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Cross-frequency synchronization (CFS) has been proposed as a mechanism for integrating spatially and spec-
trally distributed information in the brain. However, investigating CFS in Magneto- and Electroencephalography
(MEG/EEG) is hampered by the presence of spurious neuronal interactions due to the non-sinusoidal waveshape
of brain oscillations. Such waveshape gives rise to the presence of oscillatory harmonics mimicking genuine
neuronal oscillations. Until recently, however, there has been no methodology for removing these harmonics
from neuronal data. In order to address this long-standing challenge, we introduce a novel method (called HAR-
MOnic miNImization - Harmoni) that removes the signal components which can be harmonics of a non-sinusoidal
signal. Harmoni’s working principle is based on the presence of CFS between harmonic components and the fun-
damental component of a non-sinusoidal signal. We extensively tested Harmoni in realistic EEG simulations.
The simulated couplings between the source signals represented genuine and spurious CFS and within-frequency
phase synchronization. Using diverse evaluation criteria, including ROC analyses, we showed that the within- and
cross-frequency spurious interactions are suppressed significantly, while the genuine activities are not affected.
Additionally, we applied Harmoni to real resting-state EEG data revealing intricate remote connectivity patterns
which are usually masked by the spurious connections. Given the ubiquity of non-sinusoidal neuronal oscilla-
tions in electrophysiological recordings, Harmoni is expected to facilitate novel insights into genuine neuronal
interactions in various research fields, and can also serve as a steppingstone towards the development of further
signal processing methods aiming at refining within- and cross-frequency synchronization in electrophysiological
recordings.

1. Introduction

The importance of oscillatory neuronal activity has been demon-
strated by its association with cognitive, sensory, and motor processes
in the brain (Buzsaki and Draguhn, 2004; Engel and Fries, 2010; Har-
ris and Gordon, 2015; Miller et al., 2010; Sadaghiani and Kleinschmidt,
2016). Various oscillatory processes have to be integrated in order to
support formation of behaviorally relevant outputs based on a multi-
tude of sensory and cognitive factors. This neuronal integration is facil-

itated by complex spatial connectivity patterns in the brain (Bullmore
and Sporns, 2009; Nentwich et al., 2020). In this context, phase-phase
synchronization (PPS) has been hypothesized to represent a mechanism
through which such spatially distributed information can be integrated
in the brain with a high temporal precision (Fries, 2015). Importantly,
PPS underlies not only spatially, but also spectrally distributed inter-
actions - so-called cross-frequency synchronization (CFS) (Canolty and
Knight, 2010; Jensen and Colgin, 2007; Nikulin and Brismar, 2006;
Nikulin et al., 2007; Palva and Palva, 2018a; Palva et al., 2005; Palva
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Fig. 1. How non-sinusoidal shape of the neuronal
oscillations impacts the connectivity of brain re-
gions. Panel A shows two non-sinusoidal oscillations
with their fundamental frequency in the alpha band.
The second harmonics of these signals are located
in the beta band. As a byproduct of the coupling
of the fundamental alpha components (the solid line
in panel B), the second harmonics are also coupled
to each other, which results in spurious interactions
within the beta band (the dashed line in panel B) and
across the two frequency bands (dotted lines in panel
B).

Genuine alpha interaction—
Spurious beta interaction ----
Spurious CF interaction -

and Palva, 2018b). Magneto- and Electroencephalography (MEG/EEG)
provide a unique opportunity to non-invasively study these neuronal
interactions in humans.

Since in the frequency domain analysis the kernel function is si-
nusoidal, we often conceptualize oscillations as sinusoids. However,
neural oscillations with non-sinusoidal waveshape are abundant in hu-
man electrophysiological recordings (Cole and Voytek, 2017). Such
non-sinusoidality reflects complex trans-membrane ion currents flow-
ing though highly morphologically asymmetric neurons (e.g. pyrami-
dal cells) where inward and outward currents are unlikely to balance
each other with the exact temporal dynamics thus leading to different
shape of oscillations recorded with EEG/MEG/LFP (Local field poten-
tial) (Jones et al., 2009). This ubiquity of the non-sinusoidal waveform
of brain oscillations has significant implications for the analysis of brain
connectivity.

A periodic signal can be decomposed into its harmonic components
using Fourier analysis. For the sake of clarity, we call the first harmonic
the fundamental component and from here on by harmonics we mean
the second and higher harmonic components whose central frequencies
are integer multiples of the fundamental frequency. By band-pass filter-
ing the signal around the fundamental and harmonic frequencies, we
can separate the respective components, which are by construction CF
synchronized to the fundamental component (Hyafil, 2017; Scheffer-
Teixeira and Tort, 2016). Additionally, if the band-pass filters of the
harmonics frequency are wide enough, a phase-amplitude coupling
(PAC) can be observed between the fundamental and harmonic com-
ponents (Giehl et al., 2021; Hyafil, 2017). Note that, as also discussed
in (Kramer et al., 2008), non-sinusoidal signals can be constructed from
the mixture of distinct sources with cross-frequency coupling. However,
in this work, we do not distinguish whether the non-sinusoidality origi-
nates from signal mixing or the intrinsic waveshape of the signal. In the
discussion section, we elaborate on the effect of signal mixing.

In this manuscript, we address the effects of non-sinusoidal shape
of the brain oscillations on the observation of spurious interactions be-
tween the oscillatory brain activities. In spite of other spurious inter-
actions (e.g. bias of the data length), the spurious interactions due to
the waveshape cannot be determined by statistical methods. For exam-
ple, our recently introduced method for separating cross-frequency cou-
pled sources cannot distinguish sources with genuine interactions and
those which are coupled because of the higher frequency signal being
the harmonic of the lower frequency one (Idaji et al., 2020) because

a harmonic-driven synchronization is not statistically distinguishable
from a genuine coupling. Therefore, distinguishing harmonic-driven and
genuine interactions has currently gained more attention and still re-
mains as a major challenge in the MEG/EEG connectivity research (Giehl
et al.,, 2021; Scheffer-Teixeira and Tort, 2016; Siebenhiihner et al.,
2020). The main reason of this challenge is that the connectivity analysis
of MEG/EEG data is typically done using band-pass filtering, which sep-
arates the fundamental and harmonic components of an oscillatory ac-
tivity with a non-sinusoidal waveform. As a result, the observed within-
and cross-frequency synchronization between the components in the fre-
quency bands of the fundamental and harmonic frequencies can be mis-
takenly interpreted as genuine interaction. Figure 1 shows a schematic
example where two non-sinusoidal signals are synchronized. This cou-
pling should be manifested in the synchronization of the fundamental
components, while the harmonic components shape the waveform of the
individual signals. However, the harmonic components are also spuri-
ously synchronized and additional CFS is observed between and within
the regions. Since these interactions (shown in dashed lines in Fig. 1-B)
are observed due to the waveform of the individual signals, they are re-
ferred to as spurious, in contrast to genuine interactions. The omnipres-
ence of these spurious interactions in all human MEG/EEG recordings
makes the validity of the previously studied within- and cross-frequency
connectivity maps ambiguous.

There has been an attempt from Siebenhiihner et al. (2020) to discard
the potentially spurious connections from cross-frequency (CF) connec-
tivity graphs based on the detection of ambiguous motifs in the con-
nectivity graphs. In that work, any CFS connection forming a triangle
motif with the local CFS and within-frequency inter-areal phase synchro-
nization is considered as ambiguous and is discarded. However, such an
approach cannot disentangle the within-frequency spurious interactions
in the harmonic frequency bands, and is specific to the CF connectivity
graphs. Furthermore, this approach cannot distinguish cases of genuine
couplings which form an ambiguous motif. A more attractive approach,
however, would remove or suppress the data components that can be as-
sociated with the harmonics of the periodic neuronal activity. Such an
approach can provide the opportunity of using the cleaned narrow-band
data (in the frequency range of the harmonics) for within-frequency and
cross-frequency connectivity analyses.

In the current work, we introduce a novel, first-of-its-kind method for
removing effects of harmonics on the estimation of within- and cross-
frequency synchronization. Our method, called HARMonic miNImiza-
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tion (Harmoni), is (to the best of our knowledge) the first existing signal
processing tool for suppressing higher harmonic components of a pe-
riodic signal, without band-stop filtering or rejecting non-sinusoidally
shaped signal components using ICA or any other multi-variate decom-
position.

We extensively tested Harmoni with realistic EEG simulations and
show that the spurious interactions are alleviated significantly, while the
genuine activities are not affected. Harmoni is then applied to resting-
state EEG (rsEEG) data and we show that the CFS connections mimicking
genuine interactions are suppressed, while many masked remote inter-
actions are recovered.

2. Materials and methods
2.1. Phase-phase synchronization

Phase-Phase Synchronization (PPS) can be defined for within-
frequency as well as for cross-frequency (CF) interactions. In order to
define the within- and cross-frequency synchronization indices, assume
two complex narrow-band signals x(t) = a,(Ne/®*®, y(t) = a,(Ne/?" €
C with central frequencies f, and f, respectively. Here, by narrow-band
complex signal we mean the analytic signal built using the Hilbert trans-
form. Formally, if x () is the Hilbert transform of a narrow-band real
signal x (1) = a,(t) cos (¢, (1)), then x(t) = xgz(t) + jxy(¢) is the analytic
signal of x(¢). In these formulations the index R indicates that the sig-
nal is real valued and the index H denotes a Hilbert transformed signal.
Note that, another way to get the narrow-band complex signals from a
broad-band signal is complex wavelet transforms.

If f, = f, then x(#) and y(#) are two narrow-band signals in the same
frequency band. Their complex-valued coherence coh(x, y) € C can be
computed from the following equation:

<a, (I)ay(t)ej%(f)*jtby(f) >

V< a,(0)? >< a,()? >

where < . > is the averaging operator over time and j = \/—_1 is the imag-
inary number.

We use the absolute of the imaginary part of coherence (iCoh)
(Nolte et al., 2004) for estimating the connectivity between two signals
in the same frequency band. This prevents a lot of the within-frequency
spurious interactions due to signal mixing and volume conduction in
EEG.

If nf, = mf, for m,n € N, the cross-frequency synchronization (CFS,
known as m:n synchronization) of x(¢) and y(¢) can be quantified by m:n

coh(x, y) = 6]

il
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Fig. 2. A simulated sawtooth-shaped signal with the fundamental
frequency equal to 6 Hz is depicted in the first row and the fun-
damental 6 Hz component (i.e. the 1st harmonic) is shown in the
second row. The 7th harmonic component filtered at a frequency
window with width of 2 Hz is illustrated in the third row. Addi-
tionally, the sawtooth signal was filtered around the 7th harmonic
frequency with a bandwidth of 7 Hz, depicted in the fourth row.
The magnitude of the fast Fourier transform (FFT) of each signal is
* depicted at its left side. The CFS and PAC between the fundamen-
tal component and the two components with central frequency of
the 7th harmonic frequency are noted along the right side vertical
lines. The 7th harmonic on the third row shows a strong 1:7 syn-
chronization to the fundamental component (coh,.; = 0.99) and no
PAC. However, if filtered at a wider frequency band, the harmonic
component shown in the fourth row shows also a PAC with the fun-
damental component. Note that the amplitude of the signals and
their FFT magnitudes are scaled arbitrarily for the sake of better
illustration.

coh,;=0.99
PAC=0.00
PAC=0.68

coh,7=0.71

A\ 4

absolute coherence coh,,.,(x,y) € R defined by the following equation:

| < ax(t)ay(t)ejﬂ¢x(f)—jm¢y(i) > |
cohy,. ,(x,y) = )

V< ap(n)? >< ay(t)2 >

which is in principle similar to m:n phase locking value as:

plog., =< eInbx(D=jmpy(1) [ 3)

with the difference that in Eq. (2) the amplitudes of the signals are taken
into account and the phase estimations during higher amplitudes are
weighted higher. Giehl et al. (2021) have used a variant of Eq. (2).
Equation (2) reduces to the absolute part of Eq. (1) for m=n=1. In
this work, we are specifically interested in the case that m =1 and
n> 1, i.e. when x(¢) is a signal with central frequency f, and y(?) is
a faster oscillation with the central frequency f, =nf,. In this case,
cohy.,(x,y) = |coh(x,, y)|, where x,(t) = a,()e/"*x(! is built by multiply-
ing the phase of x(¢) by n, i.e. accelerating x(¢) by a factor of n.

CFS as defined by Eq. (2) has a real value between 0 and 1, with
0 corresponding to the lack of any phase synchronization between two
completely independent signals and 1 for two perfectly synchronized
time-series with the same amplitude envelope.

2.2. Genuine vs. spurious interactions

The PPS and CFS indices of Egs. (1) and (2) have a bias based on the
length of the data time-series, i.e., two band-pass filtered random time-
series also show a value larger than 0. Therefore, a test of significance
is necessary for phase synchronization measures (Scheffer-Teixeira and
Tort, 2016) in order to distinguish such spurious interactions when the
data length is not sufficient.

Another type of spurious interactions (which is not statistically dis-
cernible from real interactions) is the interactions due to the waveshape
of brain signals. The reason is that harmonic components of a signal with
a non-sinusoidal shape have CFS to each other. As an illustrative exam-
ple, Fig. 2 depicts a sawtooth-shaped signal and its fundamental and
7th harmonic components. The 7th harmonic of this sawtooth-shaped
signal has an almost perfect 1:7 synchronization to the fundamental
frequency (coh;.; = 0.99). Additionally, although it is not the focus of
this manuscript, it is interesting to note that when a non-sinusoidally
shaped signal (here sawtooth-shaped) is filtered in a wider frequency
range around the harmonic frequency, PAC is observed between the har-
monic and fundamental frequencies (in addition to CFS). In this paper,
however, our focus is on the n:m synchronizations.
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The example of Fig. 2 shows that by band-pass filtering a single
process one can observe cross-frequency coupling between its differ-
ent components, although these components still represent the same
complex signal. In the literature of cross-frequency coupling (Giehl
et al., 2021; Hyafil, 2017; Scheffer-Teixeira and Tort, 2016; Siebenhiih-
ner et al., 2020), such a coupling between the components of a sin-
gle process, or generally an interaction between two signals where at
least one of them is a higher harmonic of a non-sinusoidal process is
called spurious. This is usually in contrast to genuine interactions between
two signals representing two distinct processes where none of them is a
higher harmonic of a periodic signal. Formally, let x(r) = ), x®() and
¥y =Y, yO(),i € N be two n:m synchronized periodic oscillatory pro-
cesses, where x and y) are the ith harmonic components of x(f) and
y(t), respectively. The fundamental components (xV) and y(V) and higher
harmonics (x” and y”) for i > 2) of each of these signals can be separated
from each other by band-pass filtering x(¢) and y(¢). The synchronization
of x and y implies that for any i;,i, € N, x/D(¢) and y2)(¢) are within-
or cross-frequency synchronized. When assessing the synchronization of
the narrow-band signals, we consider only the synchronization of funda-
mental components x() and y genuine. The synchronization of x(1(f)
and y2)(t) for i; > 1 or i, > 1 is harmonic-driven and is called spurious.
Note that this does not mean that the signal components are not syn-
chronized and the synchronization value is non-zero because of insuf-
ficient number of data points or due to filtering. By spurious interac-
tions due to waveshape it is meant that any coupling including higher
harmonics is in fact mediated by the fundamental component of the re-
spective non-sinusoidal signal. Fig. 1 illustrates the possible within- and
cross-frequency spurious synchronizations due to waveshape. In the next
section we introduce an original signal processing method for suppress-
ing the harmonic-driven synchronizations in connectivity analyses using
electrophysiological data.

A final important note is that, as discussed in Kramer et al. (2008),
a non-sinusoidal signal can be constructed from the mixing of distinct
sources with CFS or PAC. This is actually a major concern in electro-
physiological research even outside of connectivity topic. Although we
do not account for this issue in our analyses explicitly, we discuss it in
Section 4.5, “Harmoni and signal mixing”.

2.3. HARMOnic miNImization (HARMONI)

Assume that z(f) = s(¢) + e(t), where s(¢) is a periodic signal with the
fundamental frequency of f. e(?) is additive noise or any other process
such as another oscillatory activity mixed with s(r). Harmoni aims at re-
moving the components of z(r) within a narrow frequency band around
nfy,n € N, n > 2 that have similar phase profile as the fundamental com-
ponent of s(¢). For this purpose, we can write z(f) = xz(t) + yg(?) + £(¢),
where xg(t) = a,(t) cos (¢, (1) and yg(t) = a,(t) cos (¢, (1)) are the real-
valued contents (indicated by the index R) from frequency bands f,
and nf),, respectively. £(r) represents all other components of z(f) except
xg(?) and yg(?). Therefore, x z(¢) and yx(¢) are estimated using band-pass
filtering z(¢) within the respective frequency bands of the fundamental
and harmonic frequencies. We define x(¢) and y(¢) as the analytical sig-
nals of xz(r) and yg(¢) built using the Hilbert transform and work with
them in the next steps of Harmoni. Note that x(¢) and y(¢) can be also
generated by applying complex wavelet transforms to z(z).

The fundamental component of a non-sinusoidal signal has 1:n syn-
chronization to its nth harmonic component. Therefore, the phase infor-
mation of the harmonic components can be recovered from the phase
of the fundamental component. Using x(¢), Harmoni tries to remove the
parts of y(¢) that are 1:n coupled to x(¢), or equivalently 1:1 coupled to
x,(1) = a, ()e"Px O,

As mentioned above, the part of y(¢) which is a harmonic of a com-
ponent in x(¢) should be phase synchronized to x,(¢). Therefore, we esti-
mate the harmonic part of y by Ax, (1), 4 € C. y.,,,.(t) = y(t) — Ax,(t) con-
tains the non-harmonic components of y(r), where y,,,..(t) has a minimum
possible within-frequency synchronization to x,(¢). The complex multi-
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Fig. 3. Harmoni is a method that removes harmonics of a non-sinusoidal signal.
The inputs are the band-pass filtered signals in the frequency bands of the fun-
damental and harmonic frequencies. In this figure, the signal is a non-sinusoidal
alpha rhythm with fundamental and second harmonic frequencies of 10 Hz and
20 Hz, respectively. The band-pass filtered signals at 10 Hz and 20 Hz are used
as inputs to the minimization block, which runs a regression-like algorithm to
find the best multiplier for removing the harmonic parts of y(r). This is done
by means of subtracting a scaled version of x,(¢) from y(r), where x,,() is an ac-
celerated version of x(r) by multiplying its phase by a factor of n (here n = 2).
The output of Harmoni is a band-limited signal in the harmonic frequency band
(here 20 Hz - the second harmonic) where the harmonic component is removed.

plier 1 = ce/? is estimated through the following optimization problem:
nclfﬁn |coh(y(t) — Ax,(1), x,,(t))l for A=-ce? @

Here, the phase of 1 compensates the possible phase difference between
the harmonic and fundamental components. Figure 3 shows a schematic
block diagram of Harmoni. Practically, we perform a grid search pro-
cedure for computing 4 = ce/®, which is presented in Algorithm 1 .
Algorithm 1 has a complexity of O(N), where N is the number of data
time samples. Note that in a connectivity pipeline, this amount of com-
putation is needed for each ROL In our open-access toolbox, we use
parallel computing (with multiprocessing package) in order to accel-
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Fig. 4. The block-diagram of Harmoni pipeline in source space. The multi-channel data are first inverse modelled and the ROI time series are extracted using SVD
applied on the broad-band data of each ROI Then the ROI signals were band-pass filtered in the range of the fundamental frequency (f,)) and the harmonic frequency
of interest (nf;). The ROI signals in the range of harmonic frequency are then corrected with Harmoni and the potential harmonic components are removed. Finally,
the ROI-ROI within- and cross-frequency connectivity maps are computed. In this paper, without loss of generality and due to the better SNRs, we set f;, = 10 and

n=2.

Algorithm 1: Grid search algorithm of Harmoni. filter(., f;)) stands
for band-pass filtering around f,. Hilbert(.) builds the analytic sig-
nal of its input using the Hilbert transform. Re(.) denotes the real
part of a complex number. szd(.) stands for standard deviation.

Input : A signal z(f) € R containing a non-sinusoidal component
with a fundamental frequency of f,
Frequency f,
Integer n (referring to the nth harmonic)

Output: Harmonic-corrected signal y,,,..(f) € C centered at nf,

xg(®) = filter(z(t), fO)
x(t) = Hilbert(xg(t))
yr(0) = filter(z(t), nfy)
y(t) = Hilbert (yg(1))
x,(t) = ax(t)ej"¢x(’>

x,(1) = x,(1)/std (Re(x,))
(1) = y(1)/std (Re(y))

// band-pass filter around f,
// the analytic signal of x(7)
// band-pass filter around nf,
// the analytic signal of y,(¢)
// accelerate x by a factor of n
// normalize the power

for ¢ = —1 to 1 with steps 6c do
for ¢ = —x /2 to r /2 with steps ¢ do
Vres(D) = §(0) = ex, (Ne/?
COhc,d) = |C0h (Yres’ Xn) |

Copts Popt = argmin coh, // find the minimum
e

Feorr(t) = F(t) = €y x,, (1) Por

Yeorr®) = Feorr(t).51d (Re(y)) // set the power of y

erate the computations over all ROIs. Note that the grids of the two
parameters ¢ and ¢ should not be very coarse, so that the minimum of
the optimization function can be captured with an acceptable precision.
In our implementation, we set ¢ = 0.01, §¢ = =/10. The optimization
of Harmoni is also implemented with a gradient descent (GD) method.
However, we did not observe a difference between GD and grid search
implementations in our simulations and real data analysis. Figure S11 of
the supplementary material shows the box plots of how the two imple-
mentations perform regarding the suppression of spurious interactions
in scenario 1 of the toy examples.

In practice, the activity of each brain site - that can be a region-of-
interest (ROI) or an electrode or a subspace component - is band-pass
filtered within the two bands of interest, namely f, and nf,. Then Har-
moni is applied on the data of each sensor or ROL In the next section, it

will be described in detail how Harmoni can be employed in a connec-
tivity analysis pipeline with electrophysiological data.

2.4. Connectivity pipeline in source space

Figure 4 shows a block-diagram of a connectivity pipeline, also im-
plementing Harmoni. Note that, the connectivity pipeline presented in
this manuscript may not be the ultimately optimal pipeline for all the
connectivity analyses with MEG/EEG data. A better inverse method or
estimation of ROI time series (or a better combination of these two steps)
results in a better performance of Harmoni and a more accurate connec-
tome, but the question of which method is better for collapsing the ROI
time series is out of the scope of this manuscript. In this regard, we would
like to make the point that the working principle of Harmoni does not
depend on which inverse method and ROI-signal extraction method are
used. The main point of the current work is that employing Harmoni
suppresses the spurious interactions in comparison to the same pipeline
without Harmoni.

The first step is to define the frequency bands of interest, i.e. the
fundamental frequency f, and the harmonic frequency nf,. In this work
we assessed alpha-beta coupling and therefore, we assumed n = 2. How-
ever, this does not restrict the generality of the usage of Harmoni: For
example, in case of alpha-lower gamma interactions we have n = 3. Note
that, in practice in MEG/EEG analysis, 1 : 4 coupling is rarely stud-
ied due to the low SNR at the higher frequencies. Furthermore, in the
case of n:m interactions, Harmoni should be used for both frequency
bands of the nth and the mth harmonic frequencies separately. Then,
the n:m coupling can be computed from the output of the two Harmoni
procedures.

Afterwards, the band-pass filters should be designed for the fre-
quency bands of interest. We used fourth-order Butterworth filters for
band-pass filtering. The IIR filter was applied forward-backward in or-
der to prevent phase shift in the data. FIR filters can also be used, but
the phase shift should be accounted for, while computing the cross-
frequency synchronization. For practical advice on filter design, we re-
fer the reader to Widmann et al. (2015). Note that, in case of filtering
very short segments of data, techniques such as mirroring should be em-
ployed to avoid edge artifacts. The pass-band of the filters should be se-
lected based on the specific band of interest. In this work, we used two
different approaches for simulated and real data, which we elaborate
upon in Sections 2.5.3 and 2.6.2, respectively. For this section, assume
that we have two defined bands for the first and second harmonics and
we design a fourth-order Butterworth filter for them.
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2.4.1. Forward and inverse solutions

We used fsaverage standard head model and the three-layer bound-
ary element model (BEM) accompanied with MNE Python (Gramfort
et al., 2013; 2014). 64 electrodes (or a subset of it for real data) with
positions according to the BioSemi cap were used and aligned to the MRI
coordinates. MNE-Python was used to create a dipole grid on white mat-
ter surface with oct6 spacing between the grid points, resulting in 4098
sources per hemisphere. The surface-based source space and the BEM
solutions were then used for computing a forward solution. An inverse
solution with dipole directions normal to the cortical surface was com-
puted with eLORETA inverse modelling (Pascual-Marqui, 2007) with the
regularization parameter equal to 0.05, and the noise covariance equal
to the covariance of 64 white-Gaussian signals with equal duration to
the data, which is an estimation of the identity matrix.

2.4.2. From sensor space to ROIs

The multi-channel EEG data were projected to the cortical surface
using the computed inverse solution, resulting in ~8000 reconstructed
surface sources. These sources were then grouped based on an atlas into
regions of interest (ROIs). We used the Desikan Killiany atlas with 68
ROIs (Desikan et al., 2006) for simulations and Schaefer atlas with 100
ROIs (Schaefer et al., 2018) for real data analysis. Then the time series
of the vertices within each ROI were aggregated in a single signal and
then filtered within the frequency bands of the fundamental and har-
monic frequencies. As a result, the ~8000 reconstructed cortical sources
were translated to ng,; ROI times-series in each frequency band (here:
ngror=number of ROIs in the used parcellation), which are ready for
connectivity computations.

Different methods can be employed to extract the ROI signals, for
example weighted averaging and SVD. In our comparisons for narrow
frequency bands of interest, the ROI signals resulting from applying SVD
on narrow-band data of a ROI, and filtering the first SVD component of
broad-band data of the ROI were strongly synchronized to each other,
indicating the similarity of both approaches. Therefore, in the interest
of reducing the computation time, we decided to use the latter approach
(i.e. SVD on broad-band data). However, we would like to caution that
we do not prescribe SVD on broad-band for all source space connectivity
pipelines, and our conclusion is only limited to the narrow-band data
in alpha and beta frequency bands in resting-state EEG. It could be that
SVD on broad-band and SVD on narrow-band have different implications
for example for PAC analyses, where broader frequency ranges (e.g. high
gamma) are investigated. A thorough comparison of the two methods is
beyond the scope of the current paper.

2.4.3. Harmoni

Although the ROI time series can be directly used for computing the
connectivity maps, we suggest to use Harmoni as an intermediate step in
a connectivity pipeline. Harmoni is applied on the signals of each ROI
in the two frequency bands of interest centered at f, and nf,, which
correspond to the fundamental and the nth harmonic frequencies. The
output of the algorithm is a signal in the frequency band of nf|, for
which the harmonic components are suppressed to a large extent. The
ROI time series at f,, and the Harmoni-corrected signals at nf, are then
passed to the next step for computing the within- and cross-frequency
synchronization maps.

2.4.4. From ROIs’ time-series to connectivity maps

For both of the simulations and real data, after computing the ROI
time series and applying Harmoni on them, we computed a connectivity
index for each pair of the ROISs, resulting in an npy; X npo; graph. For
within-frequency connectivity (here in alpha and beta bands), we used
the absolute of imaginary part of coherency (iCoh) computed from the
imaginary part of Eq. (1) and for the cross-frequency synchronization
we used the extension of coherence for n:m coupling as in Eq. (2).
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2.5. Simulations

2.5.1. Signals and SNR

The pipeline for producing signals and the definition of signal-to-
noise ratio (SNR) are similar to that of Idaji et al. (2020). In this sec-
tion we describe the procedure of simulating the signals and how SNR is
defined in our simulation pipelines. Note that in all places, band-pass fil-
tering was carried out using fourth-ordered Butterworth filters designed
for the frequency band of interest. The filtering was applied forward
and backward in order to avoid phase shift in data. Additionally, all the
simulations were done with the data duration of 1 min and sampling
rate of 256 Hz.

Additive noise: The time-series of the noise sources were produced
with the colornoise package (Patzelt, 2019) in Python by building a
random signal with a 1/f (pink) spectrum from a random white Gaussian
noise.

Sinusoidal oscillations: Without loss of generality, in our simula-
tions, all of the time-series of the sinusoidal oscillatory sources were
simulated in alpha (8-12 Hz) and beta (16-24 Hz) frequency bands.

Independent sources (those without a synchronization to other
source signals) were generated by band-pass filtering white Gaussian
noise in the frequency band of interest. The analytic signals of these os-
cillations were built using the Hilbert transform of them. For instance, if
xg(?) is an alpha oscillation produced by band-pass filtering white Gaus-
sian noise within (8-12) Hz and x () is the Hilbert transform of x z(7),
x(1) = xg(1) + jxy (7) is the analytic signal of x z(1).

A source signal y(r) with 1:n synchronization to an oscillation x(z)
was simulated by phase-warping of x(z), i.e.:

x(t) = ax(t)emx(')
(1) = ay(t)ej"¢x(t)+j¢0 3)

where x(7) € C is the analytic signal of an oscillation generated by band-
pass filtering white Gaussian noise around f, y(r) € C is the analytic
signal of an oscillation within a frequency band around nf, and 1:n
synchronized to x(¢), and ¢, is the phase difference of the two signals
taken randomly from a uniform distribution between [~z /2, z/2]. a,(t)
is either equal to a,(¢) or equal to the envelope of another band-pass
filtered white-Gaussian signal in the same frequency band as y(f). For
instance, if x(¢) is an alpha band oscillation and n =2, y(¢) is a beta
band oscillation and 1:2 synchronized to x(1). If a,(f) = a,(?), the 1:n
synchronization of these two signals computed from Eq. (2) is equal to
1. Note that in the case of a,(r) # a, (1), the interaction of x and y is
for sure genuine. Therefore, for the simulation of two genuinely (cross-
frequency) synchronized sources, we used a, (1) # a,(1).

The power of each oscillation is scaled based on the signal-to-noise
(SNR) ratio of the frequency band of interest (see below).

Non-sinusoidal oscillations: A non-sinusoidal signal s(r) =
Y, s, n € N with the fundamental frequency of f, was generated
by adding up its fundamental component (or the first harmonic) s(V(r)
and the higher harmonics components s"(f),n > 2. In the following
equations, s(¢) is an oscillation at f; produced by band-pass filtering
a white Gaussian noise signal and s (f),n > 2 is a 1:n synchronized
oscillation produced by Eq. (5) to be 1:n synchronized to s(.

s(t) = z s, neN

sD @) = Re(ay(e/*D)
s Re(al(t)ej"¢(')+j¢",n > 2) (6)

where ¢,,n > 2 are random numbers taken from a uniform distribution
between [-7/2, x/2].

Given a fundamental frequency of f,, let s;() =3, s(l")(t) be a
simulated non-sinusoidal oscillation based on Eq. (6) and s(l”(t):
a;(t)cos (¢(1)). The following equations show how another non-
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Toy Examples

A: Scenario1 B: Scenario 2

C: Scenario 3
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Realistic Simulations

Scenario Scenario 2

Alpha Network Alpha Network
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Beta Network Beta Network

CFC Network CFC Network

Fig. 5. Simulation scenarios. Toy examples: Two signals z, and z, were simulated for each scenario, where various genuine and spurious synchronizations are present
in the ground truth. The solid lines show the simulated, genuine synchronizations, and the dashed lines depict the spurious interactions observed in the ground-
truth. Harmoni was applied on each of the signals and the within- and cross-frequency synchronization for alpha and beta bands were examined before and after
Harmoni. In all scenarios, z, contained a non-sinusoidally shaped component s, = a, + f,, where @, and p, are the fundamental and second harmonic components
of s, respectively. /?k, k = 1,2 in scenarios 2 to 4 are beta oscillations independent of s, k = 1,2 Realistic simulations: In the first row, each dot shows a source and
the connecting lines represent the synchronization of the source signals. The sources with purple color and the letter N correspond to sources with non-sinusoidal
alpha oscillations having components in both alpha and beta frequency bands. The blue color and letter B corresponds to sinusoidal beta band sources, and the red
color and letter A represent sinusoidal alpha frequency range sources. In the schematic brains of rows 2 to 4, the ground truth alpha, beta, and CFS networks are
depicted. While solid lines depict genuine interactions, dashed lines show spurious interactions caused by non-sinusoidal waveshape of the signals. In both of the toy
examples and realistic simulations, the main purpose of Harmoni is to suppress the spurious (dashed-line) connections, while not affecting the genuine (solid-line)

interactions.

sinusoidal signal s,() is simulated to be synchronized to s, (¢):

0=, sg')(t), neN
s(%l)(t) = Re(ay(t)e/#0+iv) 7
sU(1) o Re(ay(n)e/™O+ivn) n > 2

where y,, n € N are random numbers taken from a uniform distribution
between [-x/2,z/2]. In Eq. (7), 3(21) is an oscillation with 1:1 synchro-
nization to s(l]).

Note that the second harmonic is the strongest harmonic which is
usually visible in real electrophysiological data. Therefore, without loss
of generality, we only examine the removal of the second harmonic.
Therefore, we simulated only the first and the second harmonic. That
is, in our simulations, the non-sinusoidal source signals are simulated as
s(t) = sO(@) + s (1) where s((¢) is an alpha oscillations and s?(¢) is the
second harmonic in the beta frequency band. After that, the amplitude
of sI(t) and 5 (t) were re-scaled so that the SNR at each of alpha and
beta frequency bands for these signals are set to the desired value (see
below). Finally, s (t) and s(¢) are added up together to generate s(r).

SNR: In realistic simulations, The SNR was defined as the ratio of the
mean power of the source signal in the sensor space divided by the mean
power of all pink noise sources in sensor space, filtered in the frequency

band of interest. In our realistic simulations, the SNR of alpha and beta
bands were set to 0dB and —10dB, respectively.

For the toy examples, the SNR of a narrow-band source was defined
as the ratio of its power to the power of the pink noise, filtered in the
frequency band of interest. The SNR values at alpha and beta band were
set to 5 dB and —5 dB, respectively.

2.5.2. Toy examples

We used toy examples for initial assessment of the effect of Har-
moni on the interactions between two signals with non-sinusoidal com-
ponents. We used four scenarios for these toy examples, where the
ground truth about the existing genuine and spurious interactions be-
tween the simulated signals were pre-defined. The left side of Fig. 5 de-
picts these scenarios schematically. Although we concentrate on the
within-frequency and 1:n interactions in this paper, in Section 2 of the
supplementary text we provide a use case of Harmoni for suppressing
spurious n:m interactions.

In each of the four scenarios, two signals z, (), k = 1,2 were simu-
lated. On the schemes of Fig. 5, z;(f) and z,(¢) are depicted as shaded
areas in each scenario. In the rest of this section, the index k = 1, 2 refers
to these two signals. z,(r) and z,(f) were multi-band signals with com-
ponents in alpha and beta bands. In each scenario, specific ground truth
genuine interactions were simulated between the two signals, which
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Fig. 6. AUC of an ROC curve as an evaluation criterion for assessing the matching of computed connectivity graphs and the ground truth ones. Panel A shows an
exemplar ROC curve. In panel b, the procedure of computing the true positive (TP) and false positive (FP) values corresponding to threshold level 0 < p < 1 is depicted.
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The true positive ratio (TPR) and false positive ratio (FPR) corresponding to each threshold level p is computed by TPR(p) = —2—-2~ and FPR(p) =

The ij index indicates the (i, j)th element of the indexed matrix.

produced known spurious interactions, too. Harmoni was applied on
each of the signals in order to remove the beta component which could
be the harmonic component of the alpha band component of the signal.
The interactions between the two signals were estimated using absolute
within- and cross-frequency coherence before and after Harmoni. We ex-
pected that Harmoni suppresses the spurious interactions, but does not
touch the genuine interactions. For each scenario, 50 runs with random
seeds were carried out.

In all scenarios, the two signals z,(r) and z,(¢) contained an alpha os-
cillation with non-sinusoidal waveshape. s, (f) = a;(¢) + f,(?) is the non-
sinusoidal component of z,(r), where «,(¢) represents the fundamental
component and f, its second harmonic, which is phase-synchronized to
a; ().

Below, the composition of z; and z, in all the four scenarios and
their genuine and spurious interactions are listed. Note that &, (¢) is the
additive 1/f (pink) noise component of z, (7).

Scenario 1 (Fig. 5-A): z; (1) = s5,(t) + (1), k = 1,2. The signal s; was
simulated using Eq. (6) and s, was simulated to be synchronized to s,
using Eq. (7). Therefore, a genuine interaction in alpha band between
the two signals was simulated. Additionally, a spurious interaction in
beta band, as well as spurious cross-frequency interactions between the
two signals were observed in the ground truth. Figure S10 of the sup-
plementary text shows exemplar signals of this scenario.

Scenario 2 (Fig. 5-B): z,(t) = s, () + ﬁk(t) + &), k=1,2. s; and
s, were simulated as synchronized non-sinusoidal signals using
Egs. (6) and (7) (similar to scenario 1). Each signal z, had an extra
beta component f. f; and f, were simulated as narrow-band beta band
oscillations and synchronized to each other (with Eq. (5)) but indepen-
dent of s,k =1,2. In addition to the genuine integration between the
z, and z, in beta band due to the synchronization of f; and f,, simi-
lar genuine and spurious interactions as in scenario 1 were present in
the ground truth. In figure S10 of the supplementary text an example of
signals of this scenario is depicted.

Scenario 3 (Fig. 5-C): z,(t) = s, (1) + ﬁk(t) +&(D,k=1,2. 5, and s,
were two independent non-sinusoidal oscillations (using Eq. (6)) with
their fundamental and second harmonic components in alpha and beta

X, ~GT,

Lj TP

G, T, % ~G, T,

i ijrij

band respectively. f, and f, were two synchronized narrow-band beta
oscillations (using Eq. (5)), which were independent of s; and s,. As a
result, no CFS existed between z; and z, in the ground truth and the
only genuine interaction was a synchronization within beta band.

Scenario 4 (Fig. 5-D): z,(t) = s,() + f(t) + &),k = 1,2. s, and s,
were two non-sinusoidal alpha oscillations simulated independently us-
ing Eq. (6), and f, was a narrow-band beta oscillation 1:2 synchronized
to s;, i.e. f, was simulated to have 1:2 CFS to the alpha component
of s, (a;) using Eq. (5). Therefore, in addition to the genuine CFS be-
tween z; and z,, a spurious synchronization within beta band between
z, and z, existed in the ground truth (i.e. between f, and g,). §, was a
narrow-band beta oscillations independent of s, s,, and f,.

Note that since there is no mixing between z, and z, in these simula-
tions, the absolute coherence was used for quantifying both the within-
and cross-frequency synchronizations.

2.5.3. Realistic simulations

Source positions The oscillatory sources were located at the center of
randomly selected ROIs. The ROIs were selected from the outer surface
of the cortex. Additionally, the ROIs were selected not to be nearby each
other. This approach of the simulations is similar to that of Haufe and
Ewald (2019). Additionally, the position of 50 pink noise sources were
selected randomly from the ~8000 nodes of the source space grid. The
Desikan Killiany (DK) atlas was used.

Scalp EEG generation. In order to generate the realistic multi-channel
EEG signal, oscillatory and noise signals in source space were mapped to
the sensor space using the forward solution with 64 electrodes accord-
ing to BioSemi EEG cap layout. 100 datasets were simulated by using
random seeds.

Realistic simulation scenarios The two scenarios depicted on the right
side of Fig. 5 were used for simulating realistic EEG data.

In scenario one, a pair of interacting non-sinusoidal source signals
were simulated using Egs. (6) and (7) with their fundamental frequency
in alpha band. Additionally, a pair of coupled sources in the beta band
were generated using Eq. (5) and n = 1. A pair of synchronized sinu-
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soidal sources in alpha band were simulated as well, by using Eq. (5) and
n=1.

In scenario 2, a pair of genuinely cross-frequency synchronized
sources were simulated using Eq. (5) with » =2. In addition, a pair
of synchronized non-sinusoidal source signals were generated using
Egs. (6) and (7).

Connectivity The connectivity pipeline explained in detail above (also
Fig. 4) was then applied to the simulated EEG data with alpha and beta
frequency bands defined as 8-12 Hz and 18-22 Hz, respectively. As de-
picted in Fig. 5, each of these two scenarios include genuine and spuri-
ous interactions in their ground-truth. By using Harmoni, we expect to
suppress the spurious interactions.

Evaluation criterion (ROC curve): Since the computed connectivity
maps are not binary values (while the ground truth connectivity is bi-
nary), we evaluate the matching of computed connectivity maps and
the ground truth using the area under curve (AUC) of the receiver op-
erating characteristic (ROC) curve of the computed connectivity ma-
trix. Figure 6 shows how true positive and false positive values were
computed. After thresholding the test graph (T") with threshold level
0 < p <1 (resulting in T,), the true positive ratio (TPR) and false pos-
itive ratio (FPR) corresponding to this threshold value were computed

ZiGijTyi) Zij~GiTyij ‘
as TPR(p) = ———— and FPR(p) = —————, where the subscripts
%,;G,yTy % ~Gy; Ty
ij indicates the (i, j)th element of the adjacency matrix and G is the
ground-truth connectivity matrix. ~G is the 1’s complement of G (i.e.,
all zeros are converted to 1 and vice-versa).

Using the TPR and FPR values for all the threshold level, an ROC
curve is built. The AUC of this curve reflects how well the computed con-
nectivity map matches the ground truth adjacency matrix of the graph
corresponding to the simulated connectivity.

The AUC of the ROC curve (AUC-of-ROC) was computed for each
simulation run before and after Harmoni and compared. We expected
an increase of AUC-of-ROC after Harmoni.

Additionally, for graphs where no true positives were expected (for
example the CFS network of scenario 1 or beta-band network of scenario
2) the FPR curve was built as a curve of FPR vs. threshold. The AUC of
this curve (AUC-of-FPR) is a proxy of the amount of false positives. We
expected a drop of AUC-of-FPR after Harmoni.

In addition, we examined how the AUC values change in relation to
their initial values. We expected that Harmoni corrects the connectivity
graphs in the way that the change is larger when there are more false
positives and fewers true positives. For this purpose, we assessed the
relationship of the percentage change of the AUC values and their initial
values before Harmoni, and we expected a negative correlation in all
cases. That is, we expected that the increment of AUC-of-ROC is higher
when the initial value is lower. Additionally, we expected that the AUC-
of-FPR drops more (reflected in a smaller negative percentage-change
value) when its initial value is larger. The significance of this correlation
was tested using the method described in Section 2.8.

2.6. Resting-state EEG

2.6.1. Data description and preprocessing

The resting-state EEG data from 81 subjects (20-35 years old,
male, right-handed) of an open-access database (LEMON) were used
(Babayan et al., 2019). The LEMON study was carried out in accordance
with the Declaration of Helsinki and the study protocol was approved by
the ethics committee at the medical faculty of the University of Leipzig.
The data of each subject included 16 min resting-state recording with in-
terleaved, 1-min blocks of eyes-closed and eyes-open conditions. For this
manuscript, we used the data of the eyes-closed condition. The record-
ings were done with a band-pass filter between 0.015 Hz and 1 kHz and
a sampling rate of 2500 Hz.

For our analysis, we used the publicly available preprocessed data in
the database. The sampling rate was reduced to 250 Hz and the down-
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sampled data were filtered within [1, 45] Hz with a fourth order But-
terworth filter, applied forward and backward. Then the data segments
of eyes-open and eyes-closed conditions were separated. Bad segments
were removed manually and ICA artifact rejection was employed to re-
move the noise components relating to eye, heart, and muscle activ-
ity. Babayan et al. (2019) provide detailed information about the data
recording and preprocessing steps.

2.6.2. Connectivity

The pipeline in Fig. 4 was used, as similar to the simulated
data connectivity. Fourth-order Butterworth filters (applied forward-
backward to avoid phase shift) were used for filtering data in al-
pha and beta bands. Using pre-defined frequency bands is a com-
mon practice in connectivity analysis with MEG/EEG data, for exam-
ple refer to Brookes et al. (2011), Tewarie et al. (2016) for amplitude-
amplitude coupling, and Nentwich et al. (2020), Wirsich et al. (2020),
Wirsich et al. (2021) for phase-phase coupling. Filter bank ap-
proaches have also been used in the literature, for example by
Siebenhiihner et al. (2020). However, using subject-specific frequency
bands is a more rigorous and biologically sensible approach, attracting
more attention of the community in recent years, but still not very com-
mon in connectivity analysis pipelines. In this work, we used subject-
specific alpha frequency bands. For each subject, we detected the alpha
peak and its peak width in the PSD of sensor space data by an automatic
peak detection algorithm (using the find_peaks function of the Scipy sig-
nal package). Assuming that for a subject the alpha peak was detected
at f, and the bandwidth of alpha band was detected as W,, we set the
second harmonic frequency at 2, and the bandwidth of this frequency
band (beta band) equal to the bandwidth of the first harmonic. Note
that the detected peaks and their width were then visually inspected
and possible manual adjustments had been applied to very few subjects
(the information about these subjects are available in the GitHub repos-
itory of the manuscript).

Similar to the connectivity pipeline described in detail above (also
Fig. 4), the broad-band data were projected onto cortical source space
using the inverse solution computed with eLORETA method from fsav-
erage standard head leadfield, with 4098 vertices per hemisphere. After-
wards, a single time series was extracted (using SVD) for each ROI from
the cortical sources within that ROI. The Schaefer atlas (Schaefer et al.,
2018) with 100 ROI and 7 Yeo resting-state networks (Yeo et al., 2011)
was used. In the next step, the signal of each ROI was filtered within
alpha and beta bands using the filters designed in the initial step.

For each subject, the ROI-ROI connectivity for alpha-beta CFS was
computed before and after Harmoni, resulting in 100 X 100 connectiv-
ity adjacency matrices. Before performing any analysis on the coupling
values, we first Fisher Z-transformed the coupling values to remove
the bounds of the synchronization indices. Then, in order to make the
connectivity graphs comparable before and after Harmoni at the group
level, the adjacency matrix of each subject was z-scored before and after
Harmoni. The z-scored matrices of the networks before Harmoni were
subtracted from the ones after Harmoni. Two-sided paired 7-tests were
used for each connection to specify the links which were changing sig-
nificantly on group level. The Bonferroni method was used to correct for
multiple comparisons, i.e. the p-values were multiplied by 100 and then
the links with corrected p-values > 0.05 were considered as significant.

Asymmetry-index of CFS networks In order to quantify the extent to
which the CFS adjacency matrices are asymmetric, we used the norm
of the anti-symmetric part of the adjacency matrix. For a given matrix
A, the anti-symmetric part is defined as A,y = %(A —AT). We define
[[Aanei |l /IA]l as an asymmetry-index. It follows from the triangle inequal-
ity that this index is between zero and one, with zero value correspond-
ing to a symmetric matrix and a value of one for an anti-symmetric
matrix.
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Fig. 7. Depicting CFS network as a bipartite graph. The nodes stand for brain
regions. While the upper set of nodes represents the alpha activity in the brain
regions, the lower nodes are for the beta activity in those regions. When node
1 from alpha nodes (upper nodes) is connected to node 3 of beta nodes (lower
nodes) it means that the alpha activity in region 1 is coupled to beta activity in
node 3. The links are color-coded based on the strength of the coupling. Addi-
tionally, each node in each frequency band can have a color which represents
its centrality in that frequency band.

We test the significance of the correlation of the asymmetry-index
of the connectomes before Harmoni and the percentage-change after
Harmoni using the method described in Section 2.8.

2.7. Depiction of CFS connectivity

We used a bipartite graph for the depiction of CFS networks. The CFS
networks have an asymmetric adjacency matrix and therefore, should be
depicted as directed graphs. We actually used a bipartite graph as a way
of illustrating a directed graph in a more comprehensive way.

A bipartite graph is a graph which has two sets of nodes and an
edge can only connect the vertices from different sets (i.e. alpha and
beta sets in our analysis) to each other. In our case of CFS networks,
each node is a representative of a brain region and each set of nodes
relates to the activity of the brain regions in one of the frequency bands.
Figure 7 shows an illustrative example of such depiction for alpha-beta
CFS. The upper and lower node-sets represent the alpha and beta band
activity of the ROIs of interest, respectively. A link between node 1 from
the upper set (alpha nodes) with node 3 of the lower set (beta nodes)
shows a CFS coupling between ROI 1 and 3. This connection would be
the element (1,3) of the adjacency matrix of the network. In a directed
graph this edge would be an out-going edge for node 1 and an in-coming
edge for node 3.

In our illustration of the graph, each node can have a color, which
shows its centrality value. In this work, we did not use this feature and
the node colors are the label colors provided with the parcellation. For
real data these colors code the ROI's Yeo resting-state network. Each
edge is also color-coded with the strength of the coupling that it repre-
sents. It can be the absolute or relative strength of coupling.

2.8. Statistical analysis

Two-sided paired -tests were used for testing the difference of the
mean value of two paired samples. Specifically, the changes of the eval-
uation parameters in simulations (the AUC values) as well as real data
(the change in the connectivity values and the asymmetry-index) were
tested before and after Harmoni.

For testing the significance of the correlation of the initial value of a
parameter (before Harmoni) and its percentage change after Harmoni,
in the analyses of the results of simulated data and the asymmetry-index
of the connectomes of real data, we used the correction method intro-
duced in Tu (2016). Assume x is the baseline value of a parameter of
interest before Harmoni and y is its value after Harmoni. The percentage
change of this parameter is defined as (y — x)/x, which is mathematically
coupled to x. Therefore, it would not be valid to use the conventional sta-
tistical testing between the initial value and the percentage change and
compare the observed correlation to zero. Tu (2016) suggests that the
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appropriate null value for the hypothesis test should be ry = — >
rather than zero, where r,,, is the Pearson correlation of x and y. In this

. . T-r,,
approach, the hypothesis test is Hy @ ry,/ +1/ 2” =0 versus H, :

Fey/x t 172er # 0. Finally, the expression for the z-test is suggested

to be z = (z,(r) — z,(p)) /+/1/(n = 3), where z,(r) = 0.5In((1 + r)/(1 = 1))
is the Fischer’s z transformation, r is the observed correlation coeffi-
cient, and p is the correlation coefficient to be tested against.

3. Results
3.1. Simulations

Toy Examples As the very first step, we used simplified simulations
(toy signals) to show that Harmoni is an effective algorithm for sup-
pressing spurious CFS and within-frequency interactions due to the non-
sinusoidal shape of the signals. In these simple simulations, where there
are no complications regarding source mixing or limitations of source
reconstruction, the ground truth about the interactions between the two
simulated signals is known. In fact, we were interested to validate two
important properties of Harmoni: (1) It suppresses the spurious interac-
tions significantly, and (2) it does not affect genuine interactions.

In each of the four scenarios, two noisy multi-band signals z,(¢), k =
1,2 were simulated with components in alpha and beta band. Different
genuine interactions were simulated between the two signals, resulting
in spurious interactions as well. Harmoni was applied to each of the two
signals to remove beta components associated with being a harmonic of
alpha band components, i.e. showing CFS with the alpha oscillation. The
within- and cross-frequency interactions were then estimated using ab-
solute coherence to investigate how they changed after using Harmoni
and how these changes were related to the ground truth. Each scenario
was simulated 50 times with random seeds. Figure 8 depicts the box-
plots of the strength of possible within- and cross-frequency interactions
between and within the two signals, before and after Harmoni. The in-
teractions in the schematic of each scenario have the same color-code
as their respective boxplots. The change of the synchronization strength
after Harmoni (in comparison to before Harmoni) was tested with a two-
sided paired t-test for each possible interaction, and then corrected by
the Bonferroni method.

In scenario one (Fig. 8-A), the two signals were synchronized non-
sinusoidal waves with their fundamental frequency in alpha band (i.e.,
z;(t) & 5, (1) + &) with s,(t) = a,(t) + B, (r) being the non-sinusoidal
component of z,(1). s; and s, were simulated to be synchronzied, i.e.
a; < a,, where < shows the synchronization). The CFS interaction be-
tween the two signals as well as the interaction in beta band are by con-
struction spurious. As shown in Fig. 8-A, the within- and cross-frequency
spurious coherence between and within the two signals are successfully
suppressed after Harmoni.

In scenario two (Fig. 8-B), each of the two signals contained an-
other beta component which was independent of the non-sinusoidal
components, but these components from z; and z, were simulated to be
synchronized to each other (i.e., z,(t)  5,.(1) + f (1), 5,.(t) = a (t) + B, (1),
with a; < a,, f; < f,). In this scenario, the CFS interaction is by con-
struction spurious, too. However, a part of the interaction between the
two signals within the beta band is genuine because of the interaction
between f; and f,. The results in Fig. 8-B show that the CFS interac-
tions are suppressed, and the coherence between the beta components
of the two signals does not have any significant change, showing that
the genuine beta synchronization is still present.

Scenario three (Fig. 8-C) was similar to scenario two with the dif-
ference that the non-sinusoidal oscillations from the two signals were
not synchronized (i.e., z;(t) & s,(1) + f (1), 5,(t) = (1) + B (1), with f; &
£,). Therefore, no CFS between the two signals is observed. The box-
plots in Fig. 8-C show that the CFS within each signal is suppressed as
expected from the proper functioning of Harmoni, while CFS between
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Fig. 8. Performance of Harmoni on toy examples in 50 runs with random start
seeds. The left side schemes are the simulation scenarios shown in Fig. 5. For
all scenarios the strength of each possible interaction is shown before and after
Harmoni in the boxplots in the same panel as the scenario scheme. The purple
and blue colors are associated with the within-signal CFS, the two green col-
ors are related to the inter-signal CFS values, and finally the orange color is
dedicated for the beta band synchronization among the two signals. In all sce-
narios, two signals are simulated and each of them contains a non-sinusoidal
wave s, (1) = a,(t) + B, (1), k = 1,2 with their fundamental component «, in alpha
band and their second harmonic g, in beta band. Scenario one: The boxplots
show that all of the within-signal CFS and the spurious interactions are sup-
pressed significantly. Scenario two: Only the beta-synchronization between the
two signals does not change significantly after Harmoni and stays at a large
value due to the genuine synchronization of ﬁk, k = 1,2. Scenario three: The CFS
within each signal is suppressed significantly, the CFS values between the two
signals do not change and have small values in general, and importantly the
beta-synchronization between the two signals stays almost the same at a high
value. Scenario four: a genuine CFS (light green) between the two signals is
simulated, which is not affected after Harmoni, while the spurious within-beta
interactions and the within-signal CFS are suppressed.

the two signals does not change, remaining at a negligible level. Impor-
tantly, the genuine synchronization in beta-band does not change after
Harmoni.

In scenario four (Fig. 8-D) z,(r) = s,(t) + ﬁk(t), S (1) = ai () + p(¥) as
well. The ground truth interactions were set to a; < f,. This setting
results in genuine CFS between the two signals. Fig. 8-D shows that
Harmoni is robust: the genuine inter-signal CFS does not change, while
the present CFS within each signal as well as the spurious beta-band
interaction drop significantly. Additionally, the other CFS between the
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two signals which was missing by construction, does not change and
remains at a low value.

All in all, the results of the above scenarios show that the spurious
interactions are suppressed by Harmoni, while the genuine interactions
are not changed.

Realistic EEG simulations For the further evaluation of Harmoni, we
developed an EEG simulation pipeline for generating realistic scalp EEG
signals (details in Section 2.5.3). The simulated EEG data consisted of
narrow-band sinusoidal source signals at alpha (8-12 Hz) and beta (18-
22 Hz) bands, as well as non-sinusoidal signals with fundamental fre-
quency at alpha band. The dipole positions were randomly selected
from the center of 68 regions of interest (ROIs) of Desikan Killiany at-
las (Desikan et al., 2006). 1/f (pink) noise data were also added to the
generated source signals of interest. All the source signals were forward
modelled to generate realistic EEG. Two scenarios (shown in Fig. 5)
were used for generating the simulated EEG signals. Both of the scenar-
ios included coupled non-sinusoidal alpha sources. In scenario one there
were also within-frequency coupled narrow-band sinusoidal alpha and
beta sources. In scenario two, in addition to the pair of coupled non-
sinusoidal sources, a genuine, remote cross-frequency coupled pair of
sinusoidal sources was simulated as well. As shown in Fig. 5, these two
scenarios have differential within- and cross-frequency network profiles.

We used the connectivity pipeline of Fig. 4 to compute the within-
frequency synchronization in beta band and the alpha-beta cross-
frequency synchronization maps.

As an illustrative example (Fig. 9) and a proof of principle, we first
show an example of scenario two. Two synchronized non-sinusoidal
alpha source signals were simulated with their corresponding sources
in caudal middle-frontal and inferior-parietal regions of right and left
hemispheres, respectively. In addition, two sinusoidal alpha and beta
source signals, with CFS, were simulated in the caudal middle-frontal
and inferior-parietal regions of the left and right hemispheres, respec-
tively. The ground truth networks are shown in Fig. 9-A. Afterwards, the
source signals, along with random noise sources, were projected to the
sensor space and then the above-mentioned source space pipeline was
performed. Panel B of Fig. 9 depicts the top 1% connections of the con-
nectivity networks in alpha band as well as beta band and CFS networks
before and after Harmoni. The spurious beta and CFS connections are
suppressed.

Our main evaluation criterion for the realistic simulations was the
area under curve (AUC) of the receiver operating characteristic (ROC)
curve and the false positive ratio (FPR) curve. These curves were built
by comparing the adjacency matrix of the connectivity graphs before
and after Harmoni to their counterpart ground truth connectivity matri-
ces. The ROC curve was computed for the beta network in scenario one
and the CFS network in scenario two. The higher the AUC of ROC curve
(AUC-of-ROC), the more similar the connectivity matrix to the ground
truth one. Fig. 10 shows the results of evaluating the two scenarios of
the simulation in 100 Monte Carlo simulations with random dipole po-
sitions. The increase of the AUC-of-ROC in the left sides of panels A and
B demonstrates a success of Harmoni in both of the scenarios in cor-
recting the connectivity maps in the way that they are more similar to
the ground truth. Consequently the ratio of the true positive ratio (TPR)
and FPR increases after Harmoni, reflecting the suppression of spurious
interactions (false positives) and not affecting/increasing the genuine
interactions (true positives). Moreover, the percentage change of the
AUC-0of-ROC values decreases with the increase of the initial value of
AUC-0of-ROC (see the statistical analysis in Section 2.8 for quantifying
this dependency in a statistically stringent manner). That is, the closer
the initial connectivity map to the ground truth, the less correction Har-
moni applies. In other words, if a network shows a lot of spurious in-
teractions, then it is corrected by Harmoni more strongly. In addition,
at the left sides of both the panels of Fig. 10 the AUC of the FPR curves
(AUC-of-FPR) of the CF networks in scenario one, and the beta networks
in scenario two (where all the present interactions are spurious) de-
crease after Harmoni (the second columns in Fig. 10-A and B), showing
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Fig. 9. An illustrative realistic simulation example, showing the effect of Harmoni in suppressing the spurious interactions due to harmonics. Panel A depicts the
ground truth, where synchronized non-sinusoidal alpha sources were simulated in right caudal middle-frontal and left inferior-parietal regions (red connecting line)
and two cross-frequency synchronized narrow-band alpha and beta sources were simulated in the left caudal middle-frontal and right inferior-parietal regions (purple
connection). The circular and bipartite graphs depict the ground truth alpha and CFS networks. A bipartite graph allows to see how different nodes from two networks,
represented by horizontal bars, connect to each other allowing non-symmetric connections - without using a directed graph. In the CFS network, the dashed-lines
represent the spurious interactions due the connectivity between two non-sinusoidal signals, while the solid line represents the genuine interaction. Panel B shows
the top 1% connections of the within-frequency and cross-frequency networks computed before and after Harmoni. The spurious beta connections and the spurious
CFS connections are suppressed. The glass brains were plotted with Brain Network viewer (Xia et al., 2013) in MATLAB. The circular plots were generated with MNE

Python (Gramfort et al., 2013; 2014).

the suppression of the spurious interactions. The absolute value of the
percentage change of the AUC-of-FPR in these cases increases with the
increase of the initial value. This means that the more false positive links
are present in the connectivity maps, the more pronounced is the impact
of Harmoni on the networks.

3.2. Harmoni on resting-state EEG data

Alpha oscillations recorded with resting-state EEG (rsEEG) are
known to have a non-sinusoidal waveshape in many brain areas. For
example, the y rhythm in the somatomotor areas or visual alpha are
well-known examples of non-sinusoidal oscillations. This non-sinusoidal
waveform is manifested in the power spectral density (PSD) having a
large peak at alpha and a smaller peak at beta frequency band, together
with 1:2 CFS between alpha and beta bands. As an example from real
data, Fig. 11 shows a segment of a non-sinusoidal source signal extracted
from the recordings of a subject’s eyes-closed rsEEG from the LEMON
dataset (Babayan et al., 2019). In this case, the power spectrum of such
signal shows two prominent peaks at the fundamental frequency (11 Hz)
and its second harmonic frequency (22 Hz). Additionally, a third peak
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is visible at the third harmonic frequency as well (33 Hz). As indicated
by the values of the cross-frequency coherence in the figure, the har-
monic components demonstrate CFS with the fundamental frequency
component.

We used rsEEG data from 81 subjects (data description in Section
2.6.1) and applied Harmoni in order to disambiguate genuine from spu-
rious CFS alpha-beta interactions. Panel (A) of Fig. 12 illustrates the
across-subjects average of 1:2 alpha-beta synchronization at each corti-
cal source (i.e. a vertex on the cortical mantel). A very high 1:2 synchro-
nization within one cortical source is an indication of a non-sinusoidal
waveshape of alpha oscillation at the corresponding dipole. On average,
the occipital, temporal and central areas demonstrate the highest 1:2
alpha-beta synchronization. This figure shows the ubiquity of harmon-
ics in data and highlights the importance of taking care of it in connec-
tivity analysis. Note that although we make the assumption that the 1:2
synchronization at a single source is a harmonic-driven synchronization,
we are fully aware that this can be a result of residuals of signal mixing
in source space. We explicitly address this point in the discussion.

In order to compute the CFS connectivity networks, a similar data-
analysis pipeline as in the realistic simulations was used at the source



M.J. Idaji, J. Zhang, T. Stephani et al.

Nt

A: Scenario 1 -.S'.n

a2

Neurolmage 252 (2022) 119053

)

B: Scenario 2 Qﬁ

AUC-of-ROC for beta connectivity\/

AUC-of-FPR for CFS conneclivily\

AUC-0of-ROC for CFS connectivity \/ AUC-of-FPR for betaconnectivity \
1.0 10 § ; .
- g T 0.20
0.9 0.30
0.8
0.8 025 0.16|
0.7 0.6
0.20 0.12]
0.6
1 0.4
0.15 . )
05 T 0.08|
0.4 0.10 0.2 %
0.0 04 =
before Harmoni after Harmoni 205 before Harmoni after Harmoni before Harmoni after Harmoni P before Harmoni after Harmoni
Q 14 o 'q
a o
e - 09 r=-0.62 tol @ ® r=-074 1112210 r=-0.89 & r=-0.92
38 10=-0.25{| 3 N ) r0=-0.48|| |5~ 0 r0=-0.35| 3 r0=-0.31
s =) O w0 —
2 p=0.00 2 277 o e & p=0.00 2 p=0.00
- =3 - G
°ol@ o oY o] o
SR . o | "2l o
o = jo2} (=
c © c ©
© Z=) © | X=
: i g8 :
%o LL g% 5] g
H 8 5 @ 2 ®,°
e (] 5 © (0) & (]
8 T T T | & T T T 8 T T T — | & T T T —
0.4 0.6 0.8 1.0 OIEALUC _—— sz ’ 0f3 ek 0.25 050 0.75 1.00 0.05 0.10 0¥L5 0.20
k AUC-of-ROC before Harmoni for bety\ Ok Sisticteclitabialiisle / \ AUC-0f-ROC before Harmoni for CFS /\ AUC-0f-ROC before Harmoni for beta

Fig. 10. Results of 100 realistic simulations according to scenario one (panel A) and two (panel B) of Fig. 5. At the left side of panel A, the boxplots of the AUC-
of-ROC of beta connectivity before and after Harmoni are depicted, showing an increase after the application of Harmoni. This indicates a successful correction of
the network’s connections after Harmoni in favor of suppressing the spurious interactions. Beneath the boxplots, the scatter-plot of the percentage change vs. the
AUC-of-ROC values for beta connectivity before Harmoni is shown. The higher the initial AUC-of-ROC value (i.e. the more accurate the initial connectivity map), the
less difference between the AUC values before and after Harmoni (i.e., the less the impact of Harmoni). At the right side of panel A the boxplots of the AUC-of-FPR
for the CFS connectivity are illustrated. Note that in scenario one the whole CFS connectivity is spurious due to waveshape, which is to a great extent removed by
Harmoni (reflected in the decrease of the FPR). The bottom scatter-plot shows that the percentage change increases as the AUC-of-FPR of the CFS network increases,
meaning that Harmoni has a larger effect on networks with more spurious interactions. Panel B shows the results of scenario two, but for the AUC-of-ROC of the
CFS network (the left side) and the AUC-of-FPR of the beta connectivity (the right side). A similar outcome as in scenario one is observed in scenario two: and
increase in the AUC-of-ROC after Harmoni for CFS networks, as well as a decrease in AUC-of-FPR for beta networks where all the connections are spurious ones. The
percentage-change scatter plots imply a similar effect: the more spurious interactions in the simulated signals, the more corrections is performed by Harmoni.

space. The rsEEG multi-channel data were mapped to 100 ROIs of the
Schaefer atlas (Schaefer et al., 2018) with each ROI being assigned
to one of the seven resting-state Yeo networks, i.e. Default-mode net-
work, Fronto-parietal, Limbic, Ventral Attentional, Dorsal Attentional,
Somatomotor, and Visual networks (Yeo et al., 2011). Note that, the
first eigenvector of the ROI vertices explained on average (over all ROIs
and all subjects) 60% of the variance of the broad-band ROI time se-
ries. Then, each ROI signal was filtered within the alpha and beta band
and the components of beta activity at each ROI that could potentially
be a higher harmonic of alpha oscillations were removed using Har-
moni. Finally, the ROI-ROI alpha-beta CFS connectivity networks, rep-
resented by 100 x 100 connectivity matrices were computed and then
Fisher Z transformed. Fig. 12-B and C show the across-subject mean
connectivity graphs before and after Harmoni over all subjects. In Panel
B (CFS before Harmoni), the dominating vertical links correspond to
the local synchronization of the alpha oscillations with their second
harmonic (beta). This is an expected pattern for the non-sinusoidal os-
cillations where both alpha and beta components are generated at the
same location and demonstrate spurious CFS. Panel C shows that the
application of Harmoni resulted in the unmasking of genuine remote
neuronal interactions which were previously under-emphasized due to
the presence of spurious cross-frequency connectivity. In order to be
able to compare the networks before and after Harmoni at the group
level, the connectivity matrices were z-scored for each subject and then
these standardized coherence scores before Harmoni were subtracted
from the ones after Harmoni, and paired two-sided ¢-tests (with Bonfer-
roni correction of p-values) were employed to specify the links which
changed significantly after Harmoni. Panel Fig. 12-D and E show the
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across-subject mean of the difference networks for positive and nega-
tive links (only the significantly changing links). Figure 12-D depicts
the connections which are more pronounced after Harmoni. This en-
hancement is observed for both inter and intra-hemispheric connections,
specifically between the visual cortices of the two hemispheres, be-
tween the visual areas and the default mode and fronto-parietal regions.
These effects were achieved via the elimination of spurious connections
which were driven by harmonics. The presence of such harmonics masks
the strength of the genuine interactions which, however, become more
pronounced after the application of Harmoni. The presence of vertical
lines and some cross-region lines in Fig. 12-E illustrates that within-ROI
CFS as well as many within-hemispheric connections are significantly
suppressed.

Importantly, Harmoni does not create any new connections, it rather
leads to a reweighing of the connections after the suppression of the spu-
rious ones. In order to validate this claim, we used paired #-tests to check
whether the across-subject mean of the weights of each connectivity link
changes significantly after Harmoni. Accounting for multiple compar-
isons by Bonferroni correction, we found that all the significant changes
were in the direction of a decrease in the connectivity strength after
Harmoni, —11.85 < #(80) < 0, p < 0.05 (Fig. 13), which confirms that no
new connection is produced by Harmoni. Indeed, by suppressing the
synchronizations that can mimic the spurious interactions due to non-
sinusoidal waveshape of alpha oscillations, the ratio of the connectivity
weights with respect to the maximum synchronization is changed and
therefore, some connection weights which previously were in the low
ranks move to higher percentiles of the connectivity weights after the ap-
plication of Harmoni. With this procedure, the dominant and strongest
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Fig. 11. An example of a non-sinusoidal brain source signal. In panel A, a non-sinusoidal brain oscillatory activity and its first three harmonics are shown along with
the spatial pattern of this activity. This source was extracted from eyes-closed rsEEG of a subject of the LEMON dataset using independent component analysis (ICA)
(extended InfoMax ICA (Lee et al., 1999) with 32 components). Panel B shows the PSD of the non-sinusoidal signal with the peaks at 11 Hz (first harmonic, or the
fundamental frequency), 22 Hz (second harmonic), and 33 Hz (third harmonic). The cross-frequency coherence of the harmonic components and the fundamental
component are reported as well. The largest synchronization occurs between the first and second harmonics (coherence value of 0.65). This is mainly due to the

higher signal-to-noise ratio at these frequency bands.

connections change in the CFS network and we observe the networks in
Fig. 12-B and C.

Another important feature of the MEG/EEG connectivity networks
is the symmetry of the adjacency matrix. All within-frequency or
amplitude-amplitude coupling networks are characterized by a symmet-
ric adjacency matrix. However, to the best of our knowledge, no study
until so far investigated the presence of a similar pattern in the adjacency
matrix for CFS coupling which is strongly affected by the interactions
due to higher harmonics of non-sinusoidal shape of the signals. The CFS
adjacency matrix is by definition asymmetric. Actually, harmonic-driven
spurious interactions result in symmetric CFS matrix. In other words, if
the alpha activity in region i is coupled to the beta activity in region j,
the (i, j)th element of the adjacency matrix is non-zero. If this coupling
is due to the non-sinusoidal shape of the waveform of the alpha-signals
at both of these two regions, then the beta activity in region i is also syn-
chronized to the alpha activity in region j, which results in a non-zero
value at the (j, i)th element of the adjacency matrix. This decreases the
extent to which the adjacency matrix is asymmetric. Therefore, we rea-
soned that Harmoni should decrease the extent to which the adjacency
matrix of the CFS network is symmetric. This idea was indeed confirmed
as shown in Fig. 14-A with the boxplots of an asymmetry-index (defined
in Section 2.6.2) of the CFS networks before and after Harmoni for all
subjects, where the asymmetry-index of the individual CFS connectivity
networks increases significantly after Harmoni (two-sided paired t-test,
1(80) ~ 17.99, p ~ 0.000). Furthermore, panel B of this figure shows that
the percentage change of the asymmetry-index significantly decreases
with the initial value of the index, pearson r = —-0.91, p ~ 0.000 (with
null hypothesis r = —0.73). In other words, Harmoni corrects the CFS
network more (resulting in a larger change in the asymmetry-index of
the network), when there are more potentially spurious interactions due
to harmonics (i.e., when the initial CFS network is less asymmetric due
to harmonic-driven interactions). See Section 2.8 for the rigorous sta-
tistical treatment of this analysis. Note that not all the harmonic-driven
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cross-frequency interactions are reflected in the symmetry of the CFS
network adjacency matrix.

4. Discussion

EEG and MEG techniques are becoming more and more frequently
used for the investigation of neuronal connectivity (Sepideh et al.,
2022), owing to their ability to record neuronal activity directly, and
their refined temporal resolution in a millisecond range which is re-
quired for the detection of subtle changes in neuronal dynamics. In ad-
dition, the recent advancement of brain data analysis for mapping sen-
sor recordings to the cortex has provided an opportunity for computing
the connectivity of different brain areas in source space. Yet, connectiv-
ity analysis with MEG/EEG faces considerable challenges. The limited
spatial resolution and spatial mixing of neural activity from different
regions have been addressed repeatedly as challenges of connectivity
analysis with MEG/EEG data. Additionally, the non-sinusoidal shape of
brain oscillations has been repeatedly highlighted as crucially affecting
the (mis)interpretation of underlying interactions among neuronal os-
cillations (Hyafil, 2017; Lozano-Soldevilla, 2018). Inferences about the
fundamental frequency and its harmonics are also important for the un-
derstanding of neurophysiological modulation of alpha and beta oscilla-
tions in BCI research (Blankertz et al., 2007) since those can be extracted
together in one component. Because non-sinusoidality always implies a
presence of harmonics, these harmonics can often be mistakenly taken
to represent genuine neuronal oscillations. Consequently, spurious in-
teractions are observed between harmonics of a non-sinusoidal oscilla-
tion and other neuronal processes in the same frequency range, which
in turn cannot be easily disentangled from genuine interactions. This
has been recognized earlier as a major challenge for studying phase-
amplitude coupling (PAC) in neuronal data (Aru et al., 2015; Giehl et al.,
2021; Jensen et al., 2016; Lozano-Soldevilla et al., 2016; Zhang et al.,
2021) as well as for n:m phase-synchronization (Hyafil, 2017; Scheffer-
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Teixeira and Tort, 2016; Siebenhiihner et al., 2020). In this work, we
directly addressed the issue of spurious interactions due to waveshape
of oscillations and offer a solution for the assessment of phase synchro-
nization as one of the most important measures used for connectivity
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Fig. 12. Harmoni and rsEEG data. Panel (A)
shows the across-subject average of 1:2 syn-
chronization of the alpha and beta band activ-
ity over the cortex. If the 1:2 synchronization
is high at a given source, the second harmonic
of the alpha activity may have a large contri-
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hemispheric interactions. Panel (E) shows the

links which were suppressed by Harmoni. The

networks of panels (D) and (E) were computed

by subtracting the z-scored coherence values
before Harmoni from the ones after Harmoni.
In each panel the matrix of the directed graph
is depicted at the rightmost side of the panel.
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Fig. 13. Harmoni does not create new connections, i.e., an ap-
pearance of a synchronization between two ROIs after Harmoni
which was not present before Harmoni. Panel (A) shows the signif-
icant across-subjects mean difference of the alpha-beta networks
after and before Harmoni (the coherence values before Harmoni
were subtracted from the values after Harmoni). All the values
are <0, showing that the synchronization strengths drop for all
pairs of the ROIs on average. (B) The matrix of corrected p-values
(Bonferroni corrected) corresponding to the two-sided paired -
tests performed for each CFS connection before and after Har-
moni. The insignificant connections are not colored. All the sig-
nificant changes indicated a decrease, —11.85 < #(80) < 0, p < 0.05
(after Bonferroni correction).

analyses with brain electrophysiology (Marzetti et al., 2019; Nentwich
et al., 2020; Sadaghiani et al., 2021; Vidaurre et al., 2020).

Currently available measures for quantifying n:m phase-
synchronization (also referred to as cross-frequency synchronization -
CFS) are not suitable for differentiation between genuine and spurious
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Fig. 14. The CFS networks of individual LEMON subjects be-
comes more asymmetric after Harmoni. (A) the boxplots of the
asymmetry-index of the CFS adjacency matrices of all subjects
shows that the asymmetry of the CFS adjacency matrices in-
creases significantly after Harmoni. (B) The scatter-plot of the
percentage change of the asymmetry-index vs. the initial value
of the index, i.e., before Harmoni.The less asymmetric the CFS
network (i.e., the more harmonic-driven symmetric connec-
tions), the more changes are observed after Harmoni. The solid
line shows the linear regression line and the blue shade shows
the result of a leave-one-out bootstrap.
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interactions. Short data length, filtering bias, and non-sinusoidal signal
waveshape are being mentioned as reasons for measuring spurious n:m
phase-synchronization. Statistical tests based on surrogate data can be
used for disentangling spurious and genuine phase-synchronization due
to limited data points or filtering factor. Yet, these procedures cannot
differentiate the genuine interactions from the spurious ones due to
the non-sinusoidality of oscillations (Scheffer-Teixeira and Tort, 2016).
The reason for this is that Fourier and narrow-band analysis is the
base of almost all current signal processing pipelines, where a signal is
decomposed into narrow frequency band components. Consequently,
the higher harmonics of a non-sinusoidal signal are analysed as rep-
resenting genuine oscillations not directly relating to the fundamental
frequency. In the context of cross-frequency coupling, this can result in
the observation of spurious interactions which are mimicking genuine
interactions and cannot be detected by surrogate tests. Furthermore,
the non-sinusoidal waveshape of oscillatory brain signals produce
spurious interactions in the within-frequency phase-synchronization in
the range of harmonic-frequency, as depicted schematically in Fig. 1.
Although the presence of spurious interactions in phase-
synchronization connectivity analysis of neurophysiological data
has been largely acknowledged by the community, there has been
only very few attempts for providing a potential solution for it.
Palva et al. (2005) used the coincidence of cross-frequency phase-phase
and amplitude-amplitude coupling as the hallmark of harmonic-driven
CFS. This, however, is more a qualitative measure rather than a quan-
titative one and can be less applicable to the inter-areal whole brain
connectivity analysis. In a recent paper, Siebenhiihner et al. (2020) sug-
gested a graph-theoretical analysis for discarding potential spurious
CFS. The authors employed a procedure of detecting ambiguous motifs
in the CFS graph combined with the within-frequency graphs of the
fundamental and harmonic frequencies of interest, and discarded the
CFS interactions corresponding to the links included in those motifs.
This procedure, however, was not validated using realistic MEG/EEG
simulations. Such graph-based post-processing of connectivity net-
works can in fact discard all the interactions which mimic the motif
of spurious interactions in the connectivity graphs. However, due to
the limited spatial resolution of MEG/EEG data, some of the genuine
interactions among the ROIs may still coincide with harmonic-driven
spurious interactions, as we show in Fig. 8-D. The graph motif of
such interactions is similar to the spurious interactions, depicted in
Fig. 8-A. Thus, a motif-discarding approach cannot distinguish the
two cases of Fig. 8-A and D and would label the CFS interaction as a
spurious one. There are also other possible scenarios where the spurious
interactions cannot be detected by the graph motif correction method
- an example of such a scenario is thoroughly discussed in section 4 of
the supplementary text. Moreover, this graph-based correction method
is applicable only to cross-frequency graphs, while, as discussed in this
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study, the within-frequency interactions in the harmonic frequency
band may also include spurious interactions driven by non-sinusoidal
waveshape. Therefore, to the best of our knowledge, so far there has
been no method that can address the issue of spurious n:m interactions
due to waveshape via removing the harmonic components from the
neuronal signals.

4.1. A signal processing tool for dealing with harmonics in connectivity

In this manuscript, we introduced the first signal processing tool
for suppressing spurious within- and cross-frequency synchronization
due to non-sinusoidal shape of the oscillatory activity in the brain. Our
method significantly suppresses the spurious interactions, while at the
same time not affecting genuine interactions present in data. We first
validated these two key properties using simple, yet informing, simula-
tions. They consisted of two signals with different components interact-
ing with each other, giving us a chance to evaluate Harmoni’s perfor-
mance in the presence of genuine and spurious interactions in data. The
results of these simulations (Fig. 8) showed that Harmoni effectively sup-
presses spurious within- and cross-frequency interactions. Importantly,
this suppression did not affect the genuine interactions.

4.2. Realistic simulations: Decrease in FPR, increase in AUC of ROC curve

In order to comprehensively assess Harmoni’s performance, we used
realistic simulations where source mixing and limitations of source re-
construction are present. Using the area under curve (AUC) of the re-
ceiver operating characteristic (ROC) curve (Fig. 10), we showed that
Harmoni increases the AUC of ROC curve of connectivity networks
where the ground truth included both genuine and spurious interactions.
This means that with Harmoni, it was possible to uncover even weak
connections that would have been masked by spurious CFS otherwise.
In the same direction as the results of the toy examples, the increase in
AUC of ROC curve in realistic simulations indicates that Harmoni does
not affect genuine interactions (reflected in TPR) and suppresses spu-
rious interactions (i.e., false positives). In those simulations where the
ground truth connectivity networks were based on spurious interactions
only, Harmoni decreased the AUC of the FPR curve. Confirming other
results of the simulations, this result further demonstrates that spurious
interactions both for within-frequency and cross-frequency connectivity
are indeed suppressed significantly by Harmoni. This aspect of Harmoni
is particularly important for the investigation of connectivity for beta
oscillations in the sensorimotor networks where comb-shaped mu oscil-
lations are abundant (Schaworonkow and Nikulin, 2019) and thus their
harmonics in beta frequency range should lead to spurious connectivity
while merely reflecting interactions at the base alpha frequency. Addi-
tionally, in studies addressing the relationship of EEG and fMRI data, for
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example (Ritter et al., 2009), Harmoni could contribute to the suppres-
sion of the effects of harmonic components and disentangling the effect
of harmonics and the genuine activity in the same frequency band.
Moreover, given that our simulations were based on hundreds of runs
with different random locations of the sources, one can conclude that
Harmoni is applicable to a wide variety of source configurations in the
cortex including frontal, sensorimotor, and occipito-parietal areas.

4.3. Harmoni on resting-state EEG data

Real neuronal data are of a complex nature and in most cases the
ground truth of connectivity patterns is not known. Therefore, the main
validating stage of new methods is rather based on simulations. How-
ever, any new method should also be applied to real data to further
extend its validity. For this purpose, we used resting-state EEG (rsEEG)
of 81 subjects from the LEMON database (Babayan et al., 2019). We dis-
cussed how a symmetric adjacency matrix of a cross-frequency synchro-
nization network can reflect the presence of harmonics, and showed that
the adjacency matrices of the CFS networks become more asymmetric
after Harmoni. Additionally, we showed that Harmoni does not create
new connections which were not observed before the application of Har-
moni. However, it changes the relative strength of the already existing
connections by suppressing spurious connectivity. Harmoni suppresses
the CFS interactions both within and between regions, as depicted in
Fig. 12-E. Consequently, other interactions, which were previously not
ranked high due to the presence of strong spurious interactions, become
more pronounced after the application of Harmoni. Although a detailed
analysis of connectivity patterns of rsEEG goes beyond the scope of the
current study, below we illustrate a few examples of the unmasked syn-
chronization after the application of Harmoni.

In our data, only after the application of Harmoni, the visual corti-
cal areas appear to be interacting strongly with other regions, especially
inter-hemispherically. This in turn indicates that the interaction of the
visual system with other cortical areas is not based only on a relatively
slow amplitude-amplitude coupling as shown previously (Hipp and
Siegel, 2015) but in fact can demonstrate genuine millisecond-range
functional interactions important for the precise coordination of neu-
ronal activity in the brain. Additionally, Wang et al. (2008), in a resting-
state fMRI study, found that the spontaneous activity in primary visual
cortex is associated with the activity in bilateral middle occipital gyrus,
bilateral lingual gyrus, and bilateral cuneus and precuneus suggesting
that these spontaneous activities may be related to visual imagery during
resting-state. In our rsEEG data, the recovered inter-hemispheric inter-
actions between the visual networks after the application of Harmoni
can also be interpreted in this direction. Interestingly, Fig. 12-D shows
the influence of Harmoni in recovering remote interactions of alpha and
beta activity in ROIs overlapping with precuneus in both hemispheres
- precuneus is known as a critical region for visual imagery in memory
recall (Wang et al., 2008). Note that we also observed the emergence
of precuneus as an important region in cross-frequency interactions, as
well as in the inter-hemispheric interactions of visual cortices in our
previous study (Idaji et al., 2020) with similar data, where phase-phase
synchronized sources were separated with a multivariate source separa-
tion method.

Furthermore, Fig. 12-D illustrates intensified within- and inter-
hemispheric interactions of default mode network (DMN) and visual
networks, especially areas in the vicinity of V1. In line with our observa-
tion, in a recent paper, Costumero et al. (2020) reported a connectivity
of V1 with DMN as well as posterior cingulate cortex in closed-eyes
resting-state fMRI functional connectivity, suggesting that this connec-
tivity may reflect a brain configuration associated with mental imagery.

4.4. How genuine is a “genuine interaction”?

Throughout this manuscript we referred to Harmoni-corrected cou-
plings as “genuine” interactions. As we defined in Section 2.4.2, an in-
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teraction is actually genuine if neither of the two signal components
are harmonics of other non-sinusoidal processes. However, if a signal
is a mixture of different non-sinusoidal oscillatory activities, a specific
narrow-band component of this signal may contain harmonics from dif-
ferent fundamental frequencies, which may cause distinct sources of
spurious interactions. For example, assume that a signal z; contains
two non-sinusoidal processes with fundamental frequencies at 6.6 Hz
and 10 Hz, which have their third and second harmonics at the 20 Hz
frequency band, respectively. If we apply Harmoni on the 20 Hz com-
ponent with an input only from the 10 Hz component, the harmonic
component relating to the 6.6 Hz process will be untouched. Note that,
a third harmonic component has a weak power and therefore, in most
cases, the largest part of the harmonic components relates to the second
harmonic of a lower-frequency periodic process. In order to be able to
call a cross-frequency coupling truly “genuine”, one may need to sup-
press the harmonic components relating to all the possible fundamental
frequencies in a cascade of Harmoni blocks. In Section 4 of the sup-
plementary text we provide more information on a possible scenario,
where a cascade of Harmoni blocks is used. All in all, our suggestion is
that before applying Harmoni for correction of spurious coupling, one
may have prior knowledge about the frequency contents of the data,
frequency of interests and check out possible presence of non-sinusoidal
waveshape of the fundamental oscillation. Moreover, we would like to
emphasize that the Harmoni-corrected couplings are “genuine” only to
the extent that the suppression of harmonics of the fundamental fre-
quencies of interest allows. There are also other factors that play a role
regarding the decision of how “genuine” the genuine interactions are,
such as the spatial resolution and SNR, which we elaborate on in other
parts of the discussion.

4.5. Harmoni and signal mixing

Due to the limited spatial resolution of non-invasive recordings, the
activity of very close neuronal sources cannot be disentangled when be-
ing recorded by non-invasive imaging techniques such as MEG/EEG.
Therefore, even at the source space, the observation of signals with
non-sinusoidal shapes in non-invasive recordings may be due to mix-
ing of distinct coupled sources with very close spatial locations. Using
MEG/EEG, such cases cannot be distinguished from single sources gener-
ating signals with non-sinusoidal shapes. This limitation is also applica-
ble to the Harmoni connectivity pipeline, when applying it to MEG/EEG
data. However, it is important to note that, this problem is not a natu-
ral limitation of Harmoni. If we have access to invasive LFP recordings
where the spatial resolution can be in the order of hundred of microme-
ters (Buzsaki et al., 2012), Harmoni can successfully resolve such cases.

The other aspect of spatial mixing relates to the leakage of spatially
distanced source signals to other locations, even after source reconstruc-
tion. As a result, the synchronization observed at a single region (or even
at a given reconstructed cortical source) may be due to the synchroniza-
tion between distanced source signals which are spatially mixed and still
could not be fully disentangled with source separation or source recon-
struction methods. This effect is called “ghost interactions” for within-
frequency coupling, which is also observed in cross-frequency coupling
(Palva et al., 2018). This, however, is again a general problem of data
analysis in MEG/EEG research and is not specific to Harmoni. Therefore,
in some instances the removal of harmonics in a ROI by Harmoni can
lead to removing components which were not a harmonic of a lower
frequency in that region but rather represents a leaked oscillatory ac-
tivity from another coupled source. Yet, this property can in fact be an
advantage for Harmoni: It can remove some of the spurious interactions
which were present due to spatial leakage and uncover the activity at
the harmonic frequency, which was not a result of spatial leakage of a
coupled source. As an illustrative example for this property, in panel A
of Fig. 8, if , is not a harmonic of a; but a leakage of a cross-frequency
coupled source different from s,, then the observed interaction f; — a,
would still be accounted as a spurious interaction. This interaction, how-
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ever, is successfully suppressed by Harmoni. An example of ROIs in real
data with a similar scenario is depicted in figure S9 of the supplemen-
tary text, too. It is worth noting that, although Harmoni can suppress the
spurious interactions and their ghost interactions, the ghost interactions
of the genuine couplings may remain intact, since (with the definitions
of this work) they are genuine in the sense that they do not originate
from the coupling between the fundamental and harmonic components.
The ghost interaction effect is well described in Palva et al. (2018).
How to clean the ghost interactions is beyond the problem that Har-
moni tries to provide a solution for. To name some studies, we refer the
interested reader to Farahibozorg et al. (2018), Korhonen et al. (2014),
Wang et al. (2018).

Finally, the mixing of background neuronal activity - known as 1/f
noise - and other noise sources with oscillatory activities affect the
signal-to-noise ratio (SNR) and consequently the estimation of the true
phase of the oscillations. Using simulations in Idaji et al. (2020), we
showed how source separation of cross-frequency coupled sources wors-
ens with decreasing SNR. In order to compensate the influence of the
low SNR on the phase disturbance, the synchronization should be esti-
mated with a sufficient amount of data for MEG/EEG recordings. How-
ever, increasing the data length does not fully overcome the SNR issue.
In fact, there is a ceiling effect for how reliably the synchronization
of two signals can be estimated in the presence of strong noise. This
ceiling can be estimated for a given measure and scenario with simula-
tions while varying data duration and SNR levels. We refer the reader
to Diedrichsen et al. (2018), Siems and Siegel (2020) for description of
the noise-ceiling effect in some specific studies.

4.6. Harmoni for time-varying applications

Harmoni assumes that in the time interval of interest parameters c, ¢
do not change considerably. That is, the relationship of the fundamen-
tal frequency and the harmonic component does not change over time.
Note that talking about a process with harmonics can only be well de-
fined with the assumption of periodicity, stationarity of the signal. The
validity of the stationarity assumption is an important discussion, which
is valid not only for Harmoni but also for many other methods for ana-
lyzing biological data. In the following we extend the discussion in this
regard.

The spectrum of a non-stationary signal may not be very informa-
tive. In contrast to the notion of stationarity which corresponds to a
well-defined class of stochastic processes, non-stationarity cannot be di-
rectly defined and includes a wide range of random processes. In prac-
tice, almost all the currently used methods for analyzing neural data
assume that the random process producing the signal is ergodic. This
assumption is (implicitly) made whenever computing the power, PSD,
or synchronization of neuronal signals.

Cole and Voytek (2017) introduce a time-domain idea of cycle-by-
cycle analysis of data; however, it loses the frequency-domain informa-
tion of data. Additionally, time-frequency analysis is considered as a
method which can deal with time-variable properties of a signal. How-
ever, the wavelet methods do assume a local stationary, meaning that
the statistical properties of the signal in a specific point of time does not
change in a time interval around it.

With the above discussion in mind, in almost all research on electro-
physiological neural data, a researcher may have to validate the assump-
tion of stationarity. The same applies for Harmoni. Similar to the other
methods, if the assumption of stationarity and the presence of periodic
activity is only valid for short segments of data, then these methods (and
also Harmoni) should be applied on sliding windows with a window
length that matches the assumption. Note that in this approach, it is im-
portant to take into account that the window length should be adapted
in a way that the methods do have their functionality, and possible bi-
ases due to short data length are taken into account (i.e. a spurious in-
crease in phase locking value with very short segments). Regarding the
performance of Harmoni on data with different durations, we include
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simulations and detailed information in Section 3 of the supplementary
material. In conclusion, Harmoni shows its efficacy to suppress the spu-
rious interactions which are above the random level. In case a spurious
interaction has a value which is at the level of random synchronization,
Harmoni may not be able to suppress it effectively.

4.7. Relation to other methods

Generalized cross-frequency decomposition-GCFD (Volk et al.,
2018): Harmoni and GCFD use an optimization procedure to mini-
mize/maximize the synchronization of two signals. However, their prob-
lems differ conceptually. GCFD is a linear source separation method
and aims at decomposing multi-channel data to cross-frequency syn-
chronized sources. That is, GCFD gets multi-channel data as its input
and in the output it returns signal pairs which are n:m synchronized
to each other and they are associated with (generally) distinct topogra-
phies. This is in contrast to Harmoni, which operates on source-space,
local data, i.e. ROI signals constructed from inverse-modelled data, or
a source subspace e.g. SSD or ICA subspaces. While the optimization
of GCFD searches for a spatial filter to mix few source signals at dif-
ferent locations, Harmoni regresses a single signal on another signal
within the same spatial location. Therefore, Harmoni is a method for
suppressing a signal component of the local data, whereas GCFD is a de-
composition method of multi-channel data. Moreover, GCFD (like other
source-separation methods e.g. NID (Idaji et al., 2020) cannot differen-
tiate harmonic-driven cross-frequency couplings from the genuine ones
by itself, unless both sources have clearly different spatial location. In a
post-processing step the source pairs with similar spatial patterns may be
marked as harmonic-driven couplings. In contrast, Harmoni effectively
suppresses the harmonic-driven components.

Bicoherence: The presence of harmonic components in a signal
would be manifested in the univariate bispectrum as high values in
frequency pairs which are integer multiples of a base frequency (i.e.
frequency pairs nf, and mf,). This is actually equivalent to the co-
occurrence of phase synchronizations between the harmonic frequen-
cies. Therefore, bicoherence can only quantify the potential presence of
harmonic-driven interactions; however, it is unable to eliminate these
interactions or disentangle them from the genuine ones. For more in-
formation on bicoherence, we refer the reader to Bartz et al. (2019),
Kovach et al. (2018).

Code and data availability

Harmoni can be installed as a Python package. The codes of Har-
moni, simulating toy examples, as well as analyzing the simulated EEG
and real data are available at github.com/harmonic-minimization. EEG
data is from LEMON dataset, which is a public database (Babayan et al.,
2019).
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