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Correction for intracranial volume 
 
It is common practice in studies of (cross-sectional) brain volumes to correct for intracranial 
volume or total brain volume: either to be sure that the differences that are found are region 
specific and not caused by a difference in overall brain size, or to be able to distinguish 
developmental effects (maximal brain size, approximated by the intracranial volume) from 
effects that occur later in life. When considering longitudinal changes over time, the choice 
of whether one has to correct translates into the question whether one wants to investigate 
absolute change (in e.g. ml/year, no correction) versus relative change (in %/year, correcting 
for baseline volume). However, neither total brain volume nor intracranial volume95 are 
stable across the lifespan, which complicates interpretation when these are used as correction 
factors96, especially when one combines data from across the lifespan. Therefore, we chose 
not to include overall brain volume in our main GWAS.  
 
As a post-hoc analysis, we assessed the influence of adding intracranial volume to our 
analysis in the replication cohorts. To this end, we calculated relative annual change by 
subtracting baseline volume from follow-up volume, and dividing by follow-up duration in 
years times intracranial volume at baseline. We excluded the phenotypes mean cortical 
thickness and total surface area from these analyses, since these are global measures 
themselves and a one- or two- dimensional brain measure should not be corrected by a three-
dimensional volume. The association between relative and absolute annual change was very 
high in all three cohorts (all correlations > 0.97), which can be explained by intracranial 
volume having a much lower standard deviation compared to the mean than annual rates of 
change. This implies that applying a correction for ICV to annual rates of change is 
approximately a scaling factor which should not influence the GWAS findings. As expected, 
the effect estimates and p-values from the GWAS for relative and absolute annual change 
were also highly correlated (> 0.96; Supplementary Figure 8).  
 
Potential scanner effects 
 
Combining imaging data from multiple sources could be subject to biases driven by the 
scanner manufacturer of scanning sequence, which could be a problem if data included in the 
study is not well distributed across different acquisitions with respect to the contrast of 
interest. Different approaches for pooling of imaging data have been proposed, including pre-
acquisition harmonization of protocols, or post-acquisition methods (e.g. COMBAT97). The 
latter requires access to individual data which was not feasible for our study. However, 
through our design of meta-analysis of rates of change, several potential scanner effects are 
already accounted for. First, we would like to mention that all results are based on the effect 
of a genetic variant within a cohort and the mean of a change rate in a cohort is therefore not 
influencing our genetic findings. That is, a potential within-cohort offset between baseline 
and follow-up measurement does influence the average change rate, but not the GWAS 
output, as the latter is essentially based on the ranking between subjects.  
We further argue that potential additive and multiplicative scanner effects (as are assumed in 
COMBAT) will not bias our meta-analytic findings: additive scanner effects (an offset) is 
already accounted by computation of the annual rate of change, since there we subtract the 
follow-up from the baseline volume. Any multiplicative factors would not influence the Z-



scores (or p-values) within a cohort as those are present in both the SNP-effect and the 
associated standard error. This implies that a potential scanner effect will only affect the 
weights in our meta-analyses, and this will not change the null distribution. Therefore, if 
anything, potential scanner effects will introduce noise, but should not introduce bias.  
 
For our top-findings, we ran simulation analyses incorporating potential multiplicative 
scanner effects which indeed show that our main findings are robust to relatively large 
perturbations: we assumed a multiplicative effect on the beta-SNP estimates for each 
cohort/scanner, by simulating a multiplicative factor from a standard normal distribution with 
mean 1 and a standard deviation ranging from 0.01 to 0.05. This multiplication factor should 
be interpreted as a deviation from the true volume, i.e. a factor of 0.95 suggests that brain 
volume is underestimated in all subjects (more so for larger brains than for smaller brains in 
absolute terms). Hence, also the change rate and associated SNP-beta obtained from GWAS 
is underestimated. The upper bound of 0.05 corresponds to the extreme case where relatively 
large perturbations occur regularly (in 5% of cases, the error will be larger than 10% of the 
volume). After simulating the multiplication factor for each cohort, we multiplied mean and 
standard error by this factor and repeated the meta-analysis or meta-regression 1000 times. 
This analysis was done for all our genome-wide significant findings. Supplementary Figure 9 
shows the percentage of cases where the top-findings were still significant, as a function of 
the variation of simulated multiplicative scanner effects. Power to detect our findings was 
generally high, indicating that our findings are robust under such modest perturbations.  
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Supplementary Figure 1A: change rate amygdala volume. Top: Change rates per cohort and estimated trajectories 
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1B: change rate caudate volume
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Supplementary Figure 1B: change rate caudate volume.Top: Change rates per cohort and estimated trajectories of 
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1C: change rate cerebellum white matter volume
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Supplementary Figure 1C: change rate cerebellum white matter volume.Top: Change rates per cohort and 
estimated trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of 
individual cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size 
of the points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in 
phase 2 are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes 
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASs for rate of 
change.



1D: change rate cerebellum gray matter volume
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Supplementary Figure 1D: change rate cerebellum gray matter volume. Top: Change rates per cohort and 
estimated trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of 
individual cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size 
of the points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in 
phase 2 are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes 
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASs for rate of 
change.



1E: change rate cerebral white matter volume

−5

0

5

10

15

D 
in

 m
l/y

ea
r

400
440
480

20 40 60 80
age in years

m
l

age
independent

linear 
age-dependent

quadratic 
age-dependent

Supplementary Figure 1E: change rate cerebral white matter volume. Top: Change rates per cohort and estimated 
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual 
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the 
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes 
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASs for rate of 
change.



1F: change rate cortex volume
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Supplementary Figure 1F: change rate cortex volume. Top: Change rates per cohort and estimated trajectories of 
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1G: change rate cortical thickness
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Supplementary Figure 1G: change rate cortical thickness. Top: Change rates per cohort and estimated trajectories 
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1H: change rate hippocampus volume
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Supplementary Figure 1H: change rate hippocampus volume. Top: Change rates per cohort and estimated 
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual 
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the 
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes 
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASs for rate of 
change.
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Supplementary Figure 1I: change rate lateral ventricle volume.Top: Change rates per cohort and estimated 
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual 
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the 
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes 
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASs for rate of 
change.
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Supplementary Figure 1J: change rate nucleus accumbens volume. Top: Change rates per cohort and estimated 
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual 
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the 
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes 
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows 
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASs for rate of 
change.
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Supplementary Figure 1K: change rate pallidum volume. Top: Change rates per cohort and estimated trajectories of 
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1L: change rate putamen volume

−0.1

0.0

0.1

0.2

0.3

D 
in

 m
l/y

ea
r

9.5
11.0
12.5

20 40 60 80
age in years

m
l

age
independent

linear 
age-dependent

quadratic 
age-dependent

Supplementary Figure 1L: change rate putamen volume.Top: Change rates per cohort and estimated trajectories of 
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1M: change rate surface area

0

20

40

D 
in

 c
m

^2
/y

ea
r

160017001800

20 40 60 80
age in years

cm
^2

age
independent

linear 
age-dependent

quadratic 
age-dependent

Supplementary Figure 1M: change rate surface area. Top: Change rates per cohort and estimated trajectories of 
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 1N: change rate thalamus volume. Top: Change rates per cohort and estimated trajectories 
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 1O: change rate total brain volume.Top: Change rates per cohort and estimated trajectories 
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are 
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents 
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in 
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed 
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and 
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 2A: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs1425034; change rate pallidum; independent of age. Locus plots were created with locus 
zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2B: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs73210410; change rate pallidum; linear age dependency. Locus plots were created with locus 
zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2C: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs11726181; change rate cerebral white matter; quadratic age dependency. Locus plots were 
created with locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2D: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP 5:157751672; change rate surface area; linear age dependency. Locus plots were created with 
locus zoom98. This SNP was not present in 1000G reference file and no SNP in high LD could be identified, no 
LD information or circos plot available. 
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Supplementary Figure 2E: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs10990953; change rate ventricles; independent of age. Locus plots were created with locus 
zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2F: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs17809993; change rate cortex volume quadratic age dependency. Locus plots were created 
with locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2G: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs17809993; change rate cortical thickness quadratic age dependency. Locus plots were created 
with locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2H: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs12019523; change rate caudate; quadratic age dependency. Locus plots were created with 
locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2I: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP 13:72353395; change rate cerebral white matter volume; quadratic age dependency; note that 
this SNP was not in the reference dataset containing LD structure; displayed LD structure is based on 
13:7234009, R2 = 0.87 with the top-SNP. Locus plots were created with locus zoom98. Circos plots were created 
with FUMA66. 
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Supplementary Figure 2J: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs72772746; change rate lateral ventricles; independent of age. Locus plots were created with 
locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2K: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP  rs12325429; change rate total brain volume; independent of age. Locus plots were created with 
locus zoom98. Circos plots were created with FUMA66. 



0

2

4

6

8

10

-
lo

g 1
0(p
−v

al
ue

)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

19:45388130

0.2
0.4
0.6
0.8

r2

ZNF285

ZNF229

ZNF180

CEACAM20

CEACAM22P

IGSF23

PVR

MIR4531

CEACAM19

CEACAM16

BCL3

MIR8085

CBLC

BCAM

NECTIN2

TOMM40

APOE

APOC1

APOC1P1

APOC4

APOC4−APOC2

APOC2

CLPTM1

RELB

CLASRP

ZNF296

GEMIN7

LOC105372419

PPP1R37

NKPD1

TRAPPC6A

BLOC1S3

EXOC3L2

MARK4

CKM

KLC3

ERCC2

PPP1R13L

45 45.2 45.4 45.6 45.8
Position on chr19 (Mb)

2L

Supplementary Figure 2L: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP  rs34342646; change rate surface area; quadratic age dependency. Locus plots were created 
with locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 2M: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide 
significant SNP rs429358; change rate hippocampus; quadratic age dependency. Locus plots were created with 
locus zoom98. Circos plots were created with FUMA66. 
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Supplementary Figure 3A: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3A) 
rs1425034; change rate pallidum; independent of age; total N = 14760. The top figure displays a forest-plot in 
which means and 95% confidence intervals are displayed for each cohort. Confidence intervals that are 
outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization of the effect of 
the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the carriers of the 
effect allele, the black line represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3B: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3B) 
rs73210410; change rate pallidum; linear age dependency; total N = 14760. The top figure displays the estimated 
effect of the tested allele on the change rate in each cohort against age. The center of the circles represent the 
effect size of the tested allele for each cohort, the radius of the circles are proportional to sample size. The red 
line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-regression. The 
bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The red line 
represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. 
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Supplementary Figure 3C: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3C) 
rs11726181; change rate cerebral white matter; quadratic age dependency; total N = 12377. The top figure 
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the 
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to 
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta 
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the 
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line 
represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3D: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3D) 
5:157751672; change rate surface area, linear age dependency*; total N = 11346. The top figure displays the 
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles 
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample 
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The 
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. This SNP was not present in the LD database or cross-sectional GWAS, bottom 
figure was created assuming no effect of the variant on volume itself. 
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Supplementary Figure 3E: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3E) 
rs10990953; change rate ventricles; independent of age;  total N = 12486. The top figure displays a forest-plot 
in which means and 95%  confidence intervals are displayed for each cohort. Confidence intervals that are 
outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization of the effect of 
the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the carriers of the 
effect allele, the black line represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3F: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3F) FAU –
top SNP rs769440 change rate cerebellum white matter; linear age dependency; total N = 12527. The top figure 
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the 
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to 
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta 
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the 
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line 
represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3G: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3G) 
rs17809993; change rate cortex volume quadratic age dependency; total N = 14758. The top figure displays the 
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles 
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample 
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The 
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. 
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Supplementary Figure 3H: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3H) 
rs17809993; change rate cortical thickness; quadratic age dependency; total N = 14769. The top figure displays 
the estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles 
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample 
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The 
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. 
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Supplementary Figure 3I: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3I) 
rs12019523; change rate caudate; quadratic age dependency; total N = 14372. The top figure displays the 
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles 
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample 
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The 
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. 
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Supplementary Figure 3J: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3J) 
DACH1 and 13:72353395; change rate cerebral white matter volume; quadratic age dependency; total N = 13864. 
The top figure displays the estimated effect of the tested allele on the change rate in each cohort against age. The 
center of the circles represent the effect size of the tested allele for each cohort, the radius of the circles are 
proportional to sample size. The red line displays the estimated age-effect with 95% confidence interval from the 
meta analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the 
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line 
represents the lifespan trajectory of the non-carriers. 
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change rate lateral ventricles; effect of allele "a" in 16:20065681

FE Model
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Supplementary Figure 3K: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3K) 
GPR139 and rs72772746; change rate lateral ventricles; independent of age; total N = 14593. The top figure 
displays a forest-plot in which means and 95% confidence intervals are displayed for each cohort. Confidence 
intervals that are outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization 
of the effect of the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the 
carriers of the effect allele, the black line represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3L: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3L) 
rs12325429; change rate total brain volume; independent of age; total N = 14773. The top figure displays a 
forest-plot in which means and 95% confidence intervals are displayed for each cohort. Confidence intervals 
that are outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization of the 
effect of the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the 
carriers of the effect allele, the black line represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3M: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3M) 
APOE – top SNP rs769449; change rate surface area; quadratic age dependency; total N = 13030. The top figure 
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the 
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to 
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta 
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the 
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line 
represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3N: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3N) 
rs34342646; change rate surface area, quadratic age dependency; total N – 13329. The top figure displays the 
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles 
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample 
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The 
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. 
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Supplementary Figure 3O: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3O) 
APOE and rs429358; change rate hippocampus; quadratic age dependency total N = 13329. The top figure 
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the 
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to 
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta 
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the 
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line 
represents the lifespan trajectory of the non-carriers. 
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Supplementary Figure 3P: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3P) APOE 
– top SNP rs429358; change rate amygdala; linear age dependency*; total N = 13685. The top figure displays the 
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles 
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample 
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The 
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan 
trajectory of the non-carriers. *APOE also showed a significant quadratic age dependency for change rate of 
amygdala; the most parsimonious model is shown.  
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Supplementary Figure 4: Expected versus actual overlap for the first top-1000 ranked genes for the phase 2 
analysis. Results from age-independent analysis(red), linear age -dependent analysis (green) and quadratic 
age-dependent analysis (blue) are shown in one figure. Top-N ranks are marked for nominally (dots) or FDR-
corrected (within the top-1000 genes for this phenotype; triangles) significance for over- or under-
representation of genes associated with brain structural rates of change amongst the top-N ranked genes for 
cross-sectional brain measures. For lateral ventricles and cerebellum grey and white matter, summary 
statistics for the cross-sectional phenotype were only available for left and right lateral and inferior lateral 
ventricle, and left and right cerebellum grey and white matter, separately. Therefore, for those measures we 
show curves for overlap with the separate cross-sectional phenotypes.



*

*
*

*

*

*
*

*
*
*
*
*
*
*

*

*

*

*

*

*
*
*

*
*

*

*

*
*
*
*

*

*

*

*
*

*

*

* 0

1

2

3

4ag
gre

ss
ion

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n-d

efi
cit

/hy
pe

rac
tiv

ity
 di

so
rde

r

au
tis

m
bip

ola
r d

iso
rde

r

bo
dy

 m
as

s i
nd

ex

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
cti

on
ing

de
pre

ss
ion

dia
be

tes
 ty

pe
 2

ep
ile

ps
y

ev
er 

sm
ok

ing

he
igh

t

inf
lam

mato
ry 

bo
wel 

dis
ea

se

ins
om

nia

mult
ipl

e s
cle

ros
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sc
hiz

op
hre

nia

Δ amygdala
Δ caudate

Δ cerebellum cortex
Δ cerebellum white matter

Δ cerebral white matter
Δ cortex

Δ cortical thickness
Δ hippocampus

Δ lateral ventricles
Δ nucleus accumbens

Δ pallidum
Δ putamen

Δ surface area
Δ thalamus
Δ total brain

*

0

1

2

3

4ag
gre

ss
ion

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n-d

efi
cit

/hy
pe

rac
tiv

ity
 di

so
rde

r

au
tis

m
bip

ola
r d

iso
rde

r

bo
dy

 m
as

s i
nd

ex

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
cti

on
ing

de
pre

ss
ion

dia
be

tes
 ty

pe
 2

ep
ile

ps
y

ev
er 

sm
ok

ing

he
igh

t

inf
lam

mato
ry 

bo
wel 

dis
ea

se

ins
om

nia

mult
ipl

e s
cle

ros
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sc
hiz

op
hre

nia

Δ amygdala
Δ caudate

Δ cerebellum cortex
Δ cerebellum white matter

Δ cerebral white matter
Δ cortex

Δ cortical thickness
Δ hippocampus

Δ lateral ventricles
Δ nucleus accumbens

Δ pallidum
Δ putamen

Δ surface area
Δ thalamus
Δ total brain

0

1

2

3

4ag
gre

ss
ion

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n-d

efi
cit

/hy
pe

rac
tiv

ity
 di

so
rde

r

au
tis

m
bip

ola
r d

iso
rde

r

bo
dy

 m
as

s i
nd

ex

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
cti

on
ing

de
pre

ss
ion

dia
be

tes
 ty

pe
 2

ep
ile

ps
y

ev
er 

sm
ok

ing

he
igh

t

inf
lam

mato
ry 

bo
wel 

dis
ea

se

ins
om

nia

mult
ipl

e s
cle

ros
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sc
hiz

op
hre

nia

Δ amygdala
Δ caudate

Δ cerebellum cortex
Δ cerebellum white matter

Δ cerebral white matter
Δ cortex

Δ cortical thickness
Δ hippocampus

Δ lateral ventricles
Δ nucleus accumbens

Δ pallidum
Δ putamen

Δ surface area
Δ thalamus
Δ total brain

*

*

*

*

*

*

*
*
*

*
*
*
*
*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

* 0

1

2

3

4ag
gre

ss
ion

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n-d

efi
cit

/hy
pe

rac
tiv

ity
 di

so
rde

r

au
tis

m
bip

ola
r d

iso
rde

r

bo
dy

 m
as

s i
nd

ex

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
cti

on
ing

de
pre

ss
ion

dia
be

tes
 ty

pe
 2

ep
ile

ps
y

ev
er 

sm
ok

ing

he
igh

t

inf
lam

mato
ry 

bo
wel 

dis
ea

se

ins
om

nia

mult
ipl

e s
cle

ros
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sc
hiz

op
hre

nia

Δ amygdala
Δ caudate

Δ cerebellum cortex
Δ cerebellum white matter

Δ cerebral white matter
Δ cortex

Δ cortical thickness
Δ hippocampus

Δ lateral ventricles
Δ nucleus accumbens

Δ pallidum
Δ putamen

Δ surface area
Δ thalamus
Δ total brain

5A

5B

5C

pleiotropy

concordance discordance

pleiotropy
healthy



*

*

*

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*

*
*
*
*
*

*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*

*
*
*
*
*
*
*
*
*
*
*
*

*

*

*

*
*

*
*
*
*
*
*
*

*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* 0

1

2

3

4
ag

gre
ssi

on

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n−

de
fici

t/h
yp

era
ctiv

ity 
dis

ord
er

au
tism

bip
ola

r d
iso

rde
r

bo
dy

 m
as

s in
de

x

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
ctio

nin
g

de
pre

ssi
on

dia
be

tes
 ty

pe
 2

ep
ilep

sy

eve
r s

mok
ing

he
igh

t
inf

eri
orl

am
mato

ry 
bo

wel 
dis

ea
se

ins
om

nia

mult
iple

 sc
ler

os
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sch
izo

ph
ren

ia

amygdala
caudate

L cerebellum cortex
R cerebellum cortex

 L cerebellum white matter
 R cerebellum white matter

cerebral white matter
cortex

cortical thickness
hippocampus

L lateral ventricle
 L inferior lateral ventricle

R lateral ventricle
 R inferior lateral ventricle

nucleus accumbens
pallidum
putamen

surface area
thalamus

total brain

*
*
*
*

*

*
*

*

*
*
*
*
*

*
*

*

*

*

*

*

*

*

*

0

1

2

3

4
ag

gre
ssi

on

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n−

de
fici

t/h
yp

era
ctiv

ity 
dis

ord
er

au
tism

bip
ola

r d
iso

rde
r

bo
dy

 m
as

s in
de

x

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
ctio

nin
g

de
pre

ssi
on

dia
be

tes
 ty

pe
 2

ep
ilep

sy

eve
r s

mok
ing

he
igh

t
inf

eri
orl

am
mato

ry 
bo

wel 
dis

ea
se

ins
om

nia

mult
iple

 sc
ler

os
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sch
izo

ph
ren

ia

amygdala
caudate

L cerebellum cortex
R cerebellum cortex

 L cerebellum white matter
 R cerebellum white matter

cerebral white matter
cortex

cortical thickness
hippocampus

L lateral ventricle
 L inferior lateral ventricle

R lateral ventricle
 R inferior lateral ventricle

nucleus accumbens
pallidum
putamen

surface area
thalamus

total brain

*

*

*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*

*

* *
*

*

*

*

*

*

*

*

0

1

2

3

4
ag

gre
ssi

on

alc
oh

ol 
de

pe
nd

en
ce

Alzh
eim

er'
s d

ise
as

e

att
en

tio
n−

de
fici

t/h
yp

era
ctiv

ity 
dis

ord
er

au
tism

bip
ola

r d
iso

rde
r

bo
dy

 m
as

s in
de

x

bra
in 

ag
e g

ap

co
gn

itiv
e f

un
ctio

nin
g

de
pre

ssi
on

dia
be

tes
 ty

pe
 2

ep
ilep

sy

eve
r s

mok
ing

he
igh

t
inf

eri
orl

am
mato

ry 
bo

wel 
dis

ea
se

ins
om

nia

mult
iple

 sc
ler

os
is

Park
ins

on
's d

ise
as

e

rhe
um

ato
id 

art
hri

tis

sch
izo

ph
ren

ia

amygdala
caudate

L cerebellum cortex
R cerebellum cortex

 L cerebellum white matter
 R cerebellum white matter

cerebral white matter
cortex

cortical thickness
hippocampus

L lateral ventricle
 L inferior lateral ventricle

R lateral ventricle
 R inferior lateral ventricle

nucleus accumbens
pallidum
putamen

surface area
thalamus

total brain

5E

5D pleiotropy

concordance discordance

Supplementary Figure 5: iSECA results for overlap between GWAS summary statistics of structural brain change 
with GWAS summary statistics of other phenotypes testing for pleiotropy (A), concordance and discordance of 
effects (B) and pleiotropy in the subgroup excluding subjects with a diagnosis (C). For comparison, we also 
present the same analysis for cross-sectional volumes, again showing pleiotropy results (D), concordance and 
discordance (E). Colors display the significance level on a log-10 scale. Associations that are significant based 
are marked with *. For a fair comparison, the cross-sectional analyses (D-E) used the same significance threshold 
as the change analyses (A-C); even though the latter contained more brain structures. 



6A

6B

Supplementary Figure 6: Heatmaps display normalized expression value (zero mean normalization of log2 
transformed expression) for prioritized genes, for GTEx v8 RNAseq data (A) and BrainSpan data (B). 
Darker red means higher expression of that gene in each label, compared to a darker blue color in the 
same label. Note that PVRL2 is an alias for NECTIN2.
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Supplementary Figure 7:  PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F), 
NECTIN2 (G) and SORCS2 (H).  PheWAS plots show the significance of a gene on a range of traits based on 
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained from GWASAtlas32

(https://atlas.ctglab.nl). Redundant traits were removed for visualization and trait names were shortened. Full list of 
significant gene-based associations is in Supplementary Table 17.
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Supplementary Figure 7:  PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F), 
NECTIN2 (G) and SORCS2 (H).  PheWAS plots show the significance of a gene on a range of traits based on 
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained from GWASAtlas32

(https://atlas.ctglab.nl). Redundant traits were removed for visualization and trait names were shortened. Full list of 
significant gene-based associations is in Supplementary Table 17.
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Supplementary Figure 7:  PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F), 
NECTIN2 (G) and SORCS2 (H).  PheWAS plots show the significance of a gene on a range of traits based on 
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained from GWASAtlas32

(https://atlas.ctglab.nl). Redundant traits were removed for visualization and trait names were shortened. Full list of 
significant gene-based associations is in Supplementary Table 17.
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Supplementary Figure 7:  PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F), 
NECTIN2 (G) and SORCS2 (H).  PheWAS plots show the significance of a gene on a range of traits based on 
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained from GWASAtlas32

(https://atlas.ctglab.nl). Redundant traits were removed for visualization and trait names were shortened. Full list of 
significant gene-based associations is in Supplementary Table 17.



Supplementary Figure 8: Scatter plots showing the SNP effects for rate of change of hippocampus volume  
(absolute, x-axes) and rate of change of hippocampus volume divided by intracranial volume (relative; y-axes) for 
the three cohorts added in phase 2. SNPs were clumped at r2 < 0.1 for visualization purposes. 
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Supplementary Figure 9: For each of the genome-wide significant SNPs in phase 2, we simulated multiplicative 
scanner effects (independently drawn from N(1,s) per cohort; repeated 1000 times) and applied these to the 
original effect sizes and standard errors per cohort, after which we recalculated the meta-analysis or meta-
regression. The x-axis shows the variation of the simulated effects, the y-axis shows the percentage of cases 
where the top-findings were still significant. Colors represent the different SNPs. The black squares are the 
average power over all SNPs tested. 



Supplementary Figure 10: QQ plots separately for each participating cohort 

QQ plots of summary statistics uploaded per phenotype and per participating cohort, showing 

expected (x-axis; under the null hypothesis of no genetic signal) versus observed (y-

axis) minus log10-transformed p-values.  
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