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I. QSHI MODEL

In this section, we extensively discuss the QSHI model
as given by the Eq. (1) of the main text. The model
Hamiltonian for a QSHI is the following [1, 2]

H0(k) = N · Γ =

3∑
i=1

NiΓi (1)

where N1 = vF sin(kya)/a, N2 = −vF sin(kxa)/a, N3 =
m(k) = m0 + 2B[2 − cos(kxa) − cos(kya)]/a2 and Γ1 =
τxσ0, Γ2 = τyσz, and Γ3 = τzσ0. We note that
τ ∈ {A,B} and σ ∈ {↑, ↓} represent orbital and spin
degrees of freedom. Here, vF (a) denotes the Fermi
velocity (lattice spacing). The QSHI model in Eq. (1)
supports gapless helical edge modes, protected by TRS
T = iτzσxK with K being the complex conjugate op-
erator: T H0(k)T −1 = H0(−k). The model becomes
trivially gapped for m0/B > 0 (B is chosen to be pos-
itive). This model has unitary chiral symmetry and
anti-unitary particle-hole symmetry, respectively, gen-
erated by C = τyσx and P = τxσzK: CH0(k)C−1 =
−H0(k) and PH0(k)P−1 = −H0(−k). Interestingly,
the QSHI model has mirror symmetry Mxy = C4My:
MxyH0(kx, ky, kz)(Mxy)−1 = H0(ky, kx, kz) where C4
[My] represents the generator of the four-fold rotational
symmetry [mirror symmetry along y-axis]. A magnetic
field, breaking TRS, can be introduced in the model, as
discussed in Eq. (2) of the main text: H(k) = H0(k) +
gMτzσz where g being the Lande-g factor and M is the
magnetic exchange field. The chiral edge modes in H(k)
are preserved by the anti-unitary symmetry while the
model does not have the unitary symmetry.

II. RESERVOIR EFFECT

In this section, we analyze Fig. 3 (e) of the main text
where the QSCI phase is no longer observed although the
upper and lower block Hamiltonian Hu,l(k) both become

topological with mu,l
0 < 0 as predicted by SCBA for dis-

order strength W > 550 meV. Such a counter-intuitive
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observations can be caused by a reservoir effect that we
explain below at length. In order to understand the un-
derlying reason, we vary the topological mass term from
m0 to m1 in the QSHI leads such that |m1| > |m0| while
keeping the Hamiltonian HCS(m0,M,W ) of the central
system unaltered (see Fig. 1).

We concentrate on longitudinal quasi-periodicity εi =
W cos(2πηi + φ)/2 with φ ∈ [0, 2π) in the central sys-
tem. At first, we consider a lead Hamiltonians given by
HL,R(−|m0|). Following the SCBA, the QSCI phase is
expected to show up after the QAHI phase when increas-
ing W . In the conductance G, we observe such a behavior
for gM = 30 meV (see Fig. 1 (e)) while for strong mag-
netic field gM = 52 meV (see Fig. 1 (i)), there is no
signature of the QSCI phase following the QAHI phase
upon increasing W . We now change the lead Hamilto-
nians to HL,R(−|m1|). In this case, we find the QAHI
phase is followed by a QSCI phase for gM = 30, and
52 meV from the conductance analysis (see Figs. 1 (g)
and (k)) which are in accordance with the SCBA. There-
fore, enhancing the topological mass (|m1| > |m0|) in
the QSHI leads could resolve the apparent existence of a

trivial phase in conflict with mu,l
0 < 0 from SCBA. Im-

portantly, the robustness of the QSCI phase in Fig. 1 (g)
is confirmed by δG → 0 as shown in Fig. 1 (h). This is
different from Fig. 1 (f) where δG does not completely
vanish inside the QSCI phase.

In addition, the QAHI phase with gM = 52 meV is
not accurately captured by the SCBA for HL,R(−|m0|).
We find a certain zone in the phase diagram with G < 1
inside the predicted QAHI phase as shown by the red
patches. This zone is bounded by the solid blue and pur-
ple dashed lines of SCBA, for gM = 52 meV (see Fig. 1
(i)). These non-quantized patches vanish when the QSHI
leads are given by HL,R(−|m1|) instead of HL,R(−|m0|)
complying with the SCBA for the above choice of the
leads (see Fig. 1 (k)).

Note that when a topological mass term of higher mag-
nitude is considered for the QSHI leads i.e., |m1| > |m0|,
the effects of the reservoir gets suppressed. This effect
may arise once the topological gap of the lead is less
than or comparable to the gap of the central system.
The interface between central system and leads essen-
tially causes the bulk modes of the leads to hybridize
with the edge modes of the central system resulting in
the contamination of the topological properties for the
latter [3]. Hence, only by increasing the mass term in
the QSHI leads, we recover the quantized edge transport
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FIG. 1. (color online) (a), (e), and (i) [(c), (g), and (k)] depict the conductance G with gM = 0, 30 and 52 meV, respectively,
for the longitudinal quasi-periodicity εi = W cos(2πηi+ φ)/2, considering the QSHI lead Hamiltonian HL,R(−|m0|) (m0 = 44
meV) [HL,R(−|m1|) (m1 = 80 meV)]. The corresponding standard deviation δG are shown for the longitudinal quasi-periodicity
with HL,R(−|m0|) [HL,R(−|m1|)] in (b), (f), and (j) [(d), (h), and (l)]. The system sizes are taken to be Lx = 400a for all panels
and Ly = 100a for (a)-(d) and Ly = 200a for (e)-(l). Notice that the central system is always described by the Hamiltonian
HCS(m0,M,W ) irrespective of the topological mass term in the leads. The QSCI phase does [does not] appears for gM = 52
meV after QAHI phase for (k) [(i)] referring to the fact that the topological mass term in the QSHI leads is responsible for
such phenomena.

of the central system more accurately. Upon inspecting
the phase diagrams in Fig. 1, one can comment that the
topological gap in the leads |m1| has to be much larger
than the renormalized bulk gap ∆ of the central system
(|m1| � |∆|) to prevent bulk states of the leads from
hybridizing with the edge modes in the central system.

III. PHASE DIAGRAMS AND BAND
STRUCTURES

Here, we discuss how one can understand the phase
diagram for transverse quasi-periodicity which is shown
in Fig. 4 of the main text, from the band structure of the
isolated central system considering Lx →∞. In this case
kx can be considered as a good quantum number due to
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FIG. 2. (Color online) The energy dispersion of the non-
magnetic isolated central system (Eq. (2) of the main text) in
presence of transverse quasi-periodic potential (α = 0 and β =
1) under the stripe geometry with infinite (open) boundary
condition along x (y)-direction. Here, we depict the TPT
between the NI → QSHI phase i.e., G = 0 → G = 2, as
shown in Fig. 4 (a) of the main text. We can find the G = 0
phase for W = 200, the TPT at W = 370 and the G = 2
phase for W = 500. Moreover, we separately consider φ =
0 and π to emphasize the emergent symmetry E(kx,W ) =
−E(−kx,−W ). The colorbar denotes the average localization
y of a given momentum mode at kx in the finite y-direction.

the translation symmetry along the x-direction. Notice
that the quasi-periodic potential along the y-direction
breaks the translation symmetry only along that direc-
tion. This enables us to probe the band structures by
varying the disorder strength i.e., the amplitude of quasi-
periodic potential W . The results are shown in Figs. 2,
3 and 4, respectively, for gM = 0, 30 and 52 meV.

We numerically diagonalize HCS(m0,M,W ) =∑
j,j′,kx

[Hj,j′,kx(m0,M) + εjδj,j′ ]C
†
j,kx

Cj′,kx considering

εj = W cos(2πηj + φ)/2 and j = 1, · · · , Ly with C =
{CA↑, CA↓, CB↑, CB↓}. Here, Hj,j′,kx(m0,M) is obtained
after the partial inverse Fourier transformation of H(k)
in Eq. (2) of the main text along the y-direction only.
We further simplify the situation by considering only two
specific values of φ = 0 and π such that εj → −εj or
equivalently W → −W for φ → φ + π. This allows us
to look for the correlation between the energy dispersion
and sign reversal in W in a concrete manner. In ad-
dition, we measure average localization of each momen-
tum mode in the y-direction, associated with eigenenergy

En(kx), as follows ȳn(kx) =
∑Ly

j=1 j(
∑
q |ψn,q(j, kx)|2)

where ψn,q(j, kx) is the j-th component of n-th eigen-
state in the basis q = {A ↑, A ↓, B ↑, B ↓} as obtained
from HCS(m0,M,W ) (see the colorbars in Fig. 2, 3 and
4).

For the non-magnetic case as demonstrated in Fig. 2,
we find that TPTs between the NI and QSHI phase are
found for (φ,W ) = (0, 370) and (π, 370) (W in units of
meV). Here the gap between the doubly degenerate bulk

valence and conduction bands vanishes while the trivial
[topological] gap is observed for (φ,W ) = (0, 200) and
(π, 200) [(φ,W ) = (0, 500) and (π, 500)]. In the topo-
logical case with W = 500, we find helical edge modes
inside the bulk gap −25 < E < 25 (in the units of meV)
for φ = 0 and π while there exist no edge mode within
the trivial gap for W = 200. Notice that the critical
disorder strength Wc ≈ 360, separating the QSHI from
the NI phases, (see Fig. 4 (a) of the main text), can be
approximately traced by the systematic investigations on
the band structure in a stripe geometry with Lx → ∞
considered here.

In the same spirit, for magnetic field gM = 30 meV,
the TPTs between NI and QAHI phase occur at Wc,1 =
200 and Wc,2 = 500 for the TPTs separating QAHI from
QSCI phase (see Fig. 3). The size of the trivial and
topological gap, respectively, for the disorder amplitudes
W = 100, and 300, 400, 600 are consistent with Fig. 4
(b) in the main text. The important point to note here is
that the QAHI (QSCI) phase hosts one (two) pair(s) of
chiral mode(s) due to TRS breaking. In the present case,
the QAHI (QSCI) phase supports chiral modes coming
from the lower block Hamiltonian (both the lower and
upper block Hamiltonian). We repeat the same analysis
for gM = 52 meV in Fig. 4 where the TPT between the
QAHI and QSCI phase takes place at Wc = 580. The
trivial (topological) gap hosting no (edge) modes are de-
picted for W = 400 (W = 700). Two pairs of chiral edge
modes can also be seen inside the topological gap for the
QSCI phase.

One also notes that E(kx) → −E(−kx) for φ → φ +
π. Together with W → −W for φ → φ + π, we can
obtain an equivalence, E(kx,W ) = −E(−kx,−W ). This
gives rise to the symmetric nature of the phase diagrams
under phase averaging in the main text for ±EF . Hence,
we only restrict ourselves to positive values of EF while
investigating the phase diagrams in Figs. 2, 3 and 4 of
the main text.

IV. NORMALIZED PARTICIPATION RATIO

We now study the normalized participation ratio
(NPR) In from the eigenvectors of a system with the
spatial dimension Lx × Ly, defined by

In =

〈(
pLxLy∑
i=1

|ψn(i)|4
)−1〉

/(pLxLy). (2)

Here the eigenvector for a given energy level En is de-
noted by ψn. In the present case, we consider the
isolated disordered central system HCS(m0,M,W ) =∑
rr′ [Hrr′(m0,M) + εrδr,r′ ]C

†
rCr′ where Hrr′(m0,M) is

obtained after inverse Fourier transformation of H(k) as
given in Eq. (2) of the main text. The 〈...〉 in Eq. (2)
hence indicates the disorder average and p = 4 as we have
2 orbital and 2 spin degrees of freedom. For the uniformly
delocalized eigenvectors in 2D, ψn extends equally over
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FIG. 3. (Color online) The energy dispersion of the isolated central system (Eq. (2) of the main text) for gM = 30 meV in
presence of transverse quasi-periodic potential (α = 0 and β = 1) under the stripe geometry with infinite (open) boundary
condition along x (y)-direction. Here, we depict TPTs between the NI → QAHI phase i.e., G = 0 → G = 1, the QAHI →
QSCI phase i.e., G = 1 → G = 2, as shown in Fig. 4 (c) of the main text. We can find a G = 0 phase for W = 100, the
TPT between NI and QAHI at W = 200, G = 1 phase for W = 300 and W = 400, the TPT between QAHI and QSCI phase
at W = 500, G = 2 QSCI phase for W = 600. Moreover, we separately consider φ = 0 and π to emphasize the emergent
symmetry E(kx,W ) = −E(−kx,−W ). The color bar denotes the average localization of a given momentum mode at kx in the
finite y-direction.

FIG. 4. (Color online) The energy dispersion of the isolated
central system (Eq. (2) of the main text) for gM = 52 meV in
presence of transverse quasi-periodic potential (α = 0 and β =
1) under the stripe geometry with infinite (open) boundary
condition along x (y)-direction. Here,we depict TPT between
the QAHI → QSCI phase i.e., G = 1 → G = 2, as shown in
Fig. 4 (e) of the main text. We can find a G = 1 phase for
W = 400, the TPT between G = 1 and G = 2 at W = 580
and G = 2 phase for W = 700. Moreover, we separately
consider φ = 0 and π to emphasize the emergent symmetry
E(kx,W ) = −E(−kx,−W ).

all sites |ψn(i)|2 ∼ (pLxLy)−1. The NPR In thus ap-
proaches unity for the uniformly delocalized state. For a
localized state with the localization length ε, one obtains
the |ψn(i)|2 ∼ ε−1. Hence, NPR becomes vanishingly
small when ε�

√
LxLy. We compute the disorder aver-

FIG. 5. (Color online) We illustrate the average NPR In, fol-
lowing Eq. (2) for the isolated central system of dimension
30 × 30, with isotropic and anisotropic longitudinal quasi-
periodicities in upper and lower panel, respectively. The en-
ergy window of mobility edge shrinks for the longitudinal case
as compared to the isotropic case under substantially strong
disorder. We consider gM = 30 meV and (W,G) are stated
accordingly.

aged energy 〈En〉 and study the NPR profile as a func-
tion of 〈En〉 depicted in Fig. 5 upper and lower panel for
isotropic and longitudinal quasi-periodicity, respectively,
with gM = 30 meV fixed. For 1D systems, the NPR
turns out to be very important to probe the mobility
edge profile, demarcating the localized states from the
delocalized states, in the single particle spectrum [4–7].

For the 2D case, one can similarly define an energy in-
terval E− < E < E+ within which the NPR takes higher
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value for the extended modes. We start with the clean
case (W,G) = (0, 0) where a mobility edge is absent (see
Fig. 5). Upon increases W we observe that the delocal-
ized states are symmetrically located around zero energy
(bounded within E± i.e., around the centre of the spec-
trum) and localized states are found to appear away from
zero energy (outside the E± i.e., around the edge of the
spectrum). This refers to the emergence of mobility edge
for the disordered 2D system. Note that within our anal-
ysis, limited by finite size, multiple mobility edges might
occur (see Fig. 5 (W,G) = (450, 1) upper panel). The sig-
nature of extended modes becomes more pronounced for
some intermediate disorder window (see upper and lower
panels in Fig. 5 (W,G) = (100, 0), (450, 1)). The energy
window associated with the mobility edge is smaller for
the anisotropic case compared to the isotropic case for
intermediate disorder strength.

Interestingly, we find quantized transport but with
G > 2 stemming from extended bulk modes for the
isotropic quasi-periodicity as shown in Fig. 2 of main
text. This is the same scenario where a mobility edge
is promoted. Therefore, the low energy extended bulk
states within the mobility edge might be responsible for
the quantized transport for the isotropic case when EF
lies outside of the bulk gap ∆ of the central system. For
the anisotropic quasi-periodicity in contrast, the mobil-
ity edge shrinks more rapidly with W as compared to
the isotropic case. Therefore, low energy extended bulk
modes might not appear when EF is outside of the bulk
gap ∆.

V. SCBA BASED ON THE CONTINUUM
MODEL

In this section, we present the SCBA analysis based
on the continuum model, derived from the Eq. (2) in the
main text. The self-energy Σ, as formulated by a 2 × 2
matrix is given by (EF−H−Σ)−1 = 〈(EF−H)−1〉 where
〈· · · 〉 represents the disorder average and H (H ) denotes
the 2 × 2 k space (disordered real space) Hamiltonian.
We expand the Eq. (2) of the main text around the
Γ = (0, 0) point to write down the Hamiltonian

H(k) =

(
Hu(k) 0

0 Hl(k)

)
, with Hl,u(k) =

(
al,u bl,u
cl,u dl,u

)
(3)

where al,u = m0 +Bk2∓ gM , bl,u = vF (ky ∓ ikx), cl,u =
b∗l,u and dl,u = −al,u. The inverse block Hamiltonian

[Hl,u(k)]−1 thus takes the form

[Hl,u(k)]−1 =
1

al,udl,u − bl,ucl,u

(
dl,u −bl,u
−cl,u al,u

)
, (4)

The Fourier transformation of the disorder cor-
relation function Cm,n = 〈εi,jεi+m,j+n〉 =
W 2 cos

[
2πη(mα+ nβ)

]
/8 is given by

C(k) =
W 2

8

∑
R

eik·R cos
[
2πη(mα+ nβ)

]
=
W 2

16

[
δkxa,αQδkya,βQ + δkxa,−αQδkya,−βQ

]
(5)

with Q = 2πη and R = a(mα,nβ), where m(n) ∈
[1, Lx/a(Ly/a)].

The self energy, using Eq. (3) of the main text by set-
ting Σl,u = 0 in the right hand side, is thus given by
[8–10]

Σl,u =
W 2

16

[
1

M+
l,u

+
1

M−l,u

]

=
∑

kx=Q
±
x ,ky=Q

±
y

(
Al,u(kx, ky) Bl,u(kx, ky)
Cl,u(kx, ky) Dl,u(kx, ky)

)
. (6)

We note that the self-energy for the correlated case is
thus characteristically different from that of the random
disorder where the correlation function C(k) no longer
depends on k. Due to the structure of the correlation
function C(k) here, the k-sum reduces to a δ-function.
Here M±l,u = EF + iζ − Hl,u(±αQ,±βQ). We denote

Q±x = ±αQ and Q±y = ±βQ. One can obtain

[A,D]l,u =
(W 2

16

) 1

ãl,ud̃l,u − b̃l,uc̃l,u
[d̃, ã]l,u (7)

where ã’s are function of kx and ky with ãl,u = EF + iζ−
al,u, d̃l,u = EF + iζ + al,u, b̃l,u = −bl,u and c̃l,u = −b∗l,u.

The complete expressions of [A,D]l,u are found to be

Al,u =
W 2

16

∑
kx,ky

EF + iζ + (m0 +Bk2 ∓ gM)

(EF + iζ)2 − (m0 +Bk2 ∓ gM)2 − v2F k2

Dl,u =
W 2

16

∑
kx,ky

EF + iζ − (m0 +Bk2 ∓ gM)

(EF + iζ)2 − (m0 +Bk2 ∓ gM)2 − v2F k2
.

(8)

Here subscripts l, u in the left hand side correspond to ∓
sign in the right hand side.

We are interested in the computation of Σl,u0 = (Al,u+
Dl,u)/2 and Σl,uz = (Al,u −Dl,u)/2 that yield the renor-

malized mass ml,u
0 = m0 + δml,u and chemical potential

E
l,u

F = EF + δµl,u as given by

δµl,u = −Re[Σl,u0 ]

= −
(W 2

8

) EF
E2
F − v2Fx− (m0 +Bx∓ gM)2

δml,u = Re[Σl,uz ]

=
(W 2

8

) m0 +Bx∓ gM
E2
F − v2Fx− (m0 +Bx∓ gM)2
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with x = Q2(α2 + β2). The TAI phase is supported in

the presence of disorder for ml,u
0 < 0. The correction

in the mass term δml,u turns out to be negative when
m0 +Bx∓ gM < 0 [m0 +Bx∓ gM > 0] for E2

F − v2Fx−
(m0 +Bx∓ gM)2 > 0 [E2

F − v2Fx− (m0 +Bx∓ gM)2 <
0]. The analytical findings hint to the situation when
both δml < 0 and δmu < 0 for different combinations
of numerator and denominator. Since δml,u < 0 can be
satisfied regardless of the sign of EF referring to the fact
that TAI phases can exist for positive and negative values
of EF .

VI. TOPOLOGICAL PHASE TRANSITIONS
PREDICTED BY SCBA BASED ON THE

LATTICE MODEL

We now address the SCBA analysis (Eq. (3) of the
main text), based on the lattice Hamiltonian, that ac-
curately complies with the Landauer-Büttiker numeri-

cal results. Examining Figs. 2, 3, and 4 of the main
text, we below discuss the phase boundaries following

the profiles of ml,u
0 and |El,uF |. The TPTs, separating

QAHI from the trivial phase, are captured when ml
0 re-

verses its sign simultaneously with |ElF | = ±ml
0. The

QAHI phase is found to be bounded by dashed purple
and solid blue in all figures. The QAHI thus appear

when ml
0 < |E

l

F | < −ml
0 and mu

0 > 0. Similarly, the
TPTs between QAHI and QSCI phases, marked by the
coincidence of solid blue and purple lines, are associated
with sign changes in mu

0 (while ml
0 < 0) simultaneously

with |EuF | = ±mu
0 = 0. The QSCI/ QSHI phase ap-

pears on the right side of the solid purple line. However,
the boundary between the QSCI/QSHI and AI phases
can not be captured by SCBA. Following the same line
of argument, the QSCI/ QSHI phase is expected to be

confined within mu,l
0 < |Eu,lF | < −m

u,l
0 and mu,l

0 < 0.
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