If the separation distance has been successfully increased,
it will however stop at an axial frequency within reasonable limits, where some of the
more deterministic methods explained in the following sections can be used. If the pro-
cess was not successful, it can simply be repeated as no ion loss has occurred when
using this sweep. This method has mainly been applied during the initial work with the
coupled ions and was not required after the following methods had been well tuned.

6.2.3 Common to Separation Mode Transfer

A method of transferring energy, or rather angular momentum, between common and
separation mode has been discovered by Rainville and Thompson for the application in
the Two-Ion Balance [82, 84]. This important tool is described in great detail, in these

aThe problem is not necessarily the large shift, but more importantly that it is unknown. While the axial
frequency is shifted only about 150Hz at 𝑑sep = 410 µm, at 𝑑sep = 200 µm the shift is already about
1.2 kHz. In combination with a strongly deteriorated signal, the ions are almost impossible to find
without exciting them.

bTypically started 10 kHz below the nominal axial frequency 𝜈𝑧 , with a 2V amplitude to 𝜈𝑧+ 500Hz, with
a sweep time of 100ms, cryogenic excitation switch on (see section 4.2.5 for the switches).
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Figure 6.3: Comparison of the coupled ion axial signal for two different common mode
radii, while a large 𝐶4 anharmonicity is applied. The axial frequency (centre disper-
sive dip on the left, single dip on the right) is shifted in both cases from the centre
of the resonator due to the effective magnetron radius and the applied 𝐶4. On the
left hand side, the coupled ions have been excited to a common mode radius, leading
to a frequency modulation with Ω−. For the right hand side spectrum, the common
mode has been cooled.

works and allows to deterministically decrease the common mode, while enlarging the
separation distance. In the following, this method will be qualitatively described and it
will be explained how it has been applied to the Δ𝑔 measurement of 20Ne9+ and 22Ne9+.
The technique is based on the modulation of the effective magnetron radiusa due to the
interplay of common and separation mode with the beat frequency Ω− (see Eq. (5.33)).
When applying a 𝐶4 detuning, the axial frequency becomes dependent on the effective
magnetron radius and its modulation is translated into a modulation of the axial fre-
quency. The strength of the modulation depends on the ratio of common to separation
mode, with a 100% modulation when 𝑟com = 𝑑sep

2 . An example for such a modulation is
shown in Fig. 6.3. In both cases shown here, the ions are first prepared with a separation
distance of 𝑑sep = 470(15) µm, which leads to a calculated magnetron beating frequency
of Ω𝑚 = 2𝜋 · 10(1)Hz (see Eq. (5.8c)). The uncertainty stems from the uncertainty of
the exact separation distance. The right hand figure in 6.3 shows the state with a cold
common mode. In the left hand figure, the axial spectrum after an excitation of the com-
mon mode to 𝑟com ≈ 140 µm is shown. The sidebands are spaced as expected due to the
frequency modulation with the beating frequency of the two modes.
This beating can be exploited by applying a continuous excitation below the nominal
axial frequency, combined with a 𝐶4 applied such, that the ion is shifted to higher axial
frequencies on larger magnetron radii. The result is an axial amplitude modulation, as
the ion is always excited when coming close in frequency to the drive and allowed to
cool again afterwards. Effectively, an axial amplitude modulation that is dependent on

aThe actual magnetron radius measured from trap centre to the ion
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the phase between separation and common mode motion has now been achieved, simi-
lar to the coupling of modes that is achieved via the application of a sideband drive. The
persistent axial excitation can be seen as a change of the instantaneous magnetron fre-
quency when the ion comes into resonance with the drive. This creates a phase advance
or lag between the ions, depending on the chosen parameters. Due to the modulation of
this additional phase with the beat frequency Ω−, an effective transfer of either common
mode to separation mode or vice versa can thus be accomplished.
However, as the modulation strength is not only dependent on the detuning but also on
the radius of common mode itself, the coupling has to go to zero when no or close to
none common mode is left. It has been shown that an effective transfer of the angular
momentum between the modes can be achieved and further, that the angular momen-
tum is conserved during the coupling [82].
This method can now be applied to get rid of the undesired common mode as well as
increase the separation distance at the same time. This is especially important, as the
separation distance cannot be excited directly, at least not using a dipolar excitation.
Such an excitation acts linearly on the magnetron radius of both ions, effectively only
changing the commonmode radius as the ions are in phase and displaced by an identical
amount.
However, an excitation of the common mode, followed by such a transfer of the angular
momentum to enlarge the separation distance is now possible. It should be noted that
cooling the separation mode directly is possible, since the symmetry of the motion is
broken when coupling the magnetron mode of only one ion to its axial mode with the
conventional sideband coupling, using a quadrupole field as described in section 2.5.
The common to separation mode transfer is experimentally applied by first adding a 𝐶4

contribution to the potential, such that the axial frequency is shifted towards larger fre-
quencies. Now, the ring voltage is adjusted such that axial frequency is again below the
resonance frequency of the tank circuit by at least 2Ω−

2𝜋 ≈ 30Hz. Now, a weaka axial
drive is applied just below the lower current axial sidebandb frequency 𝜈𝑧 − Ω−

2𝜋 , such
that it is not yet affecting the ion. The drive is now slowly swept to higher frequen-
cies over 90 s, stopping after a range of 2Ω−

2𝜋 . If done correctly, the axial frequency will
have increased by about the sweep range due to the increase of separation distance if
there was sufficient common mode present. When now determining the common mode
radius, it should have decreased. While intermittently cooling the separation distance
to always stay in a similar range, this process is repeated until the axial frequency and

aI really mean that! Here, an amplitude of 25mV, attenuated by 20 dB, applied with the cryogenic switch
in the off (high impedance) state has been used. Remember, that this drive is amplified by the axial
resonator.

bThe sideband due to Ω−!
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thus the separation distance no longer increases. Finally, it can be confirmed that when
detuning the trap, neither sidebands are observed nor can the common mode radius be
resolvedawhen compared to the nowmuch larger separation distance,𝑑sep � 𝑟com. Both
indicate that the common mode has been sufficiently cooled. This indication, and the
implications that can be drawn from so far observed parameters of modulation strength,
sideband spacing,𝐶4 shift of the axial frequency and the determined separation distance
will now be further discussed when trying to determine common mode quantitatively.

6.2.4 Measurement of the Common Mode Radius

The determination of the common mode radius is more difficult than the separation dis-
tance, as there is no directly related observable in the coupled system. Whereas both,
the beating frequency and the axial frequency shift yield a good resolution for the sep-
aration distance, the common mode can only be inferred indirectly. It was shown in
the previous section, that a large common mode results in a frequency modulation and
observable sidebands when detuning the trap. As long as that is the case, it is clear that
the commonmode must be too large still as it is intended to be significantly smaller than
the separation distance, preferably completely at zero. While the strength of the modula-
tion is an indication for the relative sizes of common and separation mode, determining
their ratio from the observed dispersiveb and deteriorated dip signals does not serve to
achieve a useful precision.
For a more deterministic characterization, the common mode is first transferred to the
separation mode with the method described above, until the separation mode can no
longer be observed to increase. At this point, there should be no discernible sidebands
in the spectrum when detuning anymore. Once this is achieved, a𝐶4 contribution is ap-
plied. For small common mode radii, the magnetron radius determined via the observed
axial frequency shift should be equal to 𝑑sep

2 , which is not affected by a potential residual
modulation.
However, there is a problem in this approach which is not present when working with
single ions. For a single ion, one can simply apply the 𝐶4 contribution and measure the
axial frequency for a cold ion, then excite the ion and compare the axial frequencies for
identical trap settings. This is not possible for the coupled state and one has to rely on
an initial calibration performed with a single cold ion, such that it is not shifted when
applying 𝐶4. Now, it can only be assumed that also the frequency of the coupled ion

aThe effective magnetron radius is 𝑟eff ≈
√

𝑑sep 2

4 + 𝑟 2com, therefore small common mode radii are hard to
resolve.

bThe shape of the dip when it is not centred on the resonator, but on the flank. There, a combination of
dip and peak are visible, see for example [86].
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would not be shifted due to the detuning, despite the now slightly different voltagesa

and the coupled state of the system.
Furthermore, as the common mode and separation distance add quadratically, the much
smaller common mode becomes hard to resolve. It is then easy to see, that a quantita-
tive determination of small common mode radii quickly becomes complicated, when the
common mode is only a fraction of the separation distance.
However, instead of trying to measure the actual size of the common mode, it is possible
to determine the minimal radius that can still be reliably resolved. To this end, the com-
mon mode is first cooled until it cannot be detected anymore, leaving it at 𝑟com,cold. This
means, that neither sidebands nor a significant contribution to the detuned frequency
shift are discernible.
The common mode is then excited again to pre-determined radii 𝑟com,exc, using a pulse
calibration performed with a single ion. The final radius will be slightly different every
time, depending on how large the initial common mode has been and on the random
phase difference 𝜙𝐷 between applied excitation and magnetron mode. This will yield
the common mode as 𝑟com = 𝒓com,cold + 𝒓com,exc, or as the measured axial frequency shift
due to 𝐶4 scales with the radius squared (see Eq. (2.10)), 𝑟 2com = 𝑟 2com,cold + 𝑟 2com,exc +
2𝑟com,cold𝑟com,exc cos(𝜙𝐷). For many attempts, the combined term will average to zero
and the combination is given by the quadratic sum. Therefore, on average the final ra-
dius is mostly given by the excited radius, as long as the excitation is much larger than
the initial radius, 𝑟com,exc � 𝑟com,cold. Here, it was possible to verify, that common mode
excitations 𝑟com,exc ≥ 100 µm can be detected with 100% fidelity. Consequentially, when
one fails to detect a common mode, this can be given as an upper limit, resulting in a
limit for common mode radius of 𝑟com ≤ 100 µm for the complete measurement. This
limit could likely be further decreased, as for an initial radius of this order, the excitation
of similar magnitude would be expected to yield a different result every time, depending
on the random phase between excitation and initial radius. As the result has been con-
sistent for several attempts, the cold radius is most likely significantly below this limit
for most of the measurement cycles. However, as the radius is only confirmed to not be
detectable anymore each cycle, this serves well as an conservative estimation.
Finally, it has to be noted, that the determination of the radii via the detuning of the
trap is not consistent with the determination of the separation distance via the observed
axial frequency shift. The data for all measurements is shown in Fig. 6.4, where the
blue crosses correspond to half of the determined separation distance. The red points
correspond to the determined full magnetron radius measured via the shift when apply-
ing a 𝐶4 contribution. The mean value for 𝑑sep

2 (yellow) is found to be larger than the

aAdjust by about 30mV out of 50V
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Figure 6.4: Comparison of the 𝑑sep /2 half radius and the full measurement of the mag-
netron radius. Note, that the mean for the measurements via detuning (red dots,
purple mean) is always significantly smaller than the value for half the separation
distance (blue crosses, yellow mean).

mean value of the complete (or effective) magnetron radius (purple), determined from
the additional axial frequency shift. This is not physically possible, as even in the case
of zero common mode, the radius of each ion is of at least half the separation distance.
Any additional common mode will quadratically add to thata. This can be confirmed
when the common mode is large enough to actually measure it, but does not seem to
work in the case of very small common mode radii. As the discrepancy is largest for the
smallest separation distance, and almost vanishes for the largest distance, there seems
to be a relation scaling with the ion interaction, that could not be resolved. The most
probable reasons are either a residual shift of the axial frequency when applying the 𝐶4

contribution due to a slight unintended change of 𝐶2 despite the tuning with a single
cold ion or an additional effect on the coupled ion motion due to the large𝐶4. However,
with the knowledge of the maximum possible common mode radius 𝑟com ≥ 100 µm and
no known systematic contribution directly related to the presence of a common mode
radius within this given range, this is of no concern for the measurement presented here.

6.2.5 Measurement of the Magnetic Field

To verify the measured magnetic field independently from the cyclotron double-dip ob-
tained in the coupled ion state, an additional double-dip measurement is performed with
a single ion directly after the separation of the ions. This measurement is used to then
determine the magnetic field and the required microwave frequency for the following
cycle. This approach is chosen, as a PnA measurement with the ions in the coupled state
has not been yielding stable results. This is mainly due to the much smaller separation

aWhen applying a 𝐶4, the observed shift is the time average, scaling ∝ 𝑟 2−
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distance and larger charge states compared to what has been used in the two-ion balance
[83, 84], where a similar phase sensitive detection was applied. Consequently, the axial
frequency chirps when the axial amplitude becomes excited to allow for a phase deter-
mination, combined with the slightly varying separation distance each run did not allow
for the necessary phase stability required for a PnAmeasurement. It would likely be pos-
sible to account for the additional frequency shift when measuring further detuned from
the resonator to prevent a cooling of the axial amplitude, in combination with tuning to
minimize the required axial amplitude and the corresponding frequency chirp. How-
ever, as the magnetic field is only predicted for the subsequent run, the double-dip is
precise enough as the uncertainty due to drift of the magnetic field between two runs is
of similar magnitude than the precision of the double-dip. Thus, the potential precision
of a PnA measurement would not yield any improvement at this point. Furthermore, a
determination of the magnetic field with the coupled system did not seem wise when
implementing the measurement routine due to the degraded signal of the double-dip.
This might have had unforeseen effects on the determined cyclotron frequency due to
the double-dip fitting model. A systematic shift, causing the irradiated microwave fre-
quency to be always offset from the mean in the same direction, could have larger effects
on the measurement than a normal distributed additional jitter.
As themagnetic field ismeasured once per cycle and used to predict themagnetic field for
the next microwave irradiation, this results in an increased jitter for the detuning of the
microwave excitation frequency. The measured relative standard deviation of the mag-
netic field for consecutive runs has been evaluated to 3 × 10−9 and is of the level of the
double-dip resolution itself. This is equivalent to an additional jitter of about ±350Hz
in terms of the applied microwave drive. Such fluctuations have been included in the
simulations for the initial phase (see section 7.1.1) and do not contribute any additional
uncertainty. Furthermore, as the modulation amplitude of the signal will be shown to
not be reduced, this does also not pose a restriction for the statistical resolution for this
measurement. If a decreased modulation was to be observed, more data points would be
required to still resolve the phase with similar resolution.
If required, the precision of the magnetic field determination could be improved upon by
using an additional third ion to measure the magnetic field via PnA once the ions have
been fully prepared for their measurement. Here, the ions would be prepared to their
intended state for the measurement, then transported to another electrode momentar-
ily. A third single ion would then be placed in the PT to determine the magnetic field
by performing a PnA sequence. Subsequently, the third ion could be stored in the CT
again, while the coupled ions are transported back into the PT for the measurement. The
measurement of the magnetic field for each cycle of the measurement is included in the
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Appendix B.

6.2.6 Separating the Ions

To separate the ions after the measurement sequence, a scheme depending on the strong
𝐵2 coefficient of the magnetic field in the AT is used. It was already mentioned, that a
𝐵2 contribution to the magnetic field gives rise to an axial force on the ion depending on
the magnetic moment. This principle has been used to determine the spin state and the
temperature of ions already.
At the end of each measurement cycle one ion is excited to a modified cyclotron radiusa

of about 𝑟+ ≈ 800 µm. As the separation distance is much smaller, with 𝑑sep ≈ 400 µm,
it is thus ensured that the ions are still separated from each other. However, during the
excitation, they come close to each other for the brief time when the cyclotron radius
matches the separation distance. Therefore, the excitation pulse is preferably kept as
short as possible. This is limited as one also wants to avoid a spectrally broad pulse
when using very short excitation times. For this measurement, a pulse length of 28ms
was chosen, which has proven to work reliably.
If the pulse is successful, the axial shift of both ions is found to be drastically reduced due
to the much larger effective separation between them. In a simplified picture, the ions
are now closest when they are on the same side of the trap, where the distance between
them is 𝑟+−𝑑sep ≈ 400 µm as illustrated in Fig. 6.5. On opposite sides, they are separated
by 𝑟+ + 𝑑sep ≈ 1200 µm, leaving them on average much further apart than before, with
the observed axial frequency shift matching the prediction when using a time averaged
distance as an approximation for the effective separation distance.
Therefore, the ions are now left close to their nominal (cold, single) axial frequency. After
adjusting the trap voltage, the magnetron modes of both ions can immediately be cooled
by performing sweeps in a small range to account for the expected frequency chirp when
bringing both magnetron modes into thermal equilibrium. This should leave the ions in
a state with one ion being on thermal radii in all three modes, while the other ion is
on an excited modified cyclotron radius and its other two modes are at thermalized as
well. This state is verified by observing the axial frequency shift, which is now governed
by the effective separation of 𝑟+,1 = 800 µm.b Finally, a 𝐶4 detuning is again used to
verify the cyclotron radius of the excited ion. The process of changing the radii from the
coupled state until they are ready to be separated is schematically shown in Fig. 6.5.
Having the state thus prepared, both ions are transported together towards the AT. The

aThis one will end up in the PT, the cold one in the AT
bThis is not exactly the same as a separation distance for symmetric magnetron modes, however the
effect on the axial frequency is very similar.

98



6 Coupled Ions: Tools and Methods

Trap centre

Ion 1 Ion 2

Trap centre

Ion 2

r    excitation+,1 

Ion 1

dsep

minimal distance
= dsep

r  cooling- 

Initial state After r   pulse+

Trap centre

Ion 2

Ion 1

After magnetron cooling

Figure 6.5: The illustration shows the step-by-step transition from the common mag-
netron orbit until one ion is in the centre of the PT, the other at a large modified
cyclotron radius 𝑟+,1 ≈ 2𝑑sep . The effective separation distance is now governed by
the cyclotron excitation. After the separation transport starting with such a state,
ion 1 will be in the PT, ion 2 in the AT.

process of the separation occurs upon entering the magnetic inhomogeneity towards the
AT due to the precisely tuned transport potentials. In Fig. 6.6, the process is illustrated by
showing the effective potentials, given as the combination of electrostatic and magnetic
potential.
With the ions thus separated, the hot ion is brought back to the PT, where it is cooled
and used to determine the magnetic field. It is then stored even further up in the CT, to
allow for the cooling of the other ion in the PT. This is necessary, as it can potentially
gain axial energy or have an enlarged magnetron radius due to the separation process
involving a change of potential wells and a transition through a flat potential. Now being
left with two cold separate ions, the individual spin states can be determined again.
The method of separation described here has been tested within the range of 650 µm ≤
𝑟+ ≤ 1100 µm. For very small radii, their distinction due to the additional force is not
large enough to achieve a separation, while larger radii might leave the ion unconfined
during the transport due to the slope of the increasing 𝐵2 contribution to the magnetic
field when coming closer to the AT. Both cases could result in a loss of the ion according
to the simulation of the potentials, however such small radii have never been attempted
to be used for a separation. The limits derived from a simulation of the separation process
show the lower critical radius at 𝑟+ ≈ 300 µm, the upper limit at 𝑟+ ≈ 1600 µm. The
complete process has proven to be extremely reliable and has worked flawlessly for over
500 individual runs, starting from the excitation until the final state of separated cold
ions. The full process of mixing and separation does not affect either of the spin states
of the ions, as has been observed for several repetitions.
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Figure 6.6: Steps of the ion separation. The yellow line shows the effective potential for
the ion on a large cyclotron orbit (purple), the blue line is the potential for a cold ion
(orange). The height of the arrows represents the minimal potential depth the ion is
bound in. In the left figure, the ions are still in the same potential well, but already
slightly axially separated. The middle shows the transition of the cold ion through a
flat potential into a different potential well. In the right figure, the ions are separated
with the cold one ending in the AT, the hot one in an electrode further up. The zero
position on the 𝑥-axis corresponds to the centre of the AT ring electrode.

6.3 Calibration and Characterization Measurements

6.3.1 Asymmetric Trap

While the magnet is shimmed to be very homogeneous in the centre of the PT, the effect
of the ferro-magnetic ring in the AT disturbs the ideal field. A compensation ring [49]
has been implemented to correct for the disturbance and keep the 𝐵2 contribution in the
PT small. This works quite well, leaving 𝐵2 = 64.3(32) mT

m2 , but also results in a 𝐵3 contri-
bution to the magnetic field. Effectively, the 𝐵3 leads to a change of 𝐵2 along the 𝑧-axis.
Ideally, the zero point of 𝐵2 would be in the centre of the trap but depends on the exact
placement of the compensation ring. As 𝐵2 is not zero in the PT, this ring is currently
not in the perfect position and the zero crossing can instead be found by moving the ion
along the 𝑧-axis of the trap by asymmetrically altering the electrostatic potential. To this
end, several shifted positions have been evaluated, where each asymmetric position has
been optimized with a new tuning ratio to then determine the 𝐵2 coefficient. After de-
termining such points, a linear interpolation has then been used to minimize 𝐵2. Finally,
a position has been iteratively determined where the ion is shifted towards the CT by
Δ𝑧 ≈ 1.045mma. At this point, the measurement resolution of 𝐵2, combined with the
uncertainty of the electrostatic anharmonicities did not allow for further optimization,
being mostly limited by a 𝐶3 contribution to the electrostatic potential, which can be-

aThis is the absolute shift according to the simulation of the electrostatic potential. The precision is of
no concern, as one is only interested in the measured 𝐵2 at a certain position.
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come sizeable due to asymmetrically applied voltages. Such a𝐶3, in combination with a
𝐵1 contribution leads to an axial frequency shift (see Eq. (2.23)) which scales with 𝑟 2+, as
also the 𝐵2 related frequency shift does, therefore limiting the precision for an absolute
value. The 𝐵2 contribution has been evaluated to 𝐵2 ≤ 8 mT

m2 , as can be derived from the
data presented in Fig. 6.7, combined with simulations of the potential to set limits on
𝐶3 ≈ 2(2) × 10−3.

6.3.2 Tuning Ratio and Magnetic Inhomogeneities

To fully characterize the asymmetric trap where the measurement will be performed, a
”full” TR scan is conducted using the single 2Ne9+0 ion. After applying magnetron mode
excitations and tuning the electric potential such that no axial frequency shifts are ob-
served anymore as described in section 4.2.5, the ion is subsequently excited to an iden-
tical radius in its cyclotron mode. The comparison of the observed axial frequency shifts
due to the cyclotron excitation now correspond to the magnetic inhomogeneities and
a well predictable relativistic shift. From this, limits on the magnetic inhomogeneities
can be placed which are crucial for the determination of the correct Larmor frequency
difference. The result of such a measurement is shown in Fig. 6.7, recorded after a full
optimization of the electric potential, which nevertheless accounts for tiny frequency
shifts for excited magnetron radii. The difference of shifts observed for magnetron and
cyclotron excitations becomes independent of purely electrostatic anharmonicities and
ultimately allows to derive the expected shift on a measured Larmor frequency differ-
ence (see section 8.3.1).
The observed axial frequency shifts for cyclotron excitations have to be corrected for
the expected shift due to the relativistic mass increase. The difference of the relative
shift observed for a cyclotron excitation compared to that of magnetron excitations to
identical radii can then be used to determine the systematic shift uncertainty as dis-
cussed in sections 5.7.1 and the Appendix B. The determined systematic shift averages
to a 6(5) × 10−13 correction for the separation distance of 411 µm, using the combination
of the relative shifts observed for the three largest radii shown in Fig. 6.7. The smallest
measured radius here has not been used for the evaluation, as the observed shifts are of
similar size as their uncertainty, limiting the resolution. The average of the latter three
measurements is used to evaluate the systematic uncertainties, as the model assumes
the observed frequency shift to scale ∝ 𝑟 2+. Therefore, the correction factor 𝜖mag

𝑟 2+
, with

the relative frequency shift 𝜖mag = Δ𝜈𝑧
𝜈𝑧

should remain constant. The uncertainty of this
correction is conservatively given as 5 × 10−13, which equals about three standard devi-
ations of the derived mean correction.
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Figure 6.7: Measurement of the full tuning ratio. First, the electrostatic potential is op-
timized for magnetron excitations (blue), then the axial frequency dependence on
identical cyclotron excitation radii is observed (red). The difference of the measured
shifts (yellow) due to magnetron and cyclotron excitations allows to draw conclu-
sions about the magnetic field inhomogeneities.

Similarly, the combined shifts can be fitted with the expected quadratic dependency.
The resulting systematic shifts one can extract from such a fit range from 4.4 × 10−13

to 8.2 × 10−13, depending on the exclusion of the first measurement point, an allowed
offset or the inclusion of a higher order (𝑟 4+) dependency in the fit. The largest effect
(the one yielding 8.2 × 10−13) is found, when an additional ∝ 𝑟 4− scaling is allowed, then
however leading to larger uncertainties of the correction, as two parameters are fit to
only four datapoints. The thus extracted range is consistent with the applied correction
of 6(5) × 10−13. For future measurements, the inclusion of a tunable 𝐵1 and 𝐵2 coil is
planned, which, in combination with such a measurement, will allow to achieve signifi-
cantly smaller systematic shifts and uncertainties.

6.3.3 Determination of the Rabi Frequency

The intended Ramsey-Scheme to determine the Larmor frequency difference requires
a calibration of the irradiated microwave pulse length to achieve a 𝜋/2 pulsea for the
spin states of both ions simultaneously. Such a pulse can be achieved, when aiming at
the mean Larmor frequency of the two ions and accounting for the additional detuning,
given that the Rabi frequency is larger than half the Larmor frequency differenceb. If
this is not the case, either a pulse shaping, the use of separate microwave generators or
aDefined as a rotation of the spin vectors to the equatorial plane, corresponding to a 50 % probability for
a spinflip to occur.

bOtherwise a single pulse cannot reach a 50% transition probability for both simultaneously.
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a modulation of the irradiated microwave frequency can be considered instead.
To determine the required pulse length, the Rabi frequency of the system has to be mea-
sured. It will also be shown later on, that the visibility of the measured signal directly
depends on how well the 𝜋/2 pulse pulse is calibrated, requiring the Rabi frequency to be
known as precisely as possibly. Any loss of visibility would have to be compensated by
more statistics, resulting in a prolonged measurement time.
As the Rabi frequency depends on the microwave power at the position of the ion, it
cannot be predicted precise enough from external power measurements as the transfer
efficiency as well as the mode structure in the PT cannot be determined with sufficient
precisiona for this purpose. Furthermore, while the used microwave setup (see section
3.4) enables a measurement of the relative temporal stability of the irradiated microwave
power, the used microwave diode [64] is not suitable for precise measurements of abso-
lute power.
Instead, the Rabi frequency for the state of coupled ions has to be determined with an
additional measurement prior to the Δ𝑔 measurement. To this end, a single ion, here
22Ne9+, is used. It is placed in the asymmetric trap and excited to a magnetron radius
of 𝑟− ≈ 200 µm. Therefore, the ion now moves approximately about the same trajectory
as in the coupled state with 𝑑sep ≈ 400 µm. This ensures, that in the potential case of
a standing wave of the microwave inside the trap cavity, the ion experiences the same
microwave power as the coupled ions later on, keeping the Rabi frequency identical for
both cases.
When irradiating the microwave 𝜔RF close to the Larmor frequency 𝜔𝐿 for the duration
𝑡 with a detuning 𝛿 = 𝜔𝐿 − 𝜔RF, the probability of the ion to undergo a spin transition
𝑃SF(𝑡) follows a Rabi cycle as

𝑃SF(𝑡) =
Ω2
𝑅

Ω̃2
𝑅

sin2( Ω̃𝑅

2
𝑡) (6.1a)

Ω̃2
𝑅 =

√
(Ω2

𝑅 + 𝛿2). (6.1b)

The dependency of the spinflip probability is measured for different microwave irradi-
ation times (or pulse lengths). The result of such a measurement is shown in Fig. 6.8.
Here, a Maximum-Likelihood fit is used to extract the Rabi frequency. In this fit, the
average detuning is 𝛿 = 0 as the microwave frequency is set to match the Larmor fre-
quency. However, as a double-dip is used to determine the magnetic field with a relative
precision of 3 × 10−9 as already discussed, the detuning will be different for every at-

aThe microwave absorber, as shown in section 3.1, is meant to prevent a standing wave. How well this
works in practice cannot be simulated and has not been investigated thus far.
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Figure 6.8: Determination of the Rabi frequency Ω𝑅 . The microwave is continuously
irradiated for the given time and the spinflip probability 𝑃SF(𝑡) is monitored. The
measurement is performed on a magnetron radius 𝑟− = 𝑑sep /2, to measure in similar
conditions as for the coupled ions. The detuning 𝛿Ω𝐿 is used to model both, a fixed
detuning as well as the jitter of this detuning due to the limited precision of the
magnetic field measurement.

tempt. This leads to a reduced amplitude on average, which is included in the fitting
routine as the average over a normal distributed detuning, where 𝛿Ω𝐿 is the standard de-
viation of this distributiona. The expected jitter matches the result of the fit with about
𝛿Ω𝐿 ≈ 3 × 10−9 · 𝜈𝐿 ≈330Hz.
As the Rabi frequency is measured with the microwave drive aimed at the Larmor fre-
quency, the effective Rabi frequency for the case of the measurement where the detuning
will be 𝛿 = Δ𝜔𝐿/2 has to be calculated. With these considerations, the time for a 𝜋/2 pulseb

has been determined to be 𝜏 𝜋
2
= 101.1 µs.

The variation of the separation distance during the actual measurement leads to addi-
tional changes of the effective microwave power. As a worst case estimate, assuming a
standing wave in the trap cavity with a 100% amplitude modulation over a wavelength
of 𝜆

2 ≈ 1.3mm and assuming the ion to be located in the largest gradient, the possible
change in field amplitude is then limited to about 1.5%. The corresponding maximum
deviation for the 𝜋/2 pulse calibration is ±1.8 % on the achieved transition probability. It
will be shown that such an additional deviation is significantly below the obtained am-

aThe fitting routine first generates a normal distribution. The Likelihood function is then given as the
average over the probability given in Eq. (6.1b) with the Rabi frequency Ω𝑅 and 𝛿 as normal distributed
detunings. 𝛿Ω𝐿 is the standard deviation of this distribution and left as a free parameter.

bThe pulse is defined in terms of the achieved spinflip probability of 50 %, tuned to account for the
detuning.
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plitude resolution during the measurement and can be neglected here.

6.3.4 Stability of the Separation Distance of Coupled Ions

It has been mathematically derived that the separation and common mode are approxi-
mate constants of the motion. While they are expected to be slightly modulated by their
respective influence onto each other, they should otherwise remain constant. Addition-
ally, the stability can be experimentally verified. To this end, the separation distance is
monitored to constrain a potential change between the measured separation distance at
the end of the preparation routine and the actual distance once the microwave is irradi-
ated.
As the axial frequency strongly depends on the separation distance, even tiny changes
of 𝑑sep become visible immediately, which can be used to study the long term stability
of the coupled motiona. To this end, the ions are prepared with a separation distance of
𝑑sep = 405 µm, which corresponds to an axial frequency shift Δ𝜈𝑧 ≈ 150Hz for 22Ne9+.
Figure 6.9 shows the axial frequency of 22Ne9+ over the course of about 6 h, measured
every 2min. The short break after about 2.5 h in between corresponds to a pause in the
measurement after the first 50 spectra, which was then resumed about one hour later.
There is no definite trend of the axial frequency visible, which would correspond to
a change of the separation distance. The random variation is likely to be caused by
a voltage drift due to temperature fluctuations in the laboratory. Taking the difference
between minimum and maximum axial frequency of about 400mHz as an upper limit es-
timation, the maxium change of the seperation distance corresponds to less than 0.5 µm
over 6 h.
During the Δ𝑔 measurement, the potential variation of the separation distance is thus
limited to about 14 nm when extrapolating to the significantly shorter time between ion
preparation and measurement. Such small variations are of no concern. All required
methods and characterizations to work with the coupled ions have now been described
and a closer look on the actual measurement can be taken.

aAt 𝑑sep ≈ 400 µm, a 1 µm change corresponds to an axial frequency shift of 1.2Hz
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Figure 6.9: Measurement of the axial frequency of the coupled ions over several hours of
measurement time. The frequency behaves similar to that of a single ion, depending
on the voltage fluctuations due to temperature changes. No drift that would indicate
a change of 𝑑sep can be observed. The region with data missing corresponds to a
pause in themeasurement routine, resumedwithout change to the system after about
1 h. The error bars of the individual measurement points are omitted, as they are
identical for each measurement and given by uncertainty assigned to the fit of the
axial dip fit. Due to the coupled state, the signal is slightly deteriorated and the
uncertainty is estimated to about ±30mHz for each individual data point.
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Results

In this chapter, I will present the main achievement of this thesis – the application of
the newly developed technique to measure the g-factor difference of the coupled 20Ne9+

and 22Ne9+ ions directly and coherently. So far, the coupled motion and related shifts, as
well as the measurement routine and tools to manipulate the coupled ions have been in-
troduced. However, while the Ramsey-type microwave irradiation has been mentioned,
the critical idea of this measurement is yet to be discussed. While it has been postulated
that the spins of the coupled ions will behave coherently due to their proximity and
thus identical magnetic field, it has yet to be discussed how the obtained data has to be
evaluated. The access to the individual spins has already been covered and is identical
to those of the single g-factor measurements, except that the ions have to be separated
and moved to different sections of the trap to allow the determination of each spin state.
The main novelty to consider in the following pages will be the common behaviour of
the spins and what this encodes. Thereafter, I will discuss the data evaluation and the
experimental verification of the systematic shift in more detail. Finally, this chapter will
be concluded by discussing the result of this measurement and its implications.

7.1 The Coherence of Spin States

While an understanding of the two-ion motion and how to manipulate them is required
to completely follow this method, the essential part is the understanding of the mea-
surement signal, or how the measured data has to be evaluated. All of the benefits one
gains, rest upon the coherence of the two spin states of the ions which are addressed
simultaneously with a Ramsey sequence, consisting of a 𝜋/2 pulse, as previously defined
and calibrated to achieve a 50 % spinflip probability, the evolution time 𝜏evol followed by
another 𝜋/2 pulse. Let us consider what is actually being achieved here and what that
implicates.
The explanation of the complete process can be simplified when assuming, without loss
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of generality, that the ions are always prepared in the identical spin state for each cy-
cle. While not actually being required, this would not pose a problem to implement. In
the following, the spin-down state will be represented by downwards pointing arrows of
length 1 on the Bloch sphere,𝑊 = −1. Upwards pointing arrows represent the spin-up
state with𝑊 = 1. Generally, the projection of the spin vectors onto the𝑊 -axis (see Fig.
7.1) represent the probability to measure the respective ion in the corresponding spin
state.
Let us assume that every cycle begins by initializing both spins in the spin-down state.
Now, a first 𝜋/2 pulse is irradiated at the median Larmor frequency. With a Rabi fre-
quency for the spin transitions of 𝜈𝑅 = 2465(16)Hz (see section 6.3.3), and a difference
of only Δ𝜈𝐿 ≈ 758Hz, it is obvious that, despite the comparably small (and symmetri-
cal) detuning, a simultaneous 𝜋/2 pulse can be achieved by the same microwave drive
for both ions when irradiated at their mean Larmor frequency and calibrated to be a 𝜋/2
pulse. However, it should be noted that a 𝜋 pulse is not possible, as the probability will
never reach 100 % for a single pulse. When considered in the frame co-rotating with the
irradiated microwave drive, this step can be illustrated as shown in Fig. 7.1.
Both spins are rotating counter-clockwise into the equatorial plane around themagnetic

π/2 pulse

Both spin vectors in spin-down Both spin vectors in equatorial plane

BRF

S2

S1

W

V U

W

V U

Figure 7.1: Both ions are initially prepared in the spin-down state (left), then the first
microwave 𝜋/2 pulse is irradiated, bringing both spin vectors to the equatorial plane.
The spin vectors rotate around the applied microwave drive 𝐵RF, ignoring the small
detuning of the drive frequency with respect to the individual Larmor frequencies
for now.

field vector of the applied drive 𝑩RF, neglecting the detuning for now. This detuning and
its effect will be revisited in more detail shortly.
One now has to consider what occurs during the evolution time. Ideally, when the mag-
netic field is considered to be perfectly stable, both spin vectors rotate in the equatorial
plane with equal frequencies but of opposite sign ±Δ𝜈𝐿/2 in the system co-rotating with
the exact mean of the Larmor frequencies. From the initial definition of the ions indices,
it follows that 𝜔𝐿,2 > 𝜔RF > 𝜔𝐿,1, leading to a counter-clockwise rotation for the spin
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vector 𝒔2, clockwise for 𝒔1.
If the second 𝜋/2 pulse would be irradiated at the points where both vectors are in phase,
one either observes a spin transition for both ions, if the vectors are back at the start or
neither of the ions if the vectors point to the left. These cases relate to being in phase
with the microwave drive or out of phase. If the ideal case assumption was valid, this
would result in a 0% to 100% modulation for either ion, only depending on the phase
relative to the drive.
However, due to magnetic field fluctuations, such a measurement is only possible for
extremely short evolution times, as any tiny change of the magnetic field results in a
loss of coherence of our system with respect to the external drive of roughly 112GHz.
This can be easily understood, as even for the shortest evolution time used in this work
of 𝜏evol = 100ms, a ±4 × 10−11 relative change of the magnetic field between the pulses
already corresponds to a change of ±180° between a spin vector and the drive. On av-
erage over many such cycles, this would therefore simply yield a 50% spinflip probabil-
ity. Furthermore, it can also be considered that the detuning between drive and Larmor
frequency is different for each irradiation due to the limited magnetic field resolution.
Therefore, the phase between drive and a single spin vector is random for the second
pulse. Both effects lead to an average of 50% spinflip rate.
The first generalization that has to be included in these considerations is therefore the
magnetic field fluctuation. If the co-rotating frame is definedwith a fixed drive frequency
initially, but changes now occur in the magnetic field, the spin vectors rotate with a
slightly different frequency. Effectively, this can be understood as their relative detun-
ing changing, and, depending on the sign of the magnetic field change, one of the spin
vectors will rotate faster, the other slower, both losing coherence to the drive. This is the
regime, where an average of 50% spin transition rate is measured for each of the ions
independent of the evolution time.
While such fluctuations affect the drive with respect to the individual frequencies in full,
the relation between the two vectors is only affected by their differential change. As the
frequency difference is only Δ𝜈𝐿 ≈ 758Hz, such fluctuations are strongly suppressed by
a factor of Δ𝜈𝐿/𝜈𝐿 ≈ 7 × 10−9 when compared to the full Larmor frequency 𝜈𝐿 ≈ 112GHz.
This means, that the phase of the ions with respect to each other is to a large extend
independent of such fluctuations. Now, what does the simultaneous consideration of
the ions implicate for the irradiation of the second 𝜋/2 pulse?
Let us again assume that the pulse is irradiated when both spin vectors are in phase
with each other and that effects stemming from the detuning of the drive can still be
neglected for this qualitative explanation. Both spin vectors are now affected identically
by the external drive. However, their common behaviour is depending on the relative
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phase of the spin vectors with respect to the drive. Let us consider the crucial idea of
this measurement scheme: What is the probability for both spins to behave the same;
meaning that both or neither undergo a spin transition.
The minimum probability is reached, when neither spin is affected at all. This occurs,
when both spin vectors are aligned parallel or anti-parallel with the drive, keeping both
in the equatorial planea. This means, that the probability for them to behave identically
is 50%, as the probability for a spin transition to occur for either ion is left at 50%. (Fig.
7.2, (C) and (D)).
The maximum probability is reached, when the drive is oriented perpendicular with the
spin vectors and both end up in the spin-up state (Fig. 7.2, (A)). Furthermore, one also ob-
serves common behaviour when their phase relative to the drive is 180° different, which
results with both ions again in the spin-down state (Fig. 7.2, (B)). The probability to ob-
serve a common behaviour in both cases is then 100%.
However, as the phase of the drive has to be assumed to be completely random with
respect to the spins, the discussed cases of Fig. 7.2, (A)-(D) have to be averaged and con-
sequently a probability of 75% for a common behaviour is achieved when both spins are
in phase with each other.
Similarly, the cases where the phase difference between the spin vectors is 180° at the
time of the second pulse can be considered to average to a 25 % probability of common
behaviour. Consequently, as the relative phase of the ions to each other is modulated
by Δ𝜈𝐿 , the examined correlation will vary between 25% and 75% over time, under the
assumption that the individual coherence between ions and drive is lost, but the relative
coherence between the ions is kept.
Let us now examine, how these considerations can be expressed mathematically. To this
end, the case where both spins are initialized in the spin-down state is examined again.
Once a 𝜋/2 pulse pulse has been calibrated (see section 6.3.3) to achieve a 50 % spinflip
probability, an evolution time 𝜏evol larger than 0 must exist, after which a second, iden-
tical pulse is able to reach 100% spinflip probability. When the detuning 𝛿𝑖 = 𝜔𝐿,𝑖 − 𝜔RF

of applied drive with respect to the Larmor frequencies of both ions is now considered,
a 100% rate cannot be obtained for either ion with a single pulse, which is effectively
what a zero evolution time would implicate. This can be understood when again consid-
ering the rotation of the spin vectors on the Bloch sphere. The actual axis of rotation
is now defined by the effective magnetic field vector, given by the linear combination
of applied drive magnetic field 𝐵RF and the detuning 𝛿𝑖 for each spin vector. Due to the
tilt, the rotation of the spin vector on the sphere does not pass through the upper pole,

aThe torque on the spin vectors is given by the cross product of effective magnetic field and spin vector,
when neglecting the detuning this results in a rotation around the applied drive.
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Figure 7.2: Illustration of selected cases before the second 𝜋/2 pulse. For the four dis-
cussed cases, where the spin vectors are in phase with respect to each other, possible
orientations with respect to the drive are shown. The detuning of the applied drive is
neglected in this simplified representation. The coincidental behaviour (both spins
behaving the same way) is found to be between 50% and 100% and will average to
75%. Figure adapted from T. Sailer et al., submitted 2021 [37].

therefore not allowing to reach a 100% transition probability. Furthermore, an initial
phase difference is accumulated, since the spin vectors pass through different points in
the equatorial plane as illustrated in Fig. 7.3 for the state after a first 𝜋/2 pulse.
When now considering this additional phase due to the detuning, the maximum proba-
bility for a spin transition after the second pulse is not reached anymore when the spin
vectors are exactly perpendicular to the drive, but rather when both have the inverse
phase Φ0,𝑖 with respect to the drive. Additionally, due to the symmetric detuning, these
phases are of opposite sign for the two spin vectors, Φ0,2 = −Φ0,1. This maximum and
minimum probabilities will however still be reached periodically while the spins change
their relative phase with Δ𝜈𝐿 .
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Figure 7.3: Illustration of the spin vectors on the Bloch sphere, with the definition of
the vectors 𝒔 = (𝑈 ,𝑉 ,𝑊 ). An applied drive without detuning results in a counter
clockwise rotation of the Bloch vector in the𝑊 −𝑉− plane with the Rabi frequency
Ω𝑅 . The axis of rotation with a detuning is now given by the linear combination Ω𝑅

and respective detuning 𝛿𝑖 for each spin vector. Here, the spin vectors have originally
been pointing down, the shown state is reached after applying a 𝜋/2 pulse with a
symmetric detuning 𝛿𝑖 . This results in the additional phasesΦ0,1 andΦ0,2 with respect
to the 𝑉 -axis, resulting in a phase difference between the spin vectors.

The probability to find both ions in the spin-up state after our measurement cycle with
both ions initially in the spin-down state is then given as the product of the probabilities
for the respective ions as

𝑃 (↑, ↑) = cos
(𝜔𝐿1 − 𝜔MW

2
𝜏evol + Φ0,1

)2
· cos

(𝜔𝐿2 − 𝜔MW

2
𝜏evol + Φ0,2

)2
(7.1)

=

[
1
2

(
cos

(
Δ𝜔𝐿

2
𝜏evol + ΔΦ0

)
+ cos

(
𝜔𝐿1 + 𝜔𝐿2 − 2𝜔MW

2
𝜏evol

))]2
,

where the initial phase difference ΔΦ0 = Φ0,2 − Φ0,1 and Δ𝜔𝐿 = 𝜔𝐿2 −𝜔𝐿1 is introduceda

The phase difference between spin vector and drive follows 𝜔𝐿,𝑖 − 𝜔MW, where 𝜔𝐿,𝑖 is
the Larmor frequency of the individual ions and 𝜔MW is the frequency of the external
microwave drive. Similarly, one can write the probability for both ions to remain in the
spin-down state after completing the measurement cycle. This is given as

𝑃 (↓, ↓) = sin
(𝜔𝐿1 − 𝜔MW

2
𝜏evol + Φ0,1

)2
· sin

(𝜔𝐿2 − 𝜔MW

2
𝜏evol + Φ0,2

)2
(7.2)

=

[
1
2

(
cos

(
Δ𝜔𝐿

2
𝜏evol + ΔΦ0

)
− cos

(
𝜔𝐿1 + 𝜔𝐿2 − 2𝜔MW

2
𝜏evol

))]2
.

aThis definition keeps the difference frequency positive, when following the index convention of 1=̂
22Ne9+ and index 2=̂ 20Ne9+.
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As one wants to examine the coincidental case, the sum of these probabilities where both
ions are in the same spin state has to be considered. This is given as

𝑃 (𝑡) = 𝑃 (↓, ↓) + 𝑃 (↑, ↑) = 1
2
cos

(
Δ𝜔𝐿

2
𝜏evol + ΔΦ0

)2
+ 1
2
cos

(
1
2
(𝜔𝐿1 + 𝜔𝐿2 − 2𝜔MW)𝜏evol

)2
︸                                         ︷︷                                         ︸

1/4

=
1
4
cos(Δ𝜔𝐿 𝜏evol + 2ΔΦ0) +

1
2
, (7.3)

where the term depending on the externalmicrowave drive is assumed to be not coherent
anymore. It thus averages to 50% over multiple measurement cycles.
Therefore, each individual ion is expected to exhibit an average spinflip probability of
50%, while the coincidental probability will undergo a modulation from 25% to 75% with
the difference of the Larmor frequencies. For zero evolution time one finds the offset
phase between the ions to be 2ΔΦ0, which is twice the acquired phase of each spin vector.
This will be discussed in more detail shortly.
The dependency of the probability of coincidental behaviour on the evolution time is the
central point of thismethod and enables the directmeasurement of the Larmor frequency
difference. Together with the parameters of electron mass𝑚𝑒 , the ion mass𝑚ion and the
charges of the ions 𝑞ion and electron 𝑒 , the difference of their g factors Δ𝑔 can be directly
extracted as

Δ𝑔 =
𝑔

𝜔𝐿
Δ𝜔𝐿

=
2
𝜔𝑐

𝑚𝑒

𝑚ion

𝑞ion
𝑒

Δ𝜔𝐿 .
(7.4)

As can be seen from this relation, all input parameters to derive Δ𝑔 are required to about
the relative precision of measured frequency difference Δ𝜔𝐿 to not be limiting factors.
To achieve a similar relative precision as the theoretical calculation (see Tab. 1.1) of
Δ(Δ𝑔)
Δ𝑔 ≈ 8 × 10−4, which is still a 5 × 10−12 precision relative to the absolute g factor, all

parameters are then required to be known to a low 10−4 level. This is of no concern and
offers the potential to experimentally surpass this precision by several orders of mag-
nitudea. The strongly relaxed dependency on external parameters shown here is the
second large benefit of this method compared to absolute measurements, other than the

aThe cyclotron frequency can be determined with a precision of some 10−10 per cycle. The electron mass
is known to about 3 × 10−11, the atomic mass of 20Ne to about 1 × 10−10. Note, that only one of the ion
masses is required to this precision.
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already discussed suppression of magnetic field fluctuations.

7.1.1 Determination of Initial Phase Difference

The initial phase difference 2ΔΦ0, defined as the phase that would be determined for
a zero evolution time using the formula from Eq. (7.3) for the coincidental probability,
stems from the different detuning 𝛿𝑖 = 𝜔𝐿,𝑖 −𝜔RF

a of the irradiated microwave frequency
𝜔RF with respect to the individual Larmor frequencies 𝜔𝐿,𝑖 of the ions. As one can see
from the optical Bloch equations, such a detuning will cause a difference of the phase
of spin vector with respect to the drive which depends on the sign of the detuning. The
equations to describe the evolution of the spin vector (or Bloch vector) 𝒔 = (𝑈 ,𝑉 ,𝑊 ) on
the Bloch sphere as illustrated in Fig. 7.3, where𝑊 = ±1 represents the two states of the
system, can be written as [87]

𝑑𝒔

𝑑𝑡
= 𝛀 × 𝒔, (7.5)

with the torque vector 𝛀 = (−Ω𝑅, 0, 𝛿𝑖), where Ω𝑅 is the Rabi frequency due to the
applied drive. When starting in the spin-down state, 𝒔 = (0, 0,−1), the time evolution of
the Bloch vector can be derived (see Appendix A) to follow

𝑈 (𝑡, 𝛿) = 𝛿𝑖Ω𝑅

Ω̃2
𝑅

(1 − cos(Ω̃𝑅𝑡)) (7.6a)

𝑉 (𝑡, 𝛿) = −Ω𝑅

Ω̃𝑅

sin(Ω̃𝑅𝑡) (7.6b)

𝑊 (𝑡, 𝛿) = −1 +
Ω2
𝑅

Ω̃2
𝑅

(1 − cos(Ω̃𝑅𝑡)), (7.6c)

with the the effective (or generalized) Rabi frequency Ω̃𝑅 =
√
Ω2
𝑅 + 𝛿2. When the applied

microwave drive frequency is the mean Larmor frequency of the ions, one can see that
the symmetry is broken due to the detuning in the time evolution of𝑈 (𝑡, 𝛿), as it depends
on the sign of the detuning 𝛿 = ±Δ𝜔𝐿/2. The two other coordinates are symmetric in the
detuning and not influenced by the sign.
Using the solution to the time evolution of the Bloch vector, the additional phases Φ0,𝑖

accumulated during the first 𝜋/2 pulse as shown in Fig. 7.3, can be calculated using the

aIndex 1 =̂ 22Ne9+ and index 2 =̂ 20Ne9+, and 𝜔𝐿,2 > 𝜔𝐿,1, therefore the 𝛿1 is negative, 𝛿2 positive.
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results of the Rabi frequency determination (see section 6.3.3)a as

Φ0,1 = arcsin
(

𝑈

𝑉 2 +𝑈 2

)
180°
𝜋

(7.7)

= −8.76(10)° and (7.8)

Φ0,2 = +8.76(10)°, (7.9)

with the error stemming from the uncertainty of the Rabi frequency. The individual
phases Φ0,𝑖 are identical to the ones given in Eq. (7.3). Therefore, the complete phase
difference one expects for zero evolution time, or as the initial offset, is then 2ΔΦ0 =

2Φ0,2 − 2Φ0,1 = 35.1(2)°.
Another consideration can be made using the Rabi formula for the spin transition prob-
ability. When irradiating a microwave drive, the probability 𝑃 (𝑡) to observe a spin tran-
sition follows

𝑃 (𝑡) =
Ω2
𝑅

Ω̃2
𝑅

sin2
(
Ω̃𝑅

2
𝑡

)
. (7.10)

For the parameters used here, a transition probability of 𝑃 (2𝜏 𝜋
2
) ≈ 97.7 % can be calcu-

lated. This is valid for both ions, while 𝑃 (2𝜏 𝜋
2
) = 1 − 𝑃 (2𝜏 𝜋

2
) is the probability for no

spinflip to occur for either ion. Note, that it is intentional to not refer to the probability
as a 𝜋 pulse or 𝑃 (𝜏𝜋 ). Due to the definition of a 𝜋/2 pulse to achieve a 50 % probability
despite the detuning, a single pulse of twice this length does not achieve 100 % spinflip
probability. Finally, as a fixed detuning has been used in this case, the fitting function as
derived in Eq. (7.3) has to be revisited. The averaging of the cosine to 1

2 is now no longer
valid, as one assumes to irradiate exactly the mean Larmor frequency and 𝜏evol = 0. In-
stead, it is found to be cos

( 1
2 (𝜔𝐿1 + 𝜔𝐿2 − 2𝜔MW)𝜏evol

)2
= 1. Therefore, from Eq. (7.3) it

directly follows that
𝑃 (↑, ↑) + 𝑃 (↓, ↓) = 1

4
cos(2ΔΦ0) +

3
4
. (7.11)

Furthermore, the same probability can be given by using Eq. (7.10) to calculate the prob-
ability to find both in the spin-up state, 𝑃 (2𝜏 𝜋

2
)2 and the inverse, where both are still in

the spin-down state, 𝑃 (2𝜏 𝜋
2
)2. This can then be written as

𝑃 (↑, ↑) + 𝑃 (↓, ↓) = 𝑃 (2𝜏 𝜋
2
)2 + 𝑃 (2𝜏 𝜋

2
)2. (7.12)

aΩ𝑅 = 2𝜋 · 2465(15)Hz, 𝜏 𝜋
2
= 101.1 µs
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Combining these equations, it can be determined that the phase one would determine
when applying the initially derived fitting function as given in Eq. (7.3) is

2ΔΦ0 = arccos
(
4
(
𝑃 (2𝜏 𝜋

2
)2 + 𝑃 (2𝜏 𝜋

2
)2 − 3

4

))
180°
𝜋

(7.13a)

= 35.1(2)°, (7.13b)

which is consistent with the calculations using the solutions to the optical Bloch equa-
tions with detuning. The uncertainty is again related to the uncertainty of the deter-
mined Rabi frequency.
Finally, one can consider magnetic field fluctuations and drifts during the evolution time,
effectively changing the detuning and the behaviour of the spins during their evolution.
To this end, the complete measurement procedure has been simulated numerically with
the inclusion of such fluctuations, using the solution of the optical Bloch equations for
arbitrary initial states, as derived in the Appendix A. There are two different effects that
have to be considered for such a simulation. First, as only a double-dip measurement
is used to determine the cyclotron frequency, and the magnetic field is only predicted
for the subsequent cycle, this results in a relative uncertainty of about 3 × 10−9 for the
momentary magnetic field at the time of the Ramsey measurement. This uncertainty is
the standard deviation between subsequent measurements of the cyclotron frequency.
The drive frequency is then adjusted accordingly to the measured magnetic field each
cycle. This adjustment translates into a jitter of the detuning of about 330Hz, which is
comparable to the detuning of 𝛿 ≈ 380Hz. Averaging over these different detunings for
many cycles however still produces the identical result for the predicted initial phase
within its uncertainty, as determined by the numerical result. Furthermore, only a small
reduction of modulated probability amplitude �̃� can be observed, given as �̃� = 0.248(2).
The second possible effect is a change of detuning between the two pulses due to a mag-
netic field drift in between. A limit on such fluctuations can be placed from subsequent
PnA measurements, with a standard deviation between two subsequent shots of about
3 × 10−10. As this is measured on longer time-scales however (≈ 8 s), the effect during
the evolution times of this measurement is likely much smaller. However, allowing such
fluctuations to occur between the pulses does on average not produce an observable dif-
ference.
The additional phase accumulated during the two pulses, extracted from these numerical
simulations can be given as

2ΔΦ0,sim = 35(2)°, (7.14)
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where the uncertainty is the maximum observed deviation of several numerical itera-
tions from the mean value with reasonable input parameters. These include different
magnetic field fluctuations as well as the uncertainty of the Rabi frequency.
As all considerations have shown to yield consistent results, the initial phase is used for
the evaluation of the frequency difference. However, to not over define the initial phase
based upon this simulation and the idealized models, and avoid a potential error due to
an unconsidered effect, the phase is only included with a conservative uncertainty esti-
mation of twice the observed deviations of the numerical approach. This factor is meant
to account for possible effects such as an asymmetric detuning due to a systematic shift
in the magnetic field determination or drifts of the Rabi frequency during the measure-
ment and could likely be reduced for future measurements. The phase is the used in the
evaluation as

2ΔΦ0,eval = 35(5)° (7.15)

for the evaluation of the Larmor frequency difference.

7.2 Data Evaluation

Themeasurement has been performed for five different sets of evolution times, for which
at least two have always been measured interleaved, with their order randomly mixed.
Therefore, any unforeseen effect on the expected modulation would be observable in at
least two separate data sets. Each set of evolution times consists of six discrete times,
equally spaced to cover a full period of the expected Larmor frequency difference. Addi-
tionally, each of the six times within the set is seeded by a uniform random distribution
of ±30 µs, which ensures an averaging of potential fast (unexpected) oscillations on time-
scales of the irradiated microwave frequency.
The effect on the visibility of the expected modulation of the probability of common be-
haviour when ignoring and simply averaging over this artificial jitter could be neglected,
as it only amounts to a relative change of at most 0.2% of the expected probability mod-
ulation amplitude. However, by performing a Maximum-Likelihood fit to the observed
modulation, each data point is taken into account corresponding to its exact evolution
time already.
The probability to observe a coincidental behaviour depending on the evolution time
𝜏evol is thus evaluated by fitting

𝑃 (𝜏evol) = �̃� · cos(𝜔guess · 𝜏evol + Φfit) + 0.5, (7.16)
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where 𝜔guess is a fixed initial guess of the difference frequency. The parameter �̃� is the
modulation amplitude and Φfit is the combined phase, consisting of the initial phase
difference and the extracted phase required to match the input frequency guess to the
data. While one is ultimately interested in the difference frequency, keeping it fixed in
this fit and only determining the phase instead, reduces the amount of free parameters
and results in a more stable fit. After thus determining the phase for each evolution
time, one is left with the task of unwrapping the total accumulated phase, each given as
Φ(𝜏evol)total = 2𝜋𝜔guess ·𝜏evol+Φfit. The smallest evolution time of 𝜏evol = 100ms is chosen
such that an error modulo 2𝜋 during the unwrapping due to a wrong frequency guess
is extremely unrealistic, given the theoretical prediction with an accuracy of 600mHz
for the difference frequency. Therefore, the frequency guess used for fitting would have
to be wrong by about 8𝜎 to allow for such an error and becomes even less likely when
taking all additional evolution times into account.
The amplitude of the modulation is left as a free fitting parameter to facilitate the de-
termination of the degree of coherence. Therefore, the extracted amplitude is a direct
indication of how well the cancellation of the magnetic field fluctuations work at each
evolution time. As the coherence of the spins can still be observed even for the longest
measured evolution time, the amplitude could be kept fixed to 25 %. However, allowing
it as a free parameter achieves a more stable fit. The determined phases have been ob-
served to consistent in both, value and uncertainty for fits performed with either fixed
or free amplitude.

7.2.1 Results & Discussion

The total accumulated phases Φ(𝜏evol)total have been determined as shown in the upper
six insets of Fig. 7.4, using 𝜔guess = 2𝜋 · 758.8Hz. To determine the Larmor frequency
difference, the unwrapped phases of the four main measurements (four insets in Fig.
7.4 not highlighted in grey) that all have been performed with a separation distance
𝑑sep = 411(11) µm, as well as the initial phase are used. The result of a weighted lin-
ear least-square fit is corrected for the systematic shift of 6 × 10−13 (see section 5.7.1).
The grey highlighted measurements in Fig. 7.4 have been performed at different sepa-
ration distances and are not used for the determination of the frequency. The phases
determined from these two measurements are corrected for their respective systematic
shifts of 2 × 10−13 for 𝑑sep = 340 µm and 1 × 10−12 for 𝑑sep = 470 µm and are included in
the lower part of Fig. 7.4, where the residual of each phase respect to the determined
Larmor frequency difference is shown. The statistical confidence interval (red shaded
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area) is determined as a combination of the opposing 1𝜎 intervals of initial phase and
frequency. For the lower phase, the larger frequency is shown, and vice versa, which
yields the largest possible frequency uncertainty. Both of the measurements performed
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Figure 7.4: The top six insets show the individual measurements for different 𝜏𝑒𝑣𝑜𝑙 and
separation distances. The measurements highlighted in grey are for systematic ana-
lysis only and did not contribute to the statistical result. The bottom part shows the
residuals, including the initial phase (green), with respect to the corrected final fre-
quency. The confidence interval (red shaded area) shows the statistical uncertainty
only. Figure taken from T. Sailer et al., submitted 2021 [37].

at different separation distances are within 1𝜎 of the combined statistical uncertainty.
Here, especially the agreement of the phase determined for the evolution time of 2.2 s,
measured at a separation distance of 𝑑sep = 340 µm has to be highlighted. With a system-
atic correction of only 2 × 10−13 and a similar statistical resolution, the agreement of this
phase yields the single most stringent performance test of this measurement. Combined
with the agreement of the phase determined for the larger separation distance of 𝑑sep =
470 µm, both with the fit and the phase determined at a different radius, the systematic
treatment is experimentally verified.
Furthermore, the initial phase can again be verified using the measured phases directly.
To produce the most stringent result, all measured phases are used, including the ones
performed with different separation distances after being corrected for their respective
systematic shifts. The initial phase, now determined by performing a linear fit to all
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accumulated phases Φ(𝜏evol)total yields

2ΔΦ0,exp = 33(11)°, (7.17)

which is consistent with the numerical result derived before.
The extracted frequency difference is Δ𝜈𝐿 = 758.752(30)𝑠𝑡𝑎𝑡 (56)𝑠𝑦𝑠 Hz, which includes
a 5 × 10−13 systematic uncertainty relative to the full Larmor frequency. The average
magnetic field during the complete measurement campaign is taken to translate this
into a difference of g factors. Generally, this is not quite correct, as each individual mea-
surement would have to be corrected for the current magnetic field. However, with a
relative difference between minimum and maximum of the magnetic field during this
measurement of only 5 × 10−7 (see App. 8.3.1), the related change of the Larmor fre-
quency difference is of only 380 µHz (or 3 × 10−15 in terms of relative precision) and can
be completely neglected here.
Finally, using Eq. (7.4), the g-factor difference can be derived as

Δ𝑔exp = 13.475 24(53)exp(99)sys × 10−9

Δ𝑔theo = 13.474(11)FNS × 10−9 [36, 37],

which corresponds to about a two orders of magnitude improved precision compared to
the current best isotope difference measurement for g factors [34] and yields the most
precise difference of g factors measured to date. The final result of Δ𝑔 is in excellent
agreement with the theoretical value, which is limited in precision by the uncertainty of
the charge radius difference due to the finite nuclear size (FNS) correction. Furthermore,
the observed amplitudes are all within the 1𝜎 range, except for 𝜏𝑒𝑣𝑜𝑙 = 1.05 s. As the
amplitude here is slightly more than 1𝜎 above the expected amplitude, full coherence can
still be assumed. As even the amplitude for 𝜏𝑒𝑣𝑜𝑙 = 2.2 s is still within the expected range,
a high degree of coherence of the spin vectors even for several seconds of evolution
time has therefore been shown and achieved. The initially assumed coherence of the
spin states has therefore been proven to be correct.

7.2.2 Nuclear Charge Radii and Differences

The uncertainty of the theoretical value of Δ𝑔 is dominated by the uncertainty of the
charge radius difference, with the next uncertainties stemming from nuclear polarization
and deformation effects being two orders of magnitude smaller. Thus, when trusting the
theoretical prediction, the charge radius difference 𝛿 〈𝑟 2〉1/2 of 20Ne9+ and 22Ne9+ can be
improved by using the measured value of Δ𝑔 as an input instead. This yields
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𝛿 〈𝑟 2〉1/2exp = 0.0533(4) fm [37]

𝛿 〈𝑟 2〉1/2lit = 0.0530(34) fm [33],

almost an order ofmagnitude improvement in precision for the difference of these charge
radii.
The result of this measurement, applied to derive charge radius differences, can now
be used as an additional input parameter for the benchmarking of theoretical calcula-
tions required for the determination of charge radii from optical spectroscopy. Here, the
main uncertainty typically rests upon the determination of the field-shift factor (FSF)
[88], which, despite its uncertainty already being improved via the calibration of inde-
pendently measured radii, is still about an order of magnitude above the statistical un-
certainty [31] for every system heavier than boron [89]. The FSF provides a translation
from the spectroscopically measured frequency shift of transitions in different isotopes
to a charge radius difference. This field shift is further convoluted with the mass shift,
which also results in a change of the transition frequencies due to the different masses
of the involved isotopes. To extract a radius difference, this approach therefore requires
a calibration of the scaling of the observed frequency shift over multiple isotopes, typi-
cally performed by a King plot analysis [31].
Depending on the chosen charge distribution model, from two parameter Fermi distribu-
tion, to Barrett radii [90], Barrett-equivalent radii [91] or a simple homogeneous charged
sphere model, the expressions for the radii can vastly differ. This model dependency is
tackled in several different approaches. One example is translating the Barrett radii,
measured for muonic systems, to an electronic RMS value using an empirical formula,
modelled to fit available data over a large range of 𝑍 [92]. This is especially critical, as
measurements performed on muonic atoms provide several, if not most, of the most pre-
cise radii currently available [33, 91].
For the FNS correction to the g factor, which ultimately allows this determination of the
charge radius difference from a Δ𝑔 measurement, a translation from the two parameter
Fermi model to express the moments of a homogeneously charged sphere model [93] or
the direct RMS values can be used. The comparison and agreement of this result with
the literature value for the neon isotope charge radius difference, derived from measure-
ments of muonic systems [33], is therefore an important test for the agreement of the
different models applied to perform such conversions. Especially the translation from
Barrett to RMS values is almost exclusively performed in [33, 92]. This work established
the direct comparison between muonic and electronic radii, widely used nowadays with
well over 1000 citations. However, while this translation of models seems to be fine
in general, after spending a lot of time investigating these dependencies on underlying
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models and the connection to muonic and optical spectroscopy, I would still encourage
to proceed with caution if these radii, especially absolute radii, are of critical importance
to future measurements.
This holds at least true for cases where further analysis has been applied to decrease
systematic uncertainties. For example, the original publication cited by Angeli and Mari-
nova for the charge radius difference of 92Mo versus 100Mo states a measured value of
𝛿 〈𝑟 2〉 = 1.139(39) fm2 [94] limited by the (systematic!) uncertainty of the FSF. This
uncertainty had already been deduced using a King plot analysis of all experimental
data, combined with the muonic values as calibration parameters in the original publica-
tion. Further analysis and a recalculation of the FSF performed by Angeli and Marinova
now yields the absolute radii of the isotopes and their differential uncertainty such that
𝛿 〈𝑟 2〉 = 1.154(1) fm2 [33]. I did not manage to follow or reproduce this derivation and,
more importantly, cannot find an argument for the significantly decreased uncertainty.
Therefore, the source material for the tabulated values should at least be confirmed to be
of similar precision before these radii and their mostly superior precision with respect
to other tabulated values, for example [91], are used.

7.2.3 The Search for New Physics

As the theoretical value of the g-factor difference has been derived within the physics
of the Standard Model, the agreement with the experimental result can also be applied
to set limits on physics beyond the Standard Model instead. One theory, predicting
possible new physics (NP), is based on the mixing of a new scalar boson, the relaxion,
with the Higgs boson via the Higgs portal [95, 96]. This boson could potentially mediate
an interaction between electrons and nucleons. Therefore, the isotope shift provides
a sensitive probe to investigate such an effect due to the change of neutron numbers.
With the electron in close proximity of the nucleus, highly-charged ions are especially
sensitive to short-range interactions and thus to scenarios with a heavy mass of such a
proposed boson. If such a boson was found, it could possibly provide a solution to the
hierarchy problem [97].
The interaction between such new bosons and atoms can be expressed via a Yukawa-
type potential [98], often referred to as fifth force. This potential, seen as arising from
the nucleus and acting upon the bound electrons, can be written as [99]

𝑉HP(𝒓) = −ℏ𝑐𝛾𝑒𝛾𝑛
4𝜋

𝐴
𝑒−

𝑚Φ𝑐
ℏ |𝒓 |

|𝒓 | , (7.18)
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with the coupling constants 𝛾𝑒 for the electron and 𝛾𝑛 for the nucleons, the nuclear mass
number 𝐴 and the boson mass𝑚Φ. It can be shown that this results in a dependence of
the g factor on the combined coupling constant 𝛼HP =

𝛾𝑒𝛾𝑛
4𝜋 [99]. The contribution to the

g factor can be written in a simple formula for two regimes, where the boson mass is
either much smaller or much larger than the product of proton number, fine-structure
constant and the mass of the electron 𝑍𝛼𝑚𝑒 as

𝑔HP = −4
3
𝛼HP𝐴

(𝑍𝛼)
𝛾

for𝑚𝜙 � 𝑍𝛼𝑚𝑒 and (7.19)

𝑔HP = −4
3
𝛼HP𝐴

(𝑍𝛼) (1 + 2𝛾)
𝛾

(
𝑚𝜙

2𝑍𝛼𝑚𝑒

)−2𝛾
for𝑚𝜙 � 𝑍𝛼𝑚𝑒, (7.20)

where 𝛾 =
√
𝜅2 − (𝑍𝛼)2, with the relativistic angular quantum number 𝜅 [99]. For light

boson masses, the contribution to the g factor is treated by considering the effect of the
additional potential on 𝛼 and calculating the first order correction to the g factor by us-
ing the Breit formula (see Eq. (1.3)).
As the agreement between the experimental result and the theoretical prediction has
been shown, this allows to derive constraints on themechanism for such NP as described
above. These constraints are expressed as a relation between the combined coupling
strengths 𝛾𝑒𝛾𝑛 versus the potential mass of the boson.
The thus excluded area, compared with similar constraints derived from multiple other
sources are shown in Fig. 7.5. The other boundaries stem from an isotope shift mea-
surement of hydrogen versus deuterium (H-D 1S-2S, [100]), which represents the most
stringent limit in the high boson mass regime. Effects of the Casimir force (CF,[101]) and
globular clusters (GC, [102]) are limits derived from astronomical observations, the limit
of (𝑔− 2)𝑒 ·𝑛 is derived [103] by a combination of the free electron (𝑔− 2) measurement
[7], combined with neutron scattering data [104–107]. Finally, the measurements on Ca+

[103] and Yb+ [108] are based on isotope shift measurements combined with a King plot
analysis. Interestingly, in the Yb+ measurement a non-linearity in the King plot [108]
has been observed and has recently been confirmed in an independent measurement
[109]. The cause for this non-linearity is still unresolved. While a NP contribution could
potentially be the cause, also general possible problems of the assumption of King plot
linearity based on nuclear structure effects are being discussed [110].
Therefore, having an additionalmethod to derive the constraints for NP independently of
a King plot linearity is already a benefit by itself. The limits derived here independently
confirm the limits given by the hydrogen versus deuterium spectroscopy and exclude this
range as a cause for the observed non-linearity in the Yb+ measurement. Furthermore,
the method to predict the isotopic effect on the g-factor difference is able to account for
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Figure 7.5: Exclusion plot for the relation of interaction strengths 𝛾𝑒𝛾𝑛 versus the po-
tential boson mass 𝑚Φ from the measurement of the Δ𝑔 isotope shift in neon
(green,[TW]). For details see text. Figure taken from T. Sailer et al., submitted 2021
[37].

all nuclear contributions, which might be the cause for the observed non-linearities. As
this method remains largely independent of such contributions, this is another benefit
when compared to the King-linearity approach [37]. To conclude, it should be noted
that the constraints derived here scale directly with the precision of the nuclear charge
radii. Thus, a future independent determination of the difference of the nuclear charge
radii of the neon isotopes would directly serve to improve the given limits here by up to
one order of magnitude, where the experimental precision then becomes the currently
limiting factor.
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8 Conclusion & Outlook

In this chapter I will provide an overview of all achievements during the course of this
thesis. Finally, I will conclude this work by providing an outlook on what can be ex-
pected next, with a focus on possible applications of the coupled ion method in the
future, combined with potential improvements.

8.1 Setup

The installation of the laser ion source to the setup and the successful injection of 9Be+

ions has opened Alphatrap to the potential of sympathetic laser cooling. The benefits
of that have already been largely discussed in the thesis of Dr. A. Egl [58] and are cer-
tain to be an important aspect when considering possible future measurements in the
Alphatrap setup.
The beamline connecting Alphatrap to the HD-EBIT has been designed, built and suc-
cessfully tested during the course of this thesis. This makes a completely different and
vast regime of HCI accessible to Alphatrap . Recently, there have already been mea-
surements performed by my colleague J. Morgner on 118Sn49+, loaded from the HD-EBIT.
This EBIT can be used to produce ions from both, gaseous source matter or solid matter
using ovens, leaving the potential measurement cases only limited by the available elec-
tron kinetic energy and thus the accessible charge state of the heavy HCI.
In the near future, the HD-EBIT is planned to be replaced by the Hyper-EBIT, which
is currently being upgraded for high-voltage operation. The ultimate goal is to reach
ionization energies that enable the production of up to hydrogen-like lead to be used
for measurements in the Alphatrap setup, further pushing the limits of tests for the
validity of our theories even in the strongest fields.

8.2 Single Ion g Factors

During this work, the g factors for three different ion species have been measured. The
measurement of the g factor of 12C5+ (Chap. 4) can be seen as either a verification of
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the electron mass, albeit with about one order of magnitude less precision than the cur-
rent literature value [74], or, more importantly, a verification of the performance of the
Alphatrap experiment. As our previously published results [56, 58], this measurement
has been based upon the double-dip technique which has been under investigation for
potentially unconsidered systematic effects [72]. At the level of the precision achieved
here, similar to that of our previous measurements, no deviation could be observed. This
solidifies the trust in the methods used and serves as a benchmark for the performance
of the Alphatrap experiment.

The measurements of the g factor for the neon isotopes (Chap. 4.2) had multiple pur-
poses. Foremost, these were meant as preparatory measurements for the coupled ions
measurement of these isotopes. Secondly, they were the first measurements performed
after the phase-sensitive technique of PnA had been implemented at Alphatrap . Addi-
tionally, the atomic mass of 22Ne had been reported to deviate from the literature value
by several sigma [73], which has furthered the interest of this study, as the ion mass can
be derived when taking the theoretical value for the g factor as input.
The result of the g-factor measurement of 22Ne9+, in combinationwith the theoretical cal-
culation, has been applied to confirm the AME value [38], decisively excluding such a de-
viation. Furthermore, the precision of this measurement yields the potential to improve
upon the uncertainty of this atomic mass by almost an order of magnitude. However,
the measurement campaign for 20Ne9+ yielded a deviation of a combined 3𝜎 between
experimental result and theory. After an additional thorough investigation of possible
sources for this deviation, it was attributed to the input parameter of the atomic mass
of 20Ne [38]. This has spiked further interest and independent measurements for the
mass of 20Ne are being performed at Pentatrap [63] at the time of writing the final part
of this thesis. First preliminary results [76] of this measurement strongly suggest the
atomic mass of 20Ne to be wrong indeed and will likely result in the mass to be reduced
by about 3.4𝜎 of its current precision. This update will result in the experimental value
for the g factor of Ne20 to agree with theory within 1𝜎 . The agreement of this result
gives confidence in both, the underlying theory of both g factors as well as of the newly
implemented measurement scheme of PnA and the correct treatment of systematic ef-
fects. Due to the agreement, the result of the g factor of 20Ne9+ can then be interpreted
as a test of BS-QED on the 9 × 10−11 level.
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8.3 Coupled Ions

The development and application of the new measurement scheme to directly extract
the g-factor difference (Chap. 7.2.1) of coupled ions to unprecedented precision is most
certainly the defining result of this thesis, yielding

Δ𝑔exp = 13.475 24(53)exp(99)sys × 10−9

Δ𝑔theo = 13.474(11)FNS × 10−9 [36, 37].

Not only has the method been implemented and proven to work, the obtained result
confirms the so far unresolved QED contribution to the nuclear recoil and tests it to
about 25 % due to the agreement between theory and experiment (see also Tab. 1.1).
This agreement serves as a verification of the underlying theory and paves the way to
improve upon the precision of similar calculations for even heavier systems.
When taking the theory value as an input instead, it has been shown here that this
method can serve to improve the precision of charge radii differences (Chap. 7.2.2) with
this independent technique. The charge radius difference of the neon isotopes can thus
be improved by one order of magnitude. Furthermore, the agreement with the tabulated
values for such differences, which are strongly based on muonic ion spectroscopy, gives
credibility to the translation of charge radii measurements performed onmuonic systems
to their electronic counter parts.
Finally, the agreement of the theoretical calculation with the here obtained result has
been applied to constrain parameters of new physics (Chap. 7.2.3). Specifically, such
limits are placed upon the parameters in the search for a potential fifth force, based on
the Higgs-portal mechanism. While these are currently not the most stringent limits
overall, there have been recent observations of a deviation from the King-plot linearity
in Yb+ [108, 109]. The constraints derived in this thesis clarify, that these deviations
are not due to a new physics contribution based upon this present model. Furthermore,
the underlying model for the g-factor difference of the 1𝑠 electrons takes all nuclear
effects, relevant at the current level of precision, into account. Therefore, the result
of the measurement performed here can be seen as an unambiguous derivation of the
applied bounds, other than fromYb+, where the nuclear deformationmight be the reason
for the observed non-linearity [111].

8.3.1 Possible Improvements and Outlook

Currently, the achievable precision of this method is limited by the determination of the
magnetic field inhomogeneities. While the combined treatment of the related shifts (see
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section 5.7.1) allows to constrain the systematic effects nicely, the need to shift the equi-
librium position of the ions by asymmetric voltages is not yet ideal and there is currently
no possibility to reduce the 𝐵1 contribution
Already for the next iteration of modifications to the setup, the implementation of tun-
able correction coils for 𝐵1 and 𝐵2 is planned. These superconducting coils will be
charged in situ to directly compensate and null the inhomogeneities in the centre of
the precision trap. This will eliminate the need for a shifted position and therefore min-
imize possible odd order contributions to the electrostatic potential due to the use of
symmetric voltages, reducing the uncertainty for the determination of an absolute value
of 𝐵2 due to the 𝐶3 contribution. If extensively tuned, a reduction of the combined shift
to below 10mHz for 500 µm of excitation radii should be entirely possible.
Furthermore, it was shown that smaller separation distances than used for the main re-
sult are possible. If the degradation of the signal can be prevented or at least reduced, for
example by using negative feedback or even sympathetic laser cooling [44, 112] to lower
the temperature of the axial modes, a 𝑑sep ≈ 300 µm should be possible to work with. In
combination with smaller inhomogeneities as stated above, this would reduce the total
systematic shift of the difference frequency to about 1 × 10−14 in the case of neon.
For identical parameters, the systematic effect for a similar measurement on 40Ca19+ and
48Ca19+ would only be about a factor of 2 larger. Here, the charge radii would again be
the limiting factor, however the QED contribution to the recoil could still be tested to
about 10 % [36]. Furthermore, the charge radii of these isotopes are currently considered
to be identical within their uncertainty, which could be further explored with such an
experiment.
While theAlphatrap experiment, equipped with this new technique, can now generally
be applied to perform similar measurements to determine the charge radius difference of
different isotopes with extreme precision, this cannot be seen as a practical approach for
tabulating such values on a large scale. As each difference measurement would require
several weeks to months of work, this will only be feasible for systems of particular in-
terest. This could be the case for the isotopes of boron, as the theoretical calculation of
the mass shift, the leading contribution of the total isotope shift, has been achieved with
a significantly higher precision [89] as for example for neon [31]. The determination of
the field shift factor (FSF) has been achieved by comparing the experimental result with
the calculation for the mass shift, both obtained within the same work [89]. The therein
proposed theoretical approach could be benchmarked by comparing it to an additional
independent measurement of the radii difference performed with our method, which
could enable further progress towards heavier systems.
It should further be noted, that recent studies have begun to discuss the King approach,
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specifically in combination with nuclear charge radii [110], where potential problems
for the prediction of the FSF cannot be excluded. Our method might become an impor-
tant tool to resolve such problems by providing a different approach to determine charge
radius differences.

Other potential applications include a crucial contribution towards the access of the
weighted difference of g factors [113, 114]. To compute such a difference, the g-factor
difference of two ions of different nuclear charges 𝑍 is required for both their hydrogen-
like and lithium-like state. Combined with an absolute g factor of the order of 10−11

precision, if ions in the medium 𝑍 range were to be chosen, this has the potential to sig-
nificantly improve upon the fine-structure constant 𝛼 . However, the required precision
of the theory for the absolute g factor has not yet reached this point and will require fur-
ther work. Similarly, the weighted difference might also allow to put further constraints
on new physics, as for example suggested in [99]. Here, several orders of magnitude im-
provement compared to the limits derived in this work are possible until the theoretical
precision would be limited by the uncertainty of the nuclear size correction. Therefore,
providing the means of determining the weighted difference experimentally with this
method might provide an incentive for theory to focus efforts and advance more quickly.

Lastly, our method could be applied to perform a direct comparison of matter and
antimatter, for example with the proton and anti-proton. If compared directly, the ex-
pected zero frequency difference of their Larmor frequencies would not be ideal, as the
observed coincidental probability of their spins would not undergo any modulation. The
method would therefore first have to be proven to work in such a setup, then the miss-
ing modulation of the signal would have to be used to infer a zero frequency difference.
This is however difficult to implement, as the direct coupling of matter and anti-matter
comes with its own complications, e.g. the different sign of the charge.
A substantially more elegant solution to this problem has however already been shown
when the charge-to-mass ratio of the anti-proton was compared to that of an H− ion
[115]. Here, the negative hydrogen H− has been used to circumvent problems related to
the different positions within the trap due to the opposite sign of the required trapping
voltage if a proton would be used instead.
A similar concept could be applied, when going one step further and coupling the H−

and anti-proton into a magnetron crystal as performed here. This would allow a direct
comparison of their magnetic moments, while the observed Larmor frequencies would
again differ due to the additional two electrons.
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The shielding due to these electrons, described by the dimensionless factor 𝜎𝑠

𝐻 = −𝝁𝑩(1 − 𝜎𝑠), (8.1)

has been improved very recently to 𝜎𝑠 =17.735 436(3) × 10−6 for an H− ion [116]. With
a proton Larmor frequency of 𝜈𝐿,𝑝 ≈ 80MHz in the BASE experiment [117], the Larmor
frequency difference would then amount to Δ𝜈𝐿 ≈ 1.4 kHz, which is ideally suited for
this method.
The precision of such a measurement would then mostly be limited by the precision of
the calculated shielding factor, currently allowing for a potential 3 × 10−12 precision, rel-
ative to the proton g factor. This has therefore the potential to achieve similar precision
as the comparison of the magnetic moments of electron and positron, yielding a strong
test of the charge, parity and time-reversal (CPT) invariance. If this was to be achieved,
the precision could be pushed even further by performing a similar measurement with
𝐻+ versus a proton. This additional difference measurement could serve to circumvent
the need of a precise shielding factor by directly comparing two such differences directly.

With these speculative propositions and the conviction that the here developedmethod
will be applied in one form or the other to perform intriguing measurements in the time
to come, I conclude this thesis.
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Appendix A: Derivation of Formulas

This appendix is meant to discuss and derive additional formulas that have been used
throughout this thesis. These derivation provide further insight and allow to extend
ones understanding of the effects (and sometimes approximations) made.

𝐵1 Positional Shift

This is adapted from [43] to also include the here important magnetron dependency of
the 𝐵1 positional shift. For the axial equilibrium position, the net force has to be zero.
Therefore, the additional axial force, here stemming from the magnetic moment in a 𝐵1,
must be compensated by the electrostatic potential for the ion to experience no force in
axial direction, 𝐹𝑧 = 0 = Δ𝑧 (𝜇𝑧𝐵𝑧) + 𝐸𝑧𝑞. When using 𝐵𝑧 = 𝐵0 + 𝐵1𝑧 + 𝐵2𝑧

2, this leads to

𝜇𝑧𝐵1 =𝑚ion𝜔
2
𝑧Δ𝑧

⇒ Δ𝑧 =
𝜇𝑧𝐵1

𝑚ion𝜔2
𝑧
,

(8.1)

ignoring the 𝐵2 contribution, as 𝐵2 � 𝐵1. With the definition of the ions magnetic
moment (see Eq. (2.18)), neglecting the spin magnetic moment and considering either
𝜇+ � 𝜇− or 𝜇− � 𝜇+, this yields

Δ𝑧 ≈ −𝐵1𝜔±
2𝜔2

𝑧

𝑞ion
𝑚ion

𝑟 2± (8.2)

Finally, using the substitution 𝐵0 = 𝜔𝑐
𝑚ion
𝑞ion

this can be written as

Δ𝑧 ≈ − 𝐵1

2𝐵0

𝜔𝑐𝜔±
𝜔2
𝑧

𝑟 2± (8.3)
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Appendix A: Derivation of Formulas

Equations of Motions and Shifts

Here, I will explain the assumptions made to derive the first order frequency shift in
the case of the coupled ions. First, it is assumed that the ions have a large magnetron
separation while their axial motions are thermalized to 4 K. Furthermore, the cyclotron
energy is neglected for this derivation. For two ions in the X-Y plane any placement can
be written as

𝑑sep =
√
(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2. (8.4)

The repelling Coulomb force in radial direction with 𝑘 = 1
4𝜋𝜖0 is then given as

𝐹𝑐 = 𝑘
𝑞1𝑞2

𝑑2sep
= 𝑘

𝑞2

𝑑2sep
, (8.5)

where 𝑞1 = 𝑞2 is assumed. If one further considers the thermal axial amplitudes, small
compared to𝑑sep for both ions with 𝑧𝑖 ≈ 18 µm, the force in axial direction can be written
as

𝐹𝑧 = 𝑘𝑞2
𝑧1 − 𝑧2√

𝑑2sep + (𝑧1 − 𝑧2)2
3 (8.6)

≈ 𝑘
𝑞2

𝑑3sep
(𝑧1 − 𝑧2). (8.7)

This additional axial force modifies the motion of the axial harmonic oscillation as

¥𝑧1 = −𝜔2
𝑧1𝑧1 +

𝐹𝑧
𝑚1

= −𝜔2
𝑧1𝑧1 +

𝑘𝑞2

𝑚1𝑑3sep
(𝑧1 − 𝑧2) (8.8)

¥𝑧2 = −𝜔2
𝑧2𝑧2 +

𝐹𝑧
𝑚2

= −𝜔2
𝑧2𝑧2 +

𝑘𝑞2

𝑚2𝑑3sep
(𝑧2 − 𝑧1) (8.9)

with the added, axial position dependent-Coulomb force. Due to the large axial fre-
quency difference of the ions, the respective resonant part of excitation exerted onto
each other is far detuned and can thus be neglecteda. The altered axial frequency can
now be defined as

�̃�𝑧,𝑖 =

√
𝜔2
𝑧,𝑖 −

𝑘𝑞2

𝑚𝑖𝑑3sep
≈ 𝜔𝑧,𝑖 −

𝑘𝑞2

2𝑚𝑖𝑑3sep𝜔𝑧,𝑖
. (8.10)

aOne ion drives the axial mode of the other with its own axial frequency. As the frequencies of their axial
modes are very different, this excitation is about 30 kHz off resonance and can be neglected compared
to the stronger constant Coulomb repulsion.
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The axial frequency shift for the individual ions 𝑖 in a coupled state is thus

Δ𝜔𝑧,𝑖 ≈ − 𝑘𝑞2

2𝑚𝑖𝑑3sep𝜔𝑧,𝑖
. (8.11)

It can be directly seen, that any frequency shift will be towards a smaller axial frequen-
cies and scales inversely with 𝑑3sep and the ions mass. This shift will also be slightly
corrected for higher order contributions as well as the neglected weak perturbation due
to the coupling to the other ion (see Eq. (5.11)) – but using it for the general work with
the coupled ions this turns out to be a decent approximation. Furthermore, this approx-
imation holds true as long as 𝑧 � 𝑑sep and Ω𝑧 � Δ𝜔𝑧 , which thus has to be confirmed
for the specific ions it is to be applied for.
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ΔB

BRF

Be�

S

Figure 8.1: The rotation of the spin vector 𝒔 around the effective magnetic field vector
𝑩eff is illustrated.

Optical Bloch Equations: The Rotational Matrix

The solution of the optical Bloch equations for a system of arbitrary initial state is helpful
to simulate the complete measurement sequence for the spin vectors. As such a solution
has been difficult to find in literature, this section might proof useful to future students.
First, the Bloch sphere is again examined. Here, the rotational axis is given by the ef-
fective magnetic field vector 𝑩eff, which in the rotating frame of the applied drive is the
linear combination of the magnetic field of the applied drive 𝑩RF and the detuning with
respect to the Larmor frequency 𝚫𝑩. The spin vector 𝒔 will rotate around the effective
magnetic field vector as illustrated in Fig. 8.1 The rotational matrix to perform a rota-
tion around an axis defined by the unity vector 𝒏 = (𝑛1, 𝑛2, 𝑛3), using the abbreviations
𝑐 = cos𝛼 and 𝑠 = sin𝛼 is given as

𝑅𝑛 (𝛼) =
©«

𝑛21 (1 − 𝑐) + 𝑐 𝑛1𝑛2 (1 − 𝑐) − 𝑛3𝑠 𝑛1𝑛3 (1 − 𝑐) + 𝑛2𝑠
𝑛2𝑛1 (1 − 𝑐) + 𝑛3𝑠 𝑛22 (1 − 𝑐) + 𝑐 𝑛2𝑛3 (1 − 𝑐) − 𝑛1𝑠

𝑛3𝑛1 (1 − 𝑐) − 𝑛2𝑠 𝑛3𝑛2 (1 − 𝑐) + 𝑛1𝑠 𝑛23 (1 − 𝑐) + 𝑐

ª®®®¬ . (8.12)

In this case, the axis of rotation is defined by the normalized vector �̂�eff = (−𝐵RF
𝛽 ; 0; Δ𝐵𝛽 ),

where 𝛽 =
√
𝐵2
RF + (Δ𝐵)2. The rotation matrix, using 1 − 𝐵2

RF
𝛽2

= Δ𝐵2

𝛽2
can then be written

as

𝑅𝑛 (𝛼) =
©«
1 +

(
Δ𝐵
𝛽

)2
(𝑐 − 1) −Δ𝐵

𝛽 𝑠
−𝐵RFΔ𝐵

𝛽2
(1 − 𝑐)

Δ𝐵
𝛽 𝑠 𝑐 𝐵RF

𝛽 𝑠

−𝐵RFΔ𝐵
𝛽2

(1 − 𝑐) −𝐵RF
𝛽 𝑠 1 +

(
𝐵RF
𝛽

)2
(𝑐 − 1)

ª®®®®¬
. (8.13)
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Using the relations

Δ𝐵

𝐵0
=

𝛿

𝜔𝐿
(8.14a)

⇒ Δ𝐵

𝛽
=

𝛿√
Ω2
𝑅 + 𝛿2

and (8.14b)

𝐵RF

𝐵0
=
Ω𝑅

𝜔𝐿
(8.14c)

⇒ 𝐵RF

𝛽
=

Ω𝑅√
Ω2
𝑅 + 𝛿2

, (8.14d)

combined with the normal definition of Ω̃𝑅 =
√
(Ω2

𝑅 + 𝛿2) this can be written as

𝑅𝑛 (𝛼) =
©«
1 + 𝛿2

Ω̃2
𝑅

(𝑐 − 1) − 𝛿
Ω̃𝑅
𝑠 −Ω𝑅

Ω̃2
𝑅

𝛿 (1 − 𝑐)
𝛿
Ω̃𝑅
𝑠 𝑐 Ω𝑅

Ω̃𝑅
𝑠

−Ω𝑅

Ω̃2
𝑅

𝛿 (1 − 𝑐) −Ω𝑅

Ω̃𝑅
𝑠 1 + Ω2

𝑅

Ω̃2
𝑅

(𝑐 − 1)

ª®®®®¬
. (8.15)

The length of the torque vector 𝛽 defines the rotational speed, which is here just Ω̃𝑅 .
Instead of rotating about a fixed angle 𝛼 , the rotation can be written in a time dependent
form, using 𝛼 = Ω̃𝑅𝑡 , where 𝑡 is the time the microwave drive is irradiated for. For a spin
vector initially in the spin-down state 𝑠 = (0, 0,−1), this then leads to the time evolution
of the spin vector, given as

𝑈 (𝑡, 𝛿) = 𝛿𝑖Ω𝑅

Ω̃2
𝑅

(1 − cos(Ω̃𝑅𝑡)) (8.16a)

𝑉 (𝑡, 𝛿) = −Ω𝑅

Ω̃𝑅

sin(Ω̃𝑅𝑡) (8.16b)

𝑊 (𝑡, 𝛿) = −1 +
Ω2
𝑅

Ω̃2
𝑅

(1 − cos(Ω̃𝑅𝑡)), (8.16c)
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Appendix B:
Combined Systematic Shifts for the
Δ𝑔 Measurement

This section has originally been compiled by myself as part of the methods section, ac-
companying the paper submitted concerning the Δg measurement [37]. Large parts are
reproduced here without modification, others have only been revised for more clarity or
changed where a different notation was chosen to stay consistent throughout this thesis.
To clarify the individual radii, the notation 𝑟± will be used for magnetron and cyclotron
radii of a single ion, whereas the coupled ion magnetron radii will be written as 𝝆1 and
𝝆2.
Here, the total systematic shift and the corresponding uncertainty for the specific case
of 20Ne9+ and 22Ne9+ is evaluated. For this approach, only a separation distance and no
common mode is considered. For small common mode radii 0 ≤ 𝑟com ≤ 𝑑sep√

5
, the system-

atic effects discussed here are actually further reduced [84].
Multiple individual measurements have to be performed with single ions to characterize
these frequency shifts and the experimental parameters discussed here. More explana-
tion on the experimental methods used to determine these can be found in [18], the
individual frequency shifts are derived in [45]. The electrostatic and magnetic contribu-
tions are defined as given in section 2.
First, the two main axial, electrostatic only frequency shifts that depend on the radial
amplitudes 𝑟± of an ion are given as

Δ𝜈𝑧
𝜈𝑧

����
𝐶4

= −3
2

𝐶4

𝐶2𝑑2𝑐ℎ𝑎𝑟
𝑟 2± (9.1)

Δ𝜈𝑧
𝜈𝑧

����
𝐶3

=
9
8

𝐶2
3

𝐶2
2𝑑

2
𝑐ℎ𝑎𝑟

𝑟 2±. (9.2)

If the shift of 𝜈𝑧 is measured to be zero for any radius 𝑟−, these two shifts must cancel
(or both be zero) and it can be concluded that 𝐶4 = 3

4
𝐶2
3

𝐶2
. As it is typically not feasible
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to tune this for arbitrary radii, especially since higher orders will have to be considered
as well for larger radii, a residual shift 𝜖𝑒𝑙,𝑟− is introduced, which includes both, the ob-
served residual shift as well as all neglected higher order contributions. This is a relative
uncertainty, scaling with 𝑟 2−. Combined, these electrostatic shifts only read

Δ𝜈𝑧
𝜈𝑧

����
𝑒𝑙

=
9
8

𝐶2
3

𝐶2
2𝑑

2
𝑐ℎ𝑎𝑟

𝑟 2− − 3
2

𝐶4

𝐶2𝑑2𝑐ℎ𝑎𝑟
𝑟 2−. = 𝜖𝑒𝑙,𝑟− (9.3)

For cyclotron excitations, the electrostatic contributions are identical to those for the
magnetron mode and must therefore also combine to the same 𝜖𝑒𝑙,𝑟+ , scaling with the
cyclotron radius. However, the additional terms that stem from the magnetic field inho-
mogeneities have to be considered, since they are sizeable only in this mode due to the
significantly higher frequency:

Δ𝜈𝑧
𝜈𝑧

����
𝐵2

=
𝐵2

4𝐵0

𝜈+ + 𝜈−
𝜈+𝜈−

𝜈+𝑟
2
+
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2𝜈2𝑧

𝑟 2+

(9.4)
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2
𝑧
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≈ − 3𝐵1𝐶3𝜈
2
+

4𝐵0𝐶2𝑑𝑐ℎ𝑎𝑟𝜈
2
𝑧
𝑟 2+.

(9.5)

Additionally, for large cyclotron excitations the relativistic effect and resulting mass
increase has to be considered, also slightly shifting the axial frequency:

Δ𝜈𝑧
𝜈𝑧

����
𝑟𝑒𝑙 .

= − 3𝐵1𝐶3𝜈𝑐𝜈+
4𝐵0𝐶2𝑑𝑐ℎ𝑎𝑟𝜈

2
𝑧
𝑟 2+ (9.6)

The combined shift depending on magnetic inhomogeneities can be expressed as

Δ𝜈𝑧
𝜈𝑧

����
𝑚𝑎𝑔

=

(
𝐵2

𝐵0

𝜈2+
2𝜈2𝑧

− 3𝐵1𝐶3𝜈
2
+

4𝐵0𝐶2𝑑𝑐ℎ𝑎𝑟𝜈
2
𝑧

)
𝑟 2+ = 𝜖𝑚𝑎𝑔 . (9.7)

While the 𝐵1 and 𝐵2 contributions currently cannot be tuned actively (which could be
implemented by using active compensation coils [47]), the ion can be slightly shifted
from its equilibrium position to a more preferable position along the z-axis to minimize
the 𝐵2 coefficient. Doing so, frequency shifts of 𝑣𝑧 close to zero for any cyclotron exci-
tations have been achieved as well, which means these terms have to cancel as well. To
allow for another residual error from higher orders, as well as a small residual shift, 𝜖mag

is chosen to represent these. The observed difference of the frequency shift between cy-

145



Appendix B: Combined Systematic Shifts for the Δ𝑔 Measurement

clotron and magnetron excitations 𝜖mag + 𝜖𝑒𝑙,𝑟+ − 𝜖𝑒𝑙,𝑟− can be used to cancel the identical
electric contributions 𝜖𝑒𝑙,𝑟+ and 𝜖𝑒𝑙,𝑟− when measuring at the same radius. If this com-
bined equation is solved for 𝐶3, only the magnetic field dependent terms 𝐵1 and 𝐵2 are
left, which is what the Larmor frequency difference is sensitive to:

𝐶3 =
2
3
𝐵2𝐶2𝑑𝑐ℎ𝑎𝑟

𝐵1
− 4
3
𝐵0𝐶2𝑑𝑐ℎ𝑎𝑟𝑣

2
𝑧

𝐵1𝜈2+𝑟
2
+

𝜖𝑚𝑎𝑔︸                 ︷︷                 ︸
𝜉

=
2
3
𝐵2𝐶2𝑑𝑐ℎ𝑎𝑟

𝐵1
− 𝜉 .

(9.8)

This means, that without further measurement it is impossible to discern a𝐶3 from a 𝐵2

contribution. Now, instead of looking at frequency shifts of individual ions, the effects
on coupled ions are considered. Due to their mass difference, the coupled state is not
perfectly symmetrical but slightly distorted due to the centrifugal force difference. In the
case of the neon isotopes, this leads to a deviation of 𝛿mag = 0.87%, with the definition
of 𝜌1 = 𝑑sep

(1+𝛿mag)
2 and 𝜌2 = 𝑑sep

(1−𝛿mag)
2 , when choosing ion 1 as 22Ne9+ and ion 2 to be

20Ne9+. Consequently, the frequency difference 𝜈𝐿2 − 𝜈𝐿1 will be positive, as the g factor
(and therefore the Larmor frequency) of 20Ne9+ is larger than that of 22Ne9+. Finally, the
axial position shift due to 𝐶3 as given in Eq. (2.13) is considered as a function of the
slightly different 𝑟 2−. The shifts of 𝜈𝐿 are to very good approximation only dependent on
the absolute magnetic field. The effect of 𝐵1 and all shifts along the 𝑧-axis can then be
expressed as

Δ𝜈𝐿
𝜈𝐿

����
𝐵1

= Δ𝑧
𝐵1

𝐵0
. (9.9)

The difference of the shift for the individual ions can then be written as
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����
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.

(9.10)

The additional uncertainties are now all summarized in the term scaling with the
above-defined factor 𝜉 . The final shift to consider is the same radial difference as men-
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tioned before in the presence of 𝐵2. This leads to additional individual shifts in the 𝜈𝐿 of
the ions as

Δ𝜈𝐿
𝜈𝐿

����
𝐵2

=
−𝐵2

2𝐵0
𝑟 2. (9.11)

As a relative shift with respect to the measured Larmor frequency difference, this can
be written as

Δ(Δ𝜈𝐿)
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����
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2
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)
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.

(9.12)

Combining these shifts, 𝜈rel𝐿,𝐵2
and 𝜈rel𝐿,𝐵1

, results in
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𝜖𝑚𝑎𝑔

𝑟 2+

(
𝜌22 − 𝑣21

)
= −𝑣

2
𝑧

𝑣2+

𝜖𝑚𝑎𝑔

𝑟 2+

(
𝜌22 − 𝑣21

)
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(9.13)

Note the sign change due to 𝜌1 > 𝜌2. In the ideal case, where the trap was tuned such
that neither magnetron nor cyclotron excitations produce shifts of the measured axial
frequency 𝑣𝑧 , it is thus found that the final difference of the Larmor frequency is also not
shifted at all, when considering the dominant contributions of 𝐶3, 𝐶4, 𝐵1 and 𝐵2.
The determined systematic shift due to the measured dependency of 𝜖𝑚𝑎𝑔

𝑟 2+
≈ 0.63(17)

(see section 6.3.2) corresponds to Δ(Δ𝜈L,tot)
Δ𝜈L,tot

= 6 × 10−13, which is corrected for in the final
result. This has been additionally confirmed by performing two measurements on differ-
ent separation distances, of 𝑑sep = 340 µm and 𝑑sep = 470 µm. Both measurements have
been in agreement after correcting for their respectively expected systematic shift. The
uncertainty of this correction of 5 × 10−13 has been evaluated numerically by combining
the uncertainties of 𝜖mag and the radii intrinsic to its determination, an uncertainty of
𝛿mag and the potential of a systematic suppression of the systematic shift by a residual
common mode radius (see the work of Thompson [84]).
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Figure 9.1: The relative change of the magnetic field over the course of the full Δ𝑔 mea-
surement campaign. The relative change of less than 5 × 10−7 is of no concern for the
measurement. The abrupt changes correspond to interruptions of the measurement
and the filling of cryogenic liquids.

Magnetic Field for the Δ𝑔 Measurement

Here, the magnetic field, determined via the free cyclotron frequency measurement of
20Ne9+ during every measurement run, is shown for the full duration of the Δ𝑔 measure-
ment. All immediate jumps in the measurement correspond to longer interruptions of
the measurement. The largest deviations are additionally related to the filling of liquid
helium and nitrogen. After each measurement interruption, the magnetic field is once
determined manually before starting the measurement cycle, required to use the correct
microwave frequency for such an initial run.
The complete relative change of the magnetic field, 𝐵

𝐵
− 1, is of less than 5 × 10−7. This

change is of no concern with respect to the determined Larmor frequency difference yet,
otherwise the extracted phases could easily be corrected for such a drift as well.

148



Acknowledgments

Mit Abgabe dieser Arbeit bin ich nun bereits seit beinahe 8 Jahren ein nicht loszuwer-
dendes Mitglied der Gruppe Blaum, bzw. vonAlphatrap. Dafür gibt es mehrere Gründe,
aber in erster Linie liegt das sicher daran, wie zufrieden ich mit der Arbeit hier am Insti-
tut und vor allem der Arbeitsatmosphäre war, die ich hier erleben durfte.
Mein Dank im Folgenden gilt damit nicht nur den speziell hervorgehobenen Personen,
die mich während meiner Promotion begleitet und geholfen haben, sondern auch noch-
mals allen, die mich auch schon davor auf diesen Weg gebracht haben.

Ganz vorne dabei ist hier natürlich Klaus.
Lieber Klaus, seit langen Jahren darf ich das angenehme und unkomplizierte Arbeiten
mit dir genießen. Ich finde es besonders schön, dass du die einzelnen Personen deiner
großen Abteilung nicht aus dem Blick verlierst, sondern zu jeder Zeit den Status aller
Leute kennst. Zu jeder Zeit hatte ich das Gefühl, mich mit Problemen an dich wenden zu
können. Dabei schaffst du es nicht nur innerhalb von meistens Minuten(!) zu antworten,
sondern häufig auch direkt eine Lösung anbieten zu können.
Deine Betreuung und das Arbeiten mit dir während Bachelor und Master hat die Ent-
scheidung auch meine Promotion mit dir als Doktorvater zu beginnen einfach gemacht
und ich zweifle nicht daran, dass das die beste Wahl war, die ich dafür treffen konnte.
Danke für deine langjährige Unterstützung, das Vertrauen und die Möglichkeiten, die
du mir und anderen Doktoranden bieten kannst. Vielen Dank.

Ebenso wichtig warst auch du, Sven.
Bei jedem Gespräch mit dir gibt es immer wieder Neues zu lernen. Es ist einfach be-
eindruckend, wie du in jeder Situation direkt Ideen hast, um Probleme anzugehen oder
neueMethoden umzusetzen. Ich bin dir sehr dankbar für deine zahlreichen (und anschau-
lichen!) Erklärungen, die mich mehrfach wieder einen Schritt weiter bringen konnten.
Während der vielen Jahre und nun drei absolvierten Arbeiten in deiner Gruppe wurde
es nie langweilig, sondern gab immer wieder neue Erkenntnisse und Aufgaben.
Mit dir zu arbeiten war stets spannend und hat vor allem Spaß gemacht und ich bin mir
sicher, dass es dir auch in Zukunft nicht an neuen und genialen Ideen für Alphatrap

149



Acknowledgments

mangeln wird. Danke für die gemeinsame Zeit, all dein vermitteltes Wissen und dafür,
dass du für Vorschläge und Ideen stets offen bist. Zuletzt auch ein Dank für die schönen
Gruppenabende bei dir und natürlich das stets ehrenhafte Einlösen von Wettschulden!
Ich bin mir sicher, von Dir, Liontrap und natürlich Alphatrap in den kommenden Jah-
ren noch viel zu hören und wünsche dir das Allerbeste. Danke.
Lieber HerrQuint, Ihnen gilt an dieser Stelle der besondere Dank für die Übernahme des
Zweitgutachtens und ebenso auch für Ihr Empfehlungsschreiben, durch das ich Mitglied
der IMPRS-QD wurde. Vielen Dank für die Mühe und Zeit, die solch eine Aufgabe mit
sich bringt.
Vielen lieben Dank auch an dich, Gabi. Mit deinem Organisationstalent sorgst du über-
haupt dafür, dass es immer rund läuft. Danke, dass du immer mit Rat zur Seite stehst
und es für dich ganz natürlich ist, immer direkt zu helfen. Einen besonderen Dank auch
nochmal für dein Engagement während der letzten MATS-Tage – die Organisation der
Gleitschirmlieferung deiner Schwester im Porsche war dabei natürlich mein absolutes
Highlight.
Mein großer Dank gebührt auch allen Mitgliedern der Alphatrap Gruppe, aktuell und
ehemalig. Durch die Vorarbeit meiner ehemaligen Kollegen konnte ich gut vorbereitet
an einem bereits funktionierenden Experiment starten.
Speziell hier ein Dank an Andreas und Ioanna für das Weitergeben eurer Erfahrung
und die Arbeit, die ihr bereits in das Experiment gesteckt habt. Hierdurch war der Um-
fang dieser Ergebnisse überhaupt erst ermöglich.
Vielen Dank auch anMartin, du hättest zu keiner besseren Zeit ein Teil vonAlphatrap
werden können. Ohne deine Beiträge zum Control-System und der strukturierten Um-
setzung wäre die Arbeit mit zwei Ionen sicher noch komplizierter gewesen. Vielen Dank
auch für deine Erklärungen, mit denen du es so oft geschafft hast, komplizierte Probleme
in ein verständliches Licht zu rücken. Es war beeindruckend und hilfreich, wie du dei-
nen Blickwinkel auf Probleme ändern, erklären und weitergeben konntest. Danke dafür.
Dein Blog war natürlich auch sehr hilfreich.
Ein großes Dankeschön auch an meinen langjährigen Kollegen und guten Freund Alex
– ohne dich wäre die Zeit am Institut bestimmt nicht so spaßig gewesen. Auch die Dis-
kussionen im Bezug zur Arbeit haben mich immer wieder einen Schritt weitergebracht.
Ich wünsche dir und Ale das Beste für eure gemeinsame Zukunft.
Last but not least among the former members of Alphatrap is Bingsheng. It has been
an amazing time working with you, thank you for all the hours spend together, opti-
mizing ion beams and loading them into the trap. Thank you for all the support when
handling ion production, all the analysis you checked for me and all the discussion we
had. I wish you the best for your new experiment!

150



Acknowledgments

Auch der neuen Generation von Alphatrappern möchte ich danken: Vielen Dank Fa-
bian, für deine Unterstützung bei meinen Messungen. Deine Recherchekünste haben
nicht wenige Probleme lösen können und es ist immer wieder toll, wie du für jede Si-
tuation das richtige Paper aus dem Ärmel schüttelst. Ich bin mir sicher, dass zukünftige
Mitglieder ebenso von deiner Hilfe und Übersicht profitieren werden.
Danke Jonathan, du hattest die große Lücke eines fehlenden Bürokollegens zu füllen,
der du aber offensichtlich absolut gewachsen bist. Deine riesige Begeisterung für die
Physik ist dir täglich anzumerken und wird dir sicher helfen, die kolossale Aufgabe des
Umbaus der Hyper-EBIT zu meistern. Danke für die großartigen Monate im Büro und
die (beinahe) Großmeister-würdigen Schachabende. Ebenso auch ein Danke an Chra-
lottea, dein Humor (gewollt und vor allem ungewollt) hat den Alltag und vor allem die
letzten Monate der Schreibphase deutlich aufgelockert. Deine Art Probleme anzugehen
ist erfrischend und ich habe keinen Zweifel, dass du deine Messungen erfolgreich um-
setzen wirst. Ich wünsche dir das Allerbeste – und vor allem funktionierende Pumpen –
für deine weitere Doktorandenzeit.

Ein großer Dank gebührt auch dem Team von Pentatrap. Die Kooperation und der
Austausch unserer Gruppen ist sicherlich ein wichtige Basis der zahlreichen genialen
Ergebnisse. Speziell möchte ich Sergey, und vor allem Kathrin und Menno dafür dan-
ken, dass ihr einen Teil eurer generell üblichen, chronisch zu knappen Messzeit für die
Messung der Neon Masse verwendet habt. Dafür herzlichen Dank und ein lautes MOIN!

Ebenso ein großes Danke an Sascha, für die zahlreichen Diskussionen, Programmier-
tipps und -hilfen und vor allem die extrem aufmerksame Durchsicht vieler Seiten dieser
Arbeit. Ich wünsche dir viel Erfolg für deine Zukunft.

Zuletzt auch einen Dank an alle, die das Institut am laufen halten und den alltägli-
chen Problemen eines Doktoranden begegnen. Vielen Dank Herr Klaiber, dass Sie Ihre
Aufgaben um den sicher nicht einfachen Zeitplan der Wissenschaftler planen. Vielen
Dank an HerrnWagner, dass Sie unseren Elektronikbasteleien mit Rat und Tat zur Sei-
te stehen und mir bei vielen Fragen weiterhelfen konnten. Vielen Dank auch an Herrn
Spranz, der die ständigen Notfälle einer dringend benötigten Fertigung immer passend
einzuplanen weiß, und ebenso an Herrn Zeiske, der selbst für die kleinen Sorgen direkt
seine Säge anwirft. Zum Schluss hier auch einen Dank an Christian Kaiser & Team,
die mir mehrfach spontan und umkompliziert aushelfen konnten.

Vielen Dank auch dir, Lena. Ich weiß, dass der Stress dieser Arbeit auch an dir nicht

aNot a typo.

151



Acknowledgments

vorbei gegangen ist. Danke für deinen Beistand, die gemeinsame Zeit und dein Verständ-
nis, vor allem in Wochen und Monaten der Messkampagnen und dem Schreiben dieser
Arbeit. Danke, dass du immer für mich da bist.

Abschließend möchte ichmeinen Eltern danken. Ohne euch wäre ich nicht da ange-
kommen, wo ich heute stehe. Danke für eure uneingeschränkte Unterstützung und euer
Vertrauen.

152


	Introduction
	The Simple Picture
	Testing QED and the Hunt for Precision
	Content

	The g Factor …
	…of the Free Electron
	…of the Bound Electron
	Radiative Correction
	Nuclear Effects


	The Penning Trap
	The Ideal Penning Trap
	The Real Penning Trap
	Electric Field Imperfections
	Magnetic Field Imperfections

	Combined Effects
	Measurement of Frequencies
	Measurement of the Radial Frequencies
	Phase Sensitive Measurements

	Measurement of the Larmor Frequency
	Measurement of Amplitudes and Temperatures

	Experimental Setup
	The Trap(s)
	The Cryostat
	The Beamline and Ion Sources
	Microwave Setup

	Measurements and Results: Single Ion Measurements
	Carbon g Factor
	Measurement Procedure
	Axial Frequency Drift
	Dip Lineshape and Resonator Frequency
	Resonance Lineshape

	Neon g Factors
	Measurement Procedure
	Resonances of 22Ne9+
	The Turbopump Setback
	The 20Ne9+ Resonances
	Discussion of Systematic Effects


	Coupled Ions: The Coupled Motion
	The General Idea
	An Introduction to Coupled Ions
	Rabi Frequencies and Coupling
	Definitions
	Coupling of the Modes

	The Axial Frequency Shift
	The Magnetron Motion
	Conservation of Energy and Angular Momentum
	Cyclotron Frequency Shift
	Equations of Motion
	Ions of Different Mass

	Axial Equilibrium Position
	Systematic Effects due to Magnetron Imbalance
	Combined Systematic Analysis
	Different Axial Amplitudes


	Coupled Ions: Tools and Methods
	The Measurement Routine
	Working with Coupled Ions
	Determining and Controlling the Initial Mixed State
	Preparation of the Separation Distance
	Common to Separation Mode Transfer
	Measurement of the Common Mode Radius
	Measurement of the Magnetic Field
	Separating the Ions

	Calibration and Characterization Measurements
	Asymmetric Trap
	Tuning Ratio and Magnetic Inhomogeneities
	Determination of the Rabi Frequency
	Stability of the Separation Distance of Coupled Ions


	Coupled Ions: Measurement and Results
	The Coherence of Spin States
	Determination of Initial Phase Difference

	Data Evaluation
	Results & Discussion
	Nuclear Charge Radii and Differences
	The Search for New Physics


	Conclusion & Outlook
	Setup
	Single Ion g Factors
	Coupled Ions
	Possible Improvements and Outlook


	List of Publications
	Bibliography
	Appendix A: Derivation of Formulas
	B1 Positional Shift
	Equations of Motions and Shifts
	Optical Bloch Equations: The Rotational Matrix

	Appendix B: Combined Systematic Shifts for the Delta g Measurement
	Magnetic Field for the Delta g Measurement

	Acknowledgments

