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Correction for intracranial volume

It is common practice in studies of (cross-sectional) brain volumes to correct for intracranial
volume or total brain volume: either to be sure that the differences that are found are region
specific and not caused by a difference in overall brain size, or to be able to distinguish
developmental effects (maximal brain size, approximated by the intracranial volume) from
effects that occur later in life. When considering longitudinal changes over time, the choice
of whether one has to correct translates into the question whether one wants to investigate
absolute change (in e.g. ml/year, no correction) versus relative change (in %/year, correcting
for baseline volume). However, neither total brain volume nor intracranial volume®” are
stable across the lifespan, which complicates interpretation when these are used as correction
factors’®, especially when one combines data from across the lifespan. Therefore, we chose
not to include overall brain volume in our main GWAS.

As a post-hoc analysis, we assessed the influence of adding intracranial volume to our
analysis in the replication cohorts. To this end, we calculated relative annual change by
subtracting baseline volume from follow-up volume, and dividing by follow-up duration in
years times intracranial volume at baseline. We excluded the phenotypes mean cortical
thickness and total surface area from these analyses, since these are global measures
themselves and a one- or two- dimensional brain measure should not be corrected by a three-
dimensional volume. The association between relative and absolute annual change was very
high in all three cohorts (all correlations > 0.97), which can be explained by intracranial
volume having a much lower standard deviation compared to the mean than annual rates of
change. This implies that applying a correction for ICV to annual rates of change is
approximately a scaling factor which should not influence the GWAS findings. As expected,
the effect estimates and p-values from the GWAS for relative and absolute annual change
were also highly correlated (> 0.96; Supplementary Figure 8).

Potential scanner effects

Combining imaging data from multiple sources could be subject to biases driven by the
scanner manufacturer of scanning sequence, which could be a problem if data included in the
study is not well distributed across different acquisitions with respect to the contrast of
interest. Different approaches for pooling of imaging data have been proposed, including pre-
acquisition harmonization of protocols, or post-acquisition methods (e.g. COMBAT?®’). The
latter requires access to individual data which was not feasible for our study. However,
through our design of meta-analysis of rates of change, several potential scanner effects are
already accounted for. First, we would like to mention that all results are based on the effect
of a genetic variant within a cohort and the mean of a change rate in a cohort is therefore not
influencing our genetic findings. That is, a potential within-cohort offset between baseline
and follow-up measurement does influence the average change rate, but not the GWAS
output, as the latter is essentially based on the ranking between subjects.

We further argue that potential additive and multiplicative scanner effects (as are assumed in
COMBAT) will not bias our meta-analytic findings: additive scanner effects (an offset) is
already accounted by computation of the annual rate of change, since there we subtract the
follow-up from the baseline volume. Any multiplicative factors would not influence the Z-



scores (or p-values) within a cohort as those are present in both the SNP-effect and the
associated standard error. This implies that a potential scanner effect will only affect the
weights in our meta-analyses, and this will not change the null distribution. Therefore, if
anything, potential scanner effects will introduce noise, but should not introduce bias.

For our top-findings, we ran simulation analyses incorporating potential multiplicative
scanner effects which indeed show that our main findings are robust to relatively large
perturbations: we assumed a multiplicative effect on the beta-SNP estimates for each
cohort/scanner, by simulating a multiplicative factor from a standard normal distribution with
mean 1 and a standard deviation ranging from 0.01 to 0.05. This multiplication factor should
be interpreted as a deviation from the true volume, i.e. a factor of 0.95 suggests that brain
volume is underestimated in all subjects (more so for larger brains than for smaller brains in
absolute terms). Hence, also the change rate and associated SNP-beta obtained from GWAS
is underestimated. The upper bound of 0.05 corresponds to the extreme case where relatively
large perturbations occur regularly (in 5% of cases, the error will be larger than 10% of the
volume). After simulating the multiplication factor for each cohort, we multiplied mean and
standard error by this factor and repeated the meta-analysis or meta-regression 1000 times.
This analysis was done for all our genome-wide significant findings. Supplementary Figure 9
shows the percentage of cases where the top-findings were still significant, as a function of
the variation of simulated multiplicative scanner effects. Power to detect our findings was
generally high, indicating that our findings are robust under such modest perturbations.
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1A: change rate amygdala volume
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Supplementary Figure 1A: change rate amygdala volume. Top: Change rates per cohort and estimated trajectories
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1B: change rate caudate volume
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Supplementary Figure 1B: change rate caudate volume.Top: Change rates per cohort and estimated trajectories of
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.



1C: change rate cerebellum white matter volume

1—

A in ml/year

[
20 40

I
60

age in years

age
independent

linear
age-dependent

quadratic
age-dependent

Supplementary Figure 1C: change rate cerebellum white matter volume.Top: Change rates per cohort and
estimated trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of
individual cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size
of the points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in
phase 2 are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASSs for rate of

change.
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1D: change rate cerebellum gray matter volume
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Supplementary Figure 1D: change rate cerebellum gray matter volume. Top: Change rates per cohort and
estimated trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of
individual cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size
of the points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in
phase 2 are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASSs for rate of
change.



1E: change rate cerebral white matter volume
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Supplementary Figure 1E: change rate cerebral white matter volume. Top: Change rates per cohort and estimated
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASSs for rate of
change.
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Supplementary Figure 1F: change rate cortex volume. Top: Change rates per cohort and estimated trajectories of
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 1G: change rate cortical thickness. Top: Change rates per cohort and estimated trajectories
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2

are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes

themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows

contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASSs for rate of

change.
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Supplementary Figure 11: change rate lateral ventricle volume.Top: Change rates per cohort and estimated
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASSs for rate of
change.
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Supplementary Figure 1J: change rate nucleus accumbens volume. Top: Change rates per cohort and estimated
trajectories of the change rate with confidence intervals (in green) are displayed above. Mean values of individual
cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the
points represents the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2
are displayed in grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes
themselves are displayed below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows
contain Manhattan plots and QQ-plots for age-independent, age linear and age quadratic GWASSs for rate of
change.
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Supplementary Figure 1K: change rate pallidum volume. Top: Change rates per cohort and estimated trajectories of
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the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are

displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents

the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in

grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and

QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 1L: change rate putamen volume.Top: Change rates per cohort and estimated trajectories of
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 1M: change rate surface area. Top: Change rates per cohort and estimated trajectories of
the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 1N: change rate thalamus volume. Top: Change rates per cohort and estimated trajectories
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
QQ-plots for age-independent, age linear and age quadratic GWASs for rate of change.
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Supplementary Figure 10: change rate total brain volume.Top: Change rates per cohort and estimated trajectories
of the change rate with confidence intervals (in green) are displayed above. Mean values of individual cohorts are
displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents
the relative size of the cohorts, total sample size N=15640. Cohorts that were added in phase 2 are displayed in
grey. Only cohorts that satisfy N>75 are shown. The estimated trajectories of the volumes themselves are displayed
below, for all subjects (solid line) and healthy subjects only (dashed line). Bottom rows contain Manhattan plots and
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Supplementary Figure 2A: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs1425034; change rate pallidum; independent of age. Locus plots were created with locus
zoom?®8, Circos plots were created with FUMASS.
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Supplementary Figure 2B: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs73210410; change rate pallidum; linear age dependency. Locus plots were created with locus
zoom?®8, Circos plots were created with FUMASS.
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Supplementary Figure 2C: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs11726181; change rate cerebral white matter; quadratic age dependency. Locus plots were
created with locus zoom?. Circos plots were created with FUMA®6.
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Supplementary Figure 2D: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP 5:157751672; change rate surface area; linear age dependency. Locus plots were created with
locus zoom®8. This SNP was not present in 1000G reference file and no SNP in high LD could be identified, no
LD information or circos plot available.
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Supplementary Figure 2E: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide

significant SNP rs10990953; change rate ventricles; independent of age. Locus plots were created with locus
zoom?®8, Circos plots were created with FUMASS.
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Supplementary Figure 2F: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs17809993; change rate cortex volume quadratic age dependency. Locus plots were created
with locus zoom?, Circos plots were created with FUMA®6,
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Supplementary Figure 2G: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs17809993; change rate cortical thickness quadratic age dependency. Locus plots were created
with locus zoom?, Circos plots were created with FUMA®6,
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Supplementary Figure 2H: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs12019523; change rate caudate; quadratic age dependency. Locus plots were created with
locus zoom?®8. Circos plots were created with FUMA®S.
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Supplementary Figure 2I: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP 13:72353395; change rate cerebral white matter volume; quadratic age dependency; note that
this SNP was not in the reference dataset containing LD structure; displayed LD structure is based on

13:7234009, R2 = 0.87 with the top-SNP. Locus plots were created with locus zoom?. Circos plots were created
with FUMAG8S,
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Supplementary Figure 2J: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs72772746; change rate lateral ventricles; independent of age. Locus plots were created with
locus zoom?®8. Circos plots were created with FUMA®S.
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Supplementary Figure 2K: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs12325429; change rate total brain volume; independent of age. Locus plots were created with
locus zoom?®8. Circos plots were created with FUMA®S.
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Supplementary Figure 2L: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs34342646; change rate surface area; quadratic age dependency. Locus plots were created
with locus zoom?, Circos plots were created with FUMA®6,
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Supplementary Figure 2M: Locusplots (top), eQTL and chromatin interaction mapping (bottom) for genome-wide
significant SNP rs429358; change rate hippocampus; quadratic age dependency. Locus plots were created with
locus zoom?®8. Circos plots were created with FUMA®S.
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Supplementary Figure 3A: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3A)
rs1425034; change rate pallidum; independent of age; total N = 14760. The top figure displays a forest-plot in
which means and 95% confidence intervals are displayed for each cohort. Confidence intervals that are
outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization of the effect of
the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the carriers of the
effect allele, the black line represents the lifespan trajectory of the non-carriers.
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Supplementary Figure 3B: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3B)
rs73210410; change rate pallidum; linear age dependency; total N = 14760. The top figure displays the estimated
effect of the tested allele on the change rate in each cohort against age. The center of the circles represent the
effect size of the tested allele for each cohort, the radius of the circles are proportional to sample size. The red
line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-regression. The
bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The red line
represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers.



3C change rate cerebral white matter
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Supplementary Figure 3C: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3C)
rs11726181; change rate cerebral white matter; quadratic age dependency; total N = 12377. The top figure
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line
represents the lifespan trajectory of the non-carriers.
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3D change rate surface area
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Supplementary Figure 3D: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3D)
5:157751672; change rate surface area, linear age dependency*; total N = 11346. The top figure displays the
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers. This SNP was not present in the LD database or cross-sectional GWAS, bottom
figure was created assuming no effect of the variant on volume itself.



change rate lateral ventricles; effect of allele "t" in 9:106597577
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Supplementary Figure 3E: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3E)
rs10990953; change rate ventricles; independent of age; total N = 12486. The top figure displays a forest-plot
in which means and 95% confidence intervals are displayed for each cohort. Confidence intervals that are
outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization of the effect of
the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the carriers of the
effect allele, the black line represents the lifespan trajectory of the non-carriers.



change rate cerebellum white matter
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Supplementary Figure 3F: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3F) FAU —
top SNP rs769440 change rate cerebellum white matter; linear age dependency; total N = 12527. The top figure
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line
represents the lifespan trajectory of the non-carriers.



3G change rate cortex
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Supplementary Figure 3G: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3G)
rs17809993; change rate cortex volume quadratic age dependency; total N = 14758. The top figure displays the
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers.



3H change rate cortical thickness
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Supplementary Figure 3H: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3H)
rs17809993; change rate cortical thickness; quadratic age dependency; total N = 14769. The top figure displays
the estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers.



3| change rate caudate
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Supplementary Figure 3I: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3I)
rs12019523; change rate caudate; quadratic age dependency; total N = 14372. The top figure displays the
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers.



3J change rate cerebral white matter
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Supplementary Figure 3J: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3J)
DACH1 and 13:72353395; change rate cerebral white matter volume; quadratic age dependency; total N = 13864.
The top figure displays the estimated effect of the tested allele on the change rate in each cohort against age. The
center of the circles represent the effect size of the tested allele for each cohort, the radius of the circles are
proportional to sample size. The red line displays the estimated age-effect with 95% confidence interval from the
meta analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line
represents the lifespan trajectory of the non-carriers.



change rate lateral ventricles; effect of allele "a" in 16:20065681
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Supplementary Figure 3K: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3K)
GPR139 and rs72772746; change rate lateral ventricles; independent of age; total N = 14593. The top figure
displays a forest-plot in which means and 95% confidence intervals are displayed for each cohort. Confidence
intervals that are outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization
of the effect of the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the
carriers of the effect allele, the black line represents the lifespan trajectory of the non-carriers.



3L change rate total brain; effect of allele "a" in 16:62059248
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Supplementary Figure 3L: Age-independent effect of the significant SNPs/top-SNPs in significant genes. 3L)
rs12325429; change rate total brain volume; independent of age; total N = 14773. The top figure displays a
forest-plot in which means and 95% confidence intervals are displayed for each cohort. Confidence intervals
that are outside the axis of the plot are marked with an arrow. The bottom figure shows a visualization of the
effect of the tested allele on the phenotype itself. The red line represents the lifespan trajectory for the
carriers of the effect allele, the black line represents the lifespan trajectory of the non-carriers.



3M change rate surface area
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Supplementary Figure 3M: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3M)
APOE - top SNP rs769449; change rate surface area; quadratic age dependency; total N = 13030. The top figure
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line
represents the lifespan trajectory of the non-carriers.



3N change rate surface area
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Supplementary Figure 3N: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3N)
rs34342646; change rate surface area, quadratic age dependency; total N — 13329. The top figure displays the
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers.



30 change rate hippocampus
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Supplementary Figure 30: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 30)
APOE and rs429358; change rate hippocampus; quadratic age dependency total N = 13329. The top figure
displays the estimated effect of the tested allele on the change rate in each cohort against age. The center of the
circles represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to
sample size. The red line displays the estimated age-effect with 95% confidence interval from the meta
analysis/meta-regression. The bottom figure shows a visualization of the effect of the tested allele on the
phenotype itself. The red line represents the lifespan trajectory for the carriers of the effect allele, the black line
represents the lifespan trajectory of the non-carriers.



3P change rate amygdala
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Supplementary Figure 3P: Age-dependent effect of the significant SNPs/top-SNPs in significant genes. 3P) APOE
— top SNP rs429358; change rate amygdala; linear age dependency*; total N = 13685. The top figure displays the
estimated effect of the tested allele on the change rate in each cohort against age. The center of the circles
represent the effect size of the tested allele for each cohort, the radius of the circles are proportional to sample
size. The red line displays the estimated age-effect with 95% confidence interval from the meta analysis/meta-
regression. The bottom figure shows a visualization of the effect of the tested allele on the phenotype itself. The
red line represents the lifespan trajectory for the carriers of the effect allele, the black line represents the lifespan
trajectory of the non-carriers. *APOE also showed a significant quadratic age dependency for change rate of
amygdala; the most parsimonious model is shown.



R 8 o
g
g - s ]
8 5 o
g ] g °
H H E
£ 81 g k]
E 2% § s
s F 8
3 9 ] H
3 5 s
5 g 81 g 84
5 g s L
g °7 g g
2 £ 3
3 87 g 8-
&1 g H
o § 24 E
- 2
§
o -4 -4
T T T T T T T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
size of overlapping rank size of overlapping rank size of overlapping rank
. s 4
2 5 @
] LI
g 5 84 o
° g £
Z 2 S 841
5 ERry o
5 3 ° ]
2 2 8
° ] 5 91
8 S 21 s
s 2 g
= 8 2
2 H s g4
g R 5 8
5 : g
E] 2 ]
£ 3 £
s g
g 2 ] 3 8-
£ b 2
H g
g o ERy
R 8
g
-4 -4
T T T T T T T T T T T T T T T T
o 200 400 600 800 1000 o 200 400 600 800 1000 [ 200 400 600 800 1000
size of overlapping rank size of overlapping rank size of overlapping rank
s
8 s
a2 g4 2
g ° ]
3 g s 84
= @7 8 2
] g H
591 g
5 3 5
s g s
g ] g
5 o s o 5 9 -
s ¥ 5 @ 3
g H 3
s g H
FEE § 2 g
§ z g
g s g
s 2 e+ 3
2 2 E]
8 ]
-4 o4 -4
T T T T T T T T T T T T T T : : : r
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
size of overlapping rank size of overlapping rank size of overlapping rank
¢ s 4
g 8 s 4
E £ w
g El é
: e
g g g4 H
H 5 5 %
H Y s
< g g
o g <
Y 3 o g
8 = q 3 o
E I
5 5 £
g 2 g
2 2 &4 £
H g 3 81
H 2 g
g o E
H g 2 g o
k]
o4 -4
T T T T T T T T T T T T . ; . . . .
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
size of overlapping rank size of overlapping rank size of overlapping rank
s
8
s 4
8
g4
g " ER|
5§ g4 2 c 8
g B H g
£ £ g4 k)
z 5 s g
& 84 g s
g H g
B s 84 B
5 ] 5 g
3 8 £ R
s g ]
H 2 9 H
g s &1 g
& H 2 &
§ 2
3 2
3 2
2 o el
e 8§ - 2 o
g e
-4 -4 -
T T T T T T T T T T T T . . . . . ;
o 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 800 1000
size of overlapping rank size of overlapping rank

size of overlapping rank

Supplementary Figure 4: Expected versus actual overlap for the first top-1000 ranked genes for the phase 2
analysis. Results from age-independent analysis(red), linear age -dependent analysis (green) and quadratic
age-dependent analysis (blue) are shown in one figure. Top-N ranks are marked for nominally (dots) or FDR-
corrected (within the top-1000 genes for this phenotype; triangles) significance for over- or under-
representation of genes associated with brain structural rates of change amongst the top-N ranked genes for
cross-sectional brain measures. For lateral ventricles and cerebellum grey and white matter, summary
statistics for the cross-sectional phenotype were only available for left and right lateral and inferior lateral
ventricle, and left and right cerebellum grey and white matter, separately. Therefore, for those measures we
show curves for overlap with the separate cross-sectional phenotypes.
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Supplementary Figure 5: iISECA results for overlap between GWAS summary statistics of structural brain change
with GWAS summary statistics of other phenotypes testing for pleiotropy (A), concordance and discordance of
effects (B) and pleiotropy in the subgroup excluding subjects with a diagnosis (C). For comparison, we also
present the same analysis for cross-sectional volumes, again showing pleiotropy results (D), concordance and
discordance (E). Colors display the significance level on a log-10 scale. Associations that are significant based
are marked with *. For a fair comparison, the cross-sectional analyses (D-E) used the same significance threshold
as the change analyses (A-C); even though the latter contained more brain structures.
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Supplementary Figure 7: PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F),
NECTIN2 (G) and SORCS2 (H). PheWAS plots show the significance of a gene on a range of traits based on
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained from GWASAtlas32
(https://atlas.ctglab.nl). Redundant traits were removed for visualization and trait names were shortened. Full list of
significant gene-based associations is in Supplementary Table 17.
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Supplementary Figure 7: PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F),
NECTIN2 (G) and SORCS2 (H). PheWAS plots show the significance of a gene on a range of traits based on
MAGMA gene-based tests (Bonferroni corrected P-value threshold: 7.51e-07), as obtained from GWASAtlas32
(https://atlas.ctglab.nl). Redundant traits were removed for visualization and trait names were shortened. Full list of
significant gene-based associations is in Supplementary Table 17.
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significant gene-based associations is in Supplementary Table 17.
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Supplementary Figure 7: PheWAS plots for APOE (A), CAB39L (B), CDH8 (C), DACH1 (D), FAU (E), GPR139 (F),
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Supplementary Figure 8: Scatter plots showing the SNP effects for rate of change of hippocampus volume
(absolute, x-axes) and rate of change of hippocampus volume divided by intracranial volume (relative; y-axes) for
the three cohorts added in phase 2. SNPs were clumped at r2 < 0.1 for visualization purposes.
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Supplementary Figure 9: For each of the genome-wide significant SNPs in phase 2, we simulated multiplicative
scanner effects (independently drawn from N(1,s) per cohort; repeated 1000 times) and applied these to the
original effect sizes and standard errors per cohort, after which we recalculated the meta-analysis or meta-
regression. The x-axis shows the variation of the simulated effects, the y-axis shows the percentage of cases
where the top-findings were still significant. Colors represent the different SNPs. The black squares are the
average power over all SNPs tested.



Supplementary Figure 10: QQ plots separately for each participating cohort
QQ plots of summary statistics uploaded per phenotype and per participating cohort, showing
expected (x-axis; under the null hypothesis of no genetic signal) versus observed (y-

axis) minus logjo-transformed p-values.
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