Efficiently Approximating the
Worst-Case Deadline Failure Probability under EDF

Georg von der Briiggen®, Nico Piatkowski?, Kuan-Hsun Chen?,
Jian-Jia Chen®, Katharina Morik®, and Bjérn B. Brandenburg'
"Max Planck Institute for Software Systems (MPI-SWS), Germany, 2Fraunhofer TAIS, Germany, TU Dortmund University, Germany

Abstract—Probabilistic timing guarantees enable a tradeoff
between system safety and hardware costs in embedded real-time
systems. A key metric for assessing whether timing requirements
can be satisfied with sufficiently high probability is the worst-
case deadline failure probability (WCDFP). This paper studies
the WCDFP under earliest-deadline first (EDF) scheduling for
tasks with several probabilistic execution modes (e.g., a low-needs
“typical” mode and a resource-intensive ‘“exceptional” mode).
Under EDF, no known approach can bound the WCDFP for
practically sized workloads since the time complexity of prior
approaches is exponential in the number of jobs.

This paper examines the structure of the EDF WCDFP
problem and establishes a safe, efficiently computable over-
approximation by restricting the analysis to a set of specific
intervals and providing a criterion to stop the derivation early
without risking under-approximation. The analysis first assumes
independent jobs and is then extended to handle dependencies
(i.e., acyclic task chains). An evaluation shows that (i) even if
99.9999% of the jobs must meet their deadlines, a significantly
higher utilization is possible than in the deterministic case, (ii) the
analysis is scalable to 30 tasks with more than 10% jobs in the
hyperperiod, and (iii) assuming independence in the presence of
dependent tasks can severely under-estimate the WCDFP.

I. INTRODUCTION

Real-time systems are classified as hard or soft based on
the strictness of their timing requirements. Whereas hard real-
time systems place utmost importance on timeliness—results
must not just be functionally correct but also always delivered
within the specified timing constraints—soft real-time systems
are robust to occasional “timing glitches.” Hence, they enable
a much more favorable tradeoff between system safety and
hardware costs if it is possible to quantify and bound the risk
of violation of their timing constraints.

In fact, even certain safety-critical workloads do not lend
themselves to a classic hard real-time approach. If a task has
multiple distinct execution modes—such as a low-needs “typ-
ical” mode and an infrequent resource-intensive “exceptional”
mode—both the maximum execution times and relative fre-
quency of occurrence of those modes may differ substantially.

One well-known example are software-based fault-tolerance
techniques [13], [17]-[19], [22] with temporal redundancy to
(partially) re-execute a faulty job, which are usually applied
when the probability that a fault occurs (and thus has to
be corrected) is low. Nonetheless, faults may cluster with
non-zero probability and hence re-execution of jobs may
occur repeatedly in close temporal vicinity. Therefore, a hard-
real-time analysis would have to make extremely pessimistic
assumptions, oblivious to the diminishing probability of “freak
events” (i.e., very rare, exceptional execution conditions).

In contrast, probabilistic timing analyses that quantify the
probability of deadline misses can naturally exploit that ex-
treme scenarios tend to occur only rarely. By allowing for an
a priori assessment of whether the probability of temporal fail-
ure exceeds specified levels of acceptable residual risk (e.g., as
specified by industry safety standards [1], [14]), probabilistic
guarantees allow for an economical tradeoff between hardware
costs and system safety: in many practically relevant systems,
the probability of temporal failure does not actually have to
be zero; it just has to be sufficiently small.

A central metric in the context of probabilistic timing guar-
antees is the worst-case deadline failure probability (WCDFP),
which intuitively corresponds to the probability of the first
deadline miss in any task. It allows lower-bounding the mean
time to (temporal) failure of a system, and if jobs missing their
deadlines are immediately aborted (i.e., there is no backlog of
tardy jobs), it directly corresponds to the expected deadline-
miss rate. Even if tardy jobs are not aborted, which can
cause difficulties due to ripple effects, the WCDFP plays an
important role in the derivation of the deadline-miss rate [9].

We focus on the calculation of the WCDFP under earliest-
deadline first (EDF) scheduling. The most intuitive prior
solutions are based on job-level convolution [2], [4], [16] and
traverse a list of jobs according to their release time (for
static-priority) or their finishing time (for EDF). They have
an exponential time complexity with respect to the number of
jobs and are thus not applicable even for a moderate number of
jobs [7], [21]. Hence, transferring them to periodic or sporadic
tasks under EDF is theoretically possible but not promising.

The task-level convolution [21] and the analytical Chernoff
bound method [7] are generally applicable to larger task sets
under static-priority scheduling. They, however, do not readily
transfer to EDF due to a fundamental difference in analysis:
under static-priority scheduling with constrained deadlines,
only one job (and hence one period) of the task under analysis
has to be evaluated, which means a pseudo-polynomial number
of time points (with respect to the number of tasks) must be
checked. In contrast, under EDF, it must be ensured that the
schedulability condition holds for all time points from the
moment when the system starts. As shown in this paper, if
done naively, this leads to evaluating a number of intervals
exponential in the number of tasks. Hence, the number of
intervals that must be evaluated must be culled substantially.

Contributions. We study the WCDFP of constrained-
deadline tasks under preemptive EDF scheduling in a unipro-

cessor environment and make the following contributions.

o We explain how the WCDFP of all tasks can be over-
approximated assuming that each task has a set of distinct
execution modes and that each task instance’s mode is
indicated by an independent random variable. We first
focus on periodic tasks with synchronous releases, and
then extend our analysis to sporadic tasks and periodic
tasks with arbitrary phases (Sections IV to VI).

o In particular, we show how the number of considered
intervals can be substantially reduced, exploiting a condi-
tion based on the probability that the processor idles. This
condition allows stopping the calculation without under-
approximating the WCDFP, thereby rendering the analy-
sis feasible for task sets of nontrivial size (Section VI-C).

e We relax the independence assumption, allowing the
execution mode of jobs of some tasks to be dependent
on the execution mode of their predecessor(s) in a set of
acyclic task chains, and detail how the WCDFP can still
be upper-bounded in this scenario (Section VII).

o We evaluated randomly generated workloads and found
that a sizable utilization gain is possible, even if only
a very low WCDFP is acceptable. In most settings, we
observed a gain of at least 12% system utilization for an
acceptable WCDFP of 107 (i.e., at least 99.9999% of all
jobs meet their deadline). Importantly, the analysis run-
times remained practical on consumer hardware (ranging
from ~0:26 to ~5:36 hours for sets of 30 tasks).

o We further found that assuming independence when ex-
ecution modes are actually dependent poses a significant
risk of WCDFP under-estimation (Section VIII).

Section II introduces the system model and prior results on
EDF. The precise problem statement is given in Section III.
A short summary of related work can be found in Section IX.

II. MODEL, NOTATION, AND PRELIMINARIES

We consider a set of n independent periodic or sporadic
tasks I' = {7y, 72, , 7, } scheduled on a uniprocessor. Each
task 7; = (C_"i,Di,Ti,wi) releases an unbounded number of
instances called jobs. We let .J; ; denote the j™ job of task 7.

Each task 7; has h execution modes C; = (Cidy--yCih)s
where each mode is a tuple ¢;p = (C;¢,P;(¢)) consisting
of a mode-dependent worst-case execution time (WCET) C; ,
and a mode probability P;(¢) (for ¢ € {1,...,h}). Each job
executes exactly one of the modes: ZZ: 1 P;(¢) = 1. Note that
the term “WCET” is used w.r.t. individual modes and not the
maximum execution time in any mode. We assume a uniform
number of modes h for notational convenience. Dummy modes
with probability 0 can be created to fulfill this assumption.

The arrival times of all jobs are determined by an arrival
sequence «, which is a function that maps each job J; ; to
its release time (or arrival time) a;; = «(J; ;). An arrival
sequence is legal if the jobs of every periodic (resp., sporadic)
task 7; are released exactly (resp., at least) 7; time units apart,
where T; is the period (resp., inter-arrival time) of the task.
The first release of a periodic task is given by its phase ;.
(The first release of a sporadic task is unconstrained.) The

hyperperiod H of I' is the least common multiple (LCM) of
the periods (or inter-arrival times) of all tasks in I'.

A job J; ; of 7; released at time a;; and executed in the
0t execution mode must receive up to C; ¢ units of processor
service before its absolute deadline d; ; = a;; + D;. We
assume constrained deadlines (i.e., D; < T; for each task 7;).
The response time of J; ; is R;; = fi; — a;;, where f; ;
is its finishing time. A task set is schedulable under a given
scheduling policy if all jobs of all tasks meet their deadline
(i.e., R; ; < D; for each job J; ;) in any legal arrival sequence.

We assume dense time. A list of notation is provided in Ta-
ble I. In a slight abuse of notation, given a vector X, we write
2 € X to indicate that z is a component of X . Furthermore,
we denote the indicator function as [expression];, which is
1 if and only if the expression is true and 0 otherwise.

Probabilistic independence. We assume that execution mode
probabilities are independent. In particular, the execution mode
probability of a newly arriving job is independent of the
execution mode of any other job. Hence, the execution mode
of J; ; is determined solely by a random variable X; ; that
assumes value £ € {1, ..., h} with probability P;(¢). We denote
the WCET of J; ; as C;(X; ;). This assumption is relaxed in
Section VII, where we allow acyclic dependencies (i.e., task
chains) that affect a bounded number of subsequent jobs.

Scheduling policy. We consider the preemptive earliest-
deadline first (EDF) scheduling policy: at each point in time,
the incomplete job (if any) with the earliest absolute deadline
is scheduled. Hence, the processor idles only when no job is
ready to be executed (i.e., EDF is work-conserving). Under
EDF, ties in absolute deadline are broken arbitrarily but
consistently. Hence, the analysis of a specific job assumes
that all jobs with the same deadline have higher priority. The
set of jobs that have to be finished before a job J; ; (i.e.,
the possibly interfering jobs with higher priority) is given by
HP(J; ;) ={Joy | 7o € T ANdyy < d;;}\ Jij. A central
concept in the analysis of EDF is the notion of a busy interval.

Definition 1: A time t is a quiet time if all jobs that arrived
before t are completed by time t. An interval [t1,t2) is a busy
interval if t1 and to are both quiet times, some job is released
at time t1, and no time t € (t1,t2) is a quiet time.

Only jobs in the same busy interval interfere with each other
since EDF is work-conserving. Hence, we reset each task’s job
count at the start of a busy interval for notational convenience.

Deterministic schedulability. In the classical, deterministic
setting [3], where C; = max,{C; ¢} is the overall WCET of
task 7;, schedulability under EDF can be decided by analyzing
the cumulative processor demand of the task set. The demand
of 7; in an interval [t1,t2] (i.e., the maximum total processing
time that jobs of 7; require in [¢1, £2]) is given by the demand
bound function dbf;(t1,t2) = N;(t1,t2) - C; [3], where

N;(t1,t2) = max {07 VQ +T; ;iDi - wiJ 3 Pl ;Zwl“} 0

is the maximum number of jobs in [tl, tg}. For a given interval
[t1,t2], Eq. (1) considers only jobs with arrival time a; ; >
t1 and absolute deadline d; ; < 9. For the special case of

TABLE I. SUMMARY OF NOTATION

T = (d, D;, T; ;) Task 7; with WCET distribution C;, deadline D;, period T;, and phase v; Sec. IT
¢ij=(Ci;,Pi(j)) € Ci WCET C;; of the j™ execution mode with related probability P; () Sec. I
N;(t1,t2) and N;(I) Maximum number of jobs of 7; released in an interval [¢1,%2] (an interval I) Sec. 11
St ,t5) and St Accumulated probabilistic demand released in an interval [t1,¢3] (an interval I) Sec. IV
Dy Upper bounded probability that job Jj ; of 7 is the first to miss the deadline after idle time Sec. III
®y, and Pp Upper bounded probability for first deadline miss for 7, and I' after idle time Sec. 11
P(S; > |1|) Probability of overload for the interval I with length |/ Sec. IV
Phusy (1) Probability that the processor does not idle in interval / Sec. VI
1% Vector of possible probabilistic demands Sec. IV
v = (vho?) eV Possible demand value in V with demand v and probability v Sec. IV
X(I) Random variable representing the possible execution modes of all jobs in interval I Sec. IV
X() The state space of X (I) Sec. IV
e X(I) A possible variable assignment for X (I) Sec. IV
P(X(I)=2%) Probability that X (I) has the specific variable assignment & Sec. IV
X, ;(I) The random variable related to the 5" job of 7; in I Sec. IV
Ci(X,;(I)) WCET for the j* job of 7; in I based on its random execution mode X ; ;(I) Sec. IV
X j value of X; ;(I) in assignment & Sec. IV

T;
for the interval [0,¢]. Let L be the first quiet time after all
tasks are synchronously released at time 0, which is the longest
possible busy interval. Baruah et al. [3] proved that a task set I'
is schedulable (in the deterministic sense) under preemptive
EDF if and only if: (i) the processor is not over-utilized (i.e.,
Z? % < 1), and (ii) for any time interval of length ¢, the total
procegsor demand dbf (t) does not exceed ¢, which means that

1; = 0 this reduces to dbf,;(t) = max {07 V—DiJ + 1} . C;

dbf(t) = dbf,(t) <t Vi:0<t<L. (2
i=1

It is sufficient to examine Eq. (2) for each absolute deadline

of a job, since the demand bound function changes only at

these time points, which we call points of interest. Given a

point of interest ¢, the corresponding interval [0,¢] is called

the interval of interest.

III. PROBLEM DEFINITION

Ultimately, we seek to bound the probability that any task in
the system is the first to miss a deadline after the system resets
(i.e., after the last quiet time), for any legal arrival sequence.
To this end, we first focus on an arbitrary but fixed job Jj ¢
of a task 7 in the context of a fixed arrival sequence «.

Definition 2: The deadline failure probability (DFP) of Jy ¢
for a given arrival sequence «, denoted ®y, 4, is the probability
that Jy, ¢ is the first job to miss its deadline in its busy interval
if jobs arrive according to a, and is given by

‘I)kyg = P(Rk,g > Dy and VJZ"]' € HP(J}C,@) : R»L',j S Dz) (3)

In other words, ®, , is the probability that Jj , misses its
deadline while all jobs in HP(J,) meet their respective
deadlines. Based on Definition 2, the task DFP &, of 7
(w.rt. «) is simply max¢{®y ¢}, and the system DFP &r
(w.r.t.) is maxy <<, { Py }. Finally, we denote as the worst-
case DFP (WCDFP) of a task (resp., system) the largest-
possible task (resp., system) DFP. In other words, the WCDFP
bounds the task (system) DFP for any legal arrival sequence.

To safely determine the WCDFP, since we cannot simply
calculate the DFP for all jobs and take the maximum across
all possible arrival sequences (i.e., apply the definition), we
instead must bound the DFP by considering a specific worst-
case situation, using a concept similar to a critical instant.

Recall that, under preemptive EDF, a job J; ; misses its
deadline when the overall demand of J; ; and higher-priority
jobs in an interval [ts,d; ;] with t; < a;; exceeds the
interval length, which is called a (demand) overload w.r.t. the
interval. In the deterministic setting, whether an interval can
be overloaded is a boolean proposition and it suffices to check
Inequality (2) for all intervals of interest. If none can be over-
loaded, the task set is schedulable [3]. If however an interval
that can be overloaded is found, then the analysis is stopped
immediately as the task set is certainly not schedulable.

Additional challenges arise in the probabilistic setting:
(i) Whether an interval is overloaded is no longer a simple
boolean property. Rather, we must determine the probability
that a given interval becomes overloaded. (ii) In the determin-
istic case, the analysis continues until either an overloaded
interval is found or the busy interval ends. In contrast, prob-
abilistic analysis is typically applied in situations where the
system is schedulable in the case that all jobs execute in
their mode with the least WCET, which implies that there
is no interval with overload probability 100%. At the same
time, the system utilization usually exceeds 100% when all
jobs execute in their mode with the largest WCET, which
implies that there is no longest busy interval. Finding an
appropriate analysis termination condition is thus nontrivial.
(iii) The high computational complexity of calculating the
overload probability in a given interval renders an exhaustive
search of the busy interval prohibitively expensive. (iv) A
worst-case scenario that maximizes the DFP for a given job
must be established for the probabilistic setting to avoid having
to enumerate all possible arrival sequences.

To address (i), Sections IV and V examine how to calculate
the overload probability of a given interval. To tackle (ii)—(iv),

Section VI explores what intervals have to be considered and
how the number of intervals can be reduced without risking
under-approximation. In both steps, we start with periodic
tasks and extend to sporadic tasks subsequently.

IV. OVERLOAD PROBABILITY OF A GIVEN INTERVAL

We start by examining the probability that one specific
job Jj ¢ misses its deadline dj, ¢ for a fixed arrival sequence «
under the simplifying assumption that each job executes for its
entire mode-dependent WCET, which is safe since preemptive
EDF is timing-anomaly free (i.e., a job requiring less service
does not increase the likelihood of a deadline miss).

The work that must be completed in I = [t1, 5] is the de-
mand (denoted as S}y, 4,) or Sp) of jobs both (i) released after
t1 and (ii) with an absolute deadline no later than ¢5. Hence,
a deadline miss occurs at {3 = dj, ¢ only if there is an interval
I = [t1,t2] where Ji ¢ and jobs in HP(Jy ¢) exhibit cumula-
tive demand exceeding the interval length |I| = t2 —t;. We re-
fer to the situation that the demand exceeds the interval length
as overload. Accordingly P(Sy, ;,) > to —t1) = P(S1 > |I])
is the overload probability of the interval T = [t1,ts).

Analogously to the probabilistic WCET C;(X; ;) of a
job J; ;, the cumulative probabilistic demand in an inter-
val [is a random variable whose probability mass is given
by a vector V. = (vy,v,...,), where each component
vy = (v vP) € V is a pair of a possible cumulative demand

ve = S; with probability v, such that Y vP = 1.

Each job J;; executing in I has a WCET C;(X, ;(I))
dependent on a random variable X; ;(I) that determines its
execution mode. Let X () be the set of all these random vari-
ables, let X(I) be all possible variable assignments of X (I),
let £ € X(I) be one specific assignment, and let Z; ; denote
the value of X; ;(I) in assignment &. Based on the number
of jobs N;(I) of each task in I, the probabilistic demand is

simply the sum of the probabilistic WCETs:

Ni(I)

Si@) =Y > Ci(E),

el g=1

“4)

where Z?Zl C;(&;,;) = 0 for notational convenience. Hence,
considering all possible assignments & € X (I), the overload
probability of I and thus the probability that Jj , misses its
deadline at time ¢5 due to an overload in [is:

P(S(X (D) > 1) = Y P(X(I) =) [S:(&) > |I]]2. (5)

Fex(I)

Since the execution modes of the jobs are assumed to be
independent, the joint probability mass P(X (1)) is the product
of the individual mode probabilities of all jobs. For each
job, the probability distribution is identical to the probability
distribution of its task, and therefore the probability that a
specific assignment & occurs is

(6)

0 N ~ . .
where [[;_, P;(Z; ;) = 1 for notational convenience.

Note that Eq. (6) implicitly depends on the arrival times of
the jobs in I and hence must be interpreted in the context of
a given arrival sequence a. In the case of periodic tasks, the
number of releases IV;(I) in I can be calculated with Eq. (1).
For the case of sporadic tasks, we must find an approximation.

Our analysis exploits that “adding” jobs to an interval under
consideration I does not risk under-approximation. To state
this precisely, we formalize a notion of “increased demand.”

Definition 3: A probabilistic demand V is increased relative
to a probabilistic demand U if

Vr>0: Zvﬁ-[[vi>r]]12 Zu§~[[1ti>r]]1. (7)

ve €V ugy €U

In other words, the tail distribution of V must exceed that of U
for any demand threshold r (to be clear, irrespective of whether
V and U reflect the same or different arrival sequences or
intervals). Any change that increases the probabilistic demand
in an interval I thus ensures monotonicity of the probability of
an overload in I, independently of the length of the interval ||
or the number of jobs executing in it.

Lemma 1: Consider any interval I and two arrival sequences
o and o/, and let V and U denote the probabilistic demand
in I under o and o, respectively. If no task releases fewer
jobs during I in o than in «, then V is increased w.rt. U.

Proof: First, suppose « and o’ differ in only a single job
Ja,p that o releases during I in addition to all the jobs also
released by « during I, and assume dqp < to. (If no such
job exists, then the set of jobs contributing demand during [
is identical under o and « and the claim follows trivially.)
Due to (i) the assumed independence of execution modes
and the facts that (i) no task releases fewer jobs during
I in o' than in « and (iii) the cumulative demand S}, 4,
is a simple sum of execution costs and hence permutation-
invariant, each u, € U maps to h corresponding elements
vt e V (for £ € {1,...,h}), where each v} = (v, v2f)
is given by v?f = ud + C,, and w2 = upt . P,(0).
Thus, for any demand threshold r and any u, € (7, if
ud > r, then also v¥‘ > r for every £. Furthermore, since
task 7,’s execution mode probabilities sum to 1, we have

S bt = ik - Po(f) = uk - Sy Pa(f) = ub.
Inequality (7) thus holds. The complete proof follows by
repeating the above argument for each added job.]

V. CALCULATION OF THE OVERLOAD PROBABILITY

Until now, we have analyzed the overload probability of
a given interval I in general terms, but did not yet explain
how to calculate it in practice. To this end, it is necessary
to bound the probabilistic demand in /. While no approach
specific to EDF has been proposed to date, the same problem
— approximating the cumulative probabilistic demand of a
set of jobs executing in a given interval — arises also in the
probabilistic analysis of static-priority scheduling, for which
relevant prior work exists. In the following, we discuss how
to transfer two applicable techniques to the EDF setting.

In particular, two approaches based on the Chernoff
bound [7] and task-level convolution [21] are known to scale

best. At a high level, in the case of static-priority scheduling,
both methods iterate over a certain set of intervals, calculate
the related overload probabilities, and then report the minimum
among those values as the WCDFP. Exactly which intervals
must be considered and exactly how the calculated probability
values are further processed differs a lot in the EDF and
static-priority settings; we discuss these issues in the next
section. The actual calculation of the overload probability for
a given interval, however, is independent of the underlying
scheduling policy and specific arrival patterns. In fact, the
only relevant parameters are the length of the interval and the
number of jobs that have to be considered for each task. It is
hence relatively straightforward to adjust these approaches for
our purposes. In the interest of completeness, we summarize
both approaches, reformulating lemmas and formulas to match
setting and notation, and sketch the necessary changes to the
static-priority setting considered in the original papers.

Chernoff bound. The approach by Chen and Chen [7]
upper-bounds the overload probability by means of the mo-
ment generating function (mgf) and the Chernoff bound.
Recall that the mgf specifies the probability distribution of
a random variable, here the WCET of a job of 7, as
mgf,(s) = 2?21 exp(C; ; - s) - Pi(j), where exp is the expo-
nential function (i.e., exp(x) = €®) and s > 0 is a given real
number. Combined with the Chernoff bound, this characteri-
zation allows bounding the overload probability as follows.
Lemma 2 (based on Lemma 1 in [7]): If S; is the sum of
the execution times of the jobs in I' that are released in and
must be finished in I, then

> < mi
P(Sr 2 |1]) < min

[L,,cr (mef, ()™ ()
(exp(s - 1)) ®

Lemma 2 transfers the considered interval from [0,¢) (which
is sufficient in the static-priority case) to any /. Under static-
priority scheduling, when analyzing task 7, only tasks with
higher or equal priority than 7, must be considered. Under
EDF, each 7; € I' can contribute to the demand in I. The
number of jobs N;(I) of 7; contributing demand to I is
calculated considering all jobs that are released in and must
be finished in I, which can be bounded using Eq. (1). Note
that Eq. (8) is valid for any s as the Chernoff bound always
provides an over-approximation. Chen et al. [8] discuss how
to efficiently find an s with good precision. However, even
for the s that minimizes the right-hand side of Eq. (8), the
approximation error can become arbitrarily large.

Task-level convolution. The main idea behind the task-level
convolution approach by von der Briiggen et al. [21] is that,
if probabilities are independent, then the demand of a task 7;
in a specific interval I depends only on the number of jobs
executing in each mode (but not on their order). Hence, if
N;(I) jobs are considered in I, the set of all possible scenarios
can be partitioned into equivalence classes depending on the
number of jobs that execute in each mode. Each equivalence
class satisfies Z?:l 4; j = N;(I), where ¢; ; € Ny denotes the
number of jobs of 7; in I in the j" execution mode. This can
be seen as drawing N;(I) times from an urn with A balls (with

replacement). Hence, basic combinatorial reasoning leads to a
characterization based on multinomial distributions.

The demand in each scenario in such an equivalence class
is given by 2?21 ¢; j-C; 4, and the probability that any of the
scenarios in the equivalence class occurs can be calculated as

Ni(I)!

Tl BV B
0110 01 45) (1) (2)

Bi(R)r,9)

where #{)'Z}, is the number of scenarios in the equiva-
lence class, which all lead to the same demand (and hence the
same overload probability). For a task 7; with N;(I) jobs and
N;(I)+h—-1
h—1

h modes,) such equivalence classes exist, where

(%) = 5itapy1 is the binomial coefficient. This approach can
be extended to consider equivalence classes for all tasks
simultaneously; that is, each class is canonically represented
by a tuple ¢ € ®,,er{l,2,...,N;(I)}", indicating for all
tasks the number of jobs in each execution mode.

Lemma 3 (based on Lemma 11 in [21]): Let L be the set of all
possible equivalence classes: L C ®;,¢r{0,1,2,..., N;(I)}"
such that, for each ¢ € L and each T; € T, it holds that
Z?Zl l; j = N;(I), where {; ; is the number of jobs of T; in
the j-th execution mode in class {. Then, P(S; > |I|) =

N;(I)!- ’Llpi N
pRY| Ent] SLEANETORITR

h
.
el el Ha::l el@'

where S1({) is the demand in each scenario in class {.

The main differences to Lemma 11 in [21] are that all tasks in
I’ can contribute to the demand and that N;(I) is the number
of jobs that are released in and must finish in I.

Eq. (10) is computed as follows [21]. For each task 7,
the equivalence classes with w.r.t. probability and demand
of N;(I) jobs of 7; are calculated. These (N i(?_ﬁh*l) pairs
of probability and demand are represented as a vector (e.g.,
(> 5) would indicate a possible demand of 6 or 9 with
related probabilities 0.7 and 0.3, respectively). Initially, there
are n such vectors, one for each task, which are then convolved
in a pairwise fashion until only one vector remains [21].
After all vectors have been convolved, the probabilities of all
elements of the final vector with demand exceeding |I| are
summed up to determine P(S; > |I|).

To increase runtime efficiency, von der Briiggen et al. [21]
introduced two optimization techniques, which we both ap-
plied in the evaluation. State pruning keeps track of the
minimum and maximum demand the remaining tasks (i.e.,
tasks whose demand vector has not been convolved yet) can
jointly contribute. Consider the following example vector:
(2 80ty oo). Let these minimum and maximum val-
ues be 5 and 7, respectively, and the interval that is considered
have length |I| = 19. Now, the vector entry with demand 12
can be discarded, since it cannot result in the total demand
exceeding 19 even when adding the maximum remaining
demand of 7. Conversely, the entry with demand 15 can be
discarded from further consideration as well, since even the
addition of the the minimum remaining demand will result
in demand exceeding 19. In the latter case, the probability of

(10)

0.01 has to be added to the overload probability.

The second runtime optimization is state merging, which
reduces the vector’s size at the cost of some added pessimism.
For instance, to reduce the above example vector to length
two, the entry related to demand 12 would be kept and the
remaining three entries would be merged by summing up their
probabilities (i.e., 0.28) and taking the maximum demand (i.e.,
15), leading to the shortened vector < 0%2 15 > We refer the

72 0.21
interested reader to [21] for a more detailed discussion.

VI. BOUNDING THE WCDFP

Equipped with a way to calculate the overload probability
of a given interval, we now focus on bounding the WCDFP of
a given task. We first consider synchronous periodic releases,
examine how an exact calculation would work, and discuss in-
herent complexity issues. Thereafter, we provide a more scal-
able over-approximation that also extends to sporadic tasks.

A. Synchronous Periodic Tasks
We first bound the number of intervals of interest.

Lemma 4: For each task in a set of synchronously released
periodic constrained-deadline tasks, a job that exhibits the task
DFP exists within the first hyperperiod.

Proof: By contradiction. Suppose a job J; , witha; , > H - m
and m € N exists (ie., J; is released in the m + 1th
hyperperiod) that has a DFP ®; ; > ®; ; for a all jobs J; ;
with a; ; < H. Since by definition of DFP we analyze the
probability that a job is the first to miss the deadline in its busy
interval, for each job J; j, only scenarios in which no previous
job in the same busy interval misses its respective deadline
contribute to J; ;s DFP ®; ;.. Hence, to determine ®; j, we
only have to consider busy intervals wherein all higher-priority
jobs finish before their respective deadlines. As a result, only
jobs released after time H - m contribute to ®; j, since any
job J released before H - m would have to execute after
H - m to contribute, which contradicts the assumption that
J meets its deadline. For periodic tasks, the release pattern
in the interval [0, H) is identical to the release pattern in the
interval [m-H, (m+1)-H). Since the probabilistic distributions
are independent and identical, ®;; of J;j released at a;
is identical to @; x_(m.m/1;) Of Jik—(m.m/T,) released at
i k—(m-H/T;) < H, which contradicts the assumption that
(I)i,k > (I)iJ for ajob Ji’j with Qi < H. |
Lemma 4 allows us to upper-bound the DFP ®; ; for any
job J; ;, and hence the task DFP of 7;, by considering only
jobs in the first hyperperiod.
Lemma 5: Let J; ; be released in [0, H). Let A(0,d; ; — D;)
be the set of arrival times of all jobs in HP(J; ;) and of J;
itself. The failure probability of J; ; is upper-bounded by

o) = > P(Sit.ar,) > dij —ts). (11
ts€A(0,di ;—Ds)
Proof: For J;; to miss its deadline, an overloaded busy

interval [ts,d; ;) with ¢, € A(0,d; ; — D;) must exist, and
Ji,; may miss its deadline due to an overload in any of these
intervals. Hence, the sum of the overload probabilities of all

such intervals upper-bounds the probability of .J; ; being the
first job to miss its deadline. |

The number of intervals considered in Eq. (11) can be
reduced if the length of the longest busy interval is less than H.
Note that Eq. (11) is an over-approximation, since it only
checks whether an interval is overloaded but not whether
a specific assignment of the probabilistic variables already
results in an overload in any subintervals. Hence, if such
assignments exist, then they contribute to @7 ; multiple times,
leading to a safe but imprecise over-approximation.

Unfortunately, bounding the WCDFP based on Lemma 5
alone is computationally intractable for large numbers of jobs
in the hyperperiod. To see why, let the number of jobs in
the hyperperiod be |H|, let Jy,J2,J3,...,.Jjg be the jobs
in H ordered according to their absolute deadline, and let
ai,az,...,a)g be their arrival times. By Lemma 5, the
probability that Jjg misses its deadline is bounded by the
sum of the probabilities calculated for all intervals. For Jg,
we thus would have to consider the intervals starting at times
ai,az,...,a (e, O(|H|) intervals in total). Performing
the same procedure for Jjg|_1, Jjm|—2, etc., however, leads
to considering O(|H|?) intervals overall, which is computa-
tionally intractable since the number of jobs in the hyperperiod
is generally exponential in the number of tasks.

B. Over-Approximation and Generalization

Since using Lemma 5 to upper-bound the WCDFP is im-
practical complexity-wise, we instead provide a more scalable
over-approximation, which is also applicable to sporadic tasks.
We first analyze the task DFP of an individual sporadic
task 7 in any given (possibly non-periodic) arrival sequence
by relating it to a periodic worst-case scenario. Thereafter, we
show that the scenario holds for all tasks in general regardless
of the given initial arrival sequence, which allows us to bound
the WCDFP even for sporadic tasks.

More specifically, in the following, we consider the specific
job Jj ¢ with deadline dy, ¢ that exhibits the task DFP @, for
T in a given arrival sequence «. For simplicity, we discard
from consideration any job 7; ; with a deadline d; ; > dj o,
since such jobs do not impact ®;, , and hence also not ®y.

Our analysis proceeds by a sequence of step-wise “trans-
formations” of the considered scenario. We say an arrival
sequence « is transformed into another arrival sequence o’ if
« and o differ only regarding the arrival time of one job (i.e.,
a transformation changes the arrival time a; ; of some job 7; ;
to ag’j). Let I be the interval [a; ;, dy ¢) before and let I’ be
the interval [a] ;, dy () after transformation. A transformation
is safe (with respect to ®,) if it does not decrease the DFP of
Jk,¢ and hence does not decrease the DFP of 7, either.

We require some additional notation to reason about the
safety of the employed transformations./Lit X («) be the set of

random variables for all jobs in «, let X'(«) be all assignments
of X («) that result in a deadline failure for Jj ., and let

L

Z € X(«) be one of these assignments. Let A(0, d; ¢ — Dy)
be the release times of jobs in [0, dy ¢ — Dj] under the arrival
sequence « (i.e., the possible start times of busy intervals).

Lemma 6: The transformation a; ; = a; ; + 0 for § > 0 is
safe if d; ; + 0 < dy ¢ (i.e, any job J; ; can be released later
as long as its deadline is not pushed past Jy ¢’s deadline).

—

Proof: We must show for all # € X'(«) that there still exists
an interval under o/ where I leads to a deadline failure.
Consider any T € X(«) and let I = [t,dj ¢] be an interval
that is overloaded for Z. I is either: (i) the interval starting
with the release of J; ;, or (ii) an interval starting with the
release of a different job. In case (ii), / = I’ and the number
of jobs that must be serviced in I’ is either increased due to
Jijif a;; <t and a;’ j > t, or otherwise remains the same.
Hence, the demand in I under o is not less than under a.
In case (i), |I'| = |I| -9 since a; ; = t. If no job is released
in [t,¢t + J), an overload of Z in I implies an overload in I’
since the jobs in these intervals are the same and |I’| < |I].
Otherwise, let t* be the earliest release in [t,¢ + J) in a,
let I* = [t*,d), and let J, 4, be a job released at time t*.
If t* = ¢, then I* = I and Z results in an overload in I*.
If t* > ¢, the demand of ¥ in I’ is less than in I, since
the cost of J, , no longer counts as demand in I’. However,
since I* is not changed by the transformation, J; ; is added
to I*, thus the demand in I* after the transformation is no less
than the demand in I before the transformation. Finally, since
|[T*] < |I] (since t* > t) and because ¥ results in an overload
of I before the transformation, we know that & results in an
overload of I* after the transformation. [|

We call a task 7; aligned with Jy, in a prefix interval
I =[t,dy] if there exists a job J; ; with the same deadline
as Jy ¢, and 7; is released periodically prior to J; ; in 1.

Lemma 7: Each non-alined task 7; can be aligned with Jy, 4
in I by means of a sequence of safe transformations.

Proof: Let J;; have the largest absolute deadline among
jobs of 7; with deadline less than d ¢, and consider the jobs
JixsJio, .. Jij—1,Ji; in order of decreasing deadlines.
First, we set a;}j =dy¢ — D; > a; 4, which is safe according
to Lemma 6. Next, we set agd;l =dpe—D; —T; > a;5-1,
which is similarly safe and ensures a legal periodic inter-arrival
time separation of J; ;_1 and J; ;. Repeating the process, we
set ag’j_Q =dye— D; —2T; > a; j_o, etc., until 7; is aligned
with Jj ¢ in I under the resulting arrival sequence.']

Based on Lemma 7, for a given I, all tasks can be aligned
in a series of safe transformations. These transformations are
required only once (i.e., for the longest interval I that results
in an overload for Jj, , for any %), since the intervals overlap
and tasks are aligned to the same time dy ¢ in all intervals,
which we note with the following lemma.

Lemma 8: If all tasks are aligned with Jy o in I, they are
aligned w.rt. any subinterval I' = [t', dy, o] C I as well.

Lemma 1 implies that postponing releases can only reduce
the probabilistic demand, and hence we can safely over-
approximate the DFP of Jj, in a prefix interval I by con-
sidering the case where all tasks are aligned to Jj, 4.

'For simplicity, we assume w.l.o.g. sufficient prior jobs of 7; to cover all
of I. Otherwise, by Lemma 1 we can shift jobs released after dy, ¢ into I.

Lemma 9: For each prefix interval I = [t,dy, 4], the overload
probability is maximized when all tasks are aligned to dy, o

Proof: For each 7;, the number of jobs that must be serviced
in I, and hence contribute demand towards a possible overload,
is maximized when 7; is aligned to Jj 4. The claim hence
follows from Lemma 1 and the fact that postponing the release
times of jobs already accounted for in a prefix interval may
only reduce the number of demand-inducing jobs by moving
their deadline or arrival time out of the interval. |

In the following, let a* be the periodic arrival sequence
obtained from aligning all tasks to Jj ¢ in 1.

Lemma 10: Let A(0,dy o — Dy) be the set of all arrival times
times in [0,dy ¢ — Dy in the arrival sequence o*. Then the
DFP ®, ¢ of Jy ¢ is bounded as follows.

>

ts€A(0,dk,e—Dy)

Py < P(Stedn.e) > die — ts) (12)

Proof: Lemmas 6-9 ensure that all intervals overloaded in «
for any & € X(«) are safely transformed into aligned intervals
with arrival sequence o*. This means that, for each ¥ € X' («),
there exists a prefix interval wr.t. Ji, that is overloaded
also under a*. Overload probabilities of any interval I where
|I| < Dy, can be ignored, since for a job of 74 to miss its
deadline, the busy prefix interval’s length must be at least Dy;
hence t; < dj,; — Dj. The sum of the overload probabilities
of all prefix intervals starting at points in A(0, dy ¢ — Dy,) thus

accounts for each Z € X'(«) at least once.]

While o* is periodic, we still cannot compute the right-
hand side of Inequality (12) a priori based on Eqgs. (5) and (6)
because dj ¢ is generally unbounded and we hence have no
way to enumerate A(0,dy, — Dy). To limit the analysis
space to a finite set of prefix intervals, we first observe from
reasoning analogously as in the proof of Lemma 4 that busy
intervals of length exceeding I have no impact on Jj ¢’s DFP.
Hence, independent of the actual deadline of Jj ¢, the longest
relevant prefix interval is bounded by the hyperperiod.

Lemma 11: Inequality (12) can be rewritten as

>

ts€A(dg,e—H,dr,e—Dy)

Qe < P(Sit, . > dre —ts), (13)

when all tasks are aligned with Jj, o.
Since the proof of Lemma 11 follows similar steps as the proof
of Lemma 4, it is omitted due to space limitations.

The right-hand side of Inequality (13) is still not statically
computable since it continues to depend on dj ,, which is
unknown a priori. However, the transformations that allow us
to calculate ®j , based on Lemmas 10 and 11 start from an
arbitrary given arrival sequence « for task set I', but always
end up in the same worst-case scenario: all tasks are aligned
to dy ¢ in a periodic arrival sequence that is legal according
to the parameters of I'. Furthermore, the longest interval that
must be considered starts at dj, — H, independently of the job
Ji,e. Since we always arrive at the same worst-case scenario,
we can shift the timeline to eliminate the dependency on d, ;.

Theorem 1: For task Ty, in a given task set I, the task DFP
®y. is bounded from above by

>

ts GA(O,Hka,)

;= P(Sp.m > H—t), (14

where A(0,H — Dy) is the set of all arrival times in
[0, H — Dy when all tasks are aligned with the job Jy, r/,
with deadline dy /1, = H.

Proof: Let a* be the periodic arrival sequence wherein all
tasks are aligned to H. For the job Jj, ¢ that exhibits ®; under
any given «, the arrival sequence can be transformed into
o that is aligned with dy , for all tasks in a series of safe
transformations according to the arguments in this subsection.
By changing the time base of the system (i.e., by shifting
“time zero” and adjusting all arrival times and deadlines in o’
by A = H — dj, ¢), we obtain the stated bound. |

Since the lemmas in this subsection and Theorem 1 hold
for any 7, € I', we arrive at the following conclusion.

Corollary 1: The worst-case arrival sequence o™ is identical
for all 7, € I.

The arrival sequence o™ is obtained by releasing each task
in 7, € I' at time ¢ = T; — D; and periodically thereafter.
Based on Theorem 1 and Corollary 1, we can calculate the task
DFP for each task simultaneously by enumerating the intervals
[ts, H) for all t; € A(0,H) and summing up the relevant
calculated overload probabilities on a per-task basis for each
task 7, (for ts < H — Dy). Hence, we can upper-bound the
WCDFP for all tasks by considering O(|H|) intervals in total.

C. Runtime Improvement

Until now, we have examined how the WCDFP under EDF
can generally be calculated and how to over-approximate
this probability by restricting the number of intervals under
consideration to O(|H|). However, since the number of jobs
in the hyperperiod is generally exponential with respect to
the number of tasks, and as the evaluation of each interval is
computationally expensive, we still must reduce the number
of intervals considered to scale to practical workload sizes
with a larger number of tasks and/or long hyperperiods. Such
a culling of considered intervals is possible due to the work-
conserving nature of EDF, as noted by the following property.

Lemma 12: For the arrival sequence o* in Theorem 1 and
a given interval [t1, H] with t; € A(0, H — Dy,), the portion
<" of the DFP ®y, that is contributed by intervals [ts, H]
with ts € A(0, H — Dy,) and ts < t is upper-bounded by

¢)25<t1 S Pbusy([tlaH])a (15)

where Py, ([t1, H]) is the probability that the processor does
not idle in the interval [t1, H].

Proof: By Definition 2 and the definition of a*, the DFP @y
is the probability that the first deadline miss occurs at time H.
For a deadline miss to occur at time H, a busy interval must
start some time before I and not end by H. If a busy interval
starts at t; < t; and does not end by H, then the processor
is necessarily busy throughout [t;, H], as otherwise a quiet

time would occur before H and the busy interval would end
prematurely. Hence, the total probability of a busy interval
starting at any time ts < t; and resulting in a deadline
miss at time H is upper-bounded by Py, ([t1, H]), since
this pessimistically assumes a deadline miss whenever the
processor does not idle in [¢t;, H] (i.e., a necessary condition
for a deadline miss is interpreted as a sufficient condition). W

Lemma 12 effectively allows reducing the number of con-
sidered intervals with an additional bounded error. The idea
is to stop the calculation when P, (I) of the currently
considered interval I = [t,, H) sinks below a given threshold
value. Specifically, let ®; denote the current estimate of ®
when encountering ¢, in the computation of Eq. 14 (i.e., ®;
is the partial sum accumulated so far). The given threshold for
breaking out of the calculation may either be a fixed absolute
threshold, or a threshold relative to the current max;{®; }
probability estimate. Once either threshold is exceeded, we
set ®F = OF + Pyysy(1) for each task 7; in the set.

The final piece of the puzzle is a bound on Py, (1), which
we obtain by observing that, in addition to the N;(¢,, H) jobs
that must finish in I = [t,, H), each task may have released
one additional job prior to ¢, that can also be serviced in I.
This can be seen as considering the demand in a fictitious
interval IT of the same length as I wherein the number of
jobs of each task that must be completed in I exceeds the
number of jobs that must be completed in I by one. If this
demand over I is larger than ||, then the processor does not
necessarily idle at some time in I.

Y. PXUIN)=8)[5+(@) >]

FeX(IT)

IFJbusy ([) S (16)

VII. DEPENDENT TASK MODES

So far, we have assumed that the execution modes of jobs
and hence the related random variables are independent. This
assumption, however, is not always realistic. As an example,
assume a periodic trigger (e.g., a sensor or task) that, for
certain rare inputs, triggers more complex calculations in a
set of related tasks. In this scenario, each of these tasks
has a “typical” execution mode and rare “exceptional” modes
with increased execution time, but the exceptional executions
happen in the same time interval in a correlated fashion since
they are caused by the same periodic trigger. In the following,
we explain why it is important to account for such scenarios
and how our approach can be extended accordingly.

Assuming independent random variables instead of corre-
lated exceptional execution can result in an unbounded error,
as sketched next. Let 73 = 72 = ((0.5,1 + ¢€),2,2) be two
synchronously released tasks, let 0.5 and 1+¢ be the execution
times in typical and exceptional mode, respectively, where the
execution mode of 75 depends on the execution mode of 71,
let 71 be in exceptional mode with probability 0.5, and let
€ > 0. Thus the probability that 75 is in exceptional mode
is also 0.5. This task set overloads the interval [0,2] with
probability 0.5, as either both are in typical or both are in
exceptional mode. However, if the random variables for 7; and
To are considered to be independent, the calculated probability

is 0.52. This probability can be further reduced to 0.5™! by
dividing 79’s parameters tl>y m so that it releases m > 1 jobs
in [0, 2]. Since % approaches infinity for increasing

m, the relative error can be arbitrarily large.

Revised system model. We assume a set of dependent
tasks I'? in addition to the independent tasks I'. Each
task 7, € TP is defined by 7, = (C;, D;, T;,I'"), where
C_;i = <Ci,1, .. -,Ci,h> with C; 1 < Cyp, for k € {2,...,h}
are the execution times of 7; in its h distinct modes and I'
details the set of tasks that 7; depends on. Each element of I'
is a tuple (75, 0%, L), where 7 is a task (either from T" or rP)
that triggers exceptional behaviour in 7;, 0; € N determines
the maximum number of jobs of 7; that one job of 7; can
affect, and L; bounds the interval after the release of a job
of 7; in which jobs of 7; can be affected. When 7; depends
on 7;, we assume that, if 7; is executed in an exceptional
mode k£ > 1, then the next 0; jobs of 7; are executed in
mode k, too. We denote this as 7; < 7; and say that T;
triggers mode k in 7;. If a job depends on jobs from multiple
tasks and/or multiple jobs from the same task, it executes the
maximum triggered mode. Each dependent task 7; € I'P may
depend both on independent tasks and on other dependent
tasks in T'P \ 7;. However, the dependencies in the system
must form a partial order for the trigger relation <. That is,
we allow acyclic (branching) dependency chains.

Resulting challenges. The general concept for the calcu-
lation of the WCDFP remains the same as detailed in the
previous section: iterate over intervals of increasing length,
over-approximate the overload probability for each interval,
and sum up these overload probabilities. Hence, the main
difference is how the overload probability for each individual
interval is calculated when jobs have dependencies. Thus, in
the following we focus on finding the overload probability for
one specific interval I. The probabilistic demand of the tasks
in I can be calculated with Eq. 4 as before. The new challenge
is to bound the probabilistic demand of the tasks in I'P.

In the independent scenario, Lemma 1 ensures that we can
greedily maximize the number of jobs in a given interval
(i.e., release jobs periodically) to maximize the probabilistic
demand. This cannot directly be extended to the dependent
case, since for strictly periodic releases the number of jobs a
specific task 7; releases in any interval L = [t,,¢;) depends
not only on |L|, but also on the values of ¢ and t; (ie.,
for two intervals L and L' with |L| = |L'|, the number of
jobs T; releases in L and L’ is not necessarily the same).
For sporadic tasks, this leads to situations where, for a given
task 7;, postponing a job release can increase the number of
jobs of 7; in L and hence the total probabilistic demand in an
interval of interest I that includes L, even if the number of
jobs of 7; in I is decreased, as depicted in Fig. 1.

Therefore, precisely determining the overload probability in
a given interval for dependent sporadic tasks requires solving
a complex combinatorial problem, even in seemingly simple
cases (e.g., exceptional execution is triggered every tenth time
a periodically refreshed sensor is read). We therefore instead
seek to conservatively bound the overload probability.

interval of interest I

;exceptional mode;
T1 = ((173>14v4) 1

o e e T
e — 1

0 5 10

1 =((1,3),4,4)

Fig. 1. The probabilistic demand of periodic releases of 71 (with ¢;;1 = 1,
¢i2 =3, and D; = T; = 4) over the interval I = [0, 12] is 5 if the number
of jobs in I is maximized (upper timeline), but 6 if the release at time 1 is
postponed to time 3. However, in this situation the number of jobs that are
released in and must finish in [is reduced from 3 to 2. There is no pattern
that releases 3 jobs in I and 2 in the interval triggering exceptional mode.

D1 =4 interval I
—

Fig. 2. Upper-bounding the number of jobs released before the interval I
that can still affect jobs of 73 in I for the task chain A\, = 71 < 72 < 73.

Analysis outline. For any task 7; (i.e.,in I" or in I'P), at most
N;(I) = W%D + 1 jobs contribute demand to I = [t1, ts]
(i.e., jobs that are released and must be finished in I). For
each task 7; € I, the number of times exceptional execution
occurs is given by the concrete assignment & € X (I) of the
random variables related to 7;. Thus, when determining the
demand in I, we first evaluate the tasks in I" and then the tasks
in I'P. The tasks in T'? are evaluated in order of the trigger
relation <. For each task 7; € T'P we have to determine the
number of exceptional jobs ¢¥ (for k € {2,...,h}) in I based
on the modes of the tasks 7; € I'" in I. For a dependent task
7; € I'P, the execution mode of some of these jobs can depend
on jobs that are released strictly before ¢;. This situation is
depicted in Figure 2. Our goal is to bound the number of jobs
we have to consider in addition to the jobs in 1.

Relevant jobs. For the task chain A\, = 71 < 7@ < 73 in
Fig. 2, jobs of 73 may depend on any jobs of 7 that are
executed up to L3 time units before I. This includes any
job released in t;’s prefix interval of length L3 and one job
which is released before said interval but executed in it. Since
this job is released at most Dy units before, we can restrict
the analysis of 75 to an interval Iy = [t; — Dy — L3, t5] of
length |I5] = Do + L3 + |I|. For 71, we have to include all
jobs released in I} = [t; — Dy — L? — Dy — L3, t5].

Hence, for each 7, € I', we first must determine an
extended interval I; that contains all jobs that can directly
or indirectly affect jobs in I, from which we will derive an
extended set of corresponding random variables with cardi-
nality N,;(I¥) > N;(I). To this end, we initially set I =
for each task 7;, and then traverse the dependent tasks. For
each 7; ¢ TP, we consider all chains ending in 7;, since
for the last task in a chain no additional jobs have to be
considered. We consider each 7; € IV by calculating the
length of I! = I + L] + D; and, for each of these 7,
recursively calculate I Jk = IJZ: + Li + Dy, for each of 7;’s
predecessors 7, € I, etc., stopping the recursion after we

reach an independent task. That is, for dependencies 71 < T3,
To < T3, and 73 < 74 with 7, 75 € I', we consider 7 < 73,
To < T3, T1 < T3 < T4, and 79 < 73 < 74 (i.e., all (sub-)chains
starting with a dependent task). During this calculation, we
update I when we find an interval I]l: related to 7; with

I;: > IF. Afterwards, we set N;(I}) = ‘I*‘%DJ + 1 for each
task. Thus the extended set of random variables X (I*) for

each independent 7; € I" has IV;(I}) related random variables
and no random variables for the dependent tasks 7; € I'".

Overload probability. Given © € X(I*), we count the
number of times 7; € I is executed in mode k in I, denoted
as ¢¥ for k € {1,...,h}. The remaining step is to calculate g
for k € {1,...,h} and each task 7; € T'". Since we evaluate
T first and the tasks in I'” according to the partial order <,
when considering task 7;, the number of exceptional jobs q;?
is known for each 7; € I'* and each k € {1, ..., h}.

For 7; € I'Y, we sum up the total number of jobs in each
exceptional mode as ¢ = ereri o;'. . q;? for k € {2,...,h}.
That is, we over-approximate the number of exceptional jobs
that can affect any job in I by greedily assuming that each ex-
ceptional job of each task 7; € I'* triggers a maximum number
of exceptional jobs of 7;. Afterwards, if ZZ:Q qf < N;(I),
we set ¢; = N;(I*) — 2222 q¥ (i.e., all remaining jobs of
7; in I* execute in mode 1). If S g5 > N;(I*), then
we enumerated more jobs in exceptional mode than there
actually are in I* due to the over-approximation. In this case,
we reduce ¢? (and if that is not sufficient ¢} and so on) to
ensure 2221 q¥ = N;(I*) (i.e., we retain the jobs with largest
execution times).

After qf has been calculated for each 7, € T'P and k, we
upper-bound the demand over I for the given Z. To this end,
we need to consider N;(I) jobs of each task 7; € I'°. Thus,
if N;(I*) > N;(I), we remove N;(I*) — N;(I) jobs, again
keeping the N;(I) jobs with the largest execution times.

This procedure safely upper-bounds the demand of 7; in [
for each 7; € ' since we conservatively assume that each
exceptional job of each task 7; € I'* triggers the maximum
number of exceptional jobs of 7;, and since in the case of over-
approximation we retain the jobs with the largest execution
times. After we determined ¢ for each task in ' (for a
given ¥), we determine the demand in / (assuming) as

Ni(D) h
Si@E) =YY Ci@)+ Y. > Con-qf- (A7)

mel j=1 re€lD k=1

Finally, the overload probability of I can be upper-bounded
by iterating over all # € X (I) using Eq. (5) with Eq. (17).

VIII. EVALUATION

We conducted experiments to assess (i) whether the pro-
posed probabilistic analysis for independent tasks allows sub-
stantially higher system utilization compared to conventional
deterministic analysis (provided a low rate of deadline misses
is deemed acceptable), (ii) how well the approximations scale
to sets with tens of tasks and/or long hyperperiods, (iii) what

10

percentage of the hyperperiod is covered before the analysis
is stopped, and (iv) how dependent tasks affect the WCDFP.

Setup. We randomly generated workloads consisting of spo-
radic tasks with two execution modes, representing “typical”
execution behavior and a rare “exceptional” mode. For a given
number of tasks n and a target total typical-mode utilization
Usum = Z?Zl C;1/T;, we generated for each task 7, a
typical-mode utilization U; using the UUniFast generator [5].
Task periods were drawn from a log-uniform distribution span-
ning [10 ms, 1000 ms|, as suggested by Emberson et al. [12].
We assigned implicit deadlines to all tasks (i.e., D; = Tj)
and set C;; = U, - T; and C; 2 = r - C; 1 according to a con-
figurable exceptional-cost multiplier r. We set the execution-
mode probabilities P;(2) = p and P;(1) = 1 — p for each
task based on a configurable exceptional-case probability p.
Following prior work [7]-[9], [21], our setup reflects scenarios
in which modes differ significantly in execution times and high
execution times occur only infrequently. If these conditions are
not met, a deterministic analysis is advisable instead.

As discussed in Section V, we transferred two state-of-
the-art methods for calculating the overload probability of
individual intervals to the EDF setting: task-level convolution
(TLC) [21], and the improved version [8] of the Chernoff
bound (CB) approach [7]. We implemented both algorithms
in Python 2.7 and conducted the experiments on a Lenovo
Thinkpad x280 with an Intel Core i7-8550U clocked at
1.8 GHz with 16 GB RAM and 8 MB L3 cache. The calcula-
tion was stopped when an interval I with Py, (1) < 0.1- &7
was found, where ®7 is the current WCDFP estimate.

Experiment 1: Efficiency gains. To assess the achievable
resource utilization, we fixed either p or r and evaluated the
effect of changing the other parameter. For each combination
of p and r, and each typical-mode utilization Us,,, between
0% and 100% in steps of 2%, we examined 100 task sets with
n = 5. We bounded each workloads’s system WCDFP with
TLC and tracked the fraction of task sets below six WCDFP
thresholds and the deterministic baseline, as shown in Fig. 3.
All insets show substantial gains in achievable system
utilization (compared to the deterministic baseline) even if
more than 99.9999% of the jobs must meet their deadline.
For instance, when comparing in Figs. 3(a)—(e) the points at
which each curve crosses the threshold of a 75% acceptance
ratio, we observe at least 12-18 percentage points higher
typical-mode utilization if a nonzero WCDFP is allowed. Only
in Fig. 3(f), where r = 4.5, is the difference less than 10
percentage points. However, the relative gain is still large,
since in this rather extreme setting only task sets with less
than 22% typical-mode utilization are deterministically
schedulable. As expected, in all settings, a larger permissible
WCDFP results in higher achievable resource utilization.
Figs. 3(a)—(c) show the effect of fixing » = 2 while varying
p € {0.025,0.01,0.001}. The gap to the deterministic case
clearly increases as the exceptional mode becomes less likely.
Figs. 3(d)—(f) show the effect of varying r € {r = 1.5, 3,4.5}
for a fixed p = 0.01. The general trends remain roughly the
same as already described, with the main difference being that

~
~

—V¥— 100 —@— 99.9999 —&— 99.999

—- 99.99

—+— 99 90

—— 99.9

(a)-(c) Exceptional-Case Probabilities p

(a) Pl(2) = 0.025, Ci,z =2- Ci71

(b) Pi(2) =0.01, Cij2=2-C;1

(C) PZ(2) = 0.0017 Ci,z =2- Ci,l

100 oo 100 oo 100 oo o T u
80 1 80 1 80
60 + 60 + 60
40 1 40 - 40 -
X 20 20 - 20 -
.0 04 0 - 0 -
=) T T T T T T T T T T T T T T
crz“ 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
g (d)-(f) Exceptional-Cost Multiplier r
g (d) P—L(Q) = 0.01, Ci,2 =1.5- Ci,l (e) P1(2) = 0.01, Ci,2 =3- Ci,l (f) PZ(Z) = 0.01, C,"Q =4.5- Ci,l
5100 T 100 100
O 80 80 80
<
60 + 60 + 60
40 A 40 A 40 A
20 + 20 + 20
0 0 0 -
T T T T T 1 T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Utilization (%)
Fig. 3. Achieved acceptance ratio assuming various levels of acceptable WCDFP thresholds for varying exceptional-case probabilities p (insets (a)—(c)) and
varying exceptional-cost multipliers r (insets (d)—(f)). Curves labeled 90 indicate how many of the task sets had a WCDFP below 10%, curves labeled 99
indicate how many had a WCDFP below 1%, etc. If the WCDFP is at most 10%, each job has a probability of 10% or less to miss its deadline (if jobs that
overrun are aborted). Curves labeled 100 indicate classic deterministic schedulability (i.e., the WCDFP is 0) and thus represent the baseline.

—— Chernoff Bounds —— Task-Level Convolution w. State Merging

(o]
2 104 % &
. N
2 10% o %_? —“-r? &
g 10°4 @ = Q
— o
o 10"
£ 10
€ 10!
5107
10724 5
5 10 15 20 25 30

Number of Tasks
Fig. 4. Runtime (in seconds) with respect to task set cardinality. Each box
shows the range between the first and the third quartile of observations, the
orange line is the median, the whiskers cover the [5; 95] percentile range, and
the maximum and minimum observations are shown as individual points.

the absolute difference in percentage points decreases when r
increases, which however does not affect the relative gains
since the baseline diminishes even more rapidly.

Overall, the experiment demonstrates that the proposed
probabilistic analysis allows for substantially better resource
utilization if infrequent deadline misses are permissible.

Experiment 2: Scalability. To assess the runtime of the
approach, we created 10 tasks sets with cardinality 5-30 in
steps of 5, with Usym = 80%, p = 0.025, and r» = 2. As
can be seen in Figs. 3(a)—(c), for r = 2 the acceptance-ratio
curves decrease rapidly around Ul,,,, = 80%. The choice of
Usum = 80% hence ensures that the calculation does not
become too easy (which might be the case if the WCDEFP is
either much smaller or larger than the considered thresholds).

Applying task-level convolution directly (i.e., without fur-
ther optimizations) did not yield timely results for more than
10 tasks, even though it previously scaled up to 100 tasks in the
case of static-priority scheduling [21], since longer intervals
with a larger number of jobs have to be considered in the case

11

of EDF. Thus, we repeatedly used the state merging runtime
optimization [21] as discussed in Section V, each time over-
approximating with an added pessimism of up to 1077.

Fig. 4 shows the results using boxplots with a logarithmic

scale for the y-axis. For each cardinality, TLC’s runtime
exhibits more variance than CB’s runtime. We observed TLC’s
maximum runtime for a set with 15 tasks (= 8:54 hrs). From
10 to 30 tasks, the average runtime of TLC increases by
roughly a factor of 13, and by a factor of 15 in the case of
CB. For 30 tasks, CB’s runtime ranged from ~ 0:26 hrs to
1:01 hrs (avg. ~ 0:37 hrs) and TLC’s runtime ranged from
1:18 hrs to ~ 5:36 hrs (avg. ~ 2:48 hrs).
Overall, this experiment demonstrates that reasonably sized
workloads (up to 30 tasks) can be analyzed in manageable time
(= 1-3 hours on average) on consumer hardware. In contrast,
prior methods are impractical due to scalability issues (e.g.,
[11], [20] evaluated only 7 and 25 jobs in the hyperperiod).

~
~
~
~

Experiment 3: Hyperperiod coverage. For both approaches,
the fraction of the hyperperiod that had to be analyzed was
reduced drastically by Lemma 12. The longest considered
interval was always similar for both approaches at roughly 5 to
12 times the largest period, without any apparent relation to the
number of tasks. Since the hyperperiod typically grows with
the number of tasks, the considered fraction of the hyperperiod
ranged from ~ 107'7 (5 tasks) to ~ 10790 (30 tasks).
This shows that considering all possible intervals would be
computationally intractable, even for 5 tasks.

Experiment 4: Impact of dependencies. We evaluated 50
tasks sets with 10 tasks each, randomized as before, with
P, =0.01 and r 2. As the base setting, we inserted
dependencies by picking d = 5 tasks as dependent with a
total of e 8 dependencies forming a partial order. For

(a) Number of Triggered Jobs oé

(b) Number of Dependencies e

(c) Number of Dependent Tasks d

51 000 | 1] @00 | 7| —f T — O
8 O] T) (61 @i} +O(

2{ O— T }F—> |
14D Qe | 5 POl J==tO 0O 5 D b [e q
1 1 1 1 1 1 1 1 1 1 EOI 1
10-1 10 103 105 107 109 10-1 10! 103 10° 107 109 10-1 10t 108 10° 107 10°

Fig. 5. The dependent WCDEFP relative to the independent WCDFP (i.e., ®4/®;) for a varying number of triggered jobs, dependencies, and dependent tasks.

each dependency 7 < j, we set o5 = 3 and L} = 3 - T;.
We compared the resulting dependent WCDFP &, to the
independent WCDFP @, for the same tasks while varying d, e,
and oé. Fig. 5 depicts the results (using boxplots as in Fig. 4).

In Fig. 5(a), we observe that, when each exceptional job
triggers one exceptional execution in the related task, &, is
in most cases already 1-3 orders of magnitude larger than
in the independent case. The relation further increases with
the number of dependent jobs. Similarly, when the number
of dependencies (Fig. 5(b)) or the number of dependent tasks
(Fig. 5(c)) is increased, the relative difference between ®,; and
®,; increases as well, since a single exceptional job will usually
affect multiple dependent jobs. It is further worth noticing that
% can be extremely large due to very low ®; values, which
in our evaluation ranged from 2-10~14 to 2- 10~L.

For a few task sets, ®; was actually smaller than ®,. This
occurred on average for ~ 3.4 task sets per setting, with a
maximum of 8 workloads in the case of d = 5). The reason
is that TLC needed to over-approximate via state merging
in the independent setting (recall Section V), whereas in the
dependent setting TLC was applied directly due to the smaller
number of independent tasks. In some cases, these over-
approximations outweigh the increase due to dependencies.

From the experimental evidence, we conclude that the
increase in the WCDFP due to acyclic dependencies is often
quite substantial. Assuming independence when tasks are not
independent may significantly under-estimate the WCDFP.

IX. RELATED WORK

We focus on work most closely related to this paper. A
comprehensive survey of probabilistic schedulability analyses
has been recently presented by Davis and Cucu-Grosjean [10].

For periodic real-time task systems, Diaz et al. [11] devel-
oped a framework for analyzing the WCDFP based on job-
level convolution. Tanasa et al. [20] presented approximations
of arbitrary execution-time distributions and a customized
decomposition procedure to search the space of possible
combinations. The decomposition leads to a list with O(4!71)
elements for |J| jobs. These two results suffer from scalability
limitations due to their exponential-time complexity with re-
spect to the number of jobs (i.e., [11] and [20] reported results
for at most 7 and 25 jobs in the hyperperiod, respectively).

For sporadic tasks under static-priority scheduling, Maxim
and Cucu-Grosjean [16] provided a probabilistic response-
time analysis via resampling. Axer et al. [2] considered the

12

response-time distribution under non-preemptive static-priority
scheduling. Ben-Amor et al. [4] extended [16] to analyze
precedence-constrained tasks under EDF. All of them convolve
the probabilistic demand whenever a new job arrives, hence
the analysis runtime strongly depends on the number of jobs.

Instead of evaluating the jobs by convolving the previ-
ous state space with each newly considered job, task-level
convolution by von der Briiggen et al. [21] considers the
intervals of interest individually and utilizes multinomial dis-
tributions. They also propose different over-approximations of
the WCDFP based on task-level convolution.

The WCDFP of preemptive static-priority uniprocessor
scheduling can also be approximated by analytical techniques
based on the Chernoff bound as proposed by Chen and
Chen [7] and Chen et al. [8], and by Hoeffding’s and Bern-
stein’s inequalities as proposed by von der Briiggen et al. [21].

The analytical methods in [7], [8], [21] and task-level
convolution [21] have been shown to scale to more than 20
tasks and more than a thousand jobs in the hyperperiod, hence
we built on them in our work (recall Sections V and VIII).

Concurrently with this study, Markovic et al. [15] proposed
the use of circular convolution techniques based on the Fourier
Transform to substantially reduce the runtime of convolution-
based methods, and Bozhko et al. [6] proposed Monte Carlo
simulation as an alternative to both convolution-based methods
and analytical bounds. As both Markovic et al. and Bozhko et
al.’s proposals scale well to larger task sets in the static-priority
case [6], [15], they may be applicable to EDF, too.

X. CONCLUSION

We have studied the problem of bounding the WCDFP
of independent constrained-deadline periodic or sporadic task
sets under preemptive uniprocessor EDF. The central contri-
bution of this paper is the first WCDFP over-approximation
with affordable analysis runtimes. Specifically, the proposed
approach scales to workloads of nontrivial size with tens of
tasks and thousands of jobs per hyperperiod.

Our evaluation showed reasonable runtimes for randomized
tasks sets with up to 30 tasks (i.e., on average ~ 0:37 hours
for Chernoff bound approach and ~ 2:48 hours for task-level
convolution). It also underscored that accepting even a low
WCDFP enables significant gains in resource utilization.

Finally, we showed how to bound the WCDFP in the
presence of dependent tasks and demonstrated how dangerous
an unjustified independence assumption can be.

ACKNOWLEDGEMENTS

This result is part of two projects (PropRT and TOROS) that
have received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreements No. 865170 and

No.

803111). This paper is supported by DFG, as part of the

Collaborative Research Center SFB876, project Al. Parts of
this research have been funded by the Federal Ministry of
Education and Research of Germany as part of the competence
center for machine learning ML2R (01IS18038B).

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

IEC-61508 Edition 2.0. Functional safety of electrical / electronic /
programmable electronic safety-related systems ed2.0. Technical report,
International Electrotechnical Commission (IEC), 2010. URL: http://
www.iec.ch/functionalsafety/standards/page2.htm.

Philip Axer and Rolf Ernst. Stochastic response-time guarantee for non-
preemptive, fixed-priority scheduling under errors. In Design Automation
Conference, 2013.

Sanjoy K. Baruah, Aloysius K. Mok, and Louis E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In Real-Time
Systems Symposium, 1990.

Slim Ben-Amor, Dorin Maxim, and Liliana Cucu-Grosjean. Schedula-
bility analysis of dependent probabilistic real-time tasks. In Real-Time
Networks and Systems, 2016.

Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129-154, 2005.
Sergey Bozhko, Georg von der Briiggen, and Bjorn B. Brandenburg.
Monte carlo response-time analysis. In Real-Time Systems Symposium,
2021.

Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for
uniprocessor fixed-priority scheduling under soft errors. In Symposium
on Industrial Embedded Systems, 2017.

Kuan-Hsun Chen, Niklas Ueter, Georg von der Briiggen, and Jian-Jia
Chen. Efficient computation of deadline-miss probability and potential
pitfalls. In Design, Automation & Test in Europe, 2019.

Kuan-Hsun Chen, Georg von der Briiggen, and Jian-Jia Chen. Analysis
of deadline miss rates for uniprocessor fixed-priority scheduling. In
Real-Time Computing Systems and Applications, 2018.

Robert I. Davis and Liliana Cucu-Grosjean. A survey of probabilistic
timing analysis techniques for real-time systems. LITES, 6(1):03:1-
03:60, 2019.

José Luis Diaz, Daniel F. Garcia, Kanghee Kim, Chang-Gun Lee, Lu-
cia Lo Bello, José Maria Lopez, Sang Lyul Min, and Orazio Mirabella.
Stochastic analysis of periodic real-time systems. In Real-Time Systems
Symposium, 2002.

Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for
the synthesis of multiprocessor tasksets. In Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, 2010.

Jie S. Hu, Feihui Li, Vijay Degalahal, Mahmut T. Kandemir, Narayanan
Vijaykrishnan, and Mary Jane Irwin. Compiler-directed instruction
duplication for soft error detection. In Design, Automation and Test
in Europe, 2005.

1SO-26262-1:2011. ISO/FDIS 26262: Road vehicles - functional safety.
Technical report, International Organization for Standardization (ISO),
2000. URL: https://www.iso.org/standard/43464.html.

Filip Markovic, Alessandro Vittorio Papadopoulos, and Thomas Nolte.
On the convolution efficiency for probabilistic analysis of real-time
systems. In Euromicro Conference on Real-Time Systems, 2021.

Dorin Maxim and Liliana Cucu-Grosjean. Response time analysis for
fixed-priority tasks with multiple probabilistic parameters. In Real-Time
Systems Symposium, 2013.

Bogdan Nicolescu, Raoul Velazco, Matteo Sonza-Reorda, Maurizio
Rebaudengo, and Massimo Violante. A software fault tolerance method
for safety-critical systems: effectiveness and drawbacks. In Integrated
Circuits and Systems Design, pages 101-106, 2002.

Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error
detection by duplicated instructions in super-scalar processors. [EEE
Trans. Reliability, 51(1):63-75, 2002.

13

[19]

[20]

[21]

[22]

Semeen Rehman, Muhammad Shafique, Pau Vilimelis Aceituno, Florian
Kriebel, Jian-Jia Chen, and Jorg Henkel. Leveraging variable function
resilience for selective software reliability on unreliable hardware. In
Design, Automation and Test in Europe, 2013.

Bogdan Tanasa, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng.
Probabilistic response time and joint analysis of periodic tasks. In
Euromicro Conference on Real-Time Systems, 2015.

Georg von der Briiggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia
Chen, and Katharina Morik. Efficiently approximating the probability
of deadline misses in real-time systems. In Euromicro Conference on
Real-Time Systems, 2018.

Dakai Zhu, Hakan Aydin, and Jian-Jia Chen. Optimistic reliability aware
energy management for real-time tasks with probabilistic execution
times. In Real-Time Systems Symposium, 2008.

