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a b s t r a c t 

Cross-frequency synchronization (CFS) has been proposed as a mechanism for integrating spatially and spec- 
trally distributed information in the brain. However, investigating CFS in Magneto- and Electroencephalography 
(MEG/EEG) is hampered by the presence of spurious neuronal interactions due to the non-sinusoidal waveshape 
of brain oscillations. Such waveshape gives rise to the presence of oscillatory harmonics mimicking genuine 
neuronal oscillations. Until recently, however, there has been no methodology for removing these harmonics 
from neuronal data. In order to address this long-standing challenge, we introduce a novel method (called HAR- 
MOnic miNImization - Harmoni) that removes the signal components which can be harmonics of a non-sinusoidal 
signal. Harmoni’s working principle is based on the presence of CFS between harmonic components and the fun- 
damental component of a non-sinusoidal signal. We extensively tested Harmoni in realistic EEG simulations. 
The simulated couplings between the source signals represented genuine and spurious CFS and within-frequency 
phase synchronization. Using diverse evaluation criteria, including ROC analyses, we showed that the within- and 
cross-frequency spurious interactions are suppressed significantly, while the genuine activities are not affected. 
Additionally, we applied Harmoni to real resting-state EEG data revealing intricate remote connectivity patterns 
which are usually masked by the spurious connections. Given the ubiquity of non-sinusoidal neuronal oscilla- 
tions in electrophysiological recordings, Harmoni is expected to facilitate novel insights into genuine neuronal 
interactions in various research fields, and can also serve as a steppingstone towards the development of further 
signal processing methods aiming at refining within- and cross-frequency synchronization in electrophysiological 
recordings. 
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. Introduction 

The importance of oscillatory neuronal activity has been demon-
trated by its association with cognitive, sensory, and motor processes
n the brain ( Buzsáki and Draguhn, 2004; Engel and Fries, 2010; Har-
is and Gordon, 2015; Miller et al., 2010; Sadaghiani and Kleinschmidt,
016 ). Various oscillatory processes have to be integrated in order to
upport formation of behaviorally relevant outputs based on a multi-
ude of sensory and cognitive factors. This neuronal integration is facil-
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tated by complex spatial connectivity patterns in the brain ( Bullmore
nd Sporns, 2009; Nentwich et al., 2020 ). In this context, phase-phase
ynchronization (PPS) has been hypothesized to represent a mechanism
hrough which such spatially distributed information can be integrated
n the brain with a high temporal precision ( Fries, 2015 ). Importantly,
PS underlies not only spatially, but also spectrally distributed inter-
ctions - so-called cross-frequency synchronization (CFS) ( Canolty and
night, 2010; Jensen and Colgin, 2007; Nikulin and Brismar, 2006;
ikulin et al., 2007; Palva and Palva, 2018a; Palva et al., 2005; Palva
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Fig. 1. How non-sinusoidal shape of the neuronal 
oscillations impacts the connectivity of brain re- 
gions. Panel A shows two non-sinusoidal oscillations 
with their fundamental frequency in the alpha band. 
The second harmonics of these signals are located 
in the beta band. As a byproduct of the coupling 
of the fundamental alpha components (the solid line 
in panel B), the second harmonics are also coupled 
to each other, which results in spurious interactions 
within the beta band (the dashed line in panel B) and 
across the two frequency bands (dotted lines in panel 
B). 
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nd Palva, 2018b ). Magneto- and Electroencephalography (MEG/EEG)
rovide a unique opportunity to non-invasively study these neuronal
nteractions in humans. 

Since in the frequency domain analysis the kernel function is si-
usoidal, we often conceptualize oscillations as sinusoids. However,
eural oscillations with non-sinusoidal waveshape are abundant in hu-
an electrophysiological recordings ( Cole and Voytek, 2017 ). Such
on-sinusoidality reflects complex trans-membrane ion currents flow-
ng though highly morphologically asymmetric neurons (e.g. pyrami-
al cells) where inward and outward currents are unlikely to balance
ach other with the exact temporal dynamics thus leading to different
hape of oscillations recorded with EEG/MEG/LFP (Local field poten-
ial) ( Jones et al., 2009 ). This ubiquity of the non-sinusoidal waveform
f brain oscillations has significant implications for the analysis of brain
onnectivity. 

A periodic signal can be decomposed into its harmonic components
sing Fourier analysis. For the sake of clarity, we call the first harmonic
he fundamental component and from here on by harmonics we mean
he second and higher harmonic components whose central frequencies
re integer multiples of the fundamental frequency. By band-pass filter-
ng the signal around the fundamental and harmonic frequencies, we
an separate the respective components, which are by construction CF
ynchronized to the fundamental component ( Hyafil, 2017; Scheffer-
eixeira and Tort, 2016 ). Additionally, if the band-pass filters of the
armonics frequency are wide enough, a phase-amplitude coupling
PAC) can be observed between the fundamental and harmonic com-
onents ( Giehl et al., 2021; Hyafil, 2017 ). Note that, as also discussed
n ( Kramer et al., 2008 ), non-sinusoidal signals can be constructed from
he mixture of distinct sources with cross-frequency coupling. However,
n this work, we do not distinguish whether the non-sinusoidality origi-
ates from signal mixing or the intrinsic waveshape of the signal. In the
iscussion section, we elaborate on the effect of signal mixing. 

In this manuscript, we address the effects of non-sinusoidal shape
f the brain oscillations on the observation of spurious interactions be-
ween the oscillatory brain activities. In spite of other spurious inter-
ctions (e.g. bias of the data length), the spurious interactions due to
he waveshape cannot be determined by statistical methods. For exam-
le, our recently introduced method for separating cross-frequency cou-
led sources cannot distinguish sources with genuine interactions and
hose which are coupled because of the higher frequency signal being
he harmonic of the lower frequency one ( Idaji et al., 2020 ) because
2 
 harmonic-driven synchronization is not statistically distinguishable
rom a genuine coupling. Therefore, distinguishing harmonic-driven and
enuine interactions has currently gained more attention and still re-
ains as a major challenge in the MEG/EEG connectivity research ( Giehl

t al., 2021; Scheffer-Teixeira and Tort, 2016; Siebenhühner et al.,
020 ). The main reason of this challenge is that the connectivity analysis
f MEG/EEG data is typically done using band-pass filtering, which sep-
rates the fundamental and harmonic components of an oscillatory ac-
ivity with a non-sinusoidal waveform. As a result, the observed within-
nd cross-frequency synchronization between the components in the fre-
uency bands of the fundamental and harmonic frequencies can be mis-
akenly interpreted as genuine interaction. Figure 1 shows a schematic
xample where two non-sinusoidal signals are synchronized. This cou-
ling should be manifested in the synchronization of the fundamental
omponents, while the harmonic components shape the waveform of the
ndividual signals. However, the harmonic components are also spuri-
usly synchronized and additional CFS is observed between and within
he regions. Since these interactions (shown in dashed lines in Fig. 1 -B)
re observed due to the waveform of the individual signals, they are re-
erred to as spurious, in contrast to genuine interactions. The omnipres-
nce of these spurious interactions in all human MEG/EEG recordings
akes the validity of the previously studied within- and cross-frequency

onnectivity maps ambiguous. 
There has been an attempt from Siebenhühner et al. (2020) to discard

he potentially spurious connections from cross-frequency (CF) connec-
ivity graphs based on the detection of ambiguous motifs in the con-
ectivity graphs. In that work, any CFS connection forming a triangle
otif with the local CFS and within-frequency inter-areal phase synchro-
ization is considered as ambiguous and is discarded. However, such an
pproach cannot disentangle the within-frequency spurious interactions
n the harmonic frequency bands, and is specific to the CF connectivity
raphs. Furthermore, this approach cannot distinguish cases of genuine
ouplings which form an ambiguous motif. A more attractive approach,
owever, would remove or suppress the data components that can be as-
ociated with the harmonics of the periodic neuronal activity. Such an
pproach can provide the opportunity of using the cleaned narrow-band
ata (in the frequency range of the harmonics) for within-frequency and
ross-frequency connectivity analyses. 

In the current work, we introduce a novel, first-of-its-kind method for
emoving effects of harmonics on the estimation of within- and cross-
requency synchronization. Our method, called HARMonic miNImiza-
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Fig. 2. A simulated sawtooth-shaped signal with the fundamental 
frequency equal to 6 Hz is depicted in the first row and the fun- 
damental 6 Hz component (i.e. the 1st harmonic) is shown in the 
second row. The 7th harmonic component filtered at a frequency 
window with width of 2 Hz is illustrated in the third row. Addi- 
tionally, the sawtooth signal was filtered around the 7th harmonic 
frequency with a bandwidth of 7 Hz, depicted in the fourth row. 
The magnitude of the fast Fourier transform (FFT) of each signal is 
depicted at its left side. The CFS and PAC between the fundamen- 
tal component and the two components with central frequency of 
the 7th harmonic frequency are noted along the right side vertical 
lines. The 7th harmonic on the third row shows a strong 1:7 syn- 
chronization to the fundamental component ( 𝑐𝑜ℎ 1∶7 = 0 . 99 ) and no 
PAC. However, if filtered at a wider frequency band, the harmonic 
component shown in the fourth row shows also a PAC with the fun- 
damental component. Note that the amplitude of the signals and 
their FFT magnitudes are scaled arbitrarily for the sake of better 
illustration. 
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ion (Harmoni), is (to the best of our knowledge) the first existing signal
rocessing tool for suppressing higher harmonic components of a pe-
iodic signal, without band-stop filtering or rejecting non-sinusoidally
haped signal components using ICA or any other multi-variate decom-
osition. 

We extensively tested Harmoni with realistic EEG simulations and
how that the spurious interactions are alleviated significantly, while the
enuine activities are not affected. Harmoni is then applied to resting-
tate EEG (rsEEG) data and we show that the CFS connections mimicking
enuine interactions are suppressed, while many masked remote inter-
ctions are recovered. 

. Materials and methods 

.1. Phase-phase synchronization 

Phase-Phase Synchronization (PPS) can be defined for within-
requency as well as for cross-frequency (CF) interactions. In order to
efine the within- and cross-frequency synchronization indices, assume
wo complex narrow-band signals 𝑥 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) 𝑒 𝑗𝜙𝑥 ( 𝑡 ) , 𝑦 ( 𝑡 ) = 𝑎 𝑦 ( 𝑡 ) 𝑒 𝑗𝜙𝑦 ( 𝑡 ) ∈
 with central frequencies 𝑓 𝑥 and 𝑓 𝑦 , respectively. Here, by narrow-band

omplex signal we mean the analytic signal built using the Hilbert trans-
orm. Formally, if 𝑥 𝐻 

( 𝑡 ) is the Hilbert transform of a narrow-band real
ignal 𝑥 𝑅 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) cos ( 𝜙𝑥 ( 𝑡 )) , then 𝑥 ( 𝑡 ) = 𝑥 𝑅 ( 𝑡 ) + 𝑗𝑥 𝐻 

( 𝑡 ) is the analytic
ignal of 𝑥 𝑅 ( 𝑡 ) . In these formulations the index 𝑅 indicates that the sig-
al is real valued and the index 𝐻 denotes a Hilbert transformed signal.
ote that, another way to get the narrow-band complex signals from a
road-band signal is complex wavelet transforms. 

If 𝑓 𝑥 = 𝑓 𝑦 then 𝑥 ( 𝑡 ) and 𝑦 ( 𝑡 ) are two narrow-band signals in the same
requency band. Their complex-valued coherence 𝑐𝑜ℎ ( 𝑥, 𝑦 ) ∈ ℂ can be
omputed from the following equation: 

𝑜ℎ ( 𝑥, 𝑦 ) = 

< 𝑎 𝑥 ( 𝑡 ) 𝑎 𝑦 ( 𝑡 ) 𝑒 𝑗 𝜙𝑥 ( 𝑡 )− 𝑗 𝜙𝑦 ( 𝑡 ) > √ 

< 𝑎 𝑥 ( 𝑡 ) 2 >< 𝑎 𝑦 ( 𝑡 ) 2 > 

(1)

here < . > is the averaging operator over time and 𝑗 = 

√
−1 is the imag-

nary number. 
We use the absolute of the imaginary part of coherence (iCoh)

 Nolte et al., 2004 ) for estimating the connectivity between two signals
n the same frequency band. This prevents a lot of the within-frequency
purious interactions due to signal mixing and volume conduction in
EG. 

If 𝑛𝑓 𝑥 = 𝑚𝑓 𝑦 for 𝑚, 𝑛 ∈ ℕ , the cross-frequency synchronization (CFS,
nown as m:n synchronization) of 𝑥 ( 𝑡 ) and 𝑦 ( 𝑡 ) can be quantified by m:n
3 
bsolute coherence 𝑐𝑜ℎ 𝑚 ∶ 𝑛 ( 𝑥, 𝑦 ) ∈ ℝ defined by the following equation:

𝑜ℎ 𝑚 ∶ 𝑛 ( 𝑥, 𝑦 ) = 

| < 𝑎 𝑥 ( 𝑡 ) 𝑎 𝑦 ( 𝑡 ) 𝑒 𝑗 𝑛𝜙𝑥 ( 𝑡 )− 𝑗 𝑚𝜙𝑦 ( 𝑡 ) > |√ 

< 𝑎 𝑥 ( 𝑡 ) 2 >< 𝑎 𝑦 ( 𝑡 ) 2 > 

(2)

hich is in principle similar to m:n phase locking value as: 

𝑙𝑣 𝑚 ∶ 𝑛 = | < 𝑒 𝑗 𝑛𝜙𝑥 ( 𝑡 )− 𝑗 𝑚𝜙𝑦 ( 𝑡 ) > | (3)

ith the difference that in Eq. (2) the amplitudes of the signals are taken
nto account and the phase estimations during higher amplitudes are
eighted higher. Giehl et al. (2021) have used a variant of Eq. (2) .
quation (2) reduces to the absolute part of Eq. (1) for 𝑚 = 𝑛 = 1 . In
his work, we are specifically interested in the case that 𝑚 = 1 and
 > 1 , i.e. when 𝑥 ( 𝑡 ) is a signal with central frequency 𝑓 𝑥 and 𝑦 ( 𝑡 ) is
 faster oscillation with the central frequency 𝑓 𝑦 = 𝑛𝑓 𝑥 . In this case,
𝑜ℎ 1∶ 𝑛 ( 𝑥, 𝑦 ) = |𝑐𝑜ℎ ( 𝑥 𝑛 , 𝑦 ) |, where 𝑥 𝑛 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) 𝑒 𝑗𝑛𝜙𝑥 ( 𝑡 ) is built by multiply-
ng the phase of 𝑥 ( 𝑡 ) by 𝑛 , i.e. accelerating 𝑥 ( 𝑡 ) by a factor of 𝑛 . 

CFS as defined by Eq. (2) has a real value between 0 and 1, with
 corresponding to the lack of any phase synchronization between two
ompletely independent signals and 1 for two perfectly synchronized
ime-series with the same amplitude envelope. 

.2. Genuine vs. spurious interactions 

The PPS and CFS indices of Eqs. (1) and (2) have a bias based on the
ength of the data time-series, i.e., two band-pass filtered random time-
eries also show a value larger than 0. Therefore, a test of significance
s necessary for phase synchronization measures ( Scheffer-Teixeira and
ort, 2016 ) in order to distinguish such spurious interactions when the
ata length is not sufficient. 

Another type of spurious interactions (which is not statistically dis-
ernible from real interactions) is the interactions due to the waveshape
f brain signals. The reason is that harmonic components of a signal with
 non-sinusoidal shape have CFS to each other. As an illustrative exam-
le, Fig. 2 depicts a sawtooth-shaped signal and its fundamental and
th harmonic components. The 7th harmonic of this sawtooth-shaped
ignal has an almost perfect 1:7 synchronization to the fundamental
requency ( 𝑐𝑜ℎ 1∶7 = 0 . 99 ). Additionally, although it is not the focus of
his manuscript, it is interesting to note that when a non-sinusoidally
haped signal (here sawtooth-shaped) is filtered in a wider frequency
ange around the harmonic frequency, PAC is observed between the har-
onic and fundamental frequencies (in addition to CFS). In this paper,
owever, our focus is on the n:m synchronizations. 
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Fig. 3. Harmoni is a method that removes harmonics of a non-sinusoidal signal. 
The inputs are the band-pass filtered signals in the frequency bands of the fun- 
damental and harmonic frequencies. In this figure, the signal is a non-sinusoidal 
alpha rhythm with fundamental and second harmonic frequencies of 10 Hz and 
20 Hz, respectively. The band-pass filtered signals at 10 Hz and 20 Hz are used 
as inputs to the minimization block, which runs a regression-like algorithm to 
find the best multiplier for removing the harmonic parts of 𝑦 ( 𝑡 ) . This is done 
by means of subtracting a scaled version of 𝑥 𝑛 ( 𝑡 ) from 𝑦 ( 𝑡 ) , where 𝑥 𝑛 ( 𝑡 ) is an ac- 
celerated version of 𝑥 ( 𝑡 ) by multiplying its phase by a factor of 𝑛 (here 𝑛 = 2 ). 
The output of Harmoni is a band-limited signal in the harmonic frequency band 
(here 20 Hz - the second harmonic) where the harmonic component is removed. 
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The example of Fig. 2 shows that by band-pass filtering a single
rocess one can observe cross-frequency coupling between its differ-
nt components, although these components still represent the same
omplex signal. In the literature of cross-frequency coupling ( Giehl
t al., 2021; Hyafil, 2017; Scheffer-Teixeira and Tort, 2016; Siebenhüh-
er et al., 2020 ), such a coupling between the components of a sin-
le process, or generally an interaction between two signals where at

east one of them is a higher harmonic of a non-sinusoidal process is
alled spurious . This is usually in contrast to genuine interactions between
wo signals representing two distinct processes where none of them is a
igher harmonic of a periodic signal. Formally, let 𝑥 ( 𝑡 ) = 

∑
𝑖 𝑥 

( 𝑖 ) ( 𝑡 ) and
 ( 𝑡 ) = 

∑
𝑖 𝑦 

( 𝑖 ) ( 𝑡 ) , 𝑖 ∈ ℕ be two n:m synchronized periodic oscillatory pro-
esses, where 𝑥 ( 𝑖 ) and 𝑦 ( 𝑖 ) are the 𝑖 th harmonic components of 𝑥 ( 𝑡 ) and
 ( 𝑡 ) , respectively. The fundamental components ( 𝑥 (1) and 𝑦 (1) ) and higher
armonics ( 𝑥 ( 𝑖 ) and 𝑦 ( 𝑖 ) for 𝑖 ≥ 2 ) of each of these signals can be separated
rom each other by band-pass filtering 𝑥 ( 𝑡 ) and 𝑦 ( 𝑡 ) . The synchronization
f 𝑥 and 𝑦 implies that for any 𝑖 1 , 𝑖 2 ∈ ℕ , 𝑥 ( 𝑖 1 ) ( 𝑡 ) and 𝑦 ( 𝑖 2 ) ( 𝑡 ) are within-
r cross-frequency synchronized. When assessing the synchronization of
he narrow-band signals, we consider only the synchronization of funda-
ental components 𝑥 (1) and 𝑦 (1) genuine. The synchronization of 𝑥 ( 𝑖 1 ) ( 𝑡 )

nd 𝑦 ( 𝑖 2 ) ( 𝑡 ) for 𝑖 1 > 1 or 𝑖 2 > 1 is harmonic-driven and is called spurious.
ote that this does not mean that the signal components are not syn-
hronized and the synchronization value is non-zero because of insuf-
cient number of data points or due to filtering. By spurious interac-
ions due to waveshape it is meant that any coupling including higher
armonics is in fact mediated by the fundamental component of the re-
pective non-sinusoidal signal. Fig. 1 illustrates the possible within- and
ross-frequency spurious synchronizations due to waveshape. In the next
ection we introduce an original signal processing method for suppress-
ng the harmonic-driven synchronizations in connectivity analyses using
lectrophysiological data. 

A final important note is that, as discussed in Kramer et al. (2008) ,
 non-sinusoidal signal can be constructed from the mixing of distinct
ources with CFS or PAC. This is actually a major concern in electro-
hysiological research even outside of connectivity topic. Although we
o not account for this issue in our analyses explicitly, we discuss it in
ection 4.5 , “Harmoni and signal mixing ”. 

.3. HARMOnic miNImization (HARMONI) 

Assume that 𝑧 ( 𝑡 ) = 𝑠 ( 𝑡 ) + 𝜖( 𝑡 ) , where 𝑠 ( 𝑡 ) is a periodic signal with the
undamental frequency of 𝑓 0 . 𝜖( 𝑡 ) is additive noise or any other process
uch as another oscillatory activity mixed with 𝑠 ( 𝑡 ) . Harmoni aims at re-
oving the components of 𝑧 ( 𝑡 ) within a narrow frequency band around
𝑓 0 , 𝑛 ∈ ℕ , 𝑛 ≥ 2 that have similar phase profile as the fundamental com-
onent of 𝑠 ( 𝑡 ) . For this purpose, we can write 𝑧 ( 𝑡 ) = 𝑥 𝑅 ( 𝑡 ) + 𝑦 𝑅 ( 𝑡 ) + 𝜉( 𝑡 ) ,
here 𝑥 𝑅 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) cos ( 𝜙𝑥 ( 𝑡 )) and 𝑦 𝑅 ( 𝑡 ) = 𝑎 𝑦 ( 𝑡 ) cos ( 𝜙𝑦 ( 𝑡 )) are the real-
alued contents (indicated by the index 𝑅 ) from frequency bands 𝑓 0 
nd 𝑛𝑓 0 , respectively. 𝜉( 𝑡 ) represents all other components of 𝑧 ( 𝑡 ) except
 𝑅 ( 𝑡 ) and 𝑦 𝑅 ( 𝑡 ) . Therefore, 𝑥 𝑅 ( 𝑡 ) and 𝑦 𝑅 ( 𝑡 ) are estimated using band-pass
ltering 𝑧 ( 𝑡 ) within the respective frequency bands of the fundamental
nd harmonic frequencies. We define 𝑥 ( 𝑡 ) and 𝑦 ( 𝑡 ) as the analytical sig-
als of 𝑥 𝑅 ( 𝑡 ) and 𝑦 𝑅 ( 𝑡 ) built using the Hilbert transform and work with
hem in the next steps of Harmoni. Note that 𝑥 ( 𝑡 ) and 𝑦 ( 𝑡 ) can be also
enerated by applying complex wavelet transforms to 𝑧 ( 𝑡 ) . 

The fundamental component of a non-sinusoidal signal has 1:n syn-
hronization to its 𝑛 th harmonic component. Therefore, the phase infor-
ation of the harmonic components can be recovered from the phase

f the fundamental component. Using 𝑥 ( 𝑡 ) , Harmoni tries to remove the
arts of 𝑦 ( 𝑡 ) that are 1:n coupled to 𝑥 ( 𝑡 ) , or equivalently 1:1 coupled to
 𝑛 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) 𝑒 𝑗𝑛𝜙𝑥 ( 𝑡 ) . 

As mentioned above, the part of 𝑦 ( 𝑡 ) which is a harmonic of a com-
onent in 𝑥 ( 𝑡 ) should be phase synchronized to 𝑥 𝑛 ( 𝑡 ) . Therefore, we esti-
ate the harmonic part of 𝑦 by 𝜆𝑥 𝑛 ( 𝑡 ) , 𝜆 ∈ ℂ . 𝑦 𝑐𝑜𝑟𝑟 ( 𝑡 ) = 𝑦 ( 𝑡 ) − 𝜆𝑥 𝑛 ( 𝑡 ) con-

ains the non-harmonic components of 𝑦 ( 𝑡 ) , where 𝑦 𝑐𝑜𝑟𝑟 ( 𝑡 ) has a minimum
ossible within-frequency synchronization to 𝑥 ( 𝑡 ) . The complex multi-
𝑛 

4 
lier 𝜆 = 𝑐𝑒 𝑗𝜙 is estimated through the following optimization problem:

in 
𝑐,𝜙

|𝑐𝑜ℎ (𝑦 ( 𝑡 ) − 𝜆𝑥 𝑛 ( 𝑡 ) , 𝑥 𝑛 ( 𝑡 ) 
)| for 𝜆 = 𝑐𝑒 𝑗𝜙 (4)

ere, the phase of 𝜆 compensates the possible phase difference between
he harmonic and fundamental components. Figure 3 shows a schematic
lock diagram of Harmoni. Practically, we perform a grid search pro-
edure for computing 𝜆 = 𝑐𝑒 𝑗𝜙, which is presented in Algorithm 1 .
lgorithm 1 has a complexity of 𝑂( 𝑁) , where 𝑁 is the number of data

ime samples. Note that in a connectivity pipeline, this amount of com-
utation is needed for each ROI. In our open-access toolbox, we use
arallel computing (with multiprocessing package) in order to accel-
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Fig. 4. The block-diagram of Harmoni pipeline in source space. The multi-channel data are first inverse modelled and the ROI time series are extracted using SVD 

applied on the broad-band data of each ROI. Then the ROI signals were band-pass filtered in the range of the fundamental frequency ( 𝑓 0 ) and the harmonic frequency 
of interest ( 𝑛𝑓 0 ). The ROI signals in the range of harmonic frequency are then corrected with Harmoni and the potential harmonic components are removed. Finally, 
the ROI-ROI within- and cross-frequency connectivity maps are computed. In this paper, without loss of generality and due to the better SNRs, we set 𝑓 0 = 10 and 
𝑛 = 2 . 

Algorithm 1: Grid search algorithm of Harmoni. 𝑓𝑖𝑙𝑡𝑒𝑟 ( ., 𝑓 0 ) stands 
for band-pass filtering around 𝑓 0 . 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 ( . ) builds the analytic sig- 
nal of its input using the Hilbert transform. 𝑅𝑒 ( . ) denotes the real 
part of a complex number. 𝑠𝑡𝑑( . ) stands for standard deviation. 

Input : A signal 𝑧 ( 𝑡 ) ∈ ℝ containing a non-sinusoidal component 
with a fundamental frequency of 𝑓 0 
Frequency 𝑓 0 
Integer 𝑛 (referring to the 𝑛 th harmonic) 

Output : Harmonic-corrected signal 𝑦 𝑐𝑜𝑟𝑟 ( 𝑡 ) ∈ ℂ centered at 𝑛𝑓 0 

𝑥 𝑅 ( 𝑡 ) = 𝑓𝑖𝑙𝑡𝑒𝑟 
(
𝑧 ( 𝑡 ) , 𝑓 0 

)
// band-pass filter around 𝑓 0 

𝑥 ( 𝑡 ) = 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 
(
𝑥 𝑅 ( 𝑡 ) 

)
// the analytic signal of 𝑥 𝑅 ( 𝑡 ) 

𝑦 𝑅 ( 𝑡 ) = 𝑓𝑖𝑙𝑡𝑒𝑟 
(
𝑧 ( 𝑡 ) , 𝑛𝑓 0 

)
// band-pass filter around 𝑛𝑓 0 

𝑦 ( 𝑡 ) = 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 
(
𝑦 𝑅 ( 𝑡 ) 

)
// the analytic signal of 𝑦 𝑅 ( 𝑡 ) 

𝑥 𝑛 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) 𝑒 𝑗𝑛𝜙𝑥 ( 𝑡 ) // accelerate 𝐱 by a factor of 𝑛 
𝑥 𝑛 ( 𝑡 ) = 𝑥 𝑛 ( 𝑡 )∕ 𝑠𝑡𝑑 

(
𝑅𝑒 ( 𝐱 𝑛 ) 

)
// normalize the power 

𝑦̃ ( 𝑡 ) = 𝑦 ( 𝑡 )∕ 𝑠𝑡𝑑 
(
𝑅𝑒 ( 𝐲) 

)

for 𝑐 = −1 to 1 with steps 𝛿𝑐 do 

for 𝜙 = − 𝜋∕2 to 𝜋∕2 with steps 𝛿𝜙 do 

𝑦 𝑟𝑒𝑠 ( 𝑡 ) = 𝑦̃ ( 𝑡 ) − 𝑐𝑥 𝑛 ( 𝑡 ) 𝑒 𝑗𝜙
𝑐 𝑜ℎ 𝑐,𝜙 = |𝑐 𝑜ℎ (𝐲 𝑟𝑒𝑠 , 𝐱 𝑛 )|

𝑐 𝑜𝑝𝑡 , 𝜙𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑐,𝜙

𝑐𝑜ℎ 𝑐,𝜙 // find the minimum 

𝑦̃ 𝑐𝑜𝑟𝑟 ( 𝑡 ) = 𝑦̃ ( 𝑡 ) − 𝑐 𝑜𝑝𝑡 𝑥 𝑛 ( 𝑡 ) 𝑒 𝑗𝜙𝑜𝑝𝑡 

𝑦 𝑐𝑜𝑟𝑟 ( 𝑡 ) = 𝑦̃ 𝑐𝑜𝑟𝑟 ( 𝑡 ) .𝑠𝑡𝑑 
(
𝑅𝑒 ( 𝐲) 

)
// set the power of 𝐲 

e  

p  

t  

I  

o  

H  

i  

t  

m  

i
 

i  

fi  

m  

w  

t

2

 

p  

t  

c  

e  

r  

t  

t  

l  

d  

u  

s  

w
 

f  

w  

e  

e  

t  

i  

c  

b  

t  

p
 

q  

b  

d  

t  

f  

f  

v  

p  

l  

d  

u  

t  

w

rate the computations over all ROIs. Note that the grids of the two
arameters 𝑐 and 𝜙 should not be very coarse, so that the minimum of
he optimization function can be captured with an acceptable precision.
n our implementation, we set 𝛿𝑐 = 0 . 01 , 𝛿𝜙 = 𝜋∕10 . The optimization
f Harmoni is also implemented with a gradient descent (GD) method.
owever, we did not observe a difference between GD and grid search

mplementations in our simulations and real data analysis. Figure S11 of
he supplementary material shows the box plots of how the two imple-
entations perform regarding the suppression of spurious interactions

n scenario 1 of the toy examples. 
In practice, the activity of each brain site - that can be a region-of-

nterest (ROI) or an electrode or a subspace component - is band-pass
ltered within the two bands of interest, namely 𝑓 0 and 𝑛𝑓 0 . Then Har-
oni is applied on the data of each sensor or ROI. In the next section, it
5 
ill be described in detail how Harmoni can be employed in a connec-
ivity analysis pipeline with electrophysiological data. 

.4. Connectivity pipeline in source space 

Figure 4 shows a block-diagram of a connectivity pipeline, also im-
lementing Harmoni. Note that, the connectivity pipeline presented in
his manuscript may not be the ultimately optimal pipeline for all the
onnectivity analyses with MEG/EEG data. A better inverse method or
stimation of ROI time series (or a better combination of these two steps)
esults in a better performance of Harmoni and a more accurate connec-
ome, but the question of which method is better for collapsing the ROI
ime series is out of the scope of this manuscript. In this regard, we would
ike to make the point that the working principle of Harmoni does not
epend on which inverse method and ROI-signal extraction method are
sed. The main point of the current work is that employing Harmoni
uppresses the spurious interactions in comparison to the same pipeline
ithout Harmoni. 

The first step is to define the frequency bands of interest, i.e. the
undamental frequency 𝑓 0 and the harmonic frequency 𝑛𝑓 0 . In this work
e assessed alpha-beta coupling and therefore, we assumed 𝑛 = 2 . How-

ver, this does not restrict the generality of the usage of Harmoni: For
xample, in case of alpha-lower gamma interactions we have 𝑛 = 3 . Note
hat, in practice in MEG/EEG analysis, 1 ∶ 4 coupling is rarely stud-
ed due to the low SNR at the higher frequencies. Furthermore, in the
ase of n:m interactions, Harmoni should be used for both frequency
ands of the 𝑛 th and the 𝑚 th harmonic frequencies separately. Then,
he n:m coupling can be computed from the output of the two Harmoni
rocedures. 

Afterwards, the band-pass filters should be designed for the fre-
uency bands of interest. We used fourth-order Butterworth filters for
and-pass filtering. The IIR filter was applied forward-backward in or-
er to prevent phase shift in the data. FIR filters can also be used, but
he phase shift should be accounted for, while computing the cross-
requency synchronization. For practical advice on filter design, we re-
er the reader to Widmann et al. (2015) . Note that, in case of filtering
ery short segments of data, techniques such as mirroring should be em-
loyed to avoid edge artifacts. The pass-band of the filters should be se-
ected based on the specific band of interest. In this work, we used two
ifferent approaches for simulated and real data, which we elaborate
pon in Sections 2.5.3 and 2.6.2 , respectively. For this section, assume
hat we have two defined bands for the first and second harmonics and
e design a fourth-order Butterworth filter for them. 
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.4.1. Forward and inverse solutions 

We used fsaverage standard head model and the three-layer bound-
ry element model (BEM) accompanied with MNE Python ( Gramfort
t al., 2013; 2014 ). 64 electrodes (or a subset of it for real data) with
ositions according to the BioSemi cap were used and aligned to the MRI
oordinates. MNE-Python was used to create a dipole grid on white mat-
er surface with oct6 spacing between the grid points, resulting in 4098
ources per hemisphere. The surface-based source space and the BEM
olutions were then used for computing a forward solution. An inverse
olution with dipole directions normal to the cortical surface was com-
uted with eLORETA inverse modelling ( Pascual-Marqui, 2007 ) with the
egularization parameter equal to 0.05, and the noise covariance equal
o the covariance of 64 white-Gaussian signals with equal duration to
he data, which is an estimation of the identity matrix. 

.4.2. From sensor space to ROIs 

The multi-channel EEG data were projected to the cortical surface
sing the computed inverse solution, resulting in ∼8000 reconstructed
urface sources. These sources were then grouped based on an atlas into
egions of interest (ROIs). We used the Desikan Killiany atlas with 68
OIs ( Desikan et al., 2006 ) for simulations and Schaefer atlas with 100
OIs ( Schaefer et al., 2018 ) for real data analysis. Then the time series
f the vertices within each ROI were aggregated in a single signal and
hen filtered within the frequency bands of the fundamental and har-
onic frequencies. As a result, the ∼8000 reconstructed cortical sources
ere translated to 𝑛 𝑅𝑂𝐼 ROI times-series in each frequency band (here:
 𝑅𝑂𝐼 = number of ROIs in the used parcellation), which are ready for
onnectivity computations. 

Different methods can be employed to extract the ROI signals, for
xample weighted averaging and SVD. In our comparisons for narrow
requency bands of interest, the ROI signals resulting from applying SVD
n narrow-band data of a ROI, and filtering the first SVD component of
road-band data of the ROI were strongly synchronized to each other,
ndicating the similarity of both approaches. Therefore, in the interest
f reducing the computation time, we decided to use the latter approach
i.e. SVD on broad-band data). However, we would like to caution that
e do not prescribe SVD on broad-band for all source space connectivity
ipelines, and our conclusion is only limited to the narrow-band data
n alpha and beta frequency bands in resting-state EEG. It could be that
VD on broad-band and SVD on narrow-band have different implications
or example for PAC analyses, where broader frequency ranges (e.g. high
amma) are investigated. A thorough comparison of the two methods is
eyond the scope of the current paper. 

.4.3. Harmoni 

Although the ROI time series can be directly used for computing the
onnectivity maps, we suggest to use Harmoni as an intermediate step in
 connectivity pipeline. Harmoni is applied on the signals of each ROI
n the two frequency bands of interest centered at 𝑓 0 and 𝑛𝑓 0 , which
orrespond to the fundamental and the 𝑛 th harmonic frequencies. The
utput of the algorithm is a signal in the frequency band of 𝑛𝑓 0 for
hich the harmonic components are suppressed to a large extent. The
OI time series at 𝑓 0 and the Harmoni-corrected signals at 𝑛𝑓 0 are then
assed to the next step for computing the within- and cross-frequency
ynchronization maps. 

.4.4. From ROIs’ time-series to connectivity maps 

For both of the simulations and real data, after computing the ROI
ime series and applying Harmoni on them, we computed a connectivity
ndex for each pair of the ROIs, resulting in an 𝑛 𝑅𝑂𝐼 × 𝑛 𝑅𝑂𝐼 graph. For
ithin-frequency connectivity (here in alpha and beta bands), we used

he absolute of imaginary part of coherency (iCoh) computed from the
maginary part of Eq. (1) and for the cross-frequency synchronization
e used the extension of coherence for n:m coupling as in Eq. (2) . 
6 
.5. Simulations 

.5.1. Signals and SNR 

The pipeline for producing signals and the definition of signal-to-
oise ratio (SNR) are similar to that of Idaji et al. (2020) . In this sec-
ion we describe the procedure of simulating the signals and how SNR is
efined in our simulation pipelines. Note that in all places, band-pass fil-
ering was carried out using fourth-ordered Butterworth filters designed
or the frequency band of interest. The filtering was applied forward
nd backward in order to avoid phase shift in data. Additionally, all the
imulations were done with the data duration of 1 min and sampling
ate of 256 Hz. 

Additive noise : The time-series of the noise sources were produced
ith the colornoise package ( Patzelt, 2019 ) in Python by building a

andom signal with a 1/f (pink) spectrum from a random white Gaussian
oise. 

Sinusoidal oscillations : Without loss of generality, in our simula-
ions, all of the time-series of the sinusoidal oscillatory sources were
imulated in alpha (8–12 Hz) and beta (16–24 Hz) frequency bands. 

Independent sources (those without a synchronization to other
ource signals) were generated by band-pass filtering white Gaussian
oise in the frequency band of interest. The analytic signals of these os-
illations were built using the Hilbert transform of them. For instance, if
 𝑅 ( 𝑡 ) is an alpha oscillation produced by band-pass filtering white Gaus-
ian noise within (8–12) Hz and 𝑥 𝐻 

( 𝑡 ) is the Hilbert transform of 𝑥 𝑅 ( 𝑡 ) ,
 ( 𝑡 ) = 𝑥 𝑅 ( 𝑡 ) + 𝑗𝑥 𝐻 

( 𝑡 ) is the analytic signal of 𝑥 𝑅 ( 𝑡 ) . 
A source signal 𝑦 ( 𝑡 ) with 1:n synchronization to an oscillation 𝑥 ( 𝑡 )

as simulated by phase-warping of 𝑥 ( 𝑡 ) , i.e.: 

 ( 𝑡 ) = 𝑎 𝑥 ( 𝑡 ) 𝑒 𝑗𝜙𝑥 ( 𝑡 ) 

𝑦 ( 𝑡 ) = 𝑎 𝑦 ( 𝑡 ) 𝑒 𝑗 𝑛𝜙𝑥 ( 𝑡 )+ 𝑗 𝜙0 (5) 

here 𝑥 ( 𝑡 ) ∈ ℂ is the analytic signal of an oscillation generated by band-
ass filtering white Gaussian noise around 𝑓 0 , 𝑦 ( 𝑡 ) ∈ ℂ is the analytic
ignal of an oscillation within a frequency band around 𝑛𝑓 0 and 1:n
ynchronized to 𝑥 ( 𝑡 ) , and 𝜙0 is the phase difference of the two signals
aken randomly from a uniform distribution between [− 𝜋∕2 , 𝜋∕2] . 𝑎 𝑦 ( 𝑡 )
s either equal to 𝑎 𝑥 ( 𝑡 ) or equal to the envelope of another band-pass
ltered white-Gaussian signal in the same frequency band as 𝑦 ( 𝑡 ) . For

nstance, if 𝑥 ( 𝑡 ) is an alpha band oscillation and 𝑛 = 2 , 𝑦 ( 𝑡 ) is a beta
and oscillation and 1:2 synchronized to 𝑥 ( 𝑡 ) . If 𝑎 𝑥 ( 𝑡 ) = 𝑎 𝑦 ( 𝑡 ) , the 1:n
ynchronization of these two signals computed from Eq. (2) is equal to
. Note that in the case of 𝑎 𝑥 ( 𝑡 ) ≠ 𝑎 𝑦 ( 𝑡 ) , the interaction of 𝑥 and 𝑦 is
or sure genuine. Therefore, for the simulation of two genuinely (cross-
requency) synchronized sources, we used 𝑎 𝑥 ( 𝑡 ) ≠ 𝑎 𝑦 ( 𝑡 ) . 

The power of each oscillation is scaled based on the signal-to-noise
SNR) ratio of the frequency band of interest (see below). 

Non-sinusoidal oscillations : A non-sinusoidal signal 𝑠 ( 𝑡 ) =
𝑛 𝑠 

( 𝑛 ) ( 𝑡 ) , 𝑛 ∈ ℕ with the fundamental frequency of 𝑓 0 was generated
y adding up its fundamental component (or the first harmonic) 𝑠 (1) ( 𝑡 )
nd the higher harmonics components 𝑠 ( 𝑛 ) ( 𝑡 ) , 𝑛 ≥ 2 . In the following
quations, 𝑠 (1) ( 𝑡 ) is an oscillation at 𝑓 0 produced by band-pass filtering
 white Gaussian noise signal and 𝑠 ( 𝑛 ) ( 𝑡 ) , 𝑛 ≥ 2 is a 1:n synchronized
scillation produced by Eq. (5) to be 1:n synchronized to 𝑠 (1) . 

𝑠 ( 𝑡 ) = 

∑
𝑛 

𝑠 ( 𝑛 ) ( 𝑡 ) , 𝑛 ∈ ℕ 

𝑠 (1) ( 𝑡 ) = 𝑅𝑒 
(
𝑎 1 ( 𝑡 ) 𝑒 𝑗𝜙( 𝑡 ) 

)
𝑠 ( 𝑛 ) ( 𝑡 ) ∝ 𝑅𝑒 

(
𝑎 1 ( 𝑡 ) 𝑒 𝑗 𝑛𝜙( 𝑡 )+ 𝑗 𝜙𝑛 , 𝑛 ≥ 2 

)
(6) 

here 𝜙𝑛 , 𝑛 ≥ 2 are random numbers taken from a uniform distribution
etween [− 𝜋∕2 , 𝜋∕2] . 

Given a fundamental frequency of 𝑓 0 , let 𝑠 1 ( 𝑡 ) = 

∑
𝑛 𝑠 

( 𝑛 ) 
1 ( 𝑡 ) be a

imulated non-sinusoidal oscillation based on Eq. (6) and 𝑠 (1) 1 ( 𝑡 ) =
 1 ( 𝑡 ) cos 

(
𝜙( 𝑡 ) 

)
. The following equations show how another non-
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Fig. 5. Simulation scenarios. Toy examples: Two signals 𝑧 1 and 𝑧 2 were simulated for each scenario, where various genuine and spurious synchronizations are present 
in the ground truth. The solid lines show the simulated, genuine synchronizations, and the dashed lines depict the spurious interactions observed in the ground- 
truth. Harmoni was applied on each of the signals and the within- and cross-frequency synchronization for alpha and beta bands were examined before and after 
Harmoni. In all scenarios, 𝑧 𝑘 contained a non-sinusoidally shaped component 𝑠 𝑘 = 𝛼𝑘 + 𝛽𝑘 , where 𝛼𝑘 and 𝛽𝑘 are the fundamental and second harmonic components 
of 𝑠 𝑘 respectively. 𝛽𝑘 , 𝑘 = 1 , 2 in scenarios 2 to 4 are beta oscillations independent of 𝑠 𝑘 , 𝑘 = 1 , 2 Realistic simulations: In the first row, each dot shows a source and 
the connecting lines represent the synchronization of the source signals. The sources with purple color and the letter N correspond to sources with non-sinusoidal 
alpha oscillations having components in both alpha and beta frequency bands. The blue color and letter B corresponds to sinusoidal beta band sources, and the red 
color and letter A represent sinusoidal alpha frequency range sources. In the schematic brains of rows 2 to 4, the ground truth alpha, beta, and CFS networks are 
depicted. While solid lines depict genuine interactions, dashed lines show spurious interactions caused by non-sinusoidal waveshape of the signals. In both of the toy 
examples and realistic simulations, the main purpose of Harmoni is to suppress the spurious (dashed-line) connections, while not affecting the genuine (solid-line) 
interactions. 
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inusoidal signal 𝑠 2 ( 𝑡 ) is simulated to be synchronized to 𝑠 1 ( 𝑡 ) : 

 2 ( 𝑡 ) = 

∑
𝑛 𝑠 

( 𝑛 ) 
2 ( 𝑡 ) , 𝑛 ∈ ℕ 

 

(1) 
2 ( 𝑡 ) = 𝑅𝑒 

(
𝑎 2 ( 𝑡 ) 𝑒 𝑗 𝜙( 𝑡 )+ 𝑗 𝜓 1 

)
 

( 𝑛 ) 
2 ( 𝑡 ) ∝ 𝑅𝑒 

(
𝑎 2 ( 𝑡 ) 𝑒 𝑗 𝑛𝜙( 𝑡 )+ 𝑗 𝜓 𝑛 

)
, 𝑛 ≥ 2 

(7) 

here 𝜓 𝑛 , 𝑛 ∈ ℕ are random numbers taken from a uniform distribution
etween [− 𝜋∕2 , 𝜋∕2] . In Eq. (7) , 𝑠 (1) 2 is an oscillation with 1:1 synchro-

ization to 𝑠 (1) 1 . 
Note that the second harmonic is the strongest harmonic which is

sually visible in real electrophysiological data. Therefore, without loss
f generality, we only examine the removal of the second harmonic.
herefore, we simulated only the first and the second harmonic. That

s, in our simulations, the non-sinusoidal source signals are simulated as
 ( 𝑡 ) = 𝑠 (1) ( 𝑡 ) + 𝑠 (2) ( 𝑡 ) where 𝑠 (1) ( 𝑡 ) is an alpha oscillations and 𝑠 (2) ( 𝑡 ) is the
econd harmonic in the beta frequency band. After that, the amplitude
f 𝑠 (1) ( 𝑡 ) and 𝑠 (2) ( 𝑡 ) were re-scaled so that the SNR at each of alpha and
eta frequency bands for these signals are set to the desired value (see
elow). Finally, 𝑠 (1) ( 𝑡 ) and 𝑠 (2) ( 𝑡 ) are added up together to generate 𝑠 ( 𝑡 ) .

SNR : In realistic simulations, The SNR was defined as the ratio of the
ean power of the source signal in the sensor space divided by the mean
ower of all pink noise sources in sensor space, filtered in the frequency
7 
and of interest. In our realistic simulations, the SNR of alpha and beta
ands were set to 0dB and −10 dB, respectively. 

For the toy examples, the SNR of a narrow-band source was defined
s the ratio of its power to the power of the pink noise, filtered in the
requency band of interest. The SNR values at alpha and beta band were
et to 5 dB and −5 dB, respectively. 

.5.2. Toy examples 

We used toy examples for initial assessment of the effect of Har-
oni on the interactions between two signals with non-sinusoidal com-
onents. We used four scenarios for these toy examples, where the
round truth about the existing genuine and spurious interactions be-
ween the simulated signals were pre-defined. The left side of Fig. 5 de-
icts these scenarios schematically. Although we concentrate on the
ithin-frequency and 1:n interactions in this paper, in Section 2 of the

upplementary text we provide a use case of Harmoni for suppressing
purious n:m interactions. 

In each of the four scenarios, two signals 𝑧 𝑘 ( 𝑡 ) , 𝑘 = 1 , 2 were simu-
ated. On the schemes of Fig. 5 , 𝑧 1 ( 𝑡 ) and 𝑧 2 ( 𝑡 ) are depicted as shaded
reas in each scenario. In the rest of this section, the index 𝑘 = 1 , 2 refers
o these two signals. 𝑧 1 ( 𝑡 ) and 𝑧 2 ( 𝑡 ) were multi-band signals with com-
onents in alpha and beta bands. In each scenario, specific ground truth
enuine interactions were simulated between the two signals, which
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Fig. 6. AUC of an ROC curve as an evaluation criterion for assessing the matching of computed connectivity graphs and the ground truth ones. Panel A shows an 
exemplar ROC curve. In panel b, the procedure of computing the true positive (TP) and false positive (FP) values corresponding to threshold level 0 ≤ 𝑝 ≤ 1 is depicted. 

The true positive ratio (TPR) and false positive ratio (FPR) corresponding to each threshold level 𝑝 is computed by TPR ( 𝑝 ) = 
Σ𝑖,𝑗 𝐺 𝑖𝑗 𝑇 𝑝,𝑖𝑗 

Σ𝑖,𝑗 𝐺 𝑖𝑗 𝑇 𝑖𝑗 
and FPR ( 𝑝 ) = 

Σ𝑖,𝑗 ∼𝐺 𝑖𝑗 𝑇 𝑝,𝑖𝑗 

Σ𝑖,𝑗 ∼𝐺 𝑖𝑗 𝑇 𝑖𝑗 
. 

The 𝑖𝑗 index indicates the ( 𝑖, 𝑗) th element of the indexed matrix. 
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roduced known spurious interactions, too. Harmoni was applied on
ach of the signals in order to remove the beta component which could
e the harmonic component of the alpha band component of the signal.
he interactions between the two signals were estimated using absolute
ithin- and cross-frequency coherence before and after Harmoni. We ex-
ected that Harmoni suppresses the spurious interactions, but does not
ouch the genuine interactions. For each scenario, 50 runs with random
eeds were carried out. 

In all scenarios, the two signals 𝑧 1 ( 𝑡 ) and 𝑧 2 ( 𝑡 ) contained an alpha os-
illation with non-sinusoidal waveshape. 𝑠 𝑘 ( 𝑡 ) = 𝛼𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) is the non-
inusoidal component of 𝑧 𝑘 ( 𝑡 ) , where 𝛼𝑘 ( 𝑡 ) represents the fundamental
omponent and 𝛽𝑘 its second harmonic, which is phase-synchronized to

𝑘 ( 𝑡 ) . 
Below, the composition of 𝑧 1 and 𝑧 2 in all the four scenarios and

heir genuine and spurious interactions are listed. Note that 𝜉𝑘 ( 𝑡 ) is the
dditive 1/f (pink) noise component of 𝑧 𝑘 ( 𝑡 ) . 

Scenario 1 ( Fig. 5 -A): 𝑧 𝑘 ( 𝑡 ) = 𝑠 𝑘 ( 𝑡 ) + 𝜉𝑘 ( 𝑡 ) , 𝑘 = 1 , 2 . The signal 𝑠 1 was
imulated using Eq. (6) and 𝑠 2 was simulated to be synchronized to 𝑠 1 
sing Eq. (7) . Therefore, a genuine interaction in alpha band between
he two signals was simulated. Additionally, a spurious interaction in
eta band, as well as spurious cross-frequency interactions between the
wo signals were observed in the ground truth. Figure S10 of the sup-
lementary text shows exemplar signals of this scenario. 

Scenario 2 ( Fig. 5 -B): 𝑧 𝑘 ( 𝑡 ) = 𝑠 𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) + 𝜉𝑘 ( 𝑡 ) , 𝑘 = 1 , 2 . 𝑠 1 and
 2 were simulated as synchronized non-sinusoidal signals using
qs. (6) and (7) (similar to scenario 1). Each signal 𝑧 𝑘 had an extra
eta component 𝛽𝑘 . 𝛽1 and 𝛽2 were simulated as narrow-band beta band
scillations and synchronized to each other (with Eq. (5) ) but indepen-
ent of 𝑠 𝑘 , 𝑘 = 1 , 2 . In addition to the genuine integration between the
 1 and 𝑧 2 in beta band due to the synchronization of 𝛽1 and 𝛽2 , simi-
ar genuine and spurious interactions as in scenario 1 were present in
he ground truth. In figure S10 of the supplementary text an example of
ignals of this scenario is depicted. 

Scenario 3 ( Fig. 5 -C): 𝑧 𝑘 ( 𝑡 ) = 𝑠 𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) + 𝜉𝑘 ( 𝑡 ) , 𝑘 = 1 , 2 . 𝑠 1 and 𝑠 2
ere two independent non-sinusoidal oscillations (using Eq. (6) ) with

heir fundamental and second harmonic components in alpha and beta
 w  

8 
and respectively. 𝛽1 and 𝛽2 were two synchronized narrow-band beta
scillations (using Eq. (5) ), which were independent of 𝑠 1 and 𝑠 2 . As a
esult, no CFS existed between 𝑧 1 and 𝑧 2 in the ground truth and the
nly genuine interaction was a synchronization within beta band. 

Scenario 4 ( Fig. 5 -D): 𝑧 𝑘 ( 𝑡 ) = 𝑠 𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) + 𝜉𝑘 ( 𝑡 ) , 𝑘 = 1 , 2 . 𝑠 1 and 𝑠 2
ere two non-sinusoidal alpha oscillations simulated independently us-

ng Eq. (6) , and 𝛽2 was a narrow-band beta oscillation 1:2 synchronized
o 𝑠 1 , i.e. 𝛽2 was simulated to have 1:2 CFS to the alpha component
f 𝑠 1 ( 𝛼1 ) using Eq. (5) . Therefore, in addition to the genuine CFS be-
ween 𝑧 1 and 𝑧 2 , a spurious synchronization within beta band between
 1 and 𝑧 2 existed in the ground truth (i.e. between 𝛽2 and 𝛽1 ). 𝛽1 was a
arrow-band beta oscillations independent of 𝑠 1 , 𝑠 2 , and 𝛽2 . 

Note that since there is no mixing between 𝑧 1 and 𝑧 2 in these simula-
ions, the absolute coherence was used for quantifying both the within-
nd cross-frequency synchronizations. 

.5.3. Realistic simulations 

Source positions The oscillatory sources were located at the center of
andomly selected ROIs. The ROIs were selected from the outer surface
f the cortex. Additionally, the ROIs were selected not to be nearby each
ther. This approach of the simulations is similar to that of Haufe and
wald (2019) . Additionally, the position of 50 pink noise sources were
elected randomly from the ∼8000 nodes of the source space grid. The
esikan Killiany (DK) atlas was used. 

Scalp EEG generation. In order to generate the realistic multi-channel
EG signal, oscillatory and noise signals in source space were mapped to
he sensor space using the forward solution with 64 electrodes accord-
ng to BioSemi EEG cap layout. 100 datasets were simulated by using
andom seeds. 

Realistic simulation scenarios The two scenarios depicted on the right
ide of Fig. 5 were used for simulating realistic EEG data. 

In scenario one, a pair of interacting non-sinusoidal source signals
ere simulated using Eqs. (6) and (7) with their fundamental frequency

n alpha band. Additionally, a pair of coupled sources in the beta band
ere generated using Eq. (5) and 𝑛 = 1 . A pair of synchronized sinu-
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oidal sources in alpha band were simulated as well, by using Eq. (5) and
 = 1 . 

In scenario 2, a pair of genuinely cross-frequency synchronized
ources were simulated using Eq. (5) with 𝑛 = 2 . In addition, a pair
f synchronized non-sinusoidal source signals were generated using
qs. (6) and (7) . 

Connectivity The connectivity pipeline explained in detail above (also
ig. 4 ) was then applied to the simulated EEG data with alpha and beta
requency bands defined as 8–12 Hz and 18–22 Hz, respectively. As de-
icted in Fig. 5 , each of these two scenarios include genuine and spuri-
us interactions in their ground-truth. By using Harmoni, we expect to
uppress the spurious interactions. 

Evaluation criterion ( ROC curve): Since the computed connectivity
aps are not binary values (while the ground truth connectivity is bi-
ary), we evaluate the matching of computed connectivity maps and
he ground truth using the area under curve (AUC) of the receiver op-
rating characteristic (ROC) curve of the computed connectivity ma-
rix. Figure 6 shows how true positive and false positive values were
omputed. After thresholding the test graph ( 𝑇 ) with threshold level
 ≤ 𝑝 ≤ 1 (resulting in 𝑇 𝑝 ), the true positive ratio (TPR) and false pos-
tive ratio (FPR) corresponding to this threshold value were computed

s TPR ( 𝑝 ) = 

Σ𝑖,𝑗 𝐺 𝑖𝑗 𝑇 𝑝,𝑖𝑗 

Σ𝑖,𝑗 𝐺 𝑖𝑗 𝑇 𝑖𝑗 
and FPR ( 𝑝 ) = 

Σ𝑖,𝑗 ∼𝐺 𝑖𝑗 𝑇 𝑝,𝑖𝑗 

Σ𝑖,𝑗 ∼𝐺 𝑖𝑗 𝑇 𝑖𝑗 
, where the subscripts

𝑗 indicates the ( 𝑖, 𝑗) th element of the adjacency matrix and 𝐺 is the
round-truth connectivity matrix. ∼𝐺 is the 1’s complement of 𝐺 (i.e.,
ll zeros are converted to 1 and vice-versa). 

Using the TPR and FPR values for all the threshold level, an ROC
urve is built. The AUC of this curve reflects how well the computed con-
ectivity map matches the ground truth adjacency matrix of the graph
orresponding to the simulated connectivity. 

The AUC of the ROC curve (AUC-of-ROC) was computed for each
imulation run before and after Harmoni and compared. We expected
n increase of AUC-of-ROC after Harmoni. 

Additionally, for graphs where no true positives were expected (for
xample the CFS network of scenario 1 or beta-band network of scenario
) the FPR curve was built as a curve of FPR vs. threshold. The AUC of
his curve (AUC-of-FPR) is a proxy of the amount of false positives. We
xpected a drop of AUC-of-FPR after Harmoni. 

In addition, we examined how the AUC values change in relation to
heir initial values. We expected that Harmoni corrects the connectivity
raphs in the way that the change is larger when there are more false
ositives and fewers true positives. For this purpose, we assessed the
elationship of the percentage change of the AUC values and their initial
alues before Harmoni, and we expected a negative correlation in all
ases. That is, we expected that the increment of AUC-of-ROC is higher
hen the initial value is lower. Additionally, we expected that the AUC-
f-FPR drops more (reflected in a smaller negative percentage-change
alue) when its initial value is larger. The significance of this correlation
as tested using the method described in Section 2.8 . 

.6. Resting-state EEG 

.6.1. Data description and preprocessing 

The resting-state EEG data from 81 subjects (20–35 years old,
ale, right-handed) of an open-access database (LEMON) were used

 Babayan et al., 2019 ). The LEMON study was carried out in accordance
ith the Declaration of Helsinki and the study protocol was approved by

he ethics committee at the medical faculty of the University of Leipzig.
he data of each subject included 16 min resting-state recording with in-
erleaved, 1-min blocks of eyes-closed and eyes-open conditions. For this
anuscript, we used the data of the eyes-closed condition. The record-

ngs were done with a band-pass filter between 0.015 Hz and 1 kHz and
 sampling rate of 2500 Hz. 

For our analysis, we used the publicly available preprocessed data in
he database. The sampling rate was reduced to 250 Hz and the down-
9 
ampled data were filtered within [1, 45] Hz with a fourth order But-
erworth filter, applied forward and backward. Then the data segments
f eyes-open and eyes-closed conditions were separated. Bad segments
ere removed manually and ICA artifact rejection was employed to re-
ove the noise components relating to eye, heart, and muscle activ-

ty. Babayan et al. (2019) provide detailed information about the data
ecording and preprocessing steps. 

.6.2. Connectivity 

The pipeline in Fig. 4 was used, as similar to the simulated
ata connectivity. Fourth-order Butterworth filters (applied forward-
ackward to avoid phase shift) were used for filtering data in al-
ha and beta bands. Using pre-defined frequency bands is a com-
on practice in connectivity analysis with MEG/EEG data, for exam-
le refer to Brookes et al. (2011) , Tewarie et al. (2016) for amplitude-
mplitude coupling, and Nentwich et al. (2020) , Wirsich et al. (2020) ,
irsich et al. (2021) for phase-phase coupling. Filter bank ap-

roaches have also been used in the literature, for example by
iebenhühner et al. (2020) . However, using subject-specific frequency
ands is a more rigorous and biologically sensible approach, attracting
ore attention of the community in recent years, but still not very com-
on in connectivity analysis pipelines. In this work, we used subject-

pecific alpha frequency bands. For each subject, we detected the alpha
eak and its peak width in the PSD of sensor space data by an automatic
eak detection algorithm (using the find_peaks function of the Scipy sig-
al package). Assuming that for a subject the alpha peak was detected
t 𝑓 𝛼 and the bandwidth of alpha band was detected as 𝑊 𝛼 , we set the
econd harmonic frequency at 2 𝑓 𝛼 and the bandwidth of this frequency
and (beta band) equal to the bandwidth of the first harmonic. Note
hat the detected peaks and their width were then visually inspected
nd possible manual adjustments had been applied to very few subjects
the information about these subjects are available in the GitHub repos-
tory of the manuscript). 

Similar to the connectivity pipeline described in detail above (also
ig. 4 ), the broad-band data were projected onto cortical source space
sing the inverse solution computed with eLORETA method from fsav-
rage standard head leadfield, with 4098 vertices per hemisphere. After-
ards, a single time series was extracted (using SVD) for each ROI from

he cortical sources within that ROI. The Schaefer atlas ( Schaefer et al.,
018 ) with 100 ROI and 7 Yeo resting-state networks ( Yeo et al., 2011 )
as used. In the next step, the signal of each ROI was filtered within
lpha and beta bands using the filters designed in the initial step. 

For each subject, the ROI-ROI connectivity for alpha-beta CFS was
omputed before and after Harmoni, resulting in 100 × 100 connectiv-
ty adjacency matrices. Before performing any analysis on the coupling
alues, we first Fisher 𝑍-transformed the coupling values to remove
he bounds of the synchronization indices. Then, in order to make the
onnectivity graphs comparable before and after Harmoni at the group
evel, the adjacency matrix of each subject was 𝑧 -scored before and after
armoni. The 𝑧 -scored matrices of the networks before Harmoni were

ubtracted from the ones after Harmoni. Two-sided paired 𝑡 -tests were
sed for each connection to specify the links which were changing sig-
ificantly on group level. The Bonferroni method was used to correct for
ultiple comparisons, i.e. the 𝑝 -values were multiplied by 100 2 and then

he links with corrected 𝑝 -values > 0 . 05 were considered as significant. 
Asymmetry-index of CFS networks In order to quantify the extent to

hich the CFS adjacency matrices are asymmetric, we used the norm
f the anti-symmetric part of the adjacency matrix. For a given matrix
 , the anti-symmetric part is defined as 𝐀 𝐚𝐧𝐭𝐢 = 

𝟏 
𝟐 ( 𝐀 − 𝐀 

𝐓 ) . We define
𝐀 𝐚𝐧𝐭𝐢 ‖∕ ‖𝐀 ‖ as an asymmetry-index . It follows from the triangle inequal-
ty that this index is between zero and one, with zero value correspond-
ng to a symmetric matrix and a value of one for an anti-symmetric
atrix. 
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Fig. 7. Depicting CFS network as a bipartite graph. The nodes stand for brain 
regions. While the upper set of nodes represents the alpha activity in the brain 
regions, the lower nodes are for the beta activity in those regions. When node 
1 from alpha nodes (upper nodes) is connected to node 3 of beta nodes (lower 
nodes) it means that the alpha activity in region 1 is coupled to beta activity in 
node 3. The links are color-coded based on the strength of the coupling. Addi- 
tionally, each node in each frequency band can have a color which represents 
its centrality in that frequency band. 
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We test the significance of the correlation of the asymmetry-index
f the connectomes before Harmoni and the percentage-change after
armoni using the method described in Section 2.8 . 

.7. Depiction of CFS connectivity 

We used a bipartite graph for the depiction of CFS networks. The CFS
etworks have an asymmetric adjacency matrix and therefore, should be
epicted as directed graphs. We actually used a bipartite graph as a way
f illustrating a directed graph in a more comprehensive way. 

A bipartite graph is a graph which has two sets of nodes and an
dge can only connect the vertices from different sets (i.e. alpha and
eta sets in our analysis) to each other. In our case of CFS networks,
ach node is a representative of a brain region and each set of nodes
elates to the activity of the brain regions in one of the frequency bands.
igure 7 shows an illustrative example of such depiction for alpha-beta
FS. The upper and lower node-sets represent the alpha and beta band
ctivity of the ROIs of interest, respectively. A link between node 1 from
he upper set (alpha nodes) with node 3 of the lower set (beta nodes)
hows a CFS coupling between ROI 1 and 3. This connection would be
he element (1,3) of the adjacency matrix of the network. In a directed
raph this edge would be an out-going edge for node 1 and an in-coming
dge for node 3. 

In our illustration of the graph, each node can have a color, which
hows its centrality value. In this work, we did not use this feature and
he node colors are the label colors provided with the parcellation. For
eal data these colors code the ROI’s Yeo resting-state network. Each
dge is also color-coded with the strength of the coupling that it repre-
ents. It can be the absolute or relative strength of coupling. 

.8. Statistical analysis 

Two-sided paired 𝑡 -tests were used for testing the difference of the
ean value of two paired samples. Specifically, the changes of the eval-
ation parameters in simulations (the AUC values) as well as real data
the change in the connectivity values and the asymmetry-index) were
ested before and after Harmoni. 

For testing the significance of the correlation of the initial value of a
arameter (before Harmoni) and its percentage change after Harmoni,
n the analyses of the results of simulated data and the asymmetry-index
f the connectomes of real data, we used the correction method intro-
uced in Tu (2016) . Assume 𝑥 is the baseline value of a parameter of
nterest before Harmoni and 𝑦 is its value after Harmoni. The percentage
hange of this parameter is defined as ( 𝑦 − 𝑥 )∕ 𝑥 , which is mathematically
oupled to 𝑥 . Therefore, it would not be valid to use the conventional sta-
istical testing between the initial value and the percentage change and
ompare the observed correlation to zero. Tu (2016) suggests that the
10 
ppropriate null value for the hypothesis test should be 𝑟 0 = − 

√ 

1− 𝑟 𝑥𝑦 
2 

ather than zero, where 𝑟 𝑥𝑦 is the Pearson correlation of 𝑥 and 𝑦 . In this

pproach, the hypothesis test is 𝐻 0 ∶ 𝑟 𝑥,𝑦 ∕ 𝑥 + 

√ 

1− 𝑟 𝑥𝑦 
2 = 0 versus 𝐻 1 ∶

 𝑥,𝑦 ∕ 𝑥 + 

√ 

1− 𝑟 𝑥𝑦 
2 ≠ 0 . Finally, the expression for the 𝑧 -test is suggested

o be 𝑧 = 

(
𝑧 𝑟 ( 𝑟 ) − 𝑧 𝑟 ( 𝜌) 

)
∕ 
√
1∕( 𝑛 − 3) , where 𝑧 𝑟 ( 𝑟 ) = 0 . 5 𝑙𝑛 ((1 + 𝑟 )∕(1 − 𝑟 ))

s the Fischer’s z transformation, 𝑟 is the observed correlation coeffi-
ient, and 𝜌 is the correlation coefficient to be tested against. 

. Results 

.1. Simulations 

Toy Examples As the very first step, we used simplified simulations
toy signals) to show that Harmoni is an effective algorithm for sup-
ressing spurious CFS and within-frequency interactions due to the non-
inusoidal shape of the signals. In these simple simulations, where there
re no complications regarding source mixing or limitations of source
econstruction, the ground truth about the interactions between the two
imulated signals is known. In fact, we were interested to validate two
mportant properties of Harmoni: (1) It suppresses the spurious interac-
ions significantly, and (2) it does not affect genuine interactions. 

In each of the four scenarios, two noisy multi-band signals 𝑧 𝑘 ( 𝑡 ) , 𝑘 =
 , 2 were simulated with components in alpha and beta band. Different
enuine interactions were simulated between the two signals, resulting
n spurious interactions as well. Harmoni was applied to each of the two
ignals to remove beta components associated with being a harmonic of
lpha band components, i.e. showing CFS with the alpha oscillation. The
ithin- and cross-frequency interactions were then estimated using ab-

olute coherence to investigate how they changed after using Harmoni
nd how these changes were related to the ground truth. Each scenario
as simulated 50 times with random seeds. Figure 8 depicts the box-
lots of the strength of possible within- and cross-frequency interactions
etween and within the two signals, before and after Harmoni. The in-
eractions in the schematic of each scenario have the same color-code
s their respective boxplots. The change of the synchronization strength
fter Harmoni (in comparison to before Harmoni) was tested with a two-
ided paired t -test for each possible interaction, and then corrected by
he Bonferroni method. 

In scenario one ( Fig. 8 -A), the two signals were synchronized non-
inusoidal waves with their fundamental frequency in alpha band (i.e.,
 𝑖 ( 𝑡 ) ≈ 𝑠 𝑘 ( 𝑡 ) + 𝜉𝑘 ( 𝑡 ) with 𝑠 𝑘 ( 𝑡 ) = 𝛼𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) being the non-sinusoidal
omponent of 𝑧 𝑘 ( 𝑡 ) . 𝑠 1 and 𝑠 2 were simulated to be synchronzied, i.e.

1 ↔ 𝛼2 , where ↔ shows the synchronization). The CFS interaction be-
ween the two signals as well as the interaction in beta band are by con-
truction spurious. As shown in Fig. 8 -A, the within- and cross-frequency
purious coherence between and within the two signals are successfully
uppressed after Harmoni. 

In scenario two ( Fig. 8 -B), each of the two signals contained an-
ther beta component which was independent of the non-sinusoidal
omponents, but these components from 𝑧 1 and 𝑧 2 were simulated to be
ynchronized to each other (i.e., 𝑧 𝑘 ( 𝑡 ) ≈ 𝑠 𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) , 𝑠 𝑘 ( 𝑡 ) = 𝛼𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) ,
ith 𝛼1 ↔ 𝛼2 , 𝛽1 ↔ 𝛽2 ). In this scenario, the CFS interaction is by con-

truction spurious, too. However, a part of the interaction between the
wo signals within the beta band is genuine because of the interaction
etween 𝛽1 and 𝛽2 . The results in Fig. 8 -B show that the CFS interac-
ions are suppressed, and the coherence between the beta components
f the two signals does not have any significant change, showing that
he genuine beta synchronization is still present. 

Scenario three ( Fig. 8 -C) was similar to scenario two with the dif-
erence that the non-sinusoidal oscillations from the two signals were
ot synchronized (i.e., 𝑧 𝑘 ( 𝑡 ) ≈ 𝑠 𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) , 𝑠 𝑘 ( 𝑡 ) = 𝛼𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) , with 𝛽1 ↔
̆2 ). Therefore, no CFS between the two signals is observed. The box-
lots in Fig. 8 -C show that the CFS within each signal is suppressed as
xpected from the proper functioning of Harmoni, while CFS between
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Fig. 8. Performance of Harmoni on toy examples in 50 runs with random start 
seeds. The left side schemes are the simulation scenarios shown in Fig. 5 . For 
all scenarios the strength of each possible interaction is shown before and after 
Harmoni in the boxplots in the same panel as the scenario scheme. The purple 
and blue colors are associated with the within-signal CFS, the two green col- 
ors are related to the inter-signal CFS values, and finally the orange color is 
dedicated for the beta band synchronization among the two signals. In all sce- 
narios, two signals are simulated and each of them contains a non-sinusoidal 
wave 𝑠 𝑘 ( 𝑡 ) = 𝛼𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) , 𝑘 = 1 , 2 with their fundamental component 𝛼𝑘 in alpha 
band and their second harmonic 𝛽𝑘 in beta band. Scenario one: The boxplots 
show that all of the within-signal CFS and the spurious interactions are sup- 
pressed significantly. Scenario two: Only the beta-synchronization between the 
two signals does not change significantly after Harmoni and stays at a large 
value due to the genuine synchronization of 𝛽𝑘 , 𝑘 = 1 , 2 . Scenario three: The CFS 
within each signal is suppressed significantly, the CFS values between the two 
signals do not change and have small values in general, and importantly the 
beta-synchronization between the two signals stays almost the same at a high 
value. Scenario four: a genuine CFS (light green) between the two signals is 
simulated, which is not affected after Harmoni, while the spurious within-beta 
interactions and the within-signal CFS are suppressed. 
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he two signals does not change, remaining at a negligible level. Impor-
antly, the genuine synchronization in beta-band does not change after
armoni. 

In scenario four ( Fig. 8 -D) 𝑧 𝑘 ( 𝑡 ) ≈ 𝑠 𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) , 𝑠 𝑘 ( 𝑡 ) = 𝛼𝑘 ( 𝑡 ) + 𝛽𝑘 ( 𝑡 ) as
ell. The ground truth interactions were set to 𝛼1 ↔ 𝛽2 . This setting

esults in genuine CFS between the two signals. Fig. 8 -D shows that
armoni is robust: the genuine inter-signal CFS does not change, while

he present CFS within each signal as well as the spurious beta-band
nteraction drop significantly. Additionally, the other CFS between the
11 
wo signals which was missing by construction, does not change and
emains at a low value. 

All in all, the results of the above scenarios show that the spurious
nteractions are suppressed by Harmoni, while the genuine interactions
re not changed. 

Realistic EEG simulations For the further evaluation of Harmoni, we
eveloped an EEG simulation pipeline for generating realistic scalp EEG
ignals (details in Section 2.5.3 ). The simulated EEG data consisted of
arrow-band sinusoidal source signals at alpha (8–12 Hz) and beta (18–
2 Hz) bands, as well as non-sinusoidal signals with fundamental fre-
uency at alpha band. The dipole positions were randomly selected
rom the center of 68 regions of interest (ROIs) of Desikan Killiany at-
as ( Desikan et al., 2006 ). 1/f (pink) noise data were also added to the
enerated source signals of interest. All the source signals were forward
odelled to generate realistic EEG. Two scenarios (shown in Fig. 5 )
ere used for generating the simulated EEG signals. Both of the scenar-

os included coupled non-sinusoidal alpha sources. In scenario one there
ere also within-frequency coupled narrow-band sinusoidal alpha and
eta sources. In scenario two, in addition to the pair of coupled non-
inusoidal sources, a genuine, remote cross-frequency coupled pair of
inusoidal sources was simulated as well. As shown in Fig. 5 , these two
cenarios have differential within- and cross-frequency network profiles.

We used the connectivity pipeline of Fig. 4 to compute the within-
requency synchronization in beta band and the alpha-beta cross-
requency synchronization maps. 

As an illustrative example ( Fig. 9 ) and a proof of principle, we first
how an example of scenario two. Two synchronized non-sinusoidal
lpha source signals were simulated with their corresponding sources
n caudal middle-frontal and inferior-parietal regions of right and left
emispheres, respectively. In addition, two sinusoidal alpha and beta
ource signals, with CFS, were simulated in the caudal middle-frontal
nd inferior-parietal regions of the left and right hemispheres, respec-
ively. The ground truth networks are shown in Fig. 9 -A. Afterwards, the
ource signals, along with random noise sources, were projected to the
ensor space and then the above-mentioned source space pipeline was
erformed. Panel B of Fig. 9 depicts the top 1% connections of the con-
ectivity networks in alpha band as well as beta band and CFS networks
efore and after Harmoni. The spurious beta and CFS connections are
uppressed. 

Our main evaluation criterion for the realistic simulations was the
rea under curve (AUC) of the receiver operating characteristic (ROC)
urve and the false positive ratio (FPR) curve. These curves were built
y comparing the adjacency matrix of the connectivity graphs before
nd after Harmoni to their counterpart ground truth connectivity matri-
es. The ROC curve was computed for the beta network in scenario one
nd the CFS network in scenario two. The higher the AUC of ROC curve
AUC-of-ROC), the more similar the connectivity matrix to the ground
ruth one. Fig. 10 shows the results of evaluating the two scenarios of
he simulation in 100 Monte Carlo simulations with random dipole po-
itions. The increase of the AUC-of-ROC in the left sides of panels A and
 demonstrates a success of Harmoni in both of the scenarios in cor-
ecting the connectivity maps in the way that they are more similar to
he ground truth. Consequently the ratio of the true positive ratio (TPR)
nd FPR increases after Harmoni, reflecting the suppression of spurious
nteractions (false positives) and not affecting/increasing the genuine
nteractions (true positives). Moreover, the percentage change of the
UC-of-ROC values decreases with the increase of the initial value of
UC-of-ROC (see the statistical analysis in Section 2.8 for quantifying

his dependency in a statistically stringent manner). That is, the closer
he initial connectivity map to the ground truth, the less correction Har-
oni applies. In other words, if a network shows a lot of spurious in-

eractions, then it is corrected by Harmoni more strongly. In addition,
t the left sides of both the panels of Fig. 10 the AUC of the FPR curves
AUC-of-FPR) of the CF networks in scenario one, and the beta networks
n scenario two (where all the present interactions are spurious) de-
rease after Harmoni (the second columns in Fig. 10 -A and B), showing
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Fig. 9. An illustrative realistic simulation example, showing the effect of Harmoni in suppressing the spurious interactions due to harmonics. Panel A depicts the 
ground truth, where synchronized non-sinusoidal alpha sources were simulated in right caudal middle-frontal and left inferior-parietal regions (red connecting line) 
and two cross-frequency synchronized narrow-band alpha and beta sources were simulated in the left caudal middle-frontal and right inferior-parietal regions (purple 
connection). The circular and bipartite graphs depict the ground truth alpha and CFS networks. A bipartite graph allows to see how different nodes from two networks, 
represented by horizontal bars, connect to each other allowing non-symmetric connections - without using a directed graph. In the CFS network, the dashed-lines 
represent the spurious interactions due the connectivity between two non-sinusoidal signals, while the solid line represents the genuine interaction. Panel B shows 
the top 1% connections of the within-frequency and cross-frequency networks computed before and after Harmoni. The spurious beta connections and the spurious 
CFS connections are suppressed. The glass brains were plotted with Brain Network viewer ( Xia et al., 2013 ) in MATLAB. The circular plots were generated with MNE 
Python ( Gramfort et al., 2013; 2014 ). 
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he suppression of the spurious interactions. The absolute value of the
ercentage change of the AUC-of-FPR in these cases increases with the
ncrease of the initial value. This means that the more false positive links
re present in the connectivity maps, the more pronounced is the impact
f Harmoni on the networks. 

.2. Harmoni on resting-state EEG data 

Alpha oscillations recorded with resting-state EEG (rsEEG) are
nown to have a non-sinusoidal waveshape in many brain areas. For
xample, the 𝜇 rhythm in the somatomotor areas or visual alpha are
ell-known examples of non-sinusoidal oscillations. This non-sinusoidal
aveform is manifested in the power spectral density (PSD) having a

arge peak at alpha and a smaller peak at beta frequency band, together
ith 1:2 CFS between alpha and beta bands. As an example from real
ata, Fig. 11 shows a segment of a non-sinusoidal source signal extracted
rom the recordings of a subject’s eyes-closed rsEEG from the LEMON
ataset ( Babayan et al., 2019 ). In this case, the power spectrum of such
ignal shows two prominent peaks at the fundamental frequency (11 Hz)
nd its second harmonic frequency (22 Hz). Additionally, a third peak
12 
s visible at the third harmonic frequency as well (33 Hz). As indicated
y the values of the cross-frequency coherence in the figure, the har-
onic components demonstrate CFS with the fundamental frequency

omponent. 
We used rsEEG data from 81 subjects (data description in Section

.6.1 ) and applied Harmoni in order to disambiguate genuine from spu-
ious CFS alpha-beta interactions. Panel (A) of Fig. 12 illustrates the
cross-subjects average of 1:2 alpha-beta synchronization at each corti-
al source (i.e. a vertex on the cortical mantel). A very high 1:2 synchro-
ization within one cortical source is an indication of a non-sinusoidal
aveshape of alpha oscillation at the corresponding dipole. On average,

he occipital, temporal and central areas demonstrate the highest 1:2
lpha-beta synchronization. This figure shows the ubiquity of harmon-
cs in data and highlights the importance of taking care of it in connec-
ivity analysis. Note that although we make the assumption that the 1:2
ynchronization at a single source is a harmonic-driven synchronization,
e are fully aware that this can be a result of residuals of signal mixing

n source space. We explicitly address this point in the discussion. 
In order to compute the CFS connectivity networks, a similar data-

nalysis pipeline as in the realistic simulations was used at the source
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Fig. 10. Results of 100 realistic simulations according to scenario one (panel A) and two (panel B) of Fig. 5 . At the left side of panel A, the boxplots of the AUC- 
of-ROC of beta connectivity before and after Harmoni are depicted, showing an increase after the application of Harmoni. This indicates a successful correction of 
the network’s connections after Harmoni in favor of suppressing the spurious interactions. Beneath the boxplots, the scatter-plot of the percentage change vs. the 
AUC-of-ROC values for beta connectivity before Harmoni is shown. The higher the initial AUC-of-ROC value (i.e. the more accurate the initial connectivity map), the 
less difference between the AUC values before and after Harmoni (i.e., the less the impact of Harmoni). At the right side of panel A the boxplots of the AUC-of-FPR 
for the CFS connectivity are illustrated. Note that in scenario one the whole CFS connectivity is spurious due to waveshape, which is to a great extent removed by 
Harmoni (reflected in the decrease of the FPR). The bottom scatter-plot shows that the percentage change increases as the AUC-of-FPR of the CFS network increases, 
meaning that Harmoni has a larger effect on networks with more spurious interactions. Panel B shows the results of scenario two, but for the AUC-of-ROC of the 
CFS network (the left side) and the AUC-of-FPR of the beta connectivity (the right side). A similar outcome as in scenario one is observed in scenario two: and 
increase in the AUC-of-ROC after Harmoni for CFS networks, as well as a decrease in AUC-of-FPR for beta networks where all the connections are spurious ones. The 
percentage-change scatter plots imply a similar effect: the more spurious interactions in the simulated signals, the more corrections is performed by Harmoni. 
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pace. The rsEEG multi-channel data were mapped to 100 ROIs of the
chaefer atlas ( Schaefer et al., 2018 ) with each ROI being assigned
o one of the seven resting-state Yeo networks, i.e. Default-mode net-
ork, Fronto-parietal, Limbic, Ventral Attentional, Dorsal Attentional,
omatomotor, and Visual networks ( Yeo et al., 2011 ). Note that, the
rst eigenvector of the ROI vertices explained on average (over all ROIs
nd all subjects) 60% of the variance of the broad-band ROI time se-
ies. Then, each ROI signal was filtered within the alpha and beta band
nd the components of beta activity at each ROI that could potentially
e a higher harmonic of alpha oscillations were removed using Har-
oni. Finally, the ROI-ROI alpha-beta CFS connectivity networks, rep-

esented by 100 × 100 connectivity matrices were computed and then
isher Z transformed. Fig. 12 -B and C show the across-subject mean
onnectivity graphs before and after Harmoni over all subjects. In Panel
 (CFS before Harmoni), the dominating vertical links correspond to
he local synchronization of the alpha oscillations with their second
armonic (beta). This is an expected pattern for the non-sinusoidal os-
illations where both alpha and beta components are generated at the
ame location and demonstrate spurious CFS. Panel C shows that the
pplication of Harmoni resulted in the unmasking of genuine remote
euronal interactions which were previously under-emphasized due to
he presence of spurious cross-frequency connectivity. In order to be
ble to compare the networks before and after Harmoni at the group
evel, the connectivity matrices were 𝑧 -scored for each subject and then
hese standardized coherence scores before Harmoni were subtracted
rom the ones after Harmoni, and paired two-sided 𝑡 -tests (with Bonfer-
oni correction of 𝑝 -values) were employed to specify the links which
hanged significantly after Harmoni. Panel Fig. 12 -D and E show the
13 
cross-subject mean of the difference networks for positive and nega-
ive links (only the significantly changing links). Figure 12 -D depicts
he connections which are more pronounced after Harmoni. This en-
ancement is observed for both inter and intra-hemispheric connections,
pecifically between the visual cortices of the two hemispheres, be-
ween the visual areas and the default mode and fronto-parietal regions.
hese effects were achieved via the elimination of spurious connections
hich were driven by harmonics. The presence of such harmonics masks

he strength of the genuine interactions which, however, become more
ronounced after the application of Harmoni. The presence of vertical
ines and some cross-region lines in Fig. 12 -E illustrates that within-ROI
FS as well as many within-hemispheric connections are significantly
uppressed. 

Importantly, Harmoni does not create any new connections, it rather
eads to a reweighing of the connections after the suppression of the spu-
ious ones. In order to validate this claim, we used paired 𝑡 -tests to check
hether the across-subject mean of the weights of each connectivity link

hanges significantly after Harmoni. Accounting for multiple compar-
sons by Bonferroni correction, we found that all the significant changes
ere in the direction of a decrease in the connectivity strength after
armoni, −11 . 85 ≤ 𝑡 (80) ≤ 0 , 𝑝 < 0 . 05 ( Fig. 13 ), which confirms that no
ew connection is produced by Harmoni. Indeed, by suppressing the
ynchronizations that can mimic the spurious interactions due to non-
inusoidal waveshape of alpha oscillations, the ratio of the connectivity
eights with respect to the maximum synchronization is changed and

herefore, some connection weights which previously were in the low
anks move to higher percentiles of the connectivity weights after the ap-
lication of Harmoni. With this procedure, the dominant and strongest



M.J. Idaji, J. Zhang, T. Stephani et al. NeuroImage 252 (2022) 119053 

Fig. 11. An example of a non-sinusoidal brain source signal. In panel A, a non-sinusoidal brain oscillatory activity and its first three harmonics are shown along with 
the spatial pattern of this activity. This source was extracted from eyes-closed rsEEG of a subject of the LEMON dataset using independent component analysis (ICA) 
(extended InfoMax ICA ( Lee et al., 1999 ) with 32 components). Panel B shows the PSD of the non-sinusoidal signal with the peaks at 11 Hz (first harmonic, or the 
fundamental frequency), 22 Hz (second harmonic), and 33 Hz (third harmonic). The cross-frequency coherence of the harmonic components and the fundamental 
component are reported as well. The largest synchronization occurs between the first and second harmonics (coherence value of 0.65). This is mainly due to the 
higher signal-to-noise ratio at these frequency bands. 
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2  
onnections change in the CFS network and we observe the networks in
ig. 12 -B and C. 

Another important feature of the MEG/EEG connectivity networks
s the symmetry of the adjacency matrix. All within-frequency or
mplitude-amplitude coupling networks are characterized by a symmet-
ic adjacency matrix. However, to the best of our knowledge, no study
ntil so far investigated the presence of a similar pattern in the adjacency
atrix for CFS coupling which is strongly affected by the interactions
ue to higher harmonics of non-sinusoidal shape of the signals. The CFS
djacency matrix is by definition asymmetric. Actually, harmonic-driven
purious interactions result in symmetric CFS matrix. In other words, if
he alpha activity in region 𝑖 is coupled to the beta activity in region 𝑗,
he ( 𝑖, 𝑗) th element of the adjacency matrix is non-zero. If this coupling
s due to the non-sinusoidal shape of the waveform of the alpha-signals
t both of these two regions, then the beta activity in region 𝑖 is also syn-
hronized to the alpha activity in region 𝑗, which results in a non-zero
alue at the ( 𝑗, 𝑖 ) th element of the adjacency matrix. This decreases the
xtent to which the adjacency matrix is asymmetric. Therefore, we rea-
oned that Harmoni should decrease the extent to which the adjacency
atrix of the CFS network is symmetric. This idea was indeed confirmed

s shown in Fig. 14 -A with the boxplots of an asymmetry-index (defined
n Section 2.6.2 ) of the CFS networks before and after Harmoni for all
ubjects, where the asymmetry-index of the individual CFS connectivity
etworks increases significantly after Harmoni (two-sided paired t -test,
 (80) ≈ 17 . 99 , 𝑝 ≈ 0 . 000 ). Furthermore, panel B of this figure shows that
he percentage change of the asymmetry-index significantly decreases
ith the initial value of the index, pearson 𝑟 = −0 . 91 , 𝑝 ≈ 0 . 000 (with
ull hypothesis 𝑟 = −0 . 73 ). In other words, Harmoni corrects the CFS
etwork more (resulting in a larger change in the asymmetry-index of
he network), when there are more potentially spurious interactions due
o harmonics (i.e., when the initial CFS network is less asymmetric due
o harmonic-driven interactions). See Section 2.8 for the rigorous sta-
istical treatment of this analysis. Note that not all the harmonic-driven
2  

14 
ross-frequency interactions are reflected in the symmetry of the CFS
etwork adjacency matrix. 

. Discussion 

EEG and MEG techniques are becoming more and more frequently
sed for the investigation of neuronal connectivity ( Sepideh et al.,
022 ), owing to their ability to record neuronal activity directly, and
heir refined temporal resolution in a millisecond range which is re-
uired for the detection of subtle changes in neuronal dynamics. In ad-
ition, the recent advancement of brain data analysis for mapping sen-
or recordings to the cortex has provided an opportunity for computing
he connectivity of different brain areas in source space. Yet, connectiv-
ty analysis with MEG/EEG faces considerable challenges. The limited
patial resolution and spatial mixing of neural activity from different
egions have been addressed repeatedly as challenges of connectivity
nalysis with MEG/EEG data. Additionally, the non-sinusoidal shape of
rain oscillations has been repeatedly highlighted as crucially affecting
he (mis)interpretation of underlying interactions among neuronal os-
illations ( Hyafil, 2017; Lozano-Soldevilla, 2018 ). Inferences about the
undamental frequency and its harmonics are also important for the un-
erstanding of neurophysiological modulation of alpha and beta oscilla-
ions in BCI research ( Blankertz et al., 2007 ) since those can be extracted
ogether in one component. Because non-sinusoidality always implies a
resence of harmonics, these harmonics can often be mistakenly taken
o represent genuine neuronal oscillations. Consequently, spurious in-
eractions are observed between harmonics of a non-sinusoidal oscilla-
ion and other neuronal processes in the same frequency range, which
n turn cannot be easily disentangled from genuine interactions. This
as been recognized earlier as a major challenge for studying phase-
mplitude coupling (PAC) in neuronal data ( Aru et al., 2015; Giehl et al.,
021; Jensen et al., 2016; Lozano-Soldevilla et al., 2016; Zhang et al.,
021 ) as well as for n:m phase-synchronization ( Hyafil, 2017; Scheffer-
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Fig. 12. Harmoni and rsEEG data. Panel (A) 
shows the across-subject average of 1:2 syn- 
chronization of the alpha and beta band activ- 
ity over the cortex. If the 1:2 synchronization 
is high at a given source, the second harmonic 
of the alpha activity may have a large contri- 
bution to the beta activity. Panel (B) shows the 
bipartite illustration of the mean CFS connec- 
tivity matrix. The nodes are sorted based on 
their assigned Yeo resting-state network. The 
vertical links show the presence of CFS within 
a single region, which is a sign of a synchro- 
nization due to waveshape (since this way they 
connect the same region). Panel (C) is similar to 
panel (B), but for the data after the application 
of Harmoni on beta band. The vertical links 
in the bipartite illustration are eliminated and 
more inter-hemispheric connections emerged. 
Panel (D) shows the links which are more pro- 
nounced after Harmoni, including more inter- 
hemispheric interactions. Panel (E) shows the 
links which were suppressed by Harmoni. The 
networks of panels (D) and (E) were computed 
by subtracting the 𝑧 -scored coherence values 
before Harmoni from the ones after Harmoni. 
In each panel the matrix of the directed graph 
is depicted at the rightmost side of the panel. 

Fig. 13. Harmoni does not create new connections, i.e., an ap- 
pearance of a synchronization between two ROIs after Harmoni 
which was not present before Harmoni. Panel (A) shows the signif- 
icant across-subjects mean difference of the alpha-beta networks 
after and before Harmoni (the coherence values before Harmoni 
were subtracted from the values after Harmoni). All the values 
are ≤ 0 , showing that the synchronization strengths drop for all 
pairs of the ROIs on average. (B) The matrix of corrected 𝑝 -values 
(Bonferroni corrected) corresponding to the two-sided paired 𝑡 - 
tests performed for each CFS connection before and after Har- 
moni. The insignificant connections are not colored. All the sig- 
nificant changes indicated a decrease, −11 . 85 ≤ 𝑡 (80) ≤ 0 , 𝑝 < 0 . 05 
(after Bonferroni correction). 
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eixeira and Tort, 2016; Siebenhühner et al., 2020 ). In this work, we
irectly addressed the issue of spurious interactions due to waveshape
f oscillations and offer a solution for the assessment of phase synchro-
ization as one of the most important measures used for connectivity
C  

15 
nalyses with brain electrophysiology ( Marzetti et al., 2019; Nentwich
t al., 2020; Sadaghiani et al., 2021; Vidaurre et al., 2020 ). 

Currently available measures for quantifying n:m phase-
ynchronization (also referred to as cross-frequency synchronization -
FS) are not suitable for differentiation between genuine and spurious



M.J. Idaji, J. Zhang, T. Stephani et al. NeuroImage 252 (2022) 119053 

Fig. 14. The CFS networks of individual LEMON subjects be- 
comes more asymmetric after Harmoni. (A) the boxplots of the 
asymmetry-index of the CFS adjacency matrices of all subjects 
shows that the asymmetry of the CFS adjacency matrices in- 
creases significantly after Harmoni. (B) The scatter-plot of the 
percentage change of the asymmetry-index vs. the initial value 
of the index, i.e., before Harmoni.The less asymmetric the CFS 
network (i.e., the more harmonic-driven symmetric connec- 
tions), the more changes are observed after Harmoni. The solid 
line shows the linear regression line and the blue shade shows 
the result of a leave-one-out bootstrap. 
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nteractions. Short data length, filtering bias, and non-sinusoidal signal
aveshape are being mentioned as reasons for measuring spurious n:m
hase-synchronization. Statistical tests based on surrogate data can be
sed for disentangling spurious and genuine phase-synchronization due
o limited data points or filtering factor. Yet, these procedures cannot
ifferentiate the genuine interactions from the spurious ones due to
he non-sinusoidality of oscillations ( Scheffer-Teixeira and Tort, 2016 ).
he reason for this is that Fourier and narrow-band analysis is the
ase of almost all current signal processing pipelines, where a signal is
ecomposed into narrow frequency band components. Consequently,
he higher harmonics of a non-sinusoidal signal are analysed as rep-
esenting genuine oscillations not directly relating to the fundamental
requency. In the context of cross-frequency coupling, this can result in
he observation of spurious interactions which are mimicking genuine
nteractions and cannot be detected by surrogate tests. Furthermore,
he non-sinusoidal waveshape of oscillatory brain signals produce
purious interactions in the within-frequency phase-synchronization in
he range of harmonic-frequency, as depicted schematically in Fig. 1 . 

Although the presence of spurious interactions in phase-
ynchronization connectivity analysis of neurophysiological data
as been largely acknowledged by the community, there has been
nly very few attempts for providing a potential solution for it.
alva et al. (2005) used the coincidence of cross-frequency phase-phase
nd amplitude-amplitude coupling as the hallmark of harmonic-driven
FS. This, however, is more a qualitative measure rather than a quan-
itative one and can be less applicable to the inter-areal whole brain
onnectivity analysis. In a recent paper, Siebenhühner et al. (2020) sug-
ested a graph-theoretical analysis for discarding potential spurious
FS. The authors employed a procedure of detecting ambiguous motifs

n the CFS graph combined with the within-frequency graphs of the
undamental and harmonic frequencies of interest, and discarded the
FS interactions corresponding to the links included in those motifs.
his procedure, however, was not validated using realistic MEG/EEG
imulations. Such graph-based post-processing of connectivity net-
orks can in fact discard all the interactions which mimic the motif
f spurious interactions in the connectivity graphs. However, due to
he limited spatial resolution of MEG/EEG data, some of the genuine
nteractions among the ROIs may still coincide with harmonic-driven
purious interactions, as we show in Fig. 8 -D. The graph motif of
uch interactions is similar to the spurious interactions, depicted in
ig. 8 -A. Thus, a motif-discarding approach cannot distinguish the
wo cases of Fig. 8 -A and D and would label the CFS interaction as a
purious one. There are also other possible scenarios where the spurious
nteractions cannot be detected by the graph motif correction method
 an example of such a scenario is thoroughly discussed in section 4 of
he supplementary text. Moreover, this graph-based correction method
s applicable only to cross-frequency graphs, while, as discussed in this
16 
tudy, the within-frequency interactions in the harmonic frequency
and may also include spurious interactions driven by non-sinusoidal
aveshape. Therefore, to the best of our knowledge, so far there has
een no method that can address the issue of spurious n:m interactions
ue to waveshape via removing the harmonic components from the
euronal signals. 

.1. A signal processing tool for dealing with harmonics in connectivity 

In this manuscript, we introduced the first signal processing tool
or suppressing spurious within- and cross-frequency synchronization
ue to non-sinusoidal shape of the oscillatory activity in the brain. Our
ethod significantly suppresses the spurious interactions, while at the

ame time not affecting genuine interactions present in data. We first
alidated these two key properties using simple, yet informing, simula-
ions. They consisted of two signals with different components interact-
ng with each other, giving us a chance to evaluate Harmoni’s perfor-
ance in the presence of genuine and spurious interactions in data. The

esults of these simulations ( Fig. 8 ) showed that Harmoni effectively sup-
resses spurious within- and cross-frequency interactions. Importantly,
his suppression did not affect the genuine interactions. 

.2. Realistic simulations: Decrease in FPR, increase in AUC of ROC curve 

In order to comprehensively assess Harmoni’s performance, we used
ealistic simulations where source mixing and limitations of source re-
onstruction are present. Using the area under curve (AUC) of the re-
eiver operating characteristic (ROC) curve ( Fig. 10 ), we showed that
armoni increases the AUC of ROC curve of connectivity networks
here the ground truth included both genuine and spurious interactions.
his means that with Harmoni, it was possible to uncover even weak
onnections that would have been masked by spurious CFS otherwise.
n the same direction as the results of the toy examples, the increase in
UC of ROC curve in realistic simulations indicates that Harmoni does
ot affect genuine interactions (reflected in TPR) and suppresses spu-
ious interactions (i.e., false positives). In those simulations where the
round truth connectivity networks were based on spurious interactions
nly, Harmoni decreased the AUC of the FPR curve. Confirming other
esults of the simulations, this result further demonstrates that spurious
nteractions both for within-frequency and cross-frequency connectivity
re indeed suppressed significantly by Harmoni. This aspect of Harmoni
s particularly important for the investigation of connectivity for beta
scillations in the sensorimotor networks where comb-shaped mu oscil-
ations are abundant ( Schaworonkow and Nikulin, 2019 ) and thus their
armonics in beta frequency range should lead to spurious connectivity
hile merely reflecting interactions at the base alpha frequency. Addi-

ionally, in studies addressing the relationship of EEG and fMRI data, for



M.J. Idaji, J. Zhang, T. Stephani et al. NeuroImage 252 (2022) 119053 

e  

s  

o
 

w  

H  

c

4

 

g  

v  

e  

e  

o  

c  

n  

t  

a  

n  

m  

c  

t  

F  

r  

m  

a  

c  

c
 

c  

i  

v  

s  

S  

f  

r  

s  

c  

b  

t  

r  

a  

c  

t  

b  

-  

r  

o  

w  

p  

s  

t
 

h  

n  

t  

o  

r  

t  

4

 

p  

t  

a  

i  

n  

f  

s  

t  

a  

f  

p  

c  

a  

c  

h  

c  

p  

f  

p  

w  

t  

m  

f  

w  

e  

t  

q  

r  

s  

p

4

 

a  

i  

T  

n  

i  

M  

a  

b  

d  

r  

w  

t  

 

d  

t  

a  

t  

c  

s  

f  

(  

a  

i  

l  

f  

t  

a  

w  

t  

c  

o  

c
w  
xample ( Ritter et al., 2009 ), Harmoni could contribute to the suppres-
ion of the effects of harmonic components and disentangling the effect
f harmonics and the genuine activity in the same frequency band. 

Moreover, given that our simulations were based on hundreds of runs
ith different random locations of the sources, one can conclude that
armoni is applicable to a wide variety of source configurations in the
ortex including frontal, sensorimotor, and occipito-parietal areas. 

.3. Harmoni on resting-state EEG data 

Real neuronal data are of a complex nature and in most cases the
round truth of connectivity patterns is not known. Therefore, the main
alidating stage of new methods is rather based on simulations. How-
ver, any new method should also be applied to real data to further
xtend its validity. For this purpose, we used resting-state EEG (rsEEG)
f 81 subjects from the LEMON database ( Babayan et al., 2019 ). We dis-
ussed how a symmetric adjacency matrix of a cross-frequency synchro-
ization network can reflect the presence of harmonics, and showed that
he adjacency matrices of the CFS networks become more asymmetric
fter Harmoni. Additionally, we showed that Harmoni does not create
ew connections which were not observed before the application of Har-
oni. However, it changes the relative strength of the already existing

onnections by suppressing spurious connectivity. Harmoni suppresses
he CFS interactions both within and between regions, as depicted in
ig. 12 -E. Consequently, other interactions, which were previously not
anked high due to the presence of strong spurious interactions, become
ore pronounced after the application of Harmoni. Although a detailed

nalysis of connectivity patterns of rsEEG goes beyond the scope of the
urrent study, below we illustrate a few examples of the unmasked syn-
hronization after the application of Harmoni. 

In our data, only after the application of Harmoni, the visual corti-
al areas appear to be interacting strongly with other regions, especially
nter-hemispherically. This in turn indicates that the interaction of the
isual system with other cortical areas is not based only on a relatively
low amplitude-amplitude coupling as shown previously ( Hipp and
iegel, 2015 ) but in fact can demonstrate genuine millisecond-range
unctional interactions important for the precise coordination of neu-
onal activity in the brain. Additionally, Wang et al. (2008) , in a resting-
tate fMRI study, found that the spontaneous activity in primary visual
ortex is associated with the activity in bilateral middle occipital gyrus,
ilateral lingual gyrus, and bilateral cuneus and precuneus suggesting
hat these spontaneous activities may be related to visual imagery during
esting-state. In our rsEEG data, the recovered inter-hemispheric inter-
ctions between the visual networks after the application of Harmoni
an also be interpreted in this direction. Interestingly, Fig. 12 -D shows
he influence of Harmoni in recovering remote interactions of alpha and
eta activity in ROIs overlapping with precuneus in both hemispheres
 precuneus is known as a critical region for visual imagery in memory
ecall ( Wang et al., 2008 ). Note that we also observed the emergence
f precuneus as an important region in cross-frequency interactions, as
ell as in the inter-hemispheric interactions of visual cortices in our
revious study ( Idaji et al., 2020 ) with similar data, where phase-phase
ynchronized sources were separated with a multivariate source separa-
ion method. 

Furthermore, Fig. 12 -D illustrates intensified within- and inter-
emispheric interactions of default mode network (DMN) and visual
etworks, especially areas in the vicinity of V1. In line with our observa-
ion, in a recent paper, Costumero et al. (2020) reported a connectivity
f V1 with DMN as well as posterior cingulate cortex in closed-eyes
esting-state fMRI functional connectivity, suggesting that this connec-
ivity may reflect a brain configuration associated with mental imagery.

.4. How genuine is a “genuine interaction ”? 

Throughout this manuscript we referred to Harmoni-corrected cou-
lings as “genuine ” interactions. As we defined in Section 2.4.2 , an in-
17 
eraction is actually genuine if neither of the two signal components
re harmonics of other non-sinusoidal processes. However, if a signal
s a mixture of different non-sinusoidal oscillatory activities, a specific
arrow-band component of this signal may contain harmonics from dif-
erent fundamental frequencies, which may cause distinct sources of
purious interactions. For example, assume that a signal 𝑧 1 contains
wo non-sinusoidal processes with fundamental frequencies at 6.6 Hz
nd 10 Hz, which have their third and second harmonics at the 20 Hz
requency band, respectively. If we apply Harmoni on the 20 Hz com-
onent with an input only from the 10 Hz component, the harmonic
omponent relating to the 6.6 Hz process will be untouched. Note that,
 third harmonic component has a weak power and therefore, in most
ases, the largest part of the harmonic components relates to the second
armonic of a lower-frequency periodic process. In order to be able to
all a cross-frequency coupling truly “genuine ”, one may need to sup-
ress the harmonic components relating to all the possible fundamental
requencies in a cascade of Harmoni blocks. In Section 4 of the sup-
lementary text we provide more information on a possible scenario,
here a cascade of Harmoni blocks is used. All in all, our suggestion is

hat before applying Harmoni for correction of spurious coupling, one
ay have prior knowledge about the frequency contents of the data,

requency of interests and check out possible presence of non-sinusoidal
aveshape of the fundamental oscillation. Moreover, we would like to

mphasize that the Harmoni-corrected couplings are “genuine ” only to
he extent that the suppression of harmonics of the fundamental fre-
uencies of interest allows. There are also other factors that play a role
egarding the decision of how “genuine ” the genuine interactions are,
uch as the spatial resolution and SNR, which we elaborate on in other
arts of the discussion. 

.5. Harmoni and signal mixing 

Due to the limited spatial resolution of non-invasive recordings, the
ctivity of very close neuronal sources cannot be disentangled when be-
ng recorded by non-invasive imaging techniques such as MEG/EEG.
herefore, even at the source space, the observation of signals with
on-sinusoidal shapes in non-invasive recordings may be due to mix-
ng of distinct coupled sources with very close spatial locations. Using
EG/EEG, such cases cannot be distinguished from single sources gener-

ting signals with non-sinusoidal shapes. This limitation is also applica-
le to the Harmoni connectivity pipeline, when applying it to MEG/EEG
ata. However, it is important to note that, this problem is not a natu-
al limitation of Harmoni. If we have access to invasive LFP recordings
here the spatial resolution can be in the order of hundred of microme-

ers ( Buzsáki et al., 2012 ), Harmoni can successfully resolve such cases.
The other aspect of spatial mixing relates to the leakage of spatially

istanced source signals to other locations, even after source reconstruc-
ion. As a result, the synchronization observed at a single region (or even
t a given reconstructed cortical source) may be due to the synchroniza-
ion between distanced source signals which are spatially mixed and still
ould not be fully disentangled with source separation or source recon-
truction methods. This effect is called “ghost interactions ” for within-
requency coupling, which is also observed in cross-frequency coupling
 Palva et al., 2018 ). This, however, is again a general problem of data
nalysis in MEG/EEG research and is not specific to Harmoni. Therefore,
n some instances the removal of harmonics in a ROI by Harmoni can
ead to removing components which were not a harmonic of a lower
requency in that region but rather represents a leaked oscillatory ac-
ivity from another coupled source. Yet, this property can in fact be an
dvantage for Harmoni: It can remove some of the spurious interactions
hich were present due to spatial leakage and uncover the activity at

he harmonic frequency, which was not a result of spatial leakage of a
oupled source. As an illustrative example for this property, in panel A
f Fig. 8 , if 𝛽1 is not a harmonic of 𝛼1 but a leakage of a cross-frequency
oupled source different from 𝑠 1 , then the observed interaction 𝛽1 − 𝛼2 
ould still be accounted as a spurious interaction. This interaction, how-
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ver, is successfully suppressed by Harmoni. An example of ROIs in real
ata with a similar scenario is depicted in figure S9 of the supplemen-
ary text, too. It is worth noting that, although Harmoni can suppress the
purious interactions and their ghost interactions, the ghost interactions
f the genuine couplings may remain intact, since (with the definitions
f this work) they are genuine in the sense that they do not originate
rom the coupling between the fundamental and harmonic components.
he ghost interaction effect is well described in Palva et al. (2018) .
ow to clean the ghost interactions is beyond the problem that Har-
oni tries to provide a solution for. To name some studies, we refer the

nterested reader to Farahibozorg et al. (2018) , Korhonen et al. (2014) ,
ang et al. (2018) . 
Finally, the mixing of background neuronal activity - known as 1/f

oise - and other noise sources with oscillatory activities affect the
ignal-to-noise ratio (SNR) and consequently the estimation of the true
hase of the oscillations. Using simulations in Idaji et al. (2020) , we
howed how source separation of cross-frequency coupled sources wors-
ns with decreasing SNR. In order to compensate the influence of the
ow SNR on the phase disturbance, the synchronization should be esti-
ated with a sufficient amount of data for MEG/EEG recordings. How-

ver, increasing the data length does not fully overcome the SNR issue.
n fact, there is a ceiling effect for how reliably the synchronization
f two signals can be estimated in the presence of strong noise. This
eiling can be estimated for a given measure and scenario with simula-
ions while varying data duration and SNR levels. We refer the reader
o Diedrichsen et al. (2018) , Siems and Siegel (2020) for description of
he noise-ceiling effect in some specific studies. 

.6. Harmoni for time-varying applications 

Harmoni assumes that in the time interval of interest parameters 𝑐, 𝜙
o not change considerably. That is, the relationship of the fundamen-
al frequency and the harmonic component does not change over time.
ote that talking about a process with harmonics can only be well de-
ned with the assumption of periodicity, stationarity of the signal. The
alidity of the stationarity assumption is an important discussion, which
s valid not only for Harmoni but also for many other methods for ana-
yzing biological data. In the following we extend the discussion in this
egard. 

The spectrum of a non-stationary signal may not be very informa-
ive. In contrast to the notion of stationarity which corresponds to a
ell-defined class of stochastic processes, non-stationarity cannot be di-

ectly defined and includes a wide range of random processes. In prac-
ice, almost all the currently used methods for analyzing neural data
ssume that the random process producing the signal is ergodic. This
ssumption is (implicitly) made whenever computing the power, PSD,
r synchronization of neuronal signals. 

Cole and Voytek (2017) introduce a time-domain idea of cycle-by-
ycle analysis of data; however, it loses the frequency-domain informa-
ion of data. Additionally, time-frequency analysis is considered as a
ethod which can deal with time-variable properties of a signal. How-

ver, the wavelet methods do assume a local stationary, meaning that
he statistical properties of the signal in a specific point of time does not
hange in a time interval around it. 

With the above discussion in mind, in almost all research on electro-
hysiological neural data, a researcher may have to validate the assump-
ion of stationarity. The same applies for Harmoni. Similar to the other
ethods, if the assumption of stationarity and the presence of periodic

ctivity is only valid for short segments of data, then these methods (and
lso Harmoni) should be applied on sliding windows with a window
ength that matches the assumption. Note that in this approach, it is im-
ortant to take into account that the window length should be adapted
n a way that the methods do have their functionality, and possible bi-
ses due to short data length are taken into account (i.e. a spurious in-
rease in phase locking value with very short segments). Regarding the
erformance of Harmoni on data with different durations, we include
18 
imulations and detailed information in Section 3 of the supplementary
aterial. In conclusion, Harmoni shows its efficacy to suppress the spu-

ious interactions which are above the random level. In case a spurious
nteraction has a value which is at the level of random synchronization,
armoni may not be able to suppress it effectively. 

.7. Relation to other methods 

Generalized cross-frequency decomposition-GCFD ( Volk et al.,
018 ): Harmoni and GCFD use an optimization procedure to mini-
ize/maximize the synchronization of two signals. However, their prob-

ems differ conceptually. GCFD is a linear source separation method
nd aims at decomposing multi-channel data to cross-frequency syn-
hronized sources. That is, GCFD gets multi-channel data as its input
nd in the output it returns signal pairs which are n:m synchronized
o each other and they are associated with (generally) distinct topogra-
hies. This is in contrast to Harmoni, which operates on source-space,
ocal data, i.e. ROI signals constructed from inverse-modelled data, or
 source subspace e.g. SSD or ICA subspaces. While the optimization
f GCFD searches for a spatial filter to mix few source signals at dif-
erent locations, Harmoni regresses a single signal on another signal
ithin the same spatial location. Therefore, Harmoni is a method for

uppressing a signal component of the local data, whereas GCFD is a de-
omposition method of multi-channel data. Moreover, GCFD (like other
ource-separation methods e.g. NID ( Idaji et al., 2020 ) cannot differen-
iate harmonic-driven cross-frequency couplings from the genuine ones
y itself, unless both sources have clearly different spatial location. In a
ost-processing step the source pairs with similar spatial patterns may be
arked as harmonic-driven couplings. In contrast, Harmoni effectively

uppresses the harmonic-driven components. 
Bicoherence : The presence of harmonic components in a signal

ould be manifested in the univariate bispectrum as high values in
requency pairs which are integer multiples of a base frequency (i.e.
requency pairs 𝑛𝑓 0 and 𝑚𝑓 0 ). This is actually equivalent to the co-
ccurrence of phase synchronizations between the harmonic frequen-
ies. Therefore, bicoherence can only quantify the potential presence of
armonic-driven interactions; however, it is unable to eliminate these
nteractions or disentangle them from the genuine ones. For more in-
ormation on bicoherence, we refer the reader to Bartz et al. (2019) ,
ovach et al. (2018) . 

ode and data availability 

Harmoni can be installed as a Python package. The codes of Har-
oni, simulating toy examples, as well as analyzing the simulated EEG

nd real data are available at github.com/harmonic-minimization . EEG
ata is from LEMON dataset, which is a public database ( Babayan et al.,
019 ). 
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