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S1: The probability distribution of newborn organisms

We show the calculation of the probabilities of producing different types of newborn organisms from a mature
organism (nA, nB), where nA + nB = N . The probability to produce the newborn organism type (n′A, n

′
B)

(n′A + n′B < N ) is calculated by

p(n′A,n
′
B) =

(
nA
n′A

)(
nB
n′B

)(
N

n′A+n′B

) (1)

We take the mature organism (1, 2) in a population with reproductive strategy 2 + 1 as an example. There are
five newborn organisms: (1, 0), (0, 1), (2, 0), (1, 1) and (0, 2). The probability of reproducing each newborn
organism is shown in Fig. S1.
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Figure S1: The probability of producing each newborn organism from the mature organism (1, 2) in the population
with reproductive strategy 2 + 1. The organism (1, 2) has the probability of 1

3
to produce a newborn organism containing

one A cell and a newborn organism containing two B cells. It has the probability of 2
3

to produce a newborn organism
containing one B cell and a newborn organism containing one B cell and one A cell. However, for small m, mixed mature
groups occur only in small frequency in the long run.
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S2: Population growth rate

We illustrate the calculation of population growth rates. For the reproductive strategy n1 + n2 + · · ·+ nM with
maturity size N , its population consists of newborn organisms with size ni, where i = 1, . . . ,M , 0 < ni < N

and
∑M
i=1 ni = N . As we consider two cell types, B cell and A cell, an organism with size ni can have

0, 1, . . . , ni B cells. Therefore, a newborn organism with ni cells has ni + 1 possible compositions. We denote
the number of newborn organism types of a population by Ω. For example, a population with reproductive
strategy 2 + 1 can contain the newborn organisms (1, 0), (0, 1), (2, 0), (1, 1) and (0, 2). Here, we would have
N = 3, n1 = 1, n2 = 2, M = 2 and Ω = 5 (see Fig.1D). The population growth rate depends on the growth
rate of the newborn organisms. We assume that a population contains each type of newborn organisms initially.
We track each newborn organism’s growth time and the number of its offspring. We use Tij to denote the growth
time of a i type newborn organism until it produces a j type newborn organism, where i, j = 1, . . . ,Ω. We use
Nij to denote the number of offspring of type j offspring produced by the i type newborn organism. The growth
time Tij depends on the organism size and the organism composition via Eq.(1) in the main text. The number of
newborn organism Nij depends on the cell-type switching probability and the cell division probabilities of each
cell type. Since organism growth is stochastic, Tij and Nij are different for different stochastic trajectories,
see [Gao et al., 2019]. For example, for the strategy 1 + 1, the newborn organism (0, 1) could produce two
(1, 0), one (1, 0) or zero (1, 0) with different growth time. To capture the different development trajectories, we
simulate the stochastic organism growth and average over Z replicates. Then the population growth rate is the
largest root of the equation

det(AΩΩ(λ)− I) = 0, (2)

where AΩΩ is a Ω by Ω matrix with elements aij =

Z∑
z=1

Nzije
−λTzij

Z [De Roos, 2008; Gao et al., 2019]. Here,
T zij and Nz

ij are the growth time and the number of offspring of the newborn organism of size i producing an j
organism in zth replication.

The simulation of a population starts with newborn organisms. The newborn organisms differ in their
composition, i.e. they have different (nA, nB). For example, for the reproductive strategy 1 + 1, the newborn
organisms are of type (1, 0) and (0, 1). Organisms grow in the following way: In each single step, a cell (B
cell or A cell) is selected to divide with its division probability, see Eq.(3) in the main text. The threshold

component of growth time is tgn =
(
nAe

wPB+nBe
wPB

nA+nB

)−1

based on Eq.(4) in the main text. The increment
time for the single step is tsn×tgn, where we assign values to tsn according to different scenarios. With the cell
division, two daughter cells are produced. Each daughter cell switches to another cell type with a probabilitym.
After a single step, we update the number of B cells and A cells of the organism. Then, the organism repeats
the above procedure to grow until reaching its maturity size. Organisms at maturity size produce offspring by
random fragmentation. The probability of producing each newborn organism is calculated by Eq. (1) in S1. We
obtain the number of offspring produced by the newborn organisms and the growth time (the sum of all time
increments) in a single run. We make 5000 replicates of the life cycle of each newborn organism. In the zth
replication, we record the growth time T zij and the number of offspring Nz

ij for the j type newborn organism

producing the i type newborn organism. Thus, we have aij =
∑Z
z=1 N

z
ije
−λTzij

Z , where Z = 5000 for our
simulations. We numerically recover our analytical results for maturity size N ≤ 3, see Appendix . For N ≤ 3,
we show that that only the binary-splitting reproductive strategies are uniquely optimal under size effects only
in Appendix . Our remaining conclusions are reached by numerical simulations.
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S3: Analytical proof that smaller χn determines the optimal reproductive
strategy when N ≤ 3

For N ≤ 3, there are only three reproductive strategies: 1 + 1, 1 + 1 + 1 and 2 + 1. The optimal reproductive
strategy is determined by the perturbation with the smaller χn. More precisely, the reproductive strategy 1+1 is
optimal when χ1 < χ2 (advantageous perturbation at n = 1) and 2+1 is optimal when χ1 > χ2 (advantageous
perturbation at n = 2). 1 + 1, 1 + 1 + 1 and 2 + 1 are optimal when χ1 = χ2. The population growth rate of
each reproductive strategy is denoted by a subscript. For example, λ1+1 describes the population growth rate of
the reproductive strategy 1 + 1. The three population growth rates λ1+1, λ1+1+1, and λ2+1 can be calculated
by finding the largest eigenvalue of matrix A in Eq. (2) in S2. We obtain

λ1+1 =
ln 2

χ1t0s1
=

1

χ1
(3)

λ1+1+1 =
ln 3

χ1t0s1 + χ2t0s2
(4)

0 = e−λ1+2(χ1t
0
s1+χ2t

0
s2) + e−λ1+2χ2t

0
s2 − 1, (5)

where t0sn = ln n+1
n and n = 1, 2. Eq. (5) only provides an implicit solution for λ2+1. The population growth

rate is always positive, as there is no cell death in our model setting.
We first focus on χ1 < χ2 and prove that the reproductive strategy 1 + 1 leads to faster growth than either

1 + 1 + 1 or 2 + 1. We start by comparing 1 + 1 with 1 + 1 + 1 for χ1

χ2
< 1,

λ1+1

λ1+1+1
=

ln 2
χ1 ln 2

ln 3
χ1 ln 2+χ2 ln 3

2

=
1

ln 3

χ1 ln 2 + χ2 ln 3
2

χ1

=
1

ln 3

(
ln 2 +

χ2

χ1
ln

3

2

)
>

1

ln 3

(
ln 2 + ln

3

2

)
= 1.

(6)

Thus λ1+1 > λ1+1+1 for χ1 < χ2: The reproductive strategy 1 + 1 leads to faster population growth than the
reproductive strategy 1 + 1 + 1.

Next we prove that λ1+1 > λ2+1 for χ1 < χ2 by contradiction. If we would have λ2+1 > λ1+1 = 1
χ1

, then

0 = e−λ2+1(χ1t
0
s1+χ2t

0
s2) + e−λ2+1χ2t

0
s2 − 1

= e−λ2+1(χ1 ln 2+χ2 ln 3
2 ) + e−λ1+2χ2 ln 3

2 − 1

< e− ln 2−λ2+1χ2 ln 3
2 + e−λ1+2χ2 ln 3

2 − 1

= 3
2e
−λ2+1χ2 ln 3

2 − 1

= 3
2

(
2
3

)λ2+1χ2 − 1.

This can be simplified to
(

2
3

)λ2+1χ2
> 2

3 and implies λ2+1χ2 < 1 or

λ2+1 <
1

χ2
<

1

χ1
= λ1+1.
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which contradicts the assumption of λ2+1 > λ1+1 = 1
χ1

. Thus λ1+1 > λ2+1 for χ1 < χ2. Thus the
reproductive strategy 1 + 1 is optimal under χ1 < χ2.

Now we focus on χ1 > χ2 and prove that the reproductive strategy 2 + 1 leads to faster growth than either
1 + 1 or 1 + 1 + 1. We first compare 1 + 1 to 1 + 1 + 1. Since χ2

χ1
< 1, we can revert the argument in Eq. (6)

and obtain λ1+1+1 > λ1+1.
Next we prove – again by contradiction – that λ2+1 > λ1+1+1 for χ1 > χ2. If we would have λ2+1 <

λ1+1+1 = ln 3
χ1 ln 2+χ2 ln 3

2

, then

0 = e−λ2+1(χ1t
0
s1+χ2t

0
s2) + e−λ2+1χ2t

0
s2 − 1

= e−λ2+1(χ1 ln 2+χ2 ln 3
2 ) + e−λ2+1χ2 ln 3

2 − 1

> e− ln 3 + e−λ2+1χ2 ln 3
2 − 1

=

(
2

3

)λ2+1χ2

− 2

3
.

This can be simplified to
(

2
3

)λ1+2χ2
< 2

3 and implies λ1+2χ2 > 1 or

λ2+1 >
1

χ2
.

On the other hand, we have for χ1 > χ2

λ1+1+1 =
ln 3

χ1 ln 2 + χ2 ln 3
2

(7)

<
ln 3

χ2t0s1 + χ2t0s2

=
1

χ2
,

which implies λ2+1 > λ1+1+1 > λ1+1. Thus the reproductive strategy 2 + 1 is optimal for χ1 > χ2.
The optimal reproductive strategy under a single size perturbation in the main text is the special case of

χ1 = 1 or χ2 = 1. Thus, binary-splitting strategies are optimal for N ≤ 3. Only for χ1 = χ2, all three
reproductive strategies of 1 + 1, 1 + 1 + 1 and 2 + 1 have the same growth rate 1

χ1
. Thus, we have proven

that the smaller χn determines the optimal strategy. In addition, we found the optimal strategy is either 1 + 1

or 2 + 1, which is consistent with the results that binary-splitting reproductive strategies are optimal under size
effects, see Appendix .

S4: Only the binary-splitting reproductive strategies can be the optimal
one under size effects

For size effects only, the number of newborn organism types is reduced as the cell composition does not impact
the population growth rate. For example, a population with reproductive strategy 2 + 1 has only two types of
newborn organisms: single-celled organisms and two-celled organisms. For the reproductive strategy n1 +n2 +

· · ·+ nM with N =
∑M
i=1 ni, the number of newborn organism types Ω is smaller or qual to M (since ni may

be equal to nj). Therefore, Eq. (2) is reduces to∣∣∣∣∣∣∣∣∣∣
N1e

−λT1 − 1 N1e
−λT2 · · · N1e

−λTΩ

N2e
−λT1 N2e

−λT2 − 1 · · · N2e
−λTΩ

...
...

. . .
...

NΩe
−λT1 NΩe

−λT2 · · · NΩe
−λTΩ − 1

∣∣∣∣∣∣∣∣∣∣
= 0. (8)
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Next, we simplify the determinant on the left hand size of Eq. (8) by changing lines 2 to Ω. We multiply the
first row by Ni

N1
and subtract the result from the ith row, where i ∈ [2,Ω]. We obtain∣∣∣∣∣∣∣∣∣∣

N1e
−λT1 − 1 N1e

−λT2 · · · N1e
−λTΩ

N2

N1
−1 · · · 0

...
...

. . .
...

NΩ

N1
0 · · · −1

∣∣∣∣∣∣∣∣∣∣
= 0. (9)

Then we multiply the ith column by Ni
N1

and add it to the first column, where i ∈ [2,Ω]. We find∣∣∣∣∣∣∣∣∣∣

∑Ω
i=1Nie

−λTi − 1 N1e
−λT2 · · · N1e

−λTΩ

0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

∣∣∣∣∣∣∣∣∣∣
= 0. (10)

We finally obtain
Ω∑
i=1

Nie
−λTi − 1 = 0, (11)

where i ∈ [1,Ω]. Since newborn organisms produce identical offspring, Ni is the number of the ith type
offspring. For example, each organism produces 2 single-celled newborn organisms (the first type) and a two-
celled newborn organism (the second type) under 1 + 1 + 2. Thus N1 = 2 and N2 = 1. Thus, Eq. (11) can be
written in the following equation

M∑
i=1

e−λTni − 1 = 0, (12)

where Tni is the growth time for an organism from newborn size ni to its maturity size N .
To prove that only binary-spitting reproductive strategies can be uniquely optimal, we use a similar method

to [Pichugin and Traulsen, 2020]. We choose three reproductive strategies S1 = n1 + n2 + · · · + nM , S2 =

(n1 + n2) + · · · + nM and S3 = n1 + n2, where N =
∑M
i=1 ni. We use λ1, λ2, and λ3 to denote the growth

rates of S1, S2 and S3, respectively. The growth rates can be calculated as roots of the equations

f1(λ) = e−λT(n1,N) + e−λT(n2,N) +

N∑
i=3

e−λT(ni,N) − 1 = 0 (13)

f2(λ) = e−λT(n1+n2,N) +

N∑
i=3

e−λT(ni,N) − 1 = 0 (14)

f3(λ) = e−λT(n1,n1+n2) + e−λT(n2,n1+n2) − 1 = 0. (15)

Since the growth time T is positive, thus the above equations are monotonically decreasing functions. We
multiply Eq. (15) by e−λT(n1+n2,N) . Since T(x,y) + T(y,z) = T(x,z), we get

f ′3(λ) = e−λT(n1,N) + e−λT(n2,N) − e−λT(n1+n2,N) = 0. (16)

Thus, f1(λ) = f2(λ) + f ′3(λ) = 0. Hence, we have either λ1 = λ2 = λ3, f2(λ1) > 0 > f ′3(λ1)or f2(λ1) <

0 < f ′3(λ1) at λ1. If f2(λ1) < 0 and f ′3(λ1) > 0, we get λ2 < λ1 < λ3. If f2(λ1) > 0 and f ′3(λ1) < 0, we get
λ3 < λ1 < λ2. Thus, uniquely optimal reproductive strategies are always the binary-splitting ones.
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S5: The effects of cell-type switching probability on reproductive strate-
gies

A B C

0

-c

0, 0

b-c,b-c

0

-c

0, -c

0, -c

0

-c

b-c,b-c

0, 0

Figure S2: The effects of the cell-type switching probability m on the optimal reproductive strategy. A. The optimal
reproductive strategy under high cell-type switching probability m = 0.1 is the binary-splitting one with maximum maturity
size. B. The effects of cell-type switching probability on the average population growth rates of all reproductive strategies
under different thresholds. C. The cell-type switching probability shows an complex effects on reproductive strategy 1+1+1

under k = 2. All reproductive strategies that have maturity size N ≤ 3 are shown. Colours of reproductive strategies on
panel A and panel C are consistent with Figure 3 in the main text.
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