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Abstract
Task-based measures that capture neurocognitive processes can help bridge the gap between brain and behavior. To transfer 
tasks to clinical application, reliability is a crucial benchmark because it imposes an upper bound to potential correlations 
with other variables (e.g., symptom or brain data). However, the reliability of many task readouts is low. In this study, we 
scrutinized the retest reliability of a probabilistic reversal learning task (PRLT) that is frequently used to characterize cogni-
tive flexibility in psychiatric populations. We analyzed data from N = 40 healthy subjects, who completed the PRLT twice. 
We focused on how individual metrics are derived, i.e., whether data were partially pooled across participants and whether 
priors were used to inform estimates. We compared the reliability of the resulting indices across sessions, as well as the 
internal consistency of a selection of indices. We found good to excellent reliability for behavioral indices as derived from 
mixed-effects models that included data from both sessions. The internal consistency was good to excellent. For indices 
derived from computational modeling, we found excellent reliability when using hierarchical estimation with empirical 
priors and including data from both sessions. Our results indicate that the PRLT is well equipped to measure individual 
differences in cognitive flexibility in reinforcement learning. However, this depends heavily on hierarchical modeling of the 
longitudinal data (whether sessions are modeled separately or jointly), on estimation methods, and on the combination of 
parameters included in computational models. We discuss implications for the applicability of PRLT indices in psychiatric 
research and as diagnostic tools.
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Introduction

The Research Domain Criteria (RDoC) framework was 
introduced as a stepping stone towards a transdiagnostic 
understanding of mental health and disease (Cuthbert, 2015; 

Cuthbert & Insel, 2013; Insel, 2014): the expectation was 
that probing core neurocognitive functions across diagnoses 
as well as multiple levels of analysis would provide a handle 
on etiology, pathophysiology, and eventually treatment of 
specific symptoms and symptom clusters (Cuthbert, 2015; 
Cuthbert & Insel, 2013; Insel, 2014).

A major roadblock towards clinical applicability has 
been the insufficient reliability of tasks assessing the core 
neurocognitive functions outlined in the RDoC (e.g., Elli-
ott et al., 2020; Enkavi et al., 2019; Hedge et al., 2018; 
Rodebaugh et al., 2016). Poor reliability can arise as a 
consequence of different issues with measurements, which 
can be illustrated by looking at how it is typically calcu-
lated: the intra-class correlation (ICC) is proportional to 
the ratio of between-subject variance to overall variance 
(i.e., the sum of between-subject variance, within-subject 
variance, and error variance). Thus, reliability can be 
compromised by high within-subject variance, reflecting 
a true lack of stability; by high error variance, reflecting 
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a true lack of measurement precision; or by low between-
subject variance, reflecting a problem with the resolution 
of the task. Lately, much attention has been allocated to 
the latter source of poor reliability. As Hedge et al. (2018) 
note in their landmark paper, most tasks assessing core 
neurocognitive processes were developed for research in 
experimental psychology, where interindividual variance 
is considered a nuisance, and tasks are designed to reduce 
this variance. This threatens their reliability (Hedge et al., 
2018). And indeed, recent investigations have shown that 
a wide range of tasks commonly used in neurocognitive 
research in psychiatry have limited reliability (Enkavi 
et al., 2019; Hedge et al., 2018). This substantially sty-
mies progress towards clinical applicability because the 
reliability of a metric imposes an upper bound to potential 
correlations with other data, such as symptoms or neu-
ral data (Elliott et al., 2020; Hedge et al., 2018). It has 
thus become clear that tasks employed in neurocognitive 
research in psychiatry should be systematically probed for 
reliability and improved upon as needed.

In this study, we investigated the reliability of a probabil-
istic reversal learning task (PRLT). It is designed to measure 
flexible behavioral adaptation and is frequently used in the 
field in a transdiagnostic manner (e.g., Culbreth et al., 2016; 
Reiter et al., 2016, 2017; Tezcan et al., 2017). PRLTs tap 
into the cognitive control and reward learning constructs 
of the RDoC’s domains. In such tasks, consecutive choices 
out of two options are rewarded with a certain probability, 
such that participants can learn by trial and error which is 
the more lucrative stimulus. After a while, the contingen-
cies are reversed. This setup is meant to mimic dynamic 
environments, where actions can have changing values. For 
example, the canteen’s lunch might be fantastic usually and 
then turn bland when the chef changes. Adapting to changes 
in action–outcome contingencies is a core function involving 
both learning about action–outcome contingencies and cog-
nitively controlling responses, e.g., when previously learned 
action–reward associations are no longer valid.

The main outcome variables of PRLTs are accuracy, i.e., 
the number of choices of the currently better stimulus, as 
well as patterns of stay–switch behavior following feedback 
such as wins and losses, and the continued choice of an unre-
warded stimulus after a reversal (perseveration). Reaction 
times can be analyzed, but this has been done less frequently 
for PRLTs. Reduced accuracy has been observed in many 
psychiatric conditions such as schizophrenia (Schlagenhauf 
et al., 2014), binge eating disorder (BED) (Reiter et al., 
2017), and alcohol use disorder (Reiter et al., 2016). More 
specific patterns of stay–switch behavior have also been 
identified, e.g., enhanced perseveration in substance use dis-
order (Ersche et al., 2008; Reiter et al., 2016; Verdejo-Gar-
cia et al., 2015), enhanced choice switching in BED (Reiter 
et al., 2017) and schizophrenia (Deserno et al., 2020), and 

reduced switching in obsessive-compulsive disorder (OCD) 
(Voon et al., 2015).

In addition to behavioral performance metrics, biologi-
cally plausible computational models of reinforcement learn-
ing (RL) can be harnessed to capture variation in the pro-
cesses that underlie observed behavior (Huys et al., 2016). 
A whole range of models have been applied to PRLTs (e.g., 
Deserno et al., 2020; Nickchen et al., 2017; Reiter et al., 
2017; Wiehler & Peters, 2020), the vast majority of which 
are based on Q-learning models (Sutton & Barto, 2018; Wat-
kins & Dayan, 1992) in conjunction with a softmax decision 
policy. In brief, the algorithm learns values associated with 
the choice of a certain stimulus based on prediction errors—
the difference between expected and obtained rewards—and 
the softmax function probabilistically chooses an action 
based on those values. Free parameters capture interindi-
vidual differences in how the task is performed, for example 
by means of the speed of learning and forgetting, or choice 
stochasticity (“noisiness”) and reinforcement sensitivity. The 
basic model can be extended, for example, to incorporate 
separate parameters for wins and losses or counterfactual 
learning, where the value of the unchosen option is updated 
in parallel with the chosen one. Like the behavioral perfor-
mance metrics, alterations of model-derived parameters have 
been associated with psychopathology. Thus, for example, 
enhanced learning rates for losses have been observed in 
anorexia nervosa (Bernardoni et al., 2018) and higher choice 
stochasticity in BED (Reiter et al., 2017), attention-deficit/
hyperactivity disorder (ADHD) (Hauser et al., 2014), and 
schizophrenia (Katthagen et al., 2020). However, RL mod-
els can be used not only to estimate parameters from the 
behavioral data, but also to simulate behavior under cer-
tain circumstances. This is a powerful tool for a priori task 
design and model implementation (Wilson & Collins, 2019). 
Further, RL models can be applied in the analysis of neural 
data, yielding trial-by-trial regressors that reflect differences 
in learning and choice parameters. For example, schizo-
phrenia patients were shown to have reduced ventral stri-
atal prediction error coding than controls (Katthagen et al., 
2020; Schlagenhauf et al., 2014), and BED patients showed 
less engagement of the anterior insula during exploratory 
decisions (Reiter et al., 2017), reflecting enhanced choice 
stochasticity. Model-based analysis of neural data can thus 
help us understand how—in addition to where—the brain 
performs the PRLT, and how different brains differ in this 
respect (Gläscher & O’Doherty, 2010).

Based on the alarming reports of insufficient reliability 
but the great potential of RL modeling for transdiagnostic 
psychiatry, we probed the internal consistency and retest 
reliability of behavioral and computational RL metrics of a 
PRLT. We placed special emphasis on how individual met-
rics are derived, particularly on whether data were partially 
pooled across participants and whether priors were used to 
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inform estimates. Thus, following Brown et al. (2020), we 
compare several analytical approaches in terms of the reli-
ability of the metrics they yield. This is paramount because 
studies differ substantially in terms of such approaches. In 
addition, because previous work suggests that retest reliabil-
ity estimates differ depending on whether the data from each 
session were modeled separately or jointly (Brown et al., 
2020; Rouder & Haaf, 2019), we further compare estimates 
from joint and separate models. We also demonstrate the 
discrepancies between these approaches in terms of their 
ability to recover known reliabilities using simulations.

Methods

Participants and procedure

Forty healthy participants (20 male) aged 19 to 38 years 
(M = 26.45, SD = 3.88) completed a PRLT (Boehme et al., 
2015; Deserno et al., 2020; Reiter et al., 2016, 2017) twice, 
with a one-week gap between sessions. Two different ver-
sions were counterbalanced across sessions, such that each 
participant played different versions on the two test days 
(Fig. 1a).

In each trial of the task (160 in total), participants had 
1.5 seconds to choose between two cards that were asso-
ciated with different probabilities of winning or losing 10 
cents (80/20% and 20/80%, respectively). After making their 
choice, they were shown a feedback screen (a picture of a 
10-cent coin for wins, a picture of a crossed-out 10-cent coin 
for losses) for 0.5 seconds. Feedback was drawn at each trial 
with replacement, i.e., if the card with 80% win probability 
was chosen, a random number between 0 and 1 was drawn 
from a uniform distribution—if it fell between 0 and 0.8, the 
participant received a win feedback; if it fell between 0.8 and 
1, the participant received a loss feedback. This procedure 
meant that the actual ratio of wins and losses associated 
with the stimuli varied across individuals and sessions (from 
73.13% to 86.25%). The feedback screen was followed by 
a variable inter-trial interval with a mean of 2.5 seconds, 
in which participants were shown a fixation cross. After an 
initial acquisition phase (1st to 55th trials) the cards’ reward 
contingencies flipped five times (after the 55th, 70th, 90th, 
105th, and 125th trial), such that the previously more lucra-
tive stimulus now became the more frequently losing one, 
and vice versa. For details, see Fig. 1b.

Analysis

In our analysis, we systematically investigated the respective 
retest reliability of several approaches to processing the task 
data. In addition, we calculated within-session (split-half) 
reliabilities of the raw behavioral measures.

Behavioral metrics Accuracy was calculated as the prob-
ability of choosing the more lucrative stimulus, regardless 
of actual feedback, estimated by mixed-effects logistic 
regression and as the proportion of correct trials per person 
and session. Similarly, stay–switch behavior was calculated 
as the probability of switching, overall and after wins and 
losses, respectively, and as the respective proportions per 
person and session. Perseveration was calculated as the 
probability of choosing the same incorrect stimulus after 
two consecutive losses, estimated by mixed-effects logis-
tic regression and as the respective proportions per person 
and session. Reaction times, both overall and after wins and 
losses, respectively, were calculated as predicted values esti-
mated by mixed-effects linear regression, and 𝛥RT accord-
ingly, i.e., as the difference in predicted values between win 
RTs and loss RTs. In addition, we calculated simple averages 
for overall RTs, win and loss RTs, and 𝛥RT (win RT −  loss
RT). In the case of metrics derived from mixed-effects mod-
els, we compared estimates from separate models for each 
session with estimates derived from a single model which 
accounts for the data from both sessions jointly and includes 
session as a grouping variable nested within subject (Brown 
et al., 2020). Concretely, this means that the joint regres-
sion models took the general form Dependent variable ~ 
Intercept[*factor] + (Intercept[*factor] |Subject/Session). 
Because we employ maximal random-effects structures in 
all our models (Barr et al., 2013), covariances among and 
between random and fixed effects are taken into account.

We computed mixed-effects logistic and linear regres-
sions in R (version 3.6.1), using the lme4 package (version 
1.1-21). Results were considered significant at p ≤ .05.

Computational models In order to identify individual differ-
ences in processes thought to underlie behavior on this task, 
we fitted different RL models from two families of models. 
The first model family included models based on Q-learning 
(Watkins & Dayan, 1992):

Here, Qa, t refers to the expected value of an action a at 
trial t. It is updated at each trial based on the prediction error, 
i.e., the difference between the feedback just obtained after 
performing this action, r, and the previous expected value 
Qa, t, to form the new expected value Qa, t + 1. The learning 
rate 𝛼 determines how much recent feedback is weighted
over the integrated feedback from previous trials (i.e., a 
learning rate of 1 would only take the last trial into account). 
The unchosen option is not updated (single update):

Learning might be differentially sensitive to wins and 
losses, resulting in different degrees of value updating after 

Qa,t+1 = Qa,t + α
(

r − Qa,t

)

Qaunchosen,t+1
= Qaunchosen,t
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wins versus losses. This can be captured in models with dif-
ferent learning rates for wins and losses.

Qa,t+1 = Qa,t + αwin∕loss
(

r − Qa,t

)

Fig. 1   Study and task design. a Study design. Forty participants per-
formed two versions of a probabilistic reversal learning task with ses-
sions separated by one week. The order of versions was randomized. 
b Upper panel: Trial sequence. In the task, participants make 160 
binary choices between abstract stimuli (cards) with different reward 
probabilities. They are instructed to accumulate as much money 
as possible. At each trial, the stimuli are shown for a maximum of 
1500 ms or until the participant responds. A red frame then appears 
around the chosen card. This screen is shown for the remainder of 
1500 ms, i.e., for 1500 ms minus the response time. Then, a feedback 

screen with either a picture of a 10-cent coin (win) or a crossed-out 
picture of a 10-cent coin (loss) is shown for 500 ms. Finally, par-
ticipants see a fixation cross for a variable inter-trial interval (mean 
2500 ms). Lower panel: Reward contingencies. In the first 55 trials, 
the same stimuli each have a 20% and 80% win probability, respec-
tively. Their reward contingencies then reverse five times over the 
course of the task in a perfectly anti-correlated manner, which 
requires participants to flexibly adapt their behavior in order to gain 
money.
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Because the task has an anti-correlated structure, such 
that if the chosen stimulus yields a win, the other would have 
invariably yielded a loss, individuals can use this informa-
tion to simultaneously update the expected values of both the 
chosen and the unchosen option. This can be captured in a 
double update (DU) model:

Like the original single update (SU) model, this can be 
extended with separate learning rates for wins and losses. 
Finally, it is conceivable that individuals use their knowledge 
of the task structure and perform double updating but do not 
update the unchosen option as much as the chosen one. This 
can be captured using a discount weight 𝜅, which attenuates
updating of the unchosen option.

𝜅 can be added to all DU models, changing only the
equations for the unchosen option. In each model, we use a 
softmax response model to transform values to choice prob-
abilities for each option:

The parameter β, the softmax inverse temperature or 
choice sensitivity, influences the extent to which a difference 
in values translates into a difference in choice probability 
by determining the steepness of the softmax sigmoid. If β is 
large, choices are more deterministic or exploitative; if it is 
small, choices are more stochastic or explorative, such that 
differences in values exert less influence on action selec-
tion. Like learning, choice stochasticity may be differentially 
sensitive to wins and losses, resulting in asymmetric staying 
and switching (e.g., with higher win β, a person’s tendency 
to stay after a win would be stronger than their tendency 
to switch after loss). This can be captured in separate soft-
max temperature parameters for trials after receiving wins 
or losses:

The different combinations of parameters—SU or DU, 
single or separate learning rates and temperature parameters 
for wins and losses—yield a total of 12 models.

In the second model family, we use a reinforcement sen-
sitivity parameter ρ instead of a softmax temperature param-
eter (dropped in this family) to quantify choice stochasticity:

Qaunchosen,t+1
= Qaunchosen,t

+ α
(

(−r) − Qaunchosen,t

)

Qaunchosen,t+1
= Qaunchosen,t

+ κα
(

(−r) − Qaunchosen,t

)

p
�

ai
�

=
exp

�

βQai
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j=1
exp

�

βQaj

�

p
�

ai
�

=
exp
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βwin∕lossQai
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∑K

j=1
exp
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βwin∕lossQaj

�

Unlike the inverse temperature parameter, which influ-
ences choice stochasticity by determining the steepness of 
the softmax, the reinforcement sensitivity ρ does this by 
determining the maximum difference between expected val-
ues, thus posing a lower bound to choice stochasticity. The 
effect on choice probabilities is essentially the same, but the 
models can have different estimation properties and may dif-
fer in their interpretation under certain circumstances (Huys 
et al., 2013; Katahira, 2015). As with the softmax tempera-
ture models, we fit 12 models in the reinforcement sensitiv-
ity family, iteratively including separate learning rates for 
wins and losses, separate reinforcement sensitivities for wins 
and losses, double updating, and weighted double updating.

Model fitting We inverse-logit-transformed the learning 
rates and DU weights (𝛼 , 𝜅) in both model families in order
to constrain them to their natural range (0 and 1). For models 
with a single reinforcement sensitivity (𝜌) or softmax tem-
peratures (𝛽), we used an exponential transform to ascertain
that they were positive; for models with separate reinforce-
ment sensitivities for wins and losses, the parameters were 
left in native space. Parameter estimation was performed 
in MATLAB R2020b using the emfit toolbox (Huys et al., 
2011, 2012; Huys & Schad, 2015). We applied and com-
pared three different approaches to parameter estimation 
(maximum likelihood [ML], maximum a posteriori estima-
tion with uninformative priors [MAP0], and maximum a 
posteriori estimation with empirical priors [EM-MAP]). In 
standard ML estimation, the quantity to be maximized is 
log(p(data| θ)). In MAP estimation, a regularizing prior on 𝜃 
is provided, such that the quantity to be maximized becomes 
∝ log(p(data| θ) ∗ p(θ)). For MAP0 estimation, we defined an 
uninformative Gaussian prior with a mean of 0 and variance 
of 10 (default in the emfit toolbox). For EM-MAP, we used 
empirical Gaussian priors on our parameters (p(θ| μ, σ)), 
inferred from the multivariate distribution of the estimates 
across subjects in an expectation maximization procedure 
(Huys et al., 2012).

We used all three estimation methods to fit the sessions 
separately, i.e., maximizing the (posterior) likelihood of the 
data from each session one at a time, as well as jointly, i.e., 
maximizing the overall (posterior) likelihood of the data 
pooled across the two sessions. For the joint estimation, we 
concatenated the data from both sessions but fitted separate 
parameters for each session. Concretely, this meant that we 
fit one set of parameters for the first 160 trials (from session 
one) and another set for the second 160 trials (from session 
two), resetting Q-values for the first trial of session two. 
Thus, both approaches yield separate parameters for the first 
and second session. However, when estimated jointly, covar-
iances between parameters across sessions are taken into 

Qa,t+1 = Qa,t + α
(

ρr − Qa,t

)
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account in a multivariate prior in the case of EM. Note that 
this does not mean, for example, that the learning rate for 
sessions one and two shared a prior. Instead, each parameter 
is accounted for by its own mean and variance in addition to 
the covariances between parameters.

To minimize the risk of local minima, we restarted the 
optimization 10 times (for EM at each M step) at differ-
ent random starting points, taking the best iteration forward 
in the case of EM. In addition, we repeated the estimation 
procedure 10 times, and used the final results with the maxi-
mum (posterior) likelihood for reliability analysis. We per-
formed model selection on the estimated models based on 
the integrated Bayesian information criterion (Huys et al., 
2012).

MATLAB’s fminunc function, which the emfit toolbox 
we employed utilizes, allows users to choose between a 
quasi-Newtonian and a trust-region algorithm for optimiza-
tion. The latter requires the user to supply analytically calcu-
lated gradients to guide the search of the optimizer but can 
help improve the optimizer’s performance and the robust-
ness of the results (Daw, 2011). All results reported in the 
main text are based on trust-region estimates. However, as 
a supplementary analysis, we also performed model fitting 
without supplying gradients, i.e., using a quasi-Newtonian 
algorithm for optimization, for comparison. Detailed results 
are reported in Supplementary Fig. 1 and Supplementary 
Table 2.

Parameter recoverability In order to ensure good fit on a 
qualitative level, we extracted the parameters of the best-
fitting models from each family and generated 100 simulated 
datasets for 38 participants based on the respective algo-
rithms. We then plotted the behavioral metrics derived from 
the generated data (averaged across simulations) against 
those derived from the original data for visual compari-
son. Further, we probed the recoverability of the parameter 
estimates by refitting the models to the generated data and 
computing the average correlation between the resulting esti-
mates and the underlying true values.

In order to show recoverability across the model space, 
we further extracted the parameters of eight models of vary-
ing complexity (four from each model family), and simu-
lated 10 datasets for 38 participants for each model based 
on the respective algorithms. We then refitted the same eight 
models to each dataset to probe model and parameter recov-
erability. In the interest of space, the results of this analysis 
are reported in the supplement.

Reliability assessment In order to assess the retest reliability 
of the behavioral metrics and model-derived parameters, we 
computed intra-class correlations (ICCs), more specifically 
ICCs(A,1) in McGraw and Wong’s (1996) notation, between 
the metrics across time points (McGraw & Wong, 1996; Qin 

et al., 2019). As Qin et al. (2019) note, this type of ICC (i.e., 
a two-way mixed, single-measure, absolute-agreement ICC) 
is appropriate for estimations of retest reliability in which 
time is a design factor, the space between time points is 
identical across subjects, there is only one observation per 
subject and time point, and parameter values are assumed to 
be constant across time points. Calculations were performed 
using the irr package (version 0.84.1) in R (version 4.1.0) 
for the raw behavioral metrics and the ICC toolbox (version 
1.3.1.0) in MATLAB 2019b for the indices derived from 
computational modeling. This was done for convenience; 
however, the packages employ the same formulae and pro-
duce equivalent results.

We calculated ICCs(A,1) for means, predicted values, 
and fitted parameters (i.e. point estimates); however, certain 
ICCs can also be obtained directly from variances estimated 
as part of the model (e.g., Brown et al., 2020). The advan-
tage of this approach is that variances that are estimated 
as part of a model contain information as to the precision 
of the predicted values or fitted parameters. Specifically, 
model-calculated variances reflect the sum of the variance 
of point estimates and the mean standard error around them. 
This latter term is absent from the variances calculated on 
predicted values. To our knowledge, the variance compo-
nents estimated as part of logistic and linear regressions 
using lme4 and as part of the computational model fitting 
using emfit do not permit the calculation of ICCs(A,1), but 
the former allow the calculation of ICCs(1) and the latter 
Pearson correlations. We therefore report model-calculated 
ICCs(1) for the behavioral metrics and model-calculated 
Pearson correlations for the EM-MAP-estimated parameters, 
alongside the respective metrics based on point estimates 
for comparability. We computed model-derived ICCs(1) in 
McGraw and Wong’s (1996) notation for the behavioral met-
rics on the basis of the variance components accessed using 
the get_variance function as part of the insight package for 
lme4 model fits. Specifically, we took the ratio of the vari-
ance explained by the random effect of subject (between-sub-
ject variance) and the sum of that variance and the variance 
explained by session within subject (within-subject variance). 
Model-derived Pearson correlations between parameters 
were calculated by dividing the covariance of the equivalent 
parameters from each session by the product of the square 
roots of the variances of the individual parameters.

We interpreted the ICC coefficients according to Cicchet-
ti’s (1994) guidelines (“[W]hen the reliability coefficient is 
below .40, the level of clinical significance is poor; when it 
is between .40 and .59, the level of clinical significance is 
fair; when it is between .60 and .74, the level of clinical sig-
nificance is good; and when it is between .75 and 1.00, the 
level of clinical significance is excellent.”) (Cicchetti, 1994).

In order to assess internal consistency of the behavioral 
metrics, we re-estimated them in separate logistic and linear 
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regressions for the odd and even trials of each session and 
calculated their correlation. We report the correlations with 
and without Spearman–Brown correction ( rSB =

2r

1+r
 ), which 

accounts for deflated correlations due to the reduced number 
of observations.

Simulations: recoverability of reliability In order to probe 
different approaches of index estimation in terms of their 
ability to recover true reliabilities, we simulated correlated 
binary (choice-like) and continuous (reaction time-like) data 
(500 datasets with 160 trials for 38 subjects on two sessions 
each). Specifically, for each dataset, we simulated normally 
distributed indices for 38 subjects that were correlated at 
r = .3, r = .5, r = .7, and r = .9 across sessions. We then took 
those indices forward and simulated trial-by-trial data. For 
binary data, we drew a random number between 0 and 1 at 
each trial and compared it to the simulated index; if it was 
smaller, the trial was coded 1, and if it was larger, the trial 
was coded 0. For continuous data, we sampled, at each trial, 
from a normal distribution around the index. For each dataset, 
we then computed ICCs based on means, predicted values 
from logistic/linear regressions for each session separately, 
predicted values from logistic/linear regressions for both ses-
sions simultaneously, and based on variance components as 
extracted from the joint model, as we did for the original data. 
We then compared the resulting ICCs to the true correlations.

Data and code availability The data and the scripts under-
lying the analyses in this article are available on the Open 
Science Framework (osf.io/4ng3e).

Results

As confirmed by a binomial test, two participants performed 
at chance level (percent correct responses ~ 50%) in one or 
both sessions. We excluded them from all further analyses for 
two reasons: first, because their task data may be suggestive of 
noncompliance; second, and most importantly, because they 
deviate > 3 standard deviations from the other participants 
in terms of accuracy. Thus, including their data substantially 
increases between-subject variance and might thereby inflate 
reliability estimates in a non-meaningful manner.

Raw behavioral analysis

Retest reliability

Accuracy Accuracy had fair reliability when estimated 
based on the proportion of correct choices (ICC(A,1) = .41, 
ICC(1) = .42, r = .41) and when sessions were modeled 

separately (ICC(A,1) = .42, ICC(1) = .42, r = .41), and good 
reliability when they were modeled jointly (ICC(A,1) = .66, 
ICC(1) = .66, r = .65) (Fig. 2a). The model-calculated ICC 
was somewhat lower, at ICC(1) = .53.

Stay–switch behavior Mixed-effects logistic regression 
revealed a main effect of previous feedback on switching 
(β = 1.486, z = 24.25, p < .0001), such that participants 
switched more after losses than wins. The reliabilities of 
switching overall and after wins and losses respectively 
differed depending on estimation methods: they were good 
to excellent when estimated based on the mean propor-
tion of switches (ICC(A,1)overall = .72, ICC(1)overall = .72, 
 roverall = .73; ICC(A,1)win = .60, ICC(1)win = .58,  rwin = .67; 
ICC(A,1)loss = .77, ICC(1)loss = .77,  rloss = 0.77); fair to 
excellent when estimated based on separate models for 
each session (ICC(A,1)overall = .72, ICC(1)overall = .71, 
 roverall = 0.77; ICC(A,1)win = .59, ICC(1)win = .57, 
 rwin = 0.72; ICC(A,1)loss = .79, ICC(1)loss = .79,  rloss = 0.79); 
and good to excellent when based on the joint model 
(ICC(A,1)overall = .83, ICC(1)overall = .83,  roverall = 0.87; 
ICC(A,1)win = .77,  ICC(1)win = .67,   r win = 0.84; 
ICC(A,1)loss = .97, ICC(1)loss = .97,  rloss = 0.97) (Fig. 2c–e). 
The model-calculated ICCs were close to the ICCs based on 
the predicted values of the joint model (ICC(1)overall = .83, 
ICC(1)win = .69, ICC(1)loss = .92)

Perseveration Perseveration had poor reliability when based 
on the proportion of perseverative errors (ICC(A,1) = .35, 
ICC(1) = .34, r = .36), poor reliability when sessions were 
modeled separately (ICC(A,1) = .25, ICC(1) = .2, r = .28), 
and good reliability when they were modeled jointly 
(ICC(A,1) = .72, ICC(1) = .72, r = .72) (Fig. 2, Panel B). The 
model-calculated ICC was nearly identical to the ICC based 
on the predicted values of the joint model (ICC(1) = .71).

Reaction times Mixed-effects linear regression revealed 
significant main effects of previous feedback on reac-
tion times (β = − 0.022, t(37.04) = − 6.211, p < .0001), 
such that people responded faster after positive feedback. 
The reliability of reaction times overall, after wins and 
losses respectively, and of the difference between them, 
differed depending on estimation methods: the reliabili-
ties ranged from fair to excellent when estimated based 
on average RTs (ICC(A,1)overall = .74, ICC(1)overall = .73, 
 roverall = 0.84; ICC(A,1)win = .75, ICC(1)win = .74, 
 rwin = 0.82; ICC(A,1)loss = .70, ICC(1)loss = .68,  rloss = 0.80; 
ICC(A,1)delta = .47, ICC(1)delta = .47,  rdelta = 0.48); 
from fair to excellent when estimated based on sepa-
rate models (ICC(A,1)overall = .74, ICC(1)overall = .72, 
 roverall = 0.84; ICC(A,1)win = .66, ICC(1)win = .74, 
 rwin = 0.83; ICC(A,1)loss = .77, ICC(1)loss = .68,  rloss = 0.82; 
ICC(A,1)delta = .45, ICC(1)delta = .44,  rdelta = 0.46); and 



 Behavior Research Methods

1 3

from good to excellent when estimated based on the 
joint model (ICC(A,1)overall = .78, ICC(1)overall = .76, 
 roverall = 0.86; ICC(A,1)win = .79, ICC(1)win = .78, 
 rwin = 0.86; ICC(A,1)loss = .75, ICC(1)loss = .74,  rloss = 0.85; 
ICC(A,1)delta = .75, ICC(1)delta = .74,  rdelta = 0.76) (Fig. 2f–i). 
The model-calculated ICCs lay between the ICCs based on 
the predicted values of the separate models and the joint 

model (ICC(1)overall = .74, ICC(1)win = .76, ICC(1)loss = .71, 
ICC(1)delta = .63).

Variance components Partitioning the variance of the 
metrics into within-subject variance (systematic effects 
of session), between-subject variance, and error variance, 
we see that the relative amount of error variance decreases 

Fig. 2  Retest reliability of raw behavioral performance indices by 
joint versus separate modeling of the two sessions. The scatterplots 
reflect the association between mixed-model-derived performance 
indices for the two sessions. Gray dots and lines represent estimates 
based on separate modeling of sessions; colored dots represent esti-
mates based on joint modeling of sessions. The size of the shaded 
area around the point estimates is proportional to their standard 

error. We report ICCs (A,1), ICCs (1), and Pearson correlations in 
the legend of each panel, with confidence intervals in square brack-
ets, as well as model-derived ICCs(1) which take standard errors into 
account, for a accuracy, b stay behavior overall, c stay behavior after 
wins, d stay behavior after losses, e perseveration, f reaction times 
overall, g reaction times after wins, h reaction times after losses, i dif-
ference in reaction times after wins and losses.
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depending on the estimation method (Fig. 3). Thus, the 
error variance is largest for means, somewhat smaller for 
estimates based on separate models for each session, and 
substantially smaller for estimates based on the joint models.

Recoverability of retest reliability

Using simulations (500 simulated datasets, each contain-
ing 160 trials for each of two sessions for 38 subjects), we 
investigated differences in recoverability of retest reliability 
between estimation methods for both binary and continuous 
data. For binary data, we show that means and estimates 
based on separate modeling of sessions tend to substantially 
underestimate the true retest reliability, while the estimates 
based on joint modeling of sessions tend to moderately over-
estimate it (Fig. 4a). Model-calculated ICCs (from the joint 
model) appear to be the most accurate, with no obvious bias 
towards over- or underestimation. The absolute difference 
between true and estimated reliability tends to be relatively 
small for all approaches, although there is a distinctive 
advantage of reliabilities derived from models that account 

for both sessions simultaneously when the true values are 
high (Fig. 4b).

For continuous data, we show that all estimation 
approaches yield ICCs that are reasonably close to the 
true correlations (Fig. 5a). Similar to our observations in 
the binary data, we see that means and estimates based on 
separate modeling of sessions tend to slightly underestimate 
reliability, especially when the true correlation is high. Like-
wise, estimates based on joint modeling of sessions tend to 
moderately overestimate true correlations. Model-calculated 
ICCs again show no obvious bias towards over- or underesti-
mation. Again, similar to our observation in the binary data, 
the absolute difference between true and estimated reliability 
tends to be small for all approaches (Fig. 5b).

Internal consistency

The behavioral metrics proved to have good or excellent 
internal consistency (i.e., split-half reliability) for the first 
session, with the exception of the perseveration index and 
the difference in reaction times between wins and losses, 

Fig. 3  Relative variance components of the raw behavioral perfor-
mance indices by estimation methods. In each plot, the left bar rep-
resents means, the second to left bar represents estimates based on 
separate modeling of sessions, the second to right bar represents esti-
mates based on joint modeling of sessions, and the right bar repre-
sents model-calculated variance components. Midnight blue sections 

of the bars reflect within-subject variance (session effects), steel blue 
sections of the bars reflect error variance, and sky blue sections of the 
bars reflect between-subject variance. Note that because of the way 
the model is set up, it is not possible to extract session variance from 
the model output; this component is therefore missing in the right-
most bars.
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whose internal consistency was merely fair before Spear-
man–Brown correction (Fig. 6).

In the second session, split-half reliabilities were simi-
larly good to excellent, with the exception of the index 
quantifying the difference in reaction times after wins 

and losses, whose internal consistency was merely fair 
before Spearman–Brown correction (accuracy r = .84 
[.71–.92], rSB = 0.91 [0.83–.96]; stay r = .76 [.58–.87], 
rSB = 0.86 [0.74–.93]; win stay r = .74 [.54–.85], rSB = 0.85 
[0.7–.92]; lose stay r = .70 [.49–.83], rSB = 0.82 [0.66–.91]; 

Fig. 4  Recoverability of retest reliability in simulated binary data by 
estimation method. a Boxplots show the distribution of estimated 
ICCs across 500 simulations. Light blue boxes reflect ICCs based 
on means, sky blue boxes reflect ICCs based on estimates based on 
separate modeling of sessions, steel blue boxes reflect ICCs based 
on estimates based on joint modeling of sessions, and midnight blue 
boxes reflect ICCs based on model-calculated variances. Yellow dots 

represent mean values. b scatterplots showing the squared difference 
between the true correlation and the estimated ICC, per dataset and 
estimation method. Light blue dots reflect ICCs based on means, sky 
blue dots reflect ICCs based on estimates based on separate modeling 
of sessions, steel blue dots reflect ICCs based on estimates based on 
joint modeling of sessions, and midnight blue dots reflect ICCs based 
on model-calculated variances. Yellow dots represent mean values.
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perseveration r = .65 [.41–.79], rSB = 0.78 [0.58–.89]; RT 
r = .97 [.93–.98], rSB = 0.98 [0.97–.99]; win RT: r = .97 
[.95–.99], rSB = 0.99 [0.97–.99]; loss RT: r = .90 [.82–.95], 

rSB = 0.95 [0.90–.97]; delta RT: r = .35 [.03–0.60], rSB = 0.52 
[0.07–.75]).

Fig. 5  Recoverability of retest reliability in simulated continuous data 
by estimation method. a Boxplots show the distribution of estimated 
ICCs across 500 simulations. Light blue boxes reflect ICCs based 
on means, sky blue boxes reflect ICCs based on estimates based on 
separate modeling of sessions, steel blue boxes reflect ICCs based 
on estimates based on joint modeling of sessions, and midnight blue 
boxes reflect ICCs based on model-calculated variances. Yellow dots 

represent mean values. b Scatterplots showing the squared difference 
between the true correlation and the estimated ICC, per dataset and 
estimation method. Light blue dots reflect ICCs based on means, sky 
blue dots reflect ICCs based on estimates based on separate modeling 
of sessions, steel blue dots reflect ICCs based on estimates based on 
joint modeling of sessions, and midnight blue dots reflect ICCs based 
on model-calculated variances. Yellow dots represent mean values.
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Computational modeling

Model comparison

 Within the softmax family, model comparison using the 
integrated BIC (iBIC) showed that a weighted DU model 
with separate learning rates and softmax temperatures 
for wins and losses (DU-2𝜌2𝛼 𝜅) had the best evidence,

as reported previously (Reiter et al., 2016, 2017) (Fig. 7). 
Within the reinforcement sensitivity family, a full DU model 
with a single learning rate and separate reinforcement sen-
sitivities for wins and losses (DU-2𝜌𝛼 ) proved the most
parsimonious in accounting for the data, as also reported 
previously on a slightly different task (Schlagenhauf et al., 
2014). This model was also superior across both model fami-
lies. We report the respective reliabilities of the parameters 

Fig. 6  Internal consistency of raw behavioral performance indices. 
The scatterplots reflect the association between performance indi-
ces based on estimates from a mixed model including only even tri-
als and those based on estimates from a mixed model including only 
odd trials. We report Pearson correlations with and without Spear-

man–Brown correction in the legend of each panel, with confidence 
intervals in brackets for a accuracy, b stay behavior overall, c stay 
behavior after wins, d stay behavior after losses, e perseveration, f 
reaction times overall, g reaction times after wins, h reaction times 
after losses, and i difference in reaction times after wins and losses.
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of the winning model from each family. For the reliabilities 
of the other models, see Supplementary Tables 1 through 3.

Parameter reliability

 In both the DU-2𝜌𝛼 and the DU-2𝛽2𝛼 𝜅 models, the estima-
tion method had a considerable effect on reliability. Thus, 
parameters estimated using ML generally had very poor reli-
abilities, those estimated using MAP0 had poor or moderate 
reliabilities, and parameters estimated using EM had fair to 
excellent reliabilities in the reinforcement sensitivity fam-
ily (Fig. 8) and poor to excellent reliabilities in the softmax 
family (Fig. 9). The reliability of the EM-MAP estimates, 
where covariances between parameters are included in the 
multivariate prior structure, benefitted considerably from 
joint estimation of both sessions. Pearson correlations based 
on model-calculated variances yielded good to excellent 
reliability for all parameters in the reinforcement sensitivity 

family (Fig. 8), and poor to excellent reliabilities in the soft-
max family (Fig. 9).

Variance components

 Partitioning the variance of the parameters from the 
DU-2𝜌𝛼 model into within-subject variance (systematic
effects of session), between-subject variance, and error 
variance, we see that the relative amount of error variance 
decreases depending on the estimation method (Fig. 10). 
Thus, the error variance is largest for ML, smaller for 
MAP0, and smallest for EM. Additionally, we see a dis-
cernable effect of joint estimation on the relative amount of 
error variance in the EM estimates, such that it is smaller in 
parameters from the joint estimation.

Effect of analytically supplied gradients Reliabilities were 
similar whether or not parameters were estimated using ana-
lytically supplied gradients, i.e., using a quasi-Newtonian or 

Fig. 7   Model comparison based on the integrated Bayesian infor-
mation criterion (iBIC). Bars represent the distance from the model 
with the best evidence (lowest iBIC). Blue bars at the top of the plot 
represent models from the softmax (𝛽) family; yellow bars at the bot-
tom of the plot represent models from the reinforcement sensitivity 
(𝜌) family. As represented by an asterisk, the overall winning model
is a double update model with separate reinforcement sensitivities 

for wins and losses and a single learning rate (DU-2𝜌𝛼 ). Within the
softmax family, the most complex model, a weighted double update 
with separate softmax temperatures and learning rates for wins and 
losses (DU-2𝛽2𝛼 𝜅), had the best evidence. SU single update, DU dou-
ble update, 𝛽 softmax temperature, 𝛼 learning rate, 𝜅 double update
weight, 𝜌 reinforcement sensitivity.
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Fig. 8  Reliability of the parameters derived from the DU-2𝜌𝛼 model,
by estimation method and joint versus separate modeling of the two 
sessions. The scatterplots show the association between the param-
eters derived from the DU-2𝜌𝛼 model for each session. In the left
column, we show maximum likelihood (ML) estimates; in the mid-
dle column, we show maximum a posteriori estimates with weakly 
informative priors (MAP0); in the right column, we show maximum 

a posteriori estimates with empirical group-level priors (EM). Gray 
dots show estimates from separate models for each session; colored 
dots show estimates from the joint models. We report ICCs(A,1), 
ICCs (1), and Pearson correlations in the legend of each panel, with 
confidence intervals in square brackets, as well as model-calculated 
Pearson correlations where possible, for a learning rate, b reinforce-
ment sensitivity for wins, and c reinforcement sensitivity for losses.
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trust-region algorithm for optimization. In particular, they 
were exactly equivalent for the best-fitting model as well as 
a number of other models (Supplementary Tables 4 through 
6). Variation was larger for ML and MAP0 estimates than 
EM-MAP estimates and for more complex models.

Recoverability
Behavior and parameters Because the parameters estimated 
using EM and with both sessions modeled jointly produced 
the highest reliabilities, we took those estimates from the 
best-fitting models forward to probe them regarding their 
ability to reproduce the behavioral characteristics of the 
original sample. Both the DU-2𝜌𝛼 and the DU-2𝛽2𝛼 𝜅 were 
able to reproduce behavior well on both the group and the 
individual level, albeit with somewhat less variance than the 
original data (Fig. 11). When refit to the generated data, the 
DU-2𝜌𝛼 showed very good recoverability, with high aver-
age correlations between the true parameters and the gener-
ated parameters (Table 1). The DU-2𝛽2𝛼 𝜅 similarly showed
good recoverability overall, albeit considerably less so for 
the learning rate for wins and the DU weight.

Models For completeness, we also performed model recov-
ery. We simulated data from and refit a selection of other 
models from both families, covering different model com-
plexities. These data are summarized in Supplementary 
Table 7 and Supplementary Fig. 2. Briefly, our simulations 
suggest that models with fewer parameters generally had 
better recoverability than more complex ones, and that mod-
els from the reinforcement sensitivity family generally had 
better recoverability than those from the softmax tempera-
ture family. This was expected, as both limiting the num-
ber of parameters and using a reinforcement sensitivity as 
opposed to a softmax temperature improves identifiability 
(Daw, 2011). Interestingly, they also indicate that separate 
learning rates for wins and losses might be particularly det-
rimental to recoverability. The DU-2𝛽2𝛼 𝜅 model showed
very poor model recoverability, suggesting that it might be 
hard to identify.

Reliability of recovered parameters and behavior The recov-
ered parameters reproduced the pattern of reliability we 
observed in our original parameters reasonably well. Thus, 
EM-MAP estimates were far more reliable than MAP0 and 
ML estimates. Likewise, the parameters derived from the 
DU-2𝜌𝛼 model were good to excellent and more reliable
than those derived from the DU-2𝛽2𝛼 𝜅 model (Table 2 for 
ICCs(A,1), Supplementary Tables 8 and 9 for ICCs(1) and 
model-calculated Pearson correlations).

Similarly, the behavioral metrics derived from data simu-
lated on the basis of the EM-MAP estimates of the DU-2𝜌𝛼 

model and the DU-2𝛽2𝛼 𝜅 model showed comparable model-
calculated reliability to the reliability of our original behav-
ioral metrics (Table 3). However, the reliability of behavior 
simulated based on the DU-2𝜌𝛼 model was substantially
closer to the reliability found in the original data. For other 
reliability metrics, see Supplementary Tables 10 through 12.

Discussion

Our results show that the version of PRLT we examined 
(Deserno et al., 2020; Reiter et al., 2016, 2017) can yield 
metrics with high internal consistency and mostly good 
to excellent retest reliability, on the level of both raw 
behavior and computational modeling. This supports past 
and future use of this task in neurocognitive research on 
inter-individual differences, in particular in psychiatry. 
It suggests that correlations with other measures such as 
symptom scales or functional magnetic resonance imag-
ing (fMRI) data can be trusted (if their reliability is simi-
larly high, which we discuss later). However, our data also 
indicate that this conclusion depends heavily on how the 
output of the task is processed, modeled, and estimated. 
Thus, our results suggest that modeling approaches that 
involve partial pooling of data across individuals and ses-
sions yield the highest reliabilities. The use of analytically 
calculated gradients to aid the optimization had relatively 
little effect, such that dropping them would not have made 
a qualitative difference in our findings.

Our findings make a strong case for the superiority 
of using hierarchical methods to derive indices of task 
performance and their underlying processes. On the level 
of raw behavioral performance measures, we found that 
the reliability of predicted values derived from trial-level 
mixed-effects models tended to be slightly higher than of 
averages. On the level of parameters derived from com-
putational modeling, we found that reliability benefit-
ted strongly from estimation approaches that employed 
empirical group-level priors rather than no or uninforma-
tive priors. Moreover, we saw that the reliability of both 
raw behavioral performance measures and computational 
model parameters was enhanced if the data from both ses-
sions were modeled jointly rather than separately. In other 
words, the reliability of estimates was higher when the 
estimation procedure involved partial pooling (i.e., when 
using mixed-effects models or empirical priors), and 
improved further as more data were available for pooling 
(i.e., when fitting the data from both sessions together). 
Given previous research investigating the reliability 
of cognitive tasks (Brown et al., 2020; Rouder & Haaf, 
2019), this pattern is not surprising. Hierarchical estima-
tion, including Bayesian estimation, produces regularized 
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individual values. They are shrunk towards the group 
mean, which, intuitively, would cause alarm because it 
may reduce valuable between-subject variance and thus 
undermine reliability (Hedge et al., 2018). However, our 
results suggest that instead, shrinkage tends to cut away 
error variance (Efron & Morris, 1977) (see Figs. 3 and 10), 
thus improving reliability. Specifically, when partitioning 
variance, we see that the proportion of error variance is 
highest in estimates involving no shrinkage and lowest in 
those where estimates are shrunk towards a cross-subject, 
cross-session mean. In line with previous work (Brown 
et al., 2020; Rouder & Haaf, 2019), the effects on reli-
ability were quite striking in our sample, suggesting that 
behavioral performance measures and especially parame-
ters derived from computational modeling on this task may 
achieve adequate reliability only when estimated using 
hierarchical models that account for data from all sessions 
at once. There is, of course, a legitimate worry that mod-
els where data are pooled across sessions might produce 
single-session predictions that are biased to be similar to 
one another, and thus yield inflated reliability estimates. 
As we show in our simulations, this worry is partially war-
ranted: reliabilities based on predicted values from joint 
session models do indeed tend to slightly overestimate 
true correlations. However, if the reliability estimates are 
instead based on variances that are calculated as part of 
the models themselves, and thus incorporate estimation 
uncertainty around point estimates, they tend to be accu-
rate and manifest no obvious bias. This is in contrast to the 
reliabilities of means and predicted values from single-ses-
sion models: our simulations show that these metrics tend 
to substantially underestimate true reliabilities and yield 
less accurate reliability estimates than the metrics based 
on joint models. This latter point was most evident when 

the true underlying correlations were high, suggesting that 
the regularization caused by the joint modeling had its 
most drastic effect in those cases. Since the reliabilities 
we calculated based on model-derived variance were only 
marginally lower than those based on the predicted values 
of the joint model, they confirm and underscore the great 
advantage of hierarchical approaches when it comes to 
obtaining reliable metrics.

Though theoretically compelling, this comes with caveats 
in practice. It is not an issue where hierarchical modeling can 
be easily accommodated, for example in longitudinal designs 
that investigate development or interventions. It becomes 
a little trickier in cross-sectional studies, where, it seems, 
the current number of trials in one run of the task may be 
insufficient to produce reliable estimates. However, the most 
difficult situation arises under the hypothetical condition that 
the task is used as a test or diagnostic tool in a single indi-
vidual—here, neither group-level data nor a large number 
of trials are available to inform the estimation, which, based 
on our results, is problematic in particular for the reliability 
of computational modeling parameters. One straightforward 
solution could be to obtain a normative reference sample and 
extract empirical priors from it. This would aid both estima-
tion and the contextualization of results. Reference samples 
are standard practice in differential psychology as part of 
test development for good reason, and perhaps should be in 
neurocognitive psychiatry.

In addition to the crucial role of the estimation method, 
our results suggest that identifiability may influence the 
reliability of computational model parameters. We saw that 
the model which best accounted for the data and produced 
the parameters with the highest reliability was a relatively 
simple model, where choice stochasticity was parameter-
ized using reinforcement sensitivities rather than softmax 
temperatures. Both of these characteristics—being rela-
tively simple and employing a reinforcement sensitivity 
rather that a softmax temperature—tend to improve iden-
tifiability: the first by reducing the number of parameters, 
the second by reducing collinearity between parameters 
(specifically between the choice stochasticity parameter(s) 
and the learning rate(s)) (Daw, 2011). By contrast, the soft-
max model with the best evidence was more complex and 
perhaps less easy to identify, as indicated by its poor model 
recoverability. Logically, it stands to reason that models 
that are easier to identify are also more reliable because the 
individual parameter estimates are less noisy (Daw, 2011). 
Indeed, we see diminished reliability for more complex 
models. This is somewhat disappointing, because many 
of the more “interesting” models contain a greater number 
of parameters. One example is models containing kappa, 
a parameter that captures the extent to which individuals 
learn by inference to the unchosen option. This parameter 
has often differed between psychiatric patients and controls 

Fig. 9  Reliability of the parameters derived from the DU-2𝛽2𝛼 𝜅
model, by estimation method and joint versus separate modeling of 
the two sessions. The scatterplots show the association between the 
parameters derived from the DU-2𝛽2𝛼 𝜅 model for each session. In 
the left column, we show maximum likelihood (ML) estimates; in 
the middle column, we show maximum a posteriori estimates with 
weakly informative priors (MAP0); in the right column, we show 
maximum a posteriori estimates with empirical group-level priors 
(EM). Gray dots show estimates from separate models for each ses-
sion; colored dots show estimates from the joint models. Because 
covariances between parameters are not taken into account in ML and 
MAP0 estimation, we expected the parameter values from the joint 
and separate estimations, and hence their reliabilities, to be the same. 
This was true for the DU-2𝜌𝛼 model (Fig. 8) but not the DU-2𝛽2𝛼 𝜅
model. Here, some variation was apparent, pointing towards lower 
identifiability due to a higher correlation between parameters. We 
report ICCs (A,1), ICCs (1), and Pearson correlations in the legend 
of each panel, with confidence intervals in square brackets, as well 
as model-calculated Pearson correlations where possible, for a learn-
ing rate for wins, b learning rate for losses, c choice sensitivity after 
wins, d choice sensitivity after losses, and e double update weight.

◂
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in previous studies (e.g., Deserno et al., 2020; Reiter et al., 
2016). In our sample, models containing kappa produced 
low(er)-reliability estimates. It is quite possible that because 
those models’ parameters are partially collinear with one 
another, they were more difficult to identify—at least on this 
task—and therefore less reliable. While we cannot prove that 
this causes low reliability in our particular instance, it is an 
important reminder that identifiability should be ensured for 
any model whose parameters are to be used for interindi-
vidual difference research.

The reason that we cannot prove that poor identifiabil-
ity caused low reliability in our complex models is that we 

cannot perfectly differentiate between the effects of identi-
fiability and goodness of fit. They tend to coincide, so that 
some simpler models also fit the data better. This highlights 
a different, though equally important, problem complex 
models may have: parameters that do not capture mean-
ingful variance in the data will hardly be reliable, even if 
they are perfectly identifiable. This could well have been an 
issue with some of our DU models, in particular within the 
softmax family. Healthy individuals usually perform rather 
well on the task and win frequently, so the loss-specific 
parameters may mop up much of the variance usually asso-
ciated with double updating, causing poorer fit for models 

Fig. 10  Relative variance components of the parameters derived from 
the DU-2𝜌𝛼 model, by estimation method and joint versus separate
modeling of the two sessions. The left column reflects estimates 
based on separate modeling of the two sessions; the right column 
reflects estimates based on joint modeling of the two sessions. In each 
plot, the left bar represents maximum likelihood (ML) estimation, 
the middle bar represents estimates based on maximum a posteriori 

(MAP) estimation with uninformative priors (MAP0), and the right 
bar represents estimates based on MAP estimation with empirical 
priors (EM). Midnight blue sections of the bars reflect within-subject 
variance (session effects), steel blue sections of the bars reflect error 
variance, and sky blue sections of the bars reflect between-subject 
variance.
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containing kappa. Though somewhat sobering, this is not 
necessarily a quietus for the investigation of the more intri-
cate processes that some complex models reflect—it merely 
suggests that the specific PRLT we focused on might not 
be ideal to probe them. It is conceivable that tasks can be 
designed so as to orthogonalize the parameters to a more 
workable extent, and it may be well worth it if it comes with 
the added benefit of sufficient reliability.

Though we did not empirically show this, it is impor-
tant to stress that even given high reliability of the PRLT, 

associations with other measures such as symptom scores 
and neuroimaging data will always depend to an equal 
degree on the reliability of those measures (Hedge et al., 
2018). Indeed, the reliability of readouts from important 
imaging techniques such as fMRI are somewhat conten-
tious. For example, a recent meta-analysis showed that 
the mean reliability of task-related blood oxygen level-
dependent (BOLD) effects is rather poor (Elliott et al., 2020) 
(ICC(C,1) = .397). However, the authors suggest that this 
is not due to inherently inadequate reliability of the BOLD 

Fig. 11  Distribution of the behavioral performance indices in the 
original sample and generated data based on the DU-2𝜌𝛼 and the
DU-2𝛽2𝛼 𝜅 models. Boxplots show the range, interquartile range,
median, and outliers of the central performance indices of the PRLT; 
accuracy, win–stay probability, lose–stay probability, and the ratio of 

perseverative choices. The left column reflects the first session, the 
right column reflects the second session. Pearson correlation coeffi-
cients in each box representing model-generated data reflect the cor-
relation with the original data.
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signal, but rather poor task reliability (Elliott et al., 2020). 
Given its high reliability, the PRLT thus seems to be a prom-
ising candidate for eliciting reliable BOLD effects, although 
this is yet to be shown. Regardless, special care should be 
taken with model-based fMRI readouts, which Elliott et al. 
(2020) did not consider. These come with their own pitfalls. 
It has been shown, on different tasks, that regressors derived 
from individually fit parameters from RL models—e.g., 
learning rates—can produce robust BOLD effects even if the 
model is poorly fit (Wilson & Niv, 2015). But, as Katahira 
et al. (2021) show, if parameter values are systematically 

over- or underestimated depending on group memberships 
(e.g., patients and controls) or a symptom scale, spurious 
differences in BOLD effects are likely to emerge, even if 
they are in fact similar across groups (Katahira & Toyama, 
2021). More worrying still, even when parameters are per-
fectly fit, the magnitude of the BOLD response associated 
with a parameter-derived regressor can, under some circum-
stances, depend on the regressor’s variance—which, in turn, 
depends on the value the parameter takes (Katahira & Toy-
ama, 2021; Lebreton et al., 2019). If parameter values are 
associated with symptom severity, say, this can again cause 
spurious effects. Therefore, the PRLT should be scrutinized 
in terms of the consequences that task design, model specifi-
cation, parameter values, and data preprocessing might have 
on BOLD responses beyond the performance differences of 
interest. Ideally, the reliability and validity of PRLT-related 
BOLD responses should be ascertained in a bespoke study 
before interindividual differences in its neural correlates can 
be interpreted with confidence.

Limitations

Because we used a small sample of younger and healthy 
individuals, it is unclear whether our results extend to more 
diverse populations. This is particularly relevant concern-
ing individuals with psychopathologies, the target popula-
tion of much research employing the PRLT. However, more 
homogeneous samples such as ours should theoretically have 
lower reliability due to lower between-subject variability. 
We would therefore expect to find even higher reliability in 
more heterogeneous samples. Similarly, it is unclear whether 
our findings generalize to other versions of the PRLT, with 
different rules for reversals occurring, as well as other RL 
tasks. It will be important to compare several versions in 
more diverse populations in order to tease out the best avail-
able instruments to investigate flexible behavioral adapta-
tion. Finally, our version of the task was set up in such a 
way as to produce variable numbers of probabilistic events 
across participants and sessions. This means that for some 
participants, there were slight differences in task difficulty 
across sessions. Future investigations may further improve 
reliability by holding difficulty constant across sessions.

Conclusion

In sum, our study indicates that the version of the PRLT we 
examined has suitable reliability to be employed in clini-
cal research. Crucially, we show that employing hierarchi-
cal estimation has enormous benefits. In light of previous 
research that came to similar conclusions with respect to 
other tasks (Brown et al., 2020; Rouder & Haaf, 2019), we 

Table 1  Average correlation between true and recovered parameters

Session 1 Session 2

DU-2𝜌𝛼 𝜌win .93 .92
𝜌loss .80 .80
𝛼 .76 .88

DU-2𝛽2𝛼 𝜅 𝛽win .82 .83
𝛽loss .79 .84
𝛼 win .73 .55
𝛼 loss .86 .87
𝜅 .77 .66

Table 2  Mean ICC(A,1) between parameters for sessions 1 and 2, 
recovered using ML, MAP0, and EM-MAP estimation, based on 100 
simulated datasets

ML MAP0 EM-MAP

DU-2𝜌𝛼 𝜌win .27 [− .03–.53] .64 [.37–.80] .87 [.17–.96]
𝜌loss .18 [− .13–.46] .30 [− .01–.56] .77 [.38–.90]
𝛼 .19 [− .11–.47] .24 [− .07–.51] .71 [.43–.85]

DU-2𝛽2𝛼 𝜅 𝛽win .00 [− .31–.32] .07 [− .24–.37] .64 [.33–.80]
𝛽loss .00 [− .32–.32] .12 [− .19–.41] .54 [.21–.74]
𝛼 win − .04 [− .34–

.27]
− .10 [− .39–

.21]
− .18 [− .42–.13]

𝛼 loss .29 [− .02–.55] .48 [.20–.69] .87 [.66–.93]
𝜅 .11 [− .21–.40] .19 [− .12–.47] .38 [.08–.60]

Table 3  Mean model-calculated ICC(1) between raw behavio-
ral performance indices for sessions 1 and 2 based on 100 datasets 
simulated using the fit parameters of the DU-2𝜌𝛼 model and the
DU-2𝛽2𝛼 𝜅 model, respectively

DU-2𝜌𝛼 DU-2𝛽2𝛼 𝜅

Accuracy 0.51 0.61
Perseveration 0.82 0.73
Switching overall 0.84 0.72
Switching after losses 0.94 0.83
Switching after wins 0.73 0.6
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therefore recommend that this be the default approach. We 
further found that complex computational models had lower 
reliability than simpler ones; however, it is less clear whether 
this is due to poorer fit of these models or problems with 
identifiability. Nonetheless, we suggest adjusting models to 
reduce collinearity between parameters as much as possible 
to avoid noisy estimates. For more intricate neurocognitive 
processes, we encourage researchers to design tasks that 
explicitly manipulate those and emphasize that task design 
and optimization may benefit from using computational 
tools a priori.
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