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Efficient approaches to quantum control and feedback are essential for quantum technologies, from sens-
ing to quantum computation. Open-loop control tasks have been successfully solved using optimization
techniques, including methods such as gradient-ascent pulse engineering (GRAPE) , relying on a differen-
tiable model of the quantum dynamics. For feedback tasks, such methods are not directly applicable, since
the aim is to discover strategies conditioned on measurement outcomes. In this work, we introduce feed-
back GRAPE, which borrows some concepts from model-free reinforcement learning to incorporate the
response to strong stochastic (discrete or continuous) measurements, while still performing direct gradi-
ent ascent through the quantum dynamics. We illustrate its power considering various scenarios based on
cavity-QED setups. Our method yields interpretable feedback strategies for state preparation and stabiliza-
tion in the presence of noise. Our approach could be employed for discovering strategies in a wide range
of feedback tasks, from calibration of multiqubit devices to linear-optics quantum computation strategies,
quantum enhanced sensing with adaptive measurements, and quantum error correction.
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I. INTRODUCTION

The application of optimal-control techniques to quan-
tum systems [1,2] forms a cornerstone of modern quantum
technologies, ranging from the tailoring of laser pulses act-
ing on molecules to the synthesis of unitaries in multiqubit
systems as part of the “compilation” of quantum algo-
rithms for specific hardware platforms. Since the equations
of quantum dynamics are explicitly known and even differ-
entiable, one can exploit this knowledge and, specifically,
make use of powerful gradient-based techniques. The most
prominent approach is “gradient-ascent pulse engineering”
(GRAPE) [3,4], with its efficient evaluation of gradients,
together with its variants. GRAPE is the state-of-the-art
method for quantum optimal control and is extremely
widely employed. In fact, it has been used to find optimal
control sequences for spin systems [3,5,6], coupled qubits
[7,8], an implementation of the Jaynes-Cummings model
[9], and qubit-cavity lattices [10], among many other
examples. It has also been used to optimize open dynam-
ics [11,12], it has been turned into an adaptive approach to
cope with parameter uncertainties [13–16], and it has been
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extended to second-order optimization techniques [17].
Other efficient gradient-based optimal control approaches
have also been presented recently (see, e.g., Ref. [18]).

However, there is one crucial extension that is not eas-
ily addressed by such gradient-based techniques: feedback.
Conditioning the control sequence based on the stochastic
outcomes of quantum measurements is an important com-
ponent of many more challenging tasks [19]. It allows us to
remove entropy from the system and is therefore essential
in applications such as state preparation and stabilization
in the presence of noise [20–24], adaptive measurements
[25], or quantum error correction with its syndrome extrac-
tion (see, e.g., Refs. [26–29]). Unfortunately, discovering
feedback strategies is a formidable challenge. These strate-
gies live in a space that is combinatorially larger than that
of open-loop control strategies, since every sequence of
measurement outcomes may require a different response.
Beyond that general difficulty, it is unclear a priori how to
take gradients through strong stochastic quantum measure-
ment events.

In principle, there is a set of techniques from machine
learning that can discover feedback strategies without tak-
ing gradients through quantum dynamics: so-called model-
free reinforcement learning (RL) [30] approaches (for
a brief review, see Appendix A). During the past few
years, a number of groups have demonstrated numeri-
cally the promise of model-free RL for quantum physics.
This has included both open-loop control tasks (see, e.g.,
Refs. [31–34] and also, in an experiment, Ref. [35]) but, in
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particular, the more challenging quantum real-time feed-
back tasks that rely on adaptive responses to measurement
outcomes [36–39], recently showcased in the first exper-
iments [40,41]. In model-free RL, the quantum device is
treated as a black box, which can be an advantage in appli-
cations to experimental setups with unknown parameters
[35,38,40,41]. On the other hand, much of the training
time is therefore spent in learning implicitly a model
of the dynamics while simultaneously attempting to find
good feedback strategies. This can make learning ineffi-
cient, leading to longer training times and/or suboptimal
strategies.

It would therefore seem desirable to find a way to incor-
porate feedback based on arbitrary quantum measurements
into a direct gradient-based optimal control technique such
as GRAPE, making efficient use of our knowledge of the
differentiable quantum dynamics.

In this work, we present such a technique, which we
refer to as “feedback GRAPE.” In the language of RL, it
would be classified as a model-based technique [42]. On
the one hand, it retains the ability of GRAPE to exploit gra-
dients through the quantum dynamics, making the learning
more efficient. On the the other hand, similar to model-free
RL, it provides a flexible approach to incorporate feedback,
even in the presence of strong stochastic measurements.

Overall, the technique we introduce here, feedback
GRAPE, is conceptually simple: GRAPE-type gradient
ascent for the continuous control parts, possibly imple-
mented using automatic differentiation for convenience
[43–48] and in any case exploiting modern gradient opti-
mizers, supplemented with Monte Carlo sampling of mea-
surement outcomes.

We show that the introduction of stochastic sampling
in the framework of gradient-based feedback optimization
requires the addition of an important correction term to
the overall reward function, for discrete measurement out-
comes, or a “reparametrization” of the measurement proba-
bility density, for continuous measurement outcomes. This
innovation allows us to optimize any differentiable reward
over long sequences of measurements, both discrete and
continuous.

In this way, feedback GRAPE is able to go significantly
beyond existing gradient-based optimization methods for
feedback. These are typically limited to greedy optimiza-
tion over one or, at most, a few measurements [21]. Other-
wise, for nongreedy optimization, they are limited to opti-
mal control problems that can be mapped onto so-called
classical linear-quadratic-Gaussian control problems or to
a special linear ansatz for the feedback protocol, as in so-
called Markovian quantum feedback methods [19,49]. The
special limiting case of weak Gaussian-distributed mea-
surements, which does not yet require the mathematical
treatment that we introduce, has recently been considered
in Ref. [50], which can thus be considered an important
first step toward the general method that we discuss here.

Another important aspect of our method is that, in con-
trast to so-called Bayesian quantum feedback approaches
[19,22,51], it does not require to simulate the system
dynamics during deployment in an experiment, as the con-
troller is only provided with the measurement outcomes.
This feature is important both for real-time control at fast
time scales and scalability to more complex systems.

We illustrate the power of feedback GRAPE in a series
of different tasks, considering different experimental setups
relevant for modern quantum computing employing cavity
modes [52]. Although our method is general, we focus on
feedback sequences with a modular structure, i.e., where
building blocks such as unitaries and measurements are
combined in discrete time steps. These are useful scenar-
ios, since they can make it easier to interpret the resulting
strategies.

In the following, we first present the general method and
then we analyze the numerical examples, discuss aspects
of the optimization landscape and scalability, and finally
present further extensions.

II. FEEDBACK-GRAPE METHOD

We consider a general dissipative quantum system with
feedback (for an overview of the scheme, see Fig. 1).
We suppose that measurements are performed at times
t1, t2, . . . , tN and that the evolution is controlled—in a man-
ner to be optimized—based on the corresponding measure-
ment outcomes mj . Specifically, the control parameter Fj

θ

(which might be a vector) applied during the time interval
[tj , tj +1] is a function of all previous measurement results
mj = (m1, . . . , mj −1, mj ). Below, we refer to the set of
controls {Fj

θ (mj )} for all possible measurement outcomes
as a feedback strategy or simply strategy [see Fig. 1(c)].
With this notation, we anticipate that the feedback-control
functions Fj

θ (mj ) are parametrized, depending on trainable
parameters θ that will be optimized via gradient ascent
(θ is typically a high-dimensional vector). We assume
Fj
θ to be differentiable with respect to θ . Ultimately, the

value of Fj
θ will be provided by a neural network (NN)

or, alternatively, a look-up table: we comment on these
different approaches further below but the present con-
siderations are independent of this aspect. In practice, the
control vector Fj

θ collects the parameters of a Hamiltonian
or, alternatively, a (series of) unitary gate(s). On a minor
note, in some scenarios, during the first time interval [0, t1],
one might apply a control F0 that does not depend on any
previous measurement outcomes but can still be optimized.

With this notation in place, the time evolution of the
density matrix of the system, for a particular measurement
sequence m = (m1, m2, . . .), can be written in the general
form

ρ̂(T|m) = #(m)(FN
θ , FN−1

θ , . . . , F0
θ )[ρ̂(0)], (1)
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FIG. 1. Quantum feedback control with strong measurements.
(a) Such feedback tasks combine smooth differentiable dynam-
ics in Hilbert space with measurement-induced jumps. (b) This
work integrates model-based techniques relying on gradients and
feedback to strong stochastic measurements. (c) A schematic
of the decision-tree representation of a feedback strategy for
discrete measurement outcomes. Intervals of differentiable evo-
lution with optimizable control functions Fj

θ depend on the
sequence of outcomes m1, . . . , mj . In general, the evolution can
be dissipative.

where #(m) is the map that depends on the control param-
eters and implements the quantum dissipative time evolu-
tion throughout the whole time interval [0, T], conditioned
on the given fixed sequence m of measurement outcomes.
Note that our definition implies that #(m) itself is not
a completely positive (CP) map, because it contains the
renormalization of the quantum state required after each
measurement (it implements a “quantum instrument”),
which introduces a nonlinear dependence on the initial
state. To obtain the unconditional average quantum state,
the average 〈. . .〉m of this expression may be taken over
all possible measurement sequences, weighted with their
respective probabilities.

Equation (1) is valid formally even if the overall evolu-
tion is non-Markovian. It can be simplified in the important
Markovian case. Then, the evolution proceeds stepwise.
Let us denote by #j the CP map for the continuous
evolution during the time interval [t+j , t−j +1], where t− is
shorthand for a time point just prior to the measurement at
t and, correspondingly, t+ is right after the measurement.
We then have ρ̂(t−j +1) = #j (F

j
θ (mj ))[ρ̂(t+j )]. In the spe-

cial case of unitary dynamics, the evolution itself simplifies
further to ρ̂(t−j +1) = Ûj (F

j
θ (mj ))ρ̂(t+j )Ûj (F

j
θ (mj ))

†. Here,
ρ̂(t−j +1) is understood to be the quantum state at time tj +1
for a fixed sequence m1, . . . , mj of previous measurement

outcomes, just prior to the next positive operator-valued
measure (POVM) measurement implemented at tj +1.

This measurement is described by some POVM ele-
ment that can be written in the form M̂ (m′)†M̂ (m′), with
the POVM normalization condition

∑
m′ M̂ (m′)†M̂ (m′) =

1 and M̂ ≡ M̂j +1 depending on the physics of the mea-
surement. It will yield a particular outcome mj +1 ≡ m′

with probability P(m′) = tr[M̂ (m′)†M̂ (m′)ρ̂(t−j +1)] and an
updated state ρ̂(t+j +1) = M̂ (m′)ρ̂(t−j +1)M̂ (m′)†/P(m′).

Our goal is to maximize some overall cumulative reward
R, which is called the “return” in the nomenclature of rein-
forcement learning. For example, in a state-preparation
task, this might be the final fidelity with respect to some
target state σ̂ . For a given sequence m of outcomes, we

would define R(m) =
(

tr
√√

σ̂ ρ̂(T|m)
√
σ̂

)2

. This would

be averaged eventually over all possible measurement out-
come sequences to yield R̄ = 〈R(m)〉m. The return R could
also involve penalties for suppressing larger control ampli-
tudes etc. These additional contributions depend on the
specific sequence m as well, via the controls Fj

θ (mj ).
It may now seem straightforward to employ automatic

differentiation for optimizing R̄ via gradient ascent, updat-
ing δθ = η ∂R̄

∂θ
, with some learning rate η and with all the

trainable parameters combined in a vector θ .
The crucial observation to be made at this stage is that

the introduction of stochastic measurement results into this
scheme requires some extra care. The following consid-
erations constitute the main conceptual steps needed to
enable the discovery of feedback-based quantum control
strategies based on gradient ascent.

We have to distinguish between discrete and continu-
ous measurement outcomes, which require substantially
different treatment.

For the particularly interesting discrete case (e.g., strong
projective qubit measurements), the essential insight is
that the probabilities P for obtaining the different mea-
surement outcomes themselves depend on all the controls
Fj
θ applied during previous time intervals, simply because

the quantum state itself carries this dependence. This has
to be taken care of during the evaluation of gradients
with respect to θ . Illustrating this in the case of a single
measurement m at time t1 ∈ [0, T], we have

〈R〉m =
∑

m

P(m|ρ̂(t−1 ))R(m). (2)

Here, P(m|ρ̂) is the probability of measurement outcome
m given state ρ̂. As we take the gradient with respect to the
trainable parameters θ , we observe that the derivative acts
not only on the return R based on the time-evolved state
#1(F1

θ (m))[ρ̂(t+1 )] (the second factor inside the sum) but
also on the probability P(m) itself, due to its dependence
on the initial control, ρ̂(t−1 ) = #0(F0

θ )[ρ̂(0)].
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Generalizing this observation, we cannot simply imple-
ment gradients of the measurement-averaged return R̄ =
〈R(m)〉m by averaging the gradient of the sequence-
specific return, 〈∂R(m)/∂θ〉m. Rather, observe 〈R(m)〉m =∑

m P(m)R(m). Thus, when evaluating ∂〈R(m)〉m/∂θ , we
get two contributions: ∂[R(m)P(m)]/∂θ = P(m)∂R(m)/
∂θ + R(m)∂P(m)/∂θ . To enable stochastic sampling of
the second term, we rewrite it using ∂P(m)/∂θ =
P(m)∂ ln P(m)/∂θ . This then leads to

∂ 〈R(m)〉m

∂θ
=

〈
∂R(m)

∂θ

〉

m
+

〈
R(m)

∂ ln Pθ (m)

∂θ

〉

m
. (3)

Here, we display explicitly the parameter dependence
of Pθ (m), which represents the probability of the full
sequence of outcomes m = (m1, m2, . . .), given the param-
eters θ that determined the shape of the control func-
tions Fj

θ .
The mathematics for the extra term appearing here,

with the gradient of the log-likelihood, is well known
from policy-gradient-based approaches in model-free rein-
forcement learning. However, there this term appears for
a different reason. It arises due to the deliberate choice
of implementing stochastic controls, in order to avoid
any need to take gradients through the possibly unknown
dynamics of the system to be controlled (for more details,
see Appendix A). In our case, by contrast, we do take
gradients through the known dynamics and the controls
themselves are deterministic when conditioned on a fixed
sequence of measurements. The randomness enters via the
stochastic measurement outcomes (these are observations
of the “environment” in RL language).

Due to the sequential nature of the control procedure,
the log-likelihood term can be rewritten as a sum of con-
tributions, ln Pθ (m) =

∑
j ln Pθ (mj |mj −1). Thus, during

the individual time-evolution trajectory, this term may
be easily accumulated step by step, since the conditional
probabilities are known (these are just the POVM mea-
surement probabilities). The gradients of Eq. (3) can then
be taken for such an individual trajectory or a batch, sub-
stituting stochastic sampling for an exact average over
m. The whole approach, with its calculational pipeline,
is illustrated schematically in Fig. 2. Additionally, a more
detailed algorithmic flow-chart representation is given in
Appendix B.

The Monte Carlo evaluation of the average reward
〈R(m)〉m =

∑
m P(m)R(m) is a crucial ingredient to tackle

long sequences of stochastic measurements, as it allows us
to focus only on the most likely measurement outcomes
among the exponentially large set of such outcomes. Only
for very short sequences would it be feasible to instead
explicitly evaluate the sum over all possible measurement
outcomes, producing less noisy gradients.

The evaluation of the gradients of the return with respect
to the trainable parameters θ can proceed in two different

PCDF(mj | ρθ(tj)) = z
 randomz ∈ (0,1)

mj control Fjθ(m1, …,mj)

continuous outcome

mj ∼ P(mj | ρθ(tj))

discrete outcome

m
p(m)

m
P(m)

accumulate ln P(mj | ρθ(tj))

Û(F)[ ]N cumulative reward R =
j
rj
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FIG. 2. The quantum feedback sequences considered within
feedback GRAPE, set up for automatic differentiation. (a) The
measurement samples a stochastic outcome mt, adopting a dif-
ferent method depending on whether the outcome is continuous
or discrete. In both cases, the probability distribution depends in
a differentiable way on the trainable parameters θ , via the pre-
ceding unitary controls that have generated the present quantum
state ρθ . Depending on the measurement outcome, a learnable
control F is applied that may be implemented either via a neu-
ral network (NN) or a look-up table. (b) The full sequence. This
consists of repeated application of the blocks depicted in (a), plus
subsequent implementation of unitary controls depending on F ,
potentially with decay and decoherence included in the model of
the evolution of the system. For discrete measurement outcomes,
the logarithmic term (in brackets) has to be accumulated and is
used to evaluate a log-likelihood correction term when optimiz-
ing the overall return R using gradient ascent [cf. Eq. (3)]. An
algorithmic flow-chart representation of the learning pipeline for
the case of discrete measurements is provided in Appendix B.

ways, using either automatic differentiation (see below) or
exploiting analytical approaches to obtain explicit expres-
sions for the gradients that can then be evaluated numer-
ically. In the latter case, one can either set up evolution
equations for the parameter gradient of the quantum state,
∂θ ρ̂ or, in the suitable scenario, directly apply a modi-
fied version of the original GRAPE technique to efficiently
evaluate the gradients. We describe both of these proce-
dures in detail in Appendix C. In the language of current
machine-learning concepts, taking the gradient through
the continuous-evolution intervals would be, generally
speaking, an example of the concept of neural ordinary
differential equations, a rather recent development [53].

Alternatively, and sometimes more conveniently, the
whole evolution pipeline described above can straight-
forwardly be implemented in an automatic differentiation
framework, such as TensorFlow [54], PyTorch, JAX, or
others. The gradients of the resulting overall return and
of the log-probability can then be obtained using that
framework without extra effort. The sequence of discrete
measurement outcomes of a given trajectory is consid-
ered fixed when taking the gradient in this manner. The
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automatic-differentiation approach is particularly helpful
and efficient in cases where the whole time evolution can
be split into many building blocks (parametrized gates, i.e.,
unitaries, acting during fixed time intervals), as is common
practice for many quantum control tasks in present quan-
tum computing platforms. Whenever this latter situation is
encountered, it also aids interpretability, as we see later, in
the numerical examples.

The measurement-dependent controls Fj
θ (mj ) are the

central quantities of our approach. For accessing those, one
can simply adopt a look-up table, at least for the case of
discrete measurements discussed up to now and when the
total number of measurements during the full time evolu-
tion is not too large. The table for Fj

θ needs M j entries, if
there are M possible outcomes for each measurement, cor-
responding to the exponentially many possible sequences.
In that case, the entries of this table would directly repre-
sent the trainable parameters θ . Alternatively, the controls
Fj
θ (mj ) can be implemented via an NN that takes the mea-

surement results as input and maps those to the current
control vector. Since the number of available measurement
results is different for each time step j , one may choose
to set up a different network at each j . However, train-
ing efficiency and generalization ability can be improved
by constructing a single recurrent network, i.e., a network
with memory that is employed in sequence processing
tasks [55]. It takes the temporal sequence of measurements
as input, one step at a time, producing a control vector at
each such time step. This approach can possibly generalize
to infinitely long feedback-control sequences, e.g., dur-
ing state-stabilization tasks. In the course of our numerical
experiments, to be detailed later, we observe both scenar-
ios, where the NN outperforms the look-up table but also
the reverse.

We note in passing that both the look-up table and the
recurrent neural network (RNN) approaches do not require
a Bayesian estimate of the state during deployment in
an experiment: they operate purely on the measurement
outcomes. For the sake of comparison, however, we also
consider a Bayesian quantum feedback approach [51] in
which a fully connected NN is provided with the quantum
state before each time step. This approach suffers problems
with scalability, because it can be deployed in an exper-
iment only in combination with real-time simulations of
a stochastic master equation [51] to update the quantum
state based on the measurement outcomes. We see later
that our numerical results indicate that the knowledge of
the full quantum state does not appear to provide any sub-
stantial learning advantage compared to our non-Bayesian
approaches.

Continuous measurement outcomes can be treated in
exactly the same way as discrete ones. However, for that
scenario there also exists an alternative, which obviates
the need for the logarithmic-likelihood correction term:

we can adopt a general version of what is known as the
“reparametrization trick” in stochastic NNs (e.g., in vari-
ational autoencoders). The idea is that we can generate a
stochastic variable z according to some fixed probability
density and then transform this into the required measure-
ment probability density p(m|ρ̂), which does depend on
control parameters (via the state ρ̂, as explained above) and
must be subjected to gradients. This parameter-dependent
transformation can be implemented in a differentiable way,
as we now show. We first obtain the cumulative distribu-
tion function f (m) =

∫ m
−∞ p(m′|ρ̂)dm′, by discretizing p

as a vector on a lattice and using a cumulative sum for an
Euler approximation of the integral (this operation exists in
frameworks such as TensorFlow). We then draw a random
uniformly distributed z ∈ [0, 1] and invert f (m). The last
step also needs to be performed in a differentiable way. One
option is to set m = f −1(z) ≈

∑
n m̃nH(z − zn)H(zn+1 −

z). Here, zn = f (mn) defines the lattice version of f , H is
the Heaviside step function, the sum ranges over the lattice
points, and m̃n solves the piecewise linearized approxima-
tion of m = f −1(z) associated with the interval n: m̃n =
(mn+1 − mn)(z − zn)/(zn+1 − zn) + mn. The set of mea-
sure zero where the gradient is undefined can be ignored,
as is common practice in using activation functions such
as rectified linear units in NNs.

In this way, one can implement, within the automatic
differentiation framework, measurements of, e.g., discrete
variables with continuous outcomes. A typical case would
be a qubit measurement with m = σ + ξ , where σ = ±1
is the qubit state and ξ some measurement noise of density
q(ξ). Formally, p(m|ρ̂) =

∑
σ q(m − σ )ρσσ , and M̂ (m) =∑

σ

√
q(m − σ ) |σ 〉 〈σ |. One can also perform measure-

ments on continuous variables, e.g., a weak measurement
of position, p(m|ρ̂) =

∫
dxq(m − x)ρ(x, x), with M̂ (m) =∫

dx
√

q(m − x) |x〉 〈x|. The dependence of the probability
density p in each case on the parameters determining the
control functions at earlier times will be correctly taken
into account and one can now use the straightforward for-
mula ∂R̄/∂θ = 〈∂R(m)/∂θ〉m for stochastic sampling of
the gradient. Note that the discrete-outcome case (above)
and the continuous-outcome case can also be easily com-
bined in our approach.

Our reparametrization trick allows us to switch from
any arbitrary state-dependent probability density p(m|ρ̂)
to an easy-to-sample fixed probability density, allowing
to obviate the need for the log-likelihood term that is
required in the case of discrete outcomes discussed earlier.
There is a special limiting case in which an even simpler
linear reparametrization achieves the same goal. We are
referring to the case in which p(m|ρ̂) is a Gaussian that
depends on the state of the system only via its mean value
m̄, p(m|ρ̂) = N (m̄(σ̂ ), 1). In this case, one can switch
to a fixed (easy-to-sample) Gaussian probability density
with the reparametrization z = m − m̄(σ̂ ) ∼ N (0, 1). This
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reparametrization has the advantage that it can be trivially
inverted. This kind of description automatically arises in
the well-known quantum trajectories approach applied to
homodyne detection [49] of light emerging from a cavity.
In that setting, the observable m of interest is the observed
homodyne detection current, appropriately rescaled and
integrated over a time window )t much smaller than the
typical system decay time. Its distribution depends on the
state of the system only via its mean value m̄ = εtr(Ôρ̂),
where Ô is the system observable that couples to the
bath and ε ∝

√
)t. In the framework of this quantum tra-

jectory approach, one can thus find feedback strategies
conditioned on the homodyne current by differentiating
through the system dynamics without introducing our more
flexible reparametrization of p(m|ρ̂) or our additional log-
likelihood term. This approach has been pursued recently
by Schäfer et al. [50].

So far, controls have been continuous and represented
via functions (differentiable with respect to parameters)
depending on previous measurement results. However,
sometimes one might want to also take discrete actions,
e.g., deciding whether or not some measurement should be
performed at all or whether some fixed qubit gate should
be applied. This can be incorporated without any sub-
stantial changes to the approach discussed here, borrow-
ing from policy-gradient model-free reinforcement learn-
ing, by introducing stochastic actions a, in contrast to
the deterministic continuous actions discussed so far: use
an NN or a look-up table to calculate the probability
Pθ (aj |mj , aj −1) of taking a discrete action aj at step j
given the previous measurement record mj and actions
aj −1 = (aj −1, . . . , a2, a1) and then sample from all actions
accordingly. Then, the same form for the gradient for
the reward applies as in Eq. (3) but now with both the
reward R and the probability Pθ depending not only on the
measurement history m but also on the history of all the
actions taken throughout the trajectory, a = (a1, a2, . . .).
As before, the probability in Eq. (3) can be replaced
by Monte Carlo sampling, while the log-likelihood
term can be accumulated according to ln Pθ (m, a) =∑

j ln Pθ (mj |mj −1, aj −1) + ln Pθ (aj |mj , aj −1).

III. NUMERICAL EXAMPLES

We now turn to an illustration of the feedback-GRAPE
method by solving several different challenging quantum
feedback-control tasks. We consider five separate tasks of
increasing difficulty: starting with noiseless state prepara-
tion (an open-loop control task) as a baseline benchmark
for GRAPE-type control in this scenario, then moving to
purification (a task that already benefits from feedback, i.e.,
adaptive measurements), to feedback-based state prepara-
tion in the presence of noisy control parameters or out
of a thermal state, and feedback-based state stabilization.

Along the way, we explore a handful of different experi-
mental scenarios.

A. State preparation with Jaynes-Cummings controls
As a preliminary step, we consider state preparation

of a target state starting from a pure state. In addition,
we assume that any coupling to an external environment
is negligible and that the parametrized controls can be
implemented perfectly. In this setting, the preparation of
a quantum state does not require any feedback and, thus,
we will not yet be able to test our feedback extension of
GRAPE. Instead, the purpose of this section is to provide
a compelling motivation for our approach, showing that,
even before feedback is introduced, (GRAPE-type) model-
based optimal-control approaches outperform, sometimes
dramatically, their model-free counterparts.

As a first example, we consider the state preparation
of a cavity resonantly coupled to an externally driven
qubit [cf. Fig. 3(a)]. This scenario is modeled by the
well-known Jaynes-Cummings Hamiltonian [56]. It is
the first and simplest light-matter coupling scenario that
emerged in quantum optics [56,57] but it is nowadays
of practical relevance for modern quantum computing
platforms [52]. In those, it is employed both for qubit
readout and for qubit-enabled nonlinear manipulation of
cavity states. Here, we consider a particular sequence of
parametrized unitary gates originally introduced by Law
and Eberly [58]. The sequence consists of a series of
two interleaved gates [cf. Fig. 3(b)]. In the first gate, the

N

qubit 
drive

Ûq(αj) Ûqc(βj)]
qubit-cavity

 drive

[

b

Trajectories

(a) (c)

(d)
(b)

FIG. 3. State preparation from the ground state (open-loop
control). (a) A schematic of the Jaynes-Cummings system. (b)
The sequence of parametrized controls during a time-evolution
trajectory. Each trajectory comprises N time steps. A time step
consists of a qubit drive gate followed by a qubit-cavity inter-
action gate. (c),(d) The fidelity as a function of the number of
trajectories sampled during training (here, that number is equal
to the number of gradient-ascent iterations). The target state is
indicated. (c) Model-free RL performs very poorly, while (d) the
direct gradient-based approach used as the basis for our method
converges well even when long sequences are required (N = 20
for the four-component kitten state).
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qubit is driven externally to implement an arbitrary rota-
tion about an equatorial axis, implementing the unitary
gate Ûq(α) = exp[−i

(
ασ̂ c

+ + α∗σ̂ c
−
)
/2]. Here, we intro-

duce the qubit-raising (-lowering) operator σ̂ c
+ (σ̂ c

−) and
|α| is the rotation angle while arg(α/|α|) is the azimuthal
angle of the rotation axis. In the second gate, the qubit
and cavity mode with ladder operator â can be coupled
for a variable duration, exchanging excitations, Ûqc(β) =
exp[−i

(
βâσ̂ c

+ + β∗â†σ̂ c
−
)
/2]. Here, |β| is proportional to

the interaction time (see Appendix D). Depending on the
target state, the control parameters α and β can be chosen
to be complex or real. In the latter case, the control vector
Fj defined in Sec. II is simply Fj = (αj ,βj ).

In their groundbreaking work [58], Law and Eberly have
shown that any arbitrary superposition of Fock states with
maximal excitation number N can be prepared out of the
ground state in a sequence of N such interleaved gates,
also providing an algorithm to find the correct angles and
interaction durations (see Appendix D). This solution has
been used to remarkable effect in experiments with super-
conducting qubits [59]. Here, we use it as a benchmark to
test different RL approaches.

With the goal of recovering the strategies predicted by
Law and Eberly, we set the return R equal to the state
fidelity at the final time step, prescribing a fixed number
of time steps equal to the maximum number of excitations
in the target state, e.g., for the state ∝ |1〉 + |3〉, we set
N = 3.

Somewhat surprisingly, state-of-the-art model-free rein-
forcement learning is unable to cope well with this chal-
lenge. We employ proximal-policy optimization (PPO)
[60], a powerful and widely used modern general-purpose
advantage actor-critic approach to optimize the continuous
controls. It performs well only for the very simple task of
preparing Fock state |1〉, while getting stuck at bad final
overlaps for higher Fock states [cf. Fig. 3(c)]. This state-
ment holds even after training for many episodes, varying
the hyperparameters, and even applying other modern
model-free RL algorithms (see Appendix E).

In contrast, direct gradient ascent through the unitary
evolution, using the control parameters as learning param-
eters, θ = {Fj = (αj ,βj )}, allows us to find optimal state-
preparation strategies performing as well as the known
Law-Eberly algorithm for a broad range of states. As
examples, we prepare Fock states with excitation numbers
up to n = 10 and superpositions of two Fock states [cf.
Fig. 3(d)]. For all these states, convergence of the training
protocol is obtained in a single run and the infidelity can be
decreased up to the numerical precision of the algorithm.

In addition, we also consider a much more challeng-
ing four-component kitten state built from four coherent
states, |ψKit4

α̃ 〉 ∝
∑3

j =0 |ij α̃〉. Here, we consider α̃ = 3,
corresponding to the average photon number n̄ ≈ |α̃|2 = 9.
We attempt to prepare this state using a long sequence of

20 time steps. In this case, we see that the infidelity tends
to decrease stepwise during the training [cf. Fig. 3(d)].
In Appendix F, we show that the detailed evolution of
the fidelity during training depends strongly on the initial-
ization. On the other hand, the height of the steps is an
intrinsic feature of the target state. Interestingly, each step
can be associated with a particular intermediate state that
can be reached using a large number of different strategies.
Each such strategy corresponds to a saddle point of the
optimization landscape. The training becomes particularly
slow close to these saddle points because the curvature
of the optimization landscape in the direction of increas-
ing fidelity is zero, giving rise to a narrow valley. This
can cause the training to stall on a suboptimal solution.
Nevertheless, if the preparation sequences are made longer
(larger N ), good solutions can be found in any training run
(for more details, see Appendix F).

Physically, the presence of a large number of narrow
valleys and plateaus in the optimization landscape is due
to the fact that in the Law and Eberly protocol, the exci-
tations can only be added one by one, first exciting the
qubit and then transferring them to the oscillator. They are
present even for simple tasks such as the preparation of
a simple Fock state with excitation number n prepared in
N = n time steps [as in Figs. 3(c) and 3(d)]. In this case, it
is enough that a single control parameter (βj or αj for any
j ) is zero for the fidelity and its gradient to vanish. If two or
more parameters are small, the Hessian is also zero, lead-
ing to a plateau. In the model-based approach, this leads to
a slow convergence for large n [cf. Fig. 3(d)]. On the other
hand, lack of direct access to the gradient in a model-free
approach prevents convergence even for small values of n
[cf. Fig. 3(d)].

In order to further substantiate that model-based
GRAPE-type optimal control approaches are more efficient
than their model-free counterparts, we analyze the state
preparation of a so-called Gottesman-Kitaev-Preskill state
[61], using the same set of universal controls as recently
adopted by Sivak et al. [38] to demonstrate their model-
free quantum control approach. Direct comparison of our
results, reported in Appendix G, with those of Ref. [38]
shows the following: in this setting with more power-
ful controls, in which model-free RL performs already
well, a GRAPE-type approach performs even better. In
particular, it allows us to explore much larger parame-
ter spaces and, thus, obtain better-quality solutions using
only a small fraction (about 1%) of simulated training
trajectories.

Regardless of these detailed observations, these exam-
ples indicate that model-based gradient-ascent approaches
can outperform model-free generic methods for optimiz-
ing quantum control in settings relevant for quantum
technologies. Given the large performance difference in the
open-loop control scenario already, we focus entirely on
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the feedback-GRAPE approach in the subsequent explo-
ration of the more advanced challenges that do include
feedback.

B. State purification with qubit-mediated
measurement

Next, we move to a first example of a situation that
requires feedback. We now imagine that the cavity is ini-
tially in a mixed state. The goal is to purify the state of
the cavity, i.e., the reward is determined by the purity
trρ̂2

cav of the cavity state at the final time. Purification can
be achieved by applying repeated quantum measurements,
which remove entropy from the quantum system.

In the following, we consider an adaptive measurement
scheme originally proposed in Ref. [62] and demonstrated
in a series of experiments on Rydberg atoms interacting
with microwave cavities [21,63–65]. In this scheme, the
cavity is coupled to an ancilla qubit, which can then be
read out to update our knowledge of the quantum state of
the cavity [cf. the sketch in Fig. 4(a)].

The measurement comprises several steps, which we
list individually before summarizing their combined effect
on the cavity state. In a first step, the ancilla qubit with
Pauli operators σ̂ a

i=x,y,z is prepared in the +x eigenstate.
Subsequently, it is coupled dispersively to the cavity for
a variable amount of time. The dispersive coupling in
experiments is linear in the photon number to a very good
approximation in the low-photon regime and is described

N
M̂(γj, δj)]
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Nonadaptive
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Nonadaptive

FIG. 4. Purification of a thermal state. (a) A sketch of the
experimental setup. The cavity is coupled dispersively to an
ancilla qubit. (b) The sequence of parametrized controls dur-
ing a time-evolution trajectory. Each time step consists of a
parametrized measurement. (c) Purity as a function of time start-
ing from a thermal state with n̄ = 2. An adaptive strategy (found
using feedback GRAPE) clearly outperforms other approaches.
(e) The extracted purification strategy visualized in a decision
tree. The purple boxes display the measurement parameters
(γ /π |δ/π).

by a unitary of the form Û(γ ) = exp(−iγ σ̂ a
z â†â), with

parameter γ depending linearly on the interaction time.
This means that the qubit precesses by an angle that
depends linearly on the number of photons inside the
cavity. In the next and final step, the ancilla qubit is pro-
jected along some selected axis σ̂ a

x cos δ + σ̂ a
y sin δ, yield-

ing a discrete result m ∈ {−1, +1}. The combined effect
of these operations is to perform a POVM on the cavity,
with outcome probability P(m) = tr[M̂ (m)†M̂ (m)ρ̂] and
an updated state M̂ (m)ρ̂M̂ (m)†/P(m). Here, ρ̂ is the state
of the cavity, excluding the measurement qubit, which is
eliminated in this description. The measurement operator
M̂ (m) is given by

M̂ (m = +1) = cos(γ â†â + δ/2), (4)

and likewise for m = −1, with cos replaced by sin. This
formula indicates that after the measurement, the probabil-
ities of the different cavity Fock states |n〉 are multiplied
by a sinusoidal “mask,” where the period is determined
by 1/γ and the phase shift is set by both δ and the mea-
surement outcome m. This helps to pinpoint the state of
the cavity, especially when multiple such measurements
are carried out with suitably chosen periodicities [62] and
phase shifts [65].

Figure 4(c) shows the results of applying the feedback-
GRAPE method to this problem (labeled “Adaptive”). We
employ an RNN to produce the controls Fj = (γj , δj )
when provided with the measurement outcome sequence
(more details on numerical parameters can be found in
Appendixes D and E). As we see, the impurity quickly
decreases with the number of allowed measurements and it
does so significantly better than in a nonadaptive scheme,
where the sequence of measurement controls δj and γj is
still optimized but where these controls are not allowed to
depend on previous measurement outcomes. To visualize
and analyze the numerically obtained strategy, in Fig. 4(d)
we introduce a decision tree. This is extracted via an auto-
mated numerical procedure, by running many trajectories
and noting in each case the controls suggested by the adap-
tive strategy. The controls are a deterministic function of
previous measurement outcomes.

Such a decision tree will contain all information about
the adaptive strategy learned by the NN and can pos-
sibly allow the user to give it a physical interpretation
and extrapolate analytical solutions for larger numbers
of control steps. This may require us to leverage any
available physical understanding of the control operations,
e.g., identifying physically significant values of the con-
trol parameters. Using our understanding of the physics
of the model, we can choose to (analytically) interpret the
controls, e.g., try to represent them in terms of fractional
multiples of π . This kind of analysis is optional and inde-
pendent of our method but it nicely demonstrates what can
usefully be done in settings with discrete measurements,
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generating additional insights after running the general-
purpose algorithm. For example, here, we are able to take
inspiration from the decision tree for four measurements
and a specific value of the temperature to extrapolate the
optimal purification strategy for any temperature and any
number of measurements (see Appendix J).

C. State preparation from a thermal state with
Jaynes-Cummings controls

We now turn to a task that involves both feedback
and control simultaneously. Specifically, we consider state
preparation out of a thermal state, for target states that are
selected as arbitrary superpositions of the first few Fock
states. For this purpose, we consider the setup shown in
Fig. 5(a), comprising both an ancilla and a control qubit
to combine the parametrized measurements introduced in
Sec. III B with the Jaynes-Cummings control gates intro-
duced in Sec. III A. The resulting sequence of parametrized
controls is shown in Fig. 5(b).

Results for the state (|1〉 + |2〉 + |3〉)/
√

3 and a four-
component kitten state |ψKit4

α̃ 〉 with α̃ =
√

2, are shown in
Figs. 5(c) and 5(d). Feedback GRAPE converges in about
1000 gradient-ascent steps (each operating on a batch of
ten sampled trajectories). We run the method several times,

starting with different initial random configurations of the
trainable parameters θ , demonstrating that convergence is
robust, despite the usual absence of a guarantee for such
a nonconvex optimization problem (for more details, see
Appendix I).

It is interesting to analyze the convergence behavior in
more detail. As one noteworthy observation, despite the
overall very good performance, we sometimes find that
the algorithm may get stuck at suboptimal solutions if we
increase the total number of time steps available for the
feedback sequence [Fig. 5(d)]. Ideally, an increased num-
ber of steps should always lead to an improvement (in the
present scenario) but apparently the larger space of control
variables then becomes challenging. This can be mitigated
to some extent by running the gradient ascent repeatedly
from random starting conditions. We discuss other possible
solutions to this general problem in Sec. IV.

One motivation for the use of an NN instead of a look-
up table is that the number of parameters needed for a
tree-type table grows exponentially, while an NN could in
principle make use of a much smaller number of param-
eters. Also, it may be expected that the strategy of a
network generalizes to situations with a number of time
steps larger than the one on which it was trained. Despite
these obvious advantages of NNs, we find (to our surprise)
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FIG. 5. State preparation from a thermal state (with average occupation n̄ = 1), employing feedback. (a) A schematic of the Jaynes-
Cummings system with an additional ancilla qubit used for the measurement. (b) The sequence of parametrized controls. Each
trajectory corresponds to N time steps. Each time step consists of a parametrized measurement, followed by two unitary gates. (c)
The gradient-ascent progress for two target states (the curves are smoothed with a moving average). (d) The final infidelity versus the
total number of time steps. In (d), each point is the best out of 30 training runs. The statistics of the final infidelity for random training
initialization are analyzed in Appendix I. (e) The evolution of the reduced qubit and cavity state (probability as color) for one trajectory
of the converged strategy (target |1〉 + |2〉 + |3〉); time points of measurements (with results) and controls are indicated as in (b). (f)
The corresponding decision tree, for the most probable sequences of measurement outcomes. The red boxes show (α/π |β/π) and “No
meas” means that the parameters γ and δ are such that no measurement takes place. Gradient-ascent progress [for the same state and
number of steps as in (e) and (f)] (g) with and without memory and (h) for different values of the learning rate (see legend).
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that look-up tables often converge to better fidelities than
RNNs in the present example scenario with feedback [cf.
the red and green lines in Figs. 5(c) and 5(d)]. Another
important observation is that both the look-up table and
the RNN methods fare at least equally well if not better
than a quantum state aware NN controller (the pink line
in Figs. 5(c) and 5(d). As mentioned above, these methods
are preferable as they do not require any real-time simu-
lations during deployment in an experiment. The reasons
for these observations are still unclear and merit future
investigation.

What is the nature of the feedback strategies that the
algorithm discovers? Naively, we might expect the fol-
lowing strategy: an optimized adaptive purification phase,
of the kind discussed above, leading to some Fock state
|n〉, followed by state preparation that is derived from
the Law-Eberly protocol (e.g., going back down to the
ground state and then building up the arbitrary target state
from there). However, the actual strategies discovered by
feedback GRAPE are significantly more efficient. They
already interleave adaptive measurements and controls in
the first stage of the process. This can be seen in Figs. 5(e)
and 5(f), where the goal is to prepare the equal superpo-
sition (|1〉 + |2〉 + |3〉)/

√
3. Again, it is possible to obtain

more information about the full strategy (as opposed to a
single trajectory), by extracting a decision tree [Fig. 5(f)].
There, we observe that measurements are sometimes delib-
erately performed in such a way that certain Fock states are
completely ruled out (their probability is set to 0), which
requires certain choices of measurement control param-
eters. Simultaneously, qubit-cavity interaction cycles are
employed to reduce the excitation number of the cavity.

D. State stabilization in a noisy environment with
Jaynes-Cummings controls

Quantum state stabilization in a noisy environment rep-
resents another challenging task that can be solved using
feedback GRAPE.

In this scenario, the interaction with the environment
induces decay and decoherence of the quantum state.
Both these effects can be suppressed by probing the sys-
tem with an appropriate stream of quantum measurements
interleaved with unitary gates, leading to the long-term
stabilization of the quantum state.

We use a similar Jaynes-Cummings feedback-control
scheme as in Sec. III C, here, allowing for multiple con-
trol substeps. Each substep comprises a qubit drive and
a qubit-oscillator interaction gate. In addition, we model
the physical decay of the cavity with decay rate κ , inter-
leaving the substeps of the feedback-control sequence with
intervals of dissipative evolution of fixed durations tM
and tc [cf. Fig. 6(a)]. These could be interpreted as wait-
ing times before applying instantaneous measurement and
control gates, respectively, but more realistically they can
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FIG. 6. State stabilization with Jaynes-Cummings controls. (a)
A sketch of the feedback-control sequence, also including the
physical decay of the cavity. We assume that multiple control
substeps can be applied after each measurement. Each substep
comprises a qubit driving gate followed by a qubit-cavity inter-
action gate. The decay with rate κ is incorporated by interleaving
the parametrized controls with dissipative evolution of fixed
durations tM and tc before a measurement and control substep,
respectively (for more details, see Appendix H). (b) Trajecto-
ries after optimization. We show the evolution of the oscilla-
tor Wigner function during one step of the feedback-control
sequence stabilizing a four-legged kitten state with average pho-
ton number n̄ = 9. Also indicated are the probabilities P of each
measurement outcome as well as the fidelity F after the decay
and control steps. (c) The performance of the strategy found by
feedback GRAPE. We show the final fidelity for various target
states and numbers of steps N . After each decay and measure-
ment, a single control sequence (i.e. only one choice of α and β)
is applied. The four columns represent different numbers of decay
steps experienced by the state (here, N = 1, 2, 3 and 4). The bars
with lower values show the bare decay of the fidelity (here, for
κtM = 0.05 and tc = 0), when no feedback strategy is employed.
(d) For sufficiently low dissipation (small tc), the fidelity can
be increased by applying more control substeps. We show the
fidelity as a function of the number of substeps for N = 1, κtM =
0.1 and three different decay durations tc, κtc = 0, 1 × 10−4, and
2 × 10−4. (e) The stabilization of a Fock state (here, |5〉) for an
arbitrarily long time, employing the generalization ability of a
recurrent neural network (RNN).

effectively incorporate the decay and decoherence that has
occurred during finite-duration operations. For this approx-
imation to work, the decay needs to be weak, which is the
case for our scenario.

As an illustrative example, we show the two possible
trajectories for a circuit comprising a single step of the
feedback-control sequence and optimized to stabilize a
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four-legged kitten state |ψKit4
α̃ 〉 with average photon num-

ber n̄ ≈ 9 [cf. Fig. 6(b)]. The learning algorithm selects the
measurement parameters δ = 0 and γ = π/2. This seems
a natural choice because in this case, M̂ (m = 1)|ψKit4

α̃ 〉 =
|ψKit4

α̃ 〉. This implies that the measurement leaves the target
kitten state invariant. In addition, a measurement out-
come m = −1 postselects an orthogonal state. The latter
outcome is verified if, e.g., a single-photon leaks out of
the cavity and occurs with 30% probability after the dis-
sipative evolution of duration κtM = 0.05. The fidelity
recovers up to 91% after a single Jaynes-Cummings con-
trol sequence is applied. This is a good result considering
the limited expressivity of our control scheme. The fidelity
can be moderately increased by allowing more steps pro-
vided that the decay during the control protocol is not too
large [cf. Fig. 6(d)].

The fidelity for several quantum states, including Fock
states and superpositions thereof, for a varying number of
time steps (up to four) is shown in Fig. 6(c). As a compar-
ison, the bare decay in the absence of any control is also
displayed. These results demonstrate the ability of feed-
back GRAPE to discover strategies to mitigate the effect
of dissipation for a variety of quantum states.

As we explained above, look-up tables often perform
surprisingly well. We now briefly demonstrate, in the con-
text of state stabilization, one example where the power
of an NN is clearly helpful [Fig. 6(e)]. We first train an
RNN on sequences of 20 steps, with the goal of stabiliz-
ing a given Fock state for an arbitrarily long time. For this
example, the cumulative reward of a trajectory is not only
the final fidelity but the sum of fidelities at all time steps.
After training, we test on a 40-times-longer simulation and
we see that the strategy learned by the RNN generalizes
well even for longer sequences. We note how the strat-
egy can recover, even when some “unlucky” measurement
outcomes significantly perturb the quantum state.

E. State stabilization with SNAP gates and
displacement gates

The use of feedback GRAPE applied to the Jaynes-
Cummings scenario allows us to discover strategies
extending the lifetime of a range of quantum states. How-
ever, for more complex quantum states such as kitten
states, the infidelity becomes significant after just a few
dissipative evolution steps in spite of the feedback [cf.
Fig. 6(c)]. This raises the question of whether the limited
quality of the stabilization is to be attributed to a failure
of our feedback-GRAPE learning algorithm to properly
explore the control-parameter landscape or, rather, to the
limited expressivity of the controls. With the goal of
addressing this question, we test our method on the state-
stabilization task using a more expressive control scheme.

Specifically, we use a universal control scheme origi-
nally proposed in Ref. [66]. This consists of a sequence
of interleaved selective number-dependent arbitrary-phase
(SNAP) gates Ŝ({ϕn})) =

∑
n eiϕn |n〉〈n| and displacement

gates D̂(α) = exp[αâ† − α∗â]. This is the same control
scheme as adopted by Sivak et al. [38] to demonstrate their
model-free optimal-control approach for state preparation
and, as mentioned above, we also use it to demonstrate the
preparation of a so-called Gottesman-Kitaev-Preskill state
[61] with open-loop controls (see Appendix G). We now go
one step further and employ these powerful controls inside
a feedback-based state-stabilization scheme, optimized via
feedback GRAPE.

As a test example, we consider the feedback-based sta-
bilization of a kitten state built from two coherent states,
|ψKit2

α̃ 〉 ∝ |α̃〉 + | − α̃〉 with α̃ = 2, corresponding to an
average photon number of n̄ ≈ |α̃|2 = 4. This state has
even parity P̂|ψKit2

α̃ 〉 = |ψKit2
α̃ 〉 with P̂ = exp[iπ â†â]. After

an excitation leaks out of the cavity, it decays into an odd
cat state with the same α̃ [cf. Fig. 7(b)]. Thus, we can
detect these decay processes using repeated parity mea-
surements. After such a process, an optimized control step
can transform the odd kitten state back into the target kitten
state with high fidelity [cf. Fig. 7(b)]. These considera-
tions motivate us to use the feedback-control sequence
shown in Fig. 7(a). We use the real and imaginary parts
of the phase-space displacements αj as control parameters,
together with the phases ϕj

n for the first NSNAP Fock states
(the remaining phases are set to zero).

We train several NNs using as a reward the time-
averaged fidelity, R =

∑N
j Fj /N with Fj calculated after

applying the block of unitary gates. We consider two dif-
ferent durations Nt of the quantum trajectories seen during
training. We also consider two different scenarios for our
description of the dissipative evolution. In a first scenario,
the dissipative evolution is concentrated before the mea-
surement, tc = 0 and κtM = 0.01. In a second scenario,
the dissipative evolution is subdivided into two inter-
vals before and after the measurement, κtM = κtc = 0.005.
Finally, we test the performance of the NNs in stabiliz-
ing the kitten state for Ni = 200 time steps. This is much
larger than the number of time steps seen during train-
ing, Nt = 2 or Nt = 10, and the typical decoherence time
td for our kitten state, κtd = n̄−1 ≈ 1/4 corresponding to
approximately 25 time steps [cf. Figs. 7(c) and 7(d)].

Our results obtained using the best-performing NNs for
each of the four scenarios discussed above are summarized
in Figs. 7(c) and 7(d). Figure 7(d) shows the infidelity as
a function of time, averaged over a representative set of
trajectories. The infidelity is plotted as a solid line in the
time interval seen during training (and dashed thereafter).
As a comparison, the infidelity without any stabilization
(gray line) and the infidelity after a single interval of dis-
sipative evolution of duration (tc + tM )/2 (the lower edge
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FIG. 7. State stabilization with more expressive controls. (a) A sketch of the feedback-control sequence. A time-evolution step
consists of a parity measurement, interleaved between two dissipative evolution substeps and a block of unitary gates comprising
two phase-space displacement gates interleaved with a SNAP gate. (b) The evolution for an even kitten state. The decay of a single
excitation induces the transition to an odd kitten state. An optimized feedback sequence can transform this state back into the original
kitten state with high fidelity. (c) Histograms showing the probability distribution for the time-averaged infidelities of single quantum
trajectories for Ni = 200 time steps during inference, while training runs only have Nt = 10 time steps. The histogram colors identify
two different dissipation scenarios. The durations tc and tm of the dissipative evolution substeps are displayed in (d). The underlying
feedback strategies are predicted by two different NNs, chosen as the best performing out of five training runs. (d) The infidelities as a
function of time, averaged over a representative set of trajectories. We consider two dissipation scenarios (color) and two values of Nt.
The curves are plotted as solid lines in the time interval seen during training. The NNs used to predict the feedback strategies are the
best performing out of five training runs. Also shown is the infidelity in the absence of any control (gray) and after dissipative evolution
for a duration (tc + tM )/2 (edge of blue-shaded region) (e) The time evolution of the infidelity for two typical inference trajectories,
predicted using NNs trained on trajectories of duration Nt = 2 (top) and Nt = 10 (bottom). Here, we also show the infidelity after each
substep. The first dissipative (measurement) substep is marked as a yellow (green) dot. Also shown are the Wigner functions after the
first odd-parity measurement and at the end of the time evolution.

of the blue-shaded region) are also shown. The latter rep-
resents a theoretical lower bound for the infidelity in the
scenario with tc = td (as the effects of dissipation after
the last measurement cannot be corrected). Figure 7(c)
shows a histogram for the distribution of the time-averaged
infidelity 1 − R for single quantum trajectories.

From these results, we can generally conclude that the
feedback strategies discovered using feedback GRAPE
allow us to maintain a low infidelity for measurement
sequences, much longer than those seen during training,
demonstrating a remarkable power of generalization. For
the scenario with dissipation injected after the measure-
ment (blue lines), the fidelity remains just above the the-
oretical lower bound for much of the time evolution. In
both dissipation scenarios, the NNs trained on longer mea-
surement sequences perform better. This tendency is most
evident in the dissipative scenario with tc = 0. In this case,
the NN trained on sequences of just two measurements per-
forms very well on a similar time horizon. However, its
ability to generalize the feedback strategy to a longer time
evolution is poorer.

In order to better understand this behavior, we plot
the time evolution of the infidelity for two typical tra-
jectories (one for each NN), showing also the infidelity
after each substep (decay, measurement, or control) [cf.
Fig. 7(e)]. From these results, one can see that the strate-
gies learned by the two NNs are qualitatively different.
The NN trained on shorter measurement sequences pursues

a greedy strategy that decreases the infidelity after each
block of unitary gates (top). In contrast, the NN trained on
a longer measurement sequence learns a nongreedy strat-
egy, which increases the infidelity after even-parity mea-
surements (bottom). Another obvious difference between
the two strategies is that the latter more often triggers odd-
parity measurements, which are imprinted in the infidelity
as peaks of unit height [cf. Fig. 7(e)]. This is a good sign
because it indicates that the parity measurements are able
to extract more of the entropy injected during the dis-
sipative part of the dynamics or, equivalently, to better
suppress decoherence. This is also reflected in the clear
interference fringes in the Wigner function of the state after
200 time steps, 8 times larger than the typical decoherence
time [cf. inset of Fig. 7(e)].

This example highlights the importance of training on
long measurement sequences to develop more robust sta-
bilization strategies.

Overall, we conclude that expressive controls such as
the well-established SNAP gate allow feedback GRAPE
to discover excellent feedback strategies in an efficient
manner and that strategies discovered for shorter training
sequences generalize nicely to much longer sequences. To
the best of our knowledge, the level of state-stabilization
performance demonstrated here has not been achieved with
any other method, despite this being an area of active
research in the context of quantum devices and quantum
error correction.
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F. State preparation in the presence of model
uncertainty

Until now, we have assumed that a model for the
stochastic dynamics of our quantum system is known
without any uncertainty. However, in practice, the model
parameters are known only with a finite precision; they
might deviate from theoretical predictions because of dis-
order and be difficult to measure precisely. Moreover,
they might even be subject to slow drifts because of
environment-induced changes in the quantum device. For
all these reasons, an important direction of research in opti-
mal control focuses on improving model-based methods
to better perform in the presence of model uncertainties
[13–16]. Our goal in the present section is to explore how
feedback GRAPE can contribute to this challenge. At the
same time, this also allows us to study the optimization
landscape in a manageable example.

There are two fundamentally different approaches to
dealing with model uncertainties in a coherent control set-
ting. In the first “data-driven” approach, experimental data
are used during training. In the second “fluctuation-model-
based” approach, the model parameters are sampled from
a probability distribution during training. The resulting
parameter fluctuations reflect an imperfect knowledge of
the model parameters and the strategy is optimized for
being resilient against these fluctuations.

Several extensions of GRAPE have been proposed to
incorporate uncertainty in the model parameters follow-
ing either the “data-driven” approach [13,14,16] or the
“fluctuation-model-based” approach [15]. However, we
emphasize that none of these extensions include feedback.

Our feedback-GRAPE method can also be extended
to account for parameter uncertainties, by using either
a “data-driven” or a “fluctuation-model-based” approach.
For the “data-driven” approach, one could follow an
approach similar to that of d-GRAPE [14] and c-GRAPE
[16], modifying the analytical formula for the learning
gradient (see Appendix C) to also incorporate operators
estimated in quantum tomography experiments. Alterna-
tively, feedback GRAPE could be used in combination
with model-free RL, with both methods sharing the same
controller in the form of an RNN. In this setting, feed-
back GRAPE would be used for the initial training of the
controller allowing to explore higher-dimensional control-
parameter spaces. Subsequently, the controller will be
trained on experimental data using a model-free approach
to obtain a more accurate feedback strategy.

In the following, we instead demonstrate the
“fluctuation-model-based” approach in more detail. Not
only is this approach more straightforward to implement
but it is also best suited to a scenario with feedback: since
the measurement statistics depends on the model param-
eters, the measurement outcomes carry information about
the underlying model parameters. At the same time, the

strategies are conditional on the measurement outcomes
and, thus, can be adapted to the most likely underlying
model parameters. This approach is so powerful that it
is sometimes worthwhile adopting it even in a model-
free RL approach to forgo costly training on experimental
data. A prominent example of this is the control of toka-
mak plasma, where zero-shot transfer from simulations
to hardware with imprecisely known parameters has been
demonstrated [67].

We consider a simple toy model in which an inhomo-
geneous ensemble of qubits initially in the ground state is
subject to a series of N pulses interleaved with projective
measurements on their computational basis [cf. Fig. 8(a)].
The duration of the pulses, {τj }, can be controlled but the
coupling g of a qubit to the driving field is a random vari-
able, distributed according to a Gaussian distribution of
average ḡ and standard deviation σ [cf. Fig. 8(b)]. As a
consequence, the Bloch-sphere rotation angles αj = gτj
will also be Gaussian random variables, now with standard
deviations τj σ [cf. Fig. 8(a)].

Our goal is to maximize the number of qubits correctly
flipped to their excited state or, equivalently, the fidelity
averaged over the measurement outcomes and the coupling
g, 〈〈FN 〉m∼P(m|g)〉g∼P(g). In this case, we are interested in
the optimal solution for a fixed number of pulses N .

Before discussing this problem in general, let us con-
sider the limiting case of only one time step, N = 1. In this
case, the pulse duration τ0 is the only control parameter and
there is no feedback by any previous measurement. The
average fidelity as a function of this parameter is shown in
Fig. 8(c). In the limiting case without fluctuations, a sin-
gle π pulse of duration τ0 = π/g or any of its odd integer
multiples will achieve zero infidelity [cf. the dashed line
in Fig. 8(c)]. Once parameter fluctuations are introduced,
one might still expect τ0 = π/ḡ and any of its odd-integer
multiples to be optimal. In this way, the spins with cou-
pling g = ḡ, corresponding to the peak of the parameter
distribution P(g), would be flipped with unit probabil-
ity. However, we observe that in reality shorter pulses are
favored because they give rise to a narrower distribution
P(α0) of the rotation angles α0 = gτ0. This physics leads
to a single optimal pulse of duration slightly shorter than
τ = π/ḡ and a series of suboptimal pulse durations cor-
responding to local minima of the average fidelity [see
Fig. 8(c)].

Next, we consider the simplest scenario with feedback,
which corresponds to N = 2 time steps, i.e., feedback on
a single measurement. In this case, the control parameters
are the first pulse duration τ0 and the two conditional dura-
tions of the second pulse, τ1(m0 = 1) and τ1(m0 = −1).
If we use our look-up-table approach to directly optimize
these control parameters, the underlying optimization land-
scape is a 3D function. In Fig. 8(d), we show three 2D cuts
of the optimization landscape along with the evolution of
the training parameters for 26 feedback-GRAPE training
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… Ûq(gτN) M̂⟨σ̂z⟩
⟨σ̂y⟩

⟨σ̂x⟩

g/ḡ
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FIG. 8. State preparation with parameter uncertainty. (a) A sketch of the feedback-control sequence consisting of N pulses of dura-
tion τi interleaved with projective measurements. We also show the corresponding dynamics of an (inhomogeneous) ensemble of
qubits represented as spins on the Bloch sphere. The goal of the feedback strategy is to prepare as many spins as possible in the “up”
state. (b) The coupling g to the driving field is assumed to be a random Gaussian variable of width σ . (c) The optimization landscape
for the case N = 1 and σ/ḡ = 0.2 (solid line) and σ = 0 (dashed line). (d) Three two-dimensional (2D) cuts of the three-dimensional
(3D) optimization landscape for the case N = 2 and σ/ḡ = 0.2. The one-dimensional (1D) projection of each 2D cut into the other cuts
is marked as a line of the same color as the frame. Also shown (on all cuts) are the evolutions of the three learning parameters during
training for 26 different training runs. Each run is represented by 200 snapshots, which in turn are represented by dots of varying size
and transparency, to represent the distance from the 2D plane and the time at which they were recorded. (e) The infidelity 1 − 〈FN (g)〉m
as a function of the coupling g for four strategies. Also shown is the distribution of the coupling g. The underlying control param-
eters are marked by the arrows of the same color in (d). (f) The evolution of the control parameters during training. Shown are the
durations τj of the j th pulse, conditional on the qubit being in the ground state for all previous measurements, τj ≡ τj (mj −1) with
mj −1 = (1, . . . , 1), for 0 ≤ j ≤ N − 1. Several training runs are depicted, running feedback GRAPE with random initialization (red
lines, one run with N = 7 and one run with N = 6), an initialization close to the intuitive feedback strategy with durations ḡτj ≈ π
and zero otherwise (blue lines; five runs with N = 4), or the constrained optimization protocol (green thick lines, one run with N = 4).
(g) The infidelity 1 − 〈〈FN (g)〉m〉g as a function of the number of time steps N for the three different optimization protocols (for the
first two protocols, five runs for each N are shown). Also shown is the infidelity for the intuitive feedback strategy ḡτj ≈ π . (h) The
same as (e), here for the optimal strategy without feedback (red) and the optimal (blue) and intuitive (gray dashed) feedback strategies
with N = 8.

runs, starting from random initial conditions. If we view as
equivalent strategies that are connected by transformations
of the control parameters that leave the fidelity 〈FN (g)〉m
invariant, we can associate most runs with just four final
feedback strategies (for more details, see Appendix K).
Their coupling-dependent infidelity 1 − 〈FN (g)〉m is dis-
played in Fig. 8(e). A plurality of the training runs (10
out of 26 runs) converges to the optimal strategy, which
consists of the combination of a pulse of duration slightly
shorter than π/ḡ followed or preceded by a slightly longer
pulse. This leads to a small infidelity over the full width
of the coupling distribution P(g) [cf. the blue continu-
ous line in Fig. 8(e)]. However, for a significant number
of runs (9 out of 26), the duration τ0 of the first pulse
converges asymptotically to zero during training [cf. the
rightmost cut in Fig. 8(d)]. In other words, the first pulse
is switched off, effectively reducing the number of time
steps to N = 1. The resulting infidelity is small on a much
narrower band [cf. the top of Fig. 8(e)]. The training can
lead to this type of solution because isolated attractors for

the N = 1 optimization landscape are promoted into 1D
manifolds of attractors in the N = 2 optimization land-
scape [cf. the middle and right-hand cuts in Fig. 8(d) with
Fig. 8(c)].

The insight into the learning dynamics gained for the
case with N = 2 time steps can be transferred to the gen-
eral case of an arbitrary number of time steps N . For a
typical run, one or more pulses are switched off, effec-
tively reducing the number of time steps [cf. the red lines
in Fig. 8(f)]. This leads to many runs ending up in sub-
optimal solutions [cf. the red diamonds in Fig. 8(g)]. We
note in passing that we observe a similar learning dynam-
ics for the state preparation of complex superposition of
Fock states using the Jaynes-Cummings controls. In that
case also, a large number of local extrema for an optimiza-
tion task with N time steps could be constructed, adding
idle time steps to the optimal solution for a smaller number
of time steps (see Appendix F). We expect the same type
of local extrema to appear in many optimal control tasks
that take as ansatz a quantum circuit comprising a finite
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sequence of parametrized building blocks, irrespective of
whether or not measurements are present.

The challenge posed by the local minima can be
addressed by taking a physically motivated initialization
of the control parameters, e.g., τj (mj −1) ≈ π/ḡ if mj −1 =
(1, . . . , 1) and τj (mj −1) = 0 otherwise. This is close to a π
pulse for g ≈ ḡ if no previous measurement with outcome
m = −1 has indicated that the spin has flipped. With this
approach, we consistently reach the optimal solution for
N ≤ 6 [cf. the blue squares in Fig. 8(g)]. For even larger
N , we reach a regime in which for a typical batch of trajec-
tories used to calculate the gradient, all spins have flipped.
This leads to a very noisy gradient, making it difficult
to distinguish between many available feedback strate-
gies with low infidelity. We eliminate this problem taking
the ansatz τj (mj −1) = 0 if mj −1 /= (1, . . . , 1) for the feed-
back protocol. In this way, the feedback task is reduced
to the optimization of N control parameters τj ≡ τj (mj −1)
with mj −1 = (1, . . . , 1). At the same time, the number
of possible measurement outcomes is also reduced to the
same value. This reduction of the decision tree to only N
branches makes it efficient to evaluate the sum in Eq. (2)
without resorting to measurement sampling, reducing the
gradient fluctuations. In addition, it eliminates the basin
of attraction of the suboptimal strategies with a reduced
effective number of pulses. Overall, it leads to very robust
learning even for large values of N [cf. the green lines in
Figs. 8(f) and 8(g)].

Finally, we comment on the robustness to parameter
uncertainty for the feedback strategies obtained using feed-
back GRAPE. The average infidelity 〈〈FN 〉m〉g obtained
using the feedback strategy with N = 8 time steps is of the
order of approximately 10−5 [cf. Fig. 8(g)]. This means
that, in spite of the broad distribution of couplings g, only
one qubit out of every 105 would remain in the ground
state. This compares to approximately 50 with the intuitive
feedback strategy and 104 using the optimal strategy with-
out feedback. We note that the infidelity 1 − 〈FN (g)〉m is
suppressed over a broad range of couplings g, remaining
below the threshold 10−3 in a broad band of width approx-
imately 1.5ḡ [cf. Fig. 8(h)]. From this, we can conclude
that the robustness of our strategy to parameter uncertainty
extends beyond the particular coupling distribution used
during training.

This example has thus convincingly shown the ability
of feedback GRAPE to deal with parameter uncertainties,
both by finding strategies that properly take into account
the size of the fluctuations and, on top of that, by exploiting
the extra information obtained via measurements.

IV. SCALABILITY AND OPTIMIZATION
LANDSCAPE IN FEEDBACK GRAPE

As we see in the numerous examples presented so
far, feedback GRAPE performs very well for quantum

feedback tasks in physically relevant scenarios, including
the preparation and stabilization of rather complex states.
Even though it occasionally gets stuck in local optima, in
our examples this can often be remedied very simply by
rerunning from different random starting points a number
of times. Nevertheless, in this section, we want to address
the aspects of the nonconvex optimization landscape and
scaling toward larger quantum systems, such as those con-
sisting of many qubits, in a more general fashion. These
challenges are, of course, by no means unique to feedback
GRAPE and we consequently rely a lot on observations
that have been made in the literature, starting from the orig-
inal GRAPE and going toward recent results on variational
quantum circuits.

In the original GRAPE article [3], it has already
been recognized that, generally speaking, GRAPE is a
nonconvex optimization problem and it has been sug-
gested that adding stochasticity to the gradient update
step could help to jump out of local minima. More
refined approaches would perform simulated annealing,
i.e., slowly reducing the noise strength over time. We
note that, in contrast to GRAPE itself, some form of
stochasticity is automatically generated in our case by the
random outcomes of measurements. The noise strength
can effectively be reduced over time using a learning-rate
schedule.

Two common approaches to working around local min-
ima are also demonstrated in our own numerical experi-
ments, reported in the present paper. The first approach
consists of avoiding the local minima by starting from a
smart initialization of the training parameters. This could
be physically motivated as in Sec. III F or, as is sometimes
done in RL, obtained using some form of pretraining based
on supervised learning [68] of an existing approximate
strategy. The second approach consists of modifying the
ansatz for the feedback protocol, which will also modify
the optimization landscape, possibly eliminating or reduc-
ing the problematic local minima. A better ansatz could be
found using physical insight, as in Sec. III F, or using some
form of derivative-free optimization, e.g., model-free RL
as in Ref. [69].

Another option for addressing the issue of local optima
is to employ the natural gradient. In Ref. [70], it has
been shown, for variational quantum circuits in systems of
up to 40 qubits, that this technique, though computation-
ally more expensive, avoids local minima most success-
fully when compared to the more well-known techniques,
i.e., direct adaptive gradient descent or quasi-Newton
methods such as the Broyden-Fletcher-Goldfarb-Shanno
algorithm. Natural gradient can directly be applied to
state-preparation problems by computing the Fubini-Study
metric of the final state based on its dependence on the
control parameters. Thus, it could be employed to help
convergence in feedback GRAPE when the technique is
applied to larger qubit numbers.
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The examples of feedback-controlled quantum dynam-
ics on which we focus in this paper can be viewed as a
combination of parametrized quantum circuits with clas-
sical measurements and feedback. When dealing with the
question of scalability toward larger qubit numbers, the
recent literature on variational quantum circuits (without
feedback) suggests that another challenge may arise that
goes beyond the generic problem of getting stuck in local
optima for nonconvex optimization tasks. As has been
recognized first in Ref. [71] and subsequently discussed
at length in the literature, one may be stuck in parts of
the parameter landscape with essentially zero gradients,
i.e., gradients that are exponentially small in the num-
ber of qubits; this is the infamous problem of “barren
plateaus.” Fortunately, the importance of this problem for
the quantum computing community has led to a succes-
sion of possible suggested solutions, all of which could
be transferred to an application such as feedback GRAPE
in case the issue arises when applying it eventually to
systems with larger numbers of qubits. The proposed solu-
tions comprise: (i) smart parameter initialization [72,73],
e.g., choosing parameter values that initially lead to uni-
tary blocks equal to the identity; (ii) being smart in the
choice of circuit ansatz but avoiding overparametrization
(too expressible ansatz structures) [74]; and (iii) construct-
ing a cost function from local observables instead of a
global cost function such as the fidelity [75,76]. Last and
most relevant to our work, it has recently been shown
that incorporating in the quantum circuit the same type of
stochastic local measurements that are also used in feed-
back GRAPE could by itself induce a phase transition to a
regime without barren plateaus [77]. While in their work
the measurements only introduce decoherence, it would be
worthwhile to explore whether they also help to avoid such
plateaus in true feedback scenarios.

Beyond these aspects of the optimization landscape, the
overall performance of feedback GRAPE, and hence its
scalability, is also governed by the computational cost
associated with single trajectories. Just like any other
model-based method, our method can deal only with sys-
tems the time evolution of which can be efficiently sim-
ulated on a classical computer. The computational cost
of calculating the gradient through the system dynamics
grows linearly with the number of time steps, just like
the cost of the direct time evolution itself. Furthermore,
when addressing the scalability for multiqubit systems,
it is true that the cost of a simulation will increase with
the size of the Hilbert space and thus rise exponentially
with the number of qubits. However, this scaling is no
worse than in the original GRAPE or for any other model-
based RL method, including those methods that are based
on simulations interacting with a model-free approach.
From experience with numerical simulations of multiqubit
systems, we deem feedback GRAPE to still be feasible
up to about ten qubits when simulating master equations

and maybe 20 qubits when resorting to quantum jump
approaches, evolving pure states. This already covers a lot
of unexplored territory for quantum feedback.

Another important aspect is the number of trajectories
needed for convergence toward the optimal strategy. This
is extremely scenario dependent and therefore hard to pre-
dict in general. However, empirically we have seen that,
typically, thousands of time-evolution trajectories are to
be evaluated to converge to an optimum. It is here that
the model-based approach of feedback GRAPE has a big
advantage over model-free approaches, since the latter
have to employ a lot more trajectories just to implic-
itly learn the expected behavior of the quantum system.
Indeed, among our examples we have briefly discussed
the superior performance of GRAPE versus a model-free
RL approach in the case of SNAP-gate-based cavity-state
preparation.

We mention in passing another advantage of feedback
GRAPE: it does not require a real-time Bayesian estimate
of the quantum state during deployment in an experiment.
In this sense, it is more scalable than other existing model-
based quantum feedback approaches based on so-called
Bayesian quantum feedback.

Finally, another aspect that may affect scaling is gener-
alizability. For certain feedback tasks, our method allows
a generalization of the feedback strategy. This is exempli-
fied by our stabilization of a kitten state for a long sequence
of 200 measurements, 20 times longer than the sequences
seen during training. This generalization power substan-
tially decreases the computational cost expended during
training.

V. EXTENSIONS

Before concluding our discussion, we outline possi-
ble extensions of the general feedback-GRAPE technique
introduced above.

A. Reducing sampling noise by using a value function
The average of the return over different measurement

outcome sequences is obtained by sampling, which intro-
duces noise into the estimate of the gradients. We can
help to suppress the noise by adopting value-function
approaches that are known as a general technique in
reinforcement learning [30].

To start, we need to discuss the structure of the rewards
more carefully. Above, we introduce the overall return
(cumulative reward) as the quantity to be optimized. We
can also assign the rewards more specifically to individual
time steps. For example, during state stabilization, we can
evaluate the fidelity at each time step and sum it over time
to obtain the return. Likewise, it is customary in some opti-
mal control settings to punish large control amplitudes at
any given time step. In all these cases, the return is a sum
R =

∑N
j =1 rj of individual rewards.
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More precisely, in the original approach, we simply
set R = r1(m1|θ) + r2(m2, m1|θ) + . . .. Here, rj (mj , mj −1,
. . . |θ) is the instantaneous reward obtained after time step
j (which consists of some control, some measurement
yielding mj , and possibly a further control step before
assigning the reward). For any time step j , this then yields
two contributions to the overall gradient-ascent update.
For example, at j = 2 in a given trajectory with randomly
sampled m1, m2, . . ., we obtain the following contributions:

∂θ r2(m2, m1|θ) + ∂θ ln P(m2|m1, θ)

× {r1(m1|θ) + r2(m2, m1|θ) + r3(m3, m2, m1|θ) + . . .} .
(5)

Adding up these contributions for all j and averaging over
trajectories, we recover Eq. (3).

This is a Monte Carlo sampling approach. One con-
cern in any such approach is the sampling noise, i.e.,
in our case the fluctuations of the quantity shown above
between different trajectories. We can now take inspiration
from the domain of model-free reinforcement learning and
the general theory of reinforcement learning [30], where
approaches have been invented to reduce the variance in
estimations of the gradient update. Recall that in our case,
the variance stems from the stochasticity of measurements,
whereas in model-free RL it stems from the stochasticity of
policy action choices that is encountered in policy-gradient
and actor-critic approaches, plus any stochasticity of the
environment dynamics. Even though the following steps
follow the corresponding tricks known in the model-free
RL community very closely, we display them explicitly
here, for our modified scenario. This should help avoid any
confusion and make this presentation self-contained.

First, when evaluating the gradient above, we need only
include the sum of future rewards, since only those can
be influenced by the present measurement result. In the
example of Eq. (5), this means that the term r1(m1|θ)
on the second line may be dropped, as it is independent
of m2, i.e., the new measurement result. Mathematically,
this follows because when we eventually perform the
average over trajectories, we have to multiply Eq. (5)
by P(m2, m1|θ) = P(m2|m1, θ)P(m1|θ). Collecting terms,
the m2 dependency for the r1 contribution ends up in a
sum

∑
m2
∂θP(m2|m1, θ). This sum turns out to be zero

due to the normalization of the conditional probability
for any value of θ . This insight holds for any j , where
it is used to drop all rk (k < j ) when they multiply
∂θ ln P(mj |mj −1, . . . , θ).

Second, to further suppress stochastic fluctuations, one
can learn a value function V, which is a function of the
current state and represents the expected future cumula-
tive reward, averaged over all possible future measurement
outcomes. Thus V(mj , mj −1, . . . |θ) is defined to be

E(rj +1 + rj +2 + . . . |mj , mj −1, . . . , θ),

where the label E denotes the expectation value over
future rewards, conditioned on the preceding measurement
results.

Typically, V would be expressed as an NN, though a
look-up table can also be used in the case of a mod-
est number of discrete measurements. The input to the
value network would be some representation of the cur-
rent “state” s. This state could be identified directly with
the sequence of previous measurement results, as indicated
in our notation above, sj = mj , mj −1, . . . (which uniquely
determines the current state). Alternatively, this state could
also be represented by some version of the current quan-
tum state (e.g., the density matrix), if that proves easier
to handle for the network. The value network would be
trained to output the expected (averaged) future cumulative
reward, counted from this state onward. The value training
would proceed in the fashion known from general rein-
forcement learning, i.e., using the Bellman update equation
[30] Vnew(sj ) = V(sj ) + α(rj + γV(sj +1) − V(sj )), where
α < 1 is some update factor and γ ≤ 1 is some discount
factor to reduce the weight of long-term rewards (γ → 1
in the ideal case discussed up to now). When using an NN,
Vnew would be the new target value for the value network
during a supervised-learning update. Once an approxima-
tion to the value function has been learned in this manner,
we can proceed as in advantage actor-critic approaches
to model-free RL. This means that in the gradient-ascent
procedure of the feedback-GRAPE approach, one would
replace the (future) return by the advantage Aj = rj +
γV(sj +1) − V(sj ), which expresses the improvement over
the currently expected future return. In effect, this reduces
the variance of the gradient estimates by subtracting a con-
venient baseline, without changing the average gradient
update.

Concretely, Eq. (5), the gradient contribution from time
step j = 2, would be replaced by the following:

∂θ r2(m2, m1|θ) + ∂θ ln P(m2|m1, θ)

× {r2(m2, m1|θ) + γV(m2, m1|θ) − V(m1|θ)} . (6)

The first line is unchanged but in the second line r1
is dropped, as explained before. Moreover, the sum of
r3 + r4 + . . . is replaced by γV(m2, m1|θ), which is the
expectation of the future return (such that averaging over
m3, m4, . . . has already been carried out, reducing sampling
noise). Finally, V(m1|θ) is subtracted, to further reduce the
variance by canceling the expected value, given m1. This
is possible for the same reason that we could drop r1(m1),
as explained above. The extension to arbitrary j /= 2 is
obvious.

In summary, such an enhanced feedback-GRAPE
method would run trajectories with deterministic contin-
uous controls and stochastic discrete quantum measure-
ments just as before. However, it would learn a value func-
tion to represent expected future returns and it would use
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that value function to modify the gradient-ascent procedure
and reduce fluctuations.

B. Multitarget quantum feedback control
Whenever we are employing NNs to represent the

feedback-based controls, a straightforward but powerful
extension of feedback GRAPE suggests itself. We may
feed a representation of a variable target state3 (or, in gen-
eral, the target task, however it is defined) into the network:
Fj (θj , mj , . . . ;3). The whole feedback-control strategy is
then trained on many different randomly chosen tasks (e.g.,
many possible target states).

Such approaches have been successful recently for other
control challenges, e.g., they are being investigated in
robotic navigation and the general field of multitarget rein-
forcement learning [78,79]. Multitarget schemes have also
been recently suggested to improve variational quantum
circuits [80]. The benefit is data efficiency: the network
learns to generalize from the training tasks to other sim-
ilar tasks, which requires less overall effort than to retrain
a freshly initialized network for each task.

VI. CONCLUSIONS AND OUTLOOK

In this work, we present a general scheme for the direct
gradient-based discovery of quantum feedback strategies.
This scheme, which we term “feedback GRAPE,” works
for arbitrarily strong (discrete or continuous) nonlinear
stochastic measurements, which so far has been possible
only using the less-data-efficient approaches of model-free
reinforcement learning.

We observe very good performance, significantly
beyond the state of the art, when testing the method on
a challenging set of feedback tasks in an important prac-
tically relevant quantum optical scenario. Overall, our
method opens up a new route toward solving challenging
feedback-based control tasks, including tasks in quantum
communication and quantum error correction on multi-
qubit or qubit-cavity systems. Besides presenting and ana-
lyzing the basic approach, we also discuss extensions such
as advantage functions (for reducing sampling noise) and
training on multiple targets (to increase data efficiency and
exploit transfer learning).
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APPENDIX A: BRIEF RECAP OF
REINFORCEMENT LEARNING

For the reader with a physics or optimal control back-
ground, we very briefly recall some key concepts in rein-
forcement learning (RL). However, these remarks serve

only to provide additional context and are not necessary
to understand the feedback-GRAPE technique introduced
in the main text.

The term RL covers a set of techniques for discover-
ing optimal control strategies, typically involving feedback
[30]. The setting can always be phrased as an agent, i.e.,
a controller, interacting with an environment, where the
latter may represent, e.g., a device to be controlled. The
goal is always to discover a good strategy for the agent,
by optimizing some reward—e.g., a fidelity, in the quan-
tum setting. A first distinction is between model-based
approaches, which require and exploit a simulation of the
environment, and model-free approaches, where the envi-
ronment is treated as a black box and the agent only learns
implicitly about the behavior of the environment through
repeated training runs. Feedback GRAPE would be classi-
fied under the domain of model-based approaches, while
most general RL algorithms used in machine-learning
applications nowadays are model free. A subcategory,
sometimes leading to confusion, consists of those cases
where model-free algorithms are used to train an agent in
silico, i.e., on simulated environments.

While we explain feedback GRAPE in depth in the main
text, here we briefly comment on one of the two main
classes of model-free algorithms, namely policy-gradient
approaches, since we briefly compare and contrast some
aspects of those against feedback GRAPE in the main text.
In such approaches, one represents the policy as a condi-
tional probability to choose an action a given an observed
state s of the environment: πθ (a|s) in standard notation of
the field. Here, θ is a set of parameters that will be updated
during training. Training proceeds by performing gradient
ascent on the cumulative reward R, in the form

δθ = η
∂E[R]
∂θ

= η
∑

t

E
[

R
∂ lnπθ (at|st)

∂θ

]
. (A1)

Here, t is the time step, st and at are the sequence of states
and actions in a particular trajectory, R is the cumulative
reward for that trajectory, and E denotes the expectation
value over many trajectories. We note in the main text
that the logarithmic derivative appearing here relates to the
probability of the actions of the agent, whereas a superfi-
cially similar logarithmic derivative appearing in feedback
GRAPE relates to quantum measurement probabilities,
i.e., a property of the environment and not the agent.

APPENDIX B: ALGORITHMIC FLOW-CHART
REPRESENTATION OF FEEDBACK GRAPE

In Fig. 9, we represent the working flow of feedback
GRAPE for the special case of discrete measurement out-
comes as an algorithmic flow chart. This representation
provides more detail than the conceptual representations
in the main text.
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Learning Initialization
Set random trainable parameters θ

Apply  Measurement

mj ∼ P(m | �ρ(tj−1−))

�ρ(tj−1+) = �M(mj) �ρ(tj−1−) �M(mj)†/P(mj | �ρ(tj−1−))Update state:

mj →mj ⊕mj−1
ln P(mj) = ln P(mj−1) + ln P(mj | �ρ(tj−1−))

Set train counter r = 0

Time-evolution initialization

Set   as initial state �ρ(t0−)
Set time counter j = 0

m0 = [], P(m0) = 1

Sample (batch of) measurement outcome(s):
Update measurement history:
Update log-likelihood:

Apply Control

�ρ(tj−) = �U(Fj
θ(mj)) �ρ(tj−1+) �U†(Fj

θ(mj))Update state:
Evaluate control  Fj

θ(mj)

j = N

Update learning parameters

Use optimizer to update θ
Calculate gradient ∇θ(R + ⟨ln P(mN)⟩batch)

Initialize measurement history and likelihood

Calculate measurement distribution P(m | �ρ(tj−1−))

Calculate partial and cumulative rewards  and rj R → R + ⟨rj⟩batch

R = 0

False

False

True
 j → j + 1

 r → r + 1

True Stop condition,

Initialize cumumulative reward:

e.g., R > Rtg

Terminate

Final    encodes strategyθ

FIG. 9. An algorithmic flow-chart representation of Feedback
GRAPE. The measurement outcome mj at time step j and all
other quantities that depend on it have an additional batch dimen-
sion that is not explicitly indicated. The symbol ⊕ denotes
concatenation. Examples of stop conditions include the reward R
having to be larger than a target value Rtg, R > Rtg, or the num-
ber of training iterations r having reached a maximum value rMax,
r = rMax. The controls Fθ (mj ) can be evaluated using an RNN or
directly read out from a look-up table.

APPENDIX C: EVALUATION OF THE
PARAMETER GRADIENTS OF THE

TIME-EVOLVING QUANTUM STATE

In the numerical results in the main text, we employ
automatic differentiation to evaluate gradients with respect
to the trainable parameter vector θ . This approach is very
convenient using modern machine-learning tools. How-
ever, alternatively, it is also possible to directly work out
analytical formulas to evaluate such gradients, based on

our knowledge of the evolution equations. In a particu-
lar scenario, where the entries of the vector of trainable
parameters θ directly correspond to the controls at differ-
ent time points, this then produces a suitable extension of
the approach advocated in the original GRAPE article [3].

In the following formulas, we assume for simplicity
unitary evolution outside the measurements but the exten-
sion to (Markovian) dissipative dynamics is comparatively
straightforward (using a Liouvillian superoperator instead
of the Hamiltonian).

We first describe a general approach that works for any
arbitrary choice of the parametrization θ . Further below,
we then specialize to a scenario where the original GRAPE
idea for efficient gradient evaluation can be applied.

The general task is to obtain the gradient of the quan-
tum state with respect to the trainable parameters θ that
enter the controls (and, likewise, the gradient of the final
probability P(m) of a measurement sequence m).

In modern machine-learning language, tracking the evo-
lution of parameter gradients in the manner described
in the following is connected to the recent development
of neural ordinary differential equations [53], where effi-
ciency is obtained by not using automatic differentiation as
a black box but, rather, by evaluating analytically the form
of the equations of motion for the gradients (and then solv-
ing those equations numerically with any efficient solver
that is available). We can obtain the parameter gradient
of the quantum state by solving the following evolution
equation during measurement-free time intervals:

i∂t∂θ ρ̂ = [∂θ Ĥ , ρ̂] + [Ĥ , ∂θ ρ̂], (C1)

where ρ̂ is the solution to the original equation of motion,
i∂tρ̂ = [Ĥ , ρ̂], and the initial condition at time 0 would
be ∂θ ρ̂ = 0 (we set ! ≡ 1 for brevity). The interest-
ing step now happens at a measurement, where ρ̂(t+) =
M̂ (m)ρ̂(t−)M̂ †(m)/Pm, with the probability for the mea-
surement outcome, Pm = tr[M̂ (m)ρ̂M̂ †(m)]. For brevity,
we suppress the index j (used in the main text) that would
indicate the number of the measurement in the sequence. It
now follows that we have

∂θ ρ̂(t+) = M̂ (m)∂θ ρ̂(t−)M̂ †(m)/Pm

− ρ̂(t+)tr[M̂ (m)∂θ ρ̂(t−)M̂ †(m)]/Pm. (C2)

Here, the required ∂θ ρ̂(t−) is the outcome of solving the
previous continuous evolution equation up until time t.
After this update, the continuous evolution of ∂θ ρ̂(t) will
proceed. We note, however, that the controls (embedded
inside Ĥ in the present setup) will now depend on the
measurement outcome m that was selected. Likewise, for
later time intervals, they will depend on the whole previous
sequence, as described in the main text.

At the end, we also need the gradient of the extra term,
the log-likelihood of the whole measurement sequence,
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ln P(m1, m2, . . .). One way to obtain this is to evolve an
unnormalized version of the quantum state, ˜̂ρ, the trace
of which will give P, which follows the same evolution
as the quantum state itself but without the normaliza-
tion factors that are the probabilities for the individual
measurement outcomes. The θ gradient of this unnor-
malized state again follows an evolution equation of
the form shown in Eq. (C1) but with ˜̂ρ substituted for
ρ̂, during the unitary evolution intervals. However, at a
measurement-induced update, we obtain the simpler rule
˜̂ρ(t+) = M̂ (m) ˜̂ρ(t−)M̂ †(m) and consequently ∂θ ˜̂ρ(t+) =
M̂ (m)∂θ ˜̂ρ(t−)M̂ †(m).

What we have described here so far uses fewer assump-
tions than GRAPE, because the vector of trainable param-
eters θ can enter the controls in an arbitrary manner. In
GRAPE [3], an additional assumption is used to simplify
the gradients further and gain efficiency: the components
of the vector of trainable parameters θ are supposed to
directly correspond to the control values applied at differ-
ent time steps. That is, schematically speaking, we would
have θ1, θ2, . . . associated with the controls at time steps
j = 1, 2, . . .. This then leads to a further simplification in
the evaluation of the gradients. Importantly, if the number
of parameters scales with the number of time steps N , then
this approach has a run time that grows only linearly in N ,
while the general approach outlined above would need N 2

operations.
Let us briefly recall the GRAPE approach to gradient

evaluation [3], before extending it. In the simplest possible
version, with unitary evolution, let us consider the fidelity
tr(σ̂ (T)Û(T, 0)ρ̂(0)Û(0, T)). The derivative with respect
to parameter θ entering the Hamiltonian will produce
a contribution for each time t ∈ (0, T) in the evolution.
Specifically, the contribution from time t will be an expres-
sion of the type tr(σ̂ Û(T, t)[−i ∂Ĥ

∂θ
, ρ̂(t)]Û(t, T)). Using the

cyclic property of the trace, this can be reordered to
obtain tr(Û(t, T)σ̂ (T)Û(T, t)[−i ∂Ĥ

∂θ
, ρ̂(t)]). This can now be

reinterpreted, namely, as the overlap between a backward-
evolved target state σ̂ (t) = Û(t, T)σ̂ (T)Û(T, t) and the
perturbation of the forward-evolved state at time t:
tr(σ̂ (t)[−i ∂Ĥ

∂θ
, ρ̂(t)]).

In machine-learning language, the GRAPE procedure of
obtaining gradients in this way can essentially be viewed
as an analytically derived version of back-propagation for
this specific case of a quantum physical evolution. It is very
efficient, since the effort scales only linearly in the num-
ber of time steps, even if there is a different independently
optimizable parameter θ(t) for each time step.

The question is how this procedure needs to be modified
in the presence of measurements. Let us imagine that we
have a particular trajectory with a given fixed sequence of
measurement outcomes. We find that we can perform the
temporal back-propagation (starting from the final time T)

in the same manner as reviewed above, until a point in time
t̃ where a measurement has happened (unless, of course, we
talk about a time point t later than the last measurement).
At that point t̃, we need to replace σ̂ (t̃) = Û(t̃, T)σ̂ Û(T, t̃)
by the following expression:

σ̂ ′(t̃) = 1
P

M̂ †σ̂ (t̃)M̂ − 1
P2 M̂ †M̂ tr(M̂ †σ̂ (t̃)M̂ ρ̂(t̃)). (C3)

Here, we define, for brevity, the measurement operator
M̂ ≡ M̂m̃ at time point t̃, with measurement outcome m̃,
and the associated probability P ≡ Pm̃ = tr(M̂m̃ρ̂(t̃)M̂ †

m̃),
where ρ̂(t̃) is already conditioned on previous measure-
ment outcomes, for times less than t̃ and has been obtained
by the forward evolution starting from time 0 (with mea-
surements and renormalization of the state after each
measurement).

After this procedure has been implemented for the mea-
surement at t̃, we would proceed with the backward evo-
lution of σ̂ until point t, where the derivative is to be
evaluated. There, we would employ the same formula as
in the usual GRAPE approach, i.e., we would evaluate
tr(σ̂ (t)†[−i ∂Ĥ

∂θ
, ρ̂(t)]).

If there are multiple measurements between t and T,
the backward evolution will proceed by alternating unitary
evolution and applying the formula in Eq. (C3).

If we want to treat the unnormalized quantum state in the
same manner, e.g., for obtaining the log-likelihood term,
we only need the trace of that unnormalized state ˜̂ρ at the
end of the time evolution (see our discussion above). For-
mally, this is as if we were to calculate the fidelity against
a state σ̂ (T) = 1, which is given by the identity matrix.
We can now evolve this state backward in the manner dis-
cussed above but in addition, Eq. (C3) can be simplified:
one needs to drop the second term and also formally set
P = 1 in the first term.

Finally, we briefly remark on how the procedure will
change if we are dealing with continuous measurement
outcomes (strong continuous measurements, as briefly
discussed in the main text, using the “reparametrization
trick”). In that case, we do not need the log-likelihood
term. However, we now do need to differentiate the mea-
surement outcome m = f −1

ρ̂
(z), which depends on some

random variable z (of a fixed distribution, not dependent
on θ ) and the quantum state ρ̂ (which does depend on θ ).
As a consequence, Eq. (C3) needs to be modified. We have
to add the following terms to the right-hand side:

1
P
∂θ (M̂ †σ̂ (t̃)M̂ ) − 1

P2 tr(M̂ †σ̂ (t̃)M̂ ρ̂(t̃))∂θ (M̂ †M̂ ). (C4)

Here, ∂θ in both parts of this expression is supposed to
act only on the M̂ † and M̂ terms. This derivative is to
be applied in the way ∂θM̂ (m) = (∂mM̂ (m))(∂θm), where
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the derivative of m with respect to θ must be evaluated
using the dependence of the inverse cumulative distribu-
tion function on the θ -dependent quantum state at that time
point.

APPENDIX D: LAW-EBERLY ALGORITHM

As a benchmark with an analytical solution (but still
without feedback), we consider the task of preparing
an arbitrary pure-cavity state in a cavity-qubit system.
This can be achieved by exploiting the well-known Law-
Eberly protocol [58]. This algorithm relies on the essential
assumption that we start from the ground state. We briefly
review it below.

The Hamiltonian that describes the system is a Jaynes-
Cummings model with controllable couplings:

Ĥ(t) = (A(t)σ̂++A∗(t)σ̂−) + (B(t)âσ̂++B∗(t)â†σ̂−),
(D1)

where the first term corresponds to the qubit drive and the
second to the cavity-qubit interaction. The two complex
controls A(t) and B(t) can assume continuous values.

Law and Eberly uses the particular ansatz A(t) = 0
if B(t) /= 0 and vice versa. In this scenario, the dynam-
ics can be viewed as being subdivided into a discrete
number of steps N , with each step consisting of one
qubit excitation gate, Ûq(αj ) = exp[−i(αj σ̂+ + α∗

j σ̂−)],
followed by one cavity-qubit interaction gate, Ûqc(βj ) =
exp[−i(βj âσ̂+ + β∗

j â†σ̂−)]. [For given A(t) and B(t), αj
and βj can be easily obtained by integrating over the rel-
evant time interval.] Since the excitations can be added
only one by one via the qubit drive, one can further refine
the ansatz assuming that the number of steps N is equal
to the maximum number of excitations in the target state,
|ψ〉target =

∑N
n=0 cn |n, g〉. To summarize, the goal is to find

the parameters {αj } and {βj } that solve

|ψ〉target = Û |0, g〉 , (D2)

with

Û = Ûqc(βN )Ûq(αN )Ûqc(βN−1)Ûq(αN−1)

× . . . Ûqc(β1)Ûq(α1). (D3)

The Law-Eberly idea is to start from the target state and
progressively remove excitations from the cavity until it
becomes empty. In other words, one focuses on the time-
reversed time evolution

|0, g〉 = Û† |ψ〉target , (D4)

with

Û†=Û†
q(α1)Û†

qc(β1) . . . Û†
q(αN )Û†

qc(βN ), (D5)

|0〉c

|2〉c

|4〉c

|6〉c

|8〉c

|10〉c
(a) (b)

FIG. 10. A comparison between one solution obtained analyt-
ically from the Law-Eberly protocol (a) and a strategy found by
using gradient ascent (b). The target state is |ψ〉 = (|0〉 + |5〉 +
|10〉)/

√
3. Even though some details look different, we verify

that the gradient-ascent strategy is a valid alternative solution for
the Law-Eberly equations (which do not determine the controls
uniquely).

and recursively (for decreasing j starting from j = N ) find
the βj and αj imposing the conditions 〈j , g|ψj 〉 = 0, and
〈j − 1, e|ψj 〉 = 0, with

∣∣ψj
〉
= Û†

q(αj )Û†
qc(βj ) . . . Û†

q(αN )Û†
qc(βN ) |ψtarget〉

being the state after N + 1 − j time steps of the time-
reversed evolution. These conditions are enforced by the
complex nonlinear equations

〈j , g|ψj +1〉 cos(|βj |
√

j )(β/|β|)

+ i〈j − 1, e|ψj +1〉 sin(|βj |
√

j ) = 0,

〈j − 1, e| Û†
qc(βj ) |ψj +1〉 cos(|αj |)(α∗/|α|)

+ i 〈j − 1, g| Û†
qc(βj ) |ψj +1〉 sin(|αj |) = 0, (D6)

with |ψN+1〉 ≡ |ψtarget〉 for the first iterative step (corre-
sponding to j = N ).

It should be noted that the solution of these equations is
not unique. This is why Fig. 10 shows two different strate-
gies for the same task, although both of them fulfill the
Law-Eberly ansatz.

APPENDIX E: MODEL-FREE REINFORCEMENT
LEARNING FOR THE JAYNES-CUMMINGS

SCENARIO

It turns out that state-of-the-art model-free RL has
surprising difficulties in addressing a physical scenario
as important and conceptually simple as the Jaynes-
Cummings model. In this appendix, we provide some more
details.
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We only consider the (simpler) no-feedback case, mean-
ing that only the controls αj and βj (see the main text) are
available. Since model-free RL already has severe prob-
lems in this case, we do not explore the more challenging
cases further.

In our numerical experiments, we rely on the RL library
Stable Baselines [81], which implements many of the most
well-known optimized state-of-the-art RL algorithms. The
RL environment (not to be confused with a “physical”
environment) has been implemented in the following
way:

(a) Action aj . The two continuous controls, αj and βj .
(b) State sj (i.e., input to the agent). In principle, the no-

feedback task requires no state input. However, we
choose to make it easier for the agent by supplying
the full current quantum state of the system at time
tj . Since the state is pure and the system is closed,
we simplify the observation by only using the state
vector |ψj 〉 (instead of the density matrix). Since it
is complex valued, we split its real and imaginary
parts and so we have a vector of length 2N , where
N is the size of the Hilbert space.

(c) Reward rj . The fidelity at step tj (in various ver-
sions, see below).

We use a variety of different approaches to solve the task of
pure-state preparation. These include: using either a sparse
final reward (i.e., rj /= 0 only if j = N ) or else a reward
based on the fidelity at each time step; either discrete
(discretized) actions or continuous actions; and several dif-
ferent optimization algorithms (PPO [60], A2C [82], HER
[83], TRPO [84], and/or DDPG [85]). The results shown
in Fig. 3(c) are the best results we can manage to pro-
duce among all these approaches. They are obtained with
PPO, continuous actions and sparse rewards and using the
hyperparameters in Table I.

TABLE I. The hyperparameters for the PPO model-free RL
optimization algorithm used in Fig. 3(c). See also the Stable
Baselines PPO documentation.

Parameter Value

GAMMA 0.99
N_STEPS 128
ENT_COEF 0.01
LEARNING_RATE 0.00025
VF_COEF 0.5
MAX_GRAD_NORM 0.5
LAM 0.95
NMINIBATCHES 4
NOPTEPOCHS 4
CLIPRANGE 0.2

APPENDIX F: DETAILS ON LEARNING
DYNAMICS USING JAYNES-CUMMINGS

OPEN-LOOP CONTROLS

In this appendix, we give more details on the learn-
ing dynamics of the open-loop control strategy to pre-
pare a four-component kitten state, |ψKit4

α̃ 〉 ∝
∑3

j =0 |ij α̃〉.
This analysis gives a useful insight into the optimization
landscape for the open-loop control preparation of com-
plex superpositions of Fock states using Jaynes-Cummings
controls.

Our numerical results for α̃ = 3, corresponding to the
average photon number n̄ ≈ |α̃|2 = 9 are summarized in
Fig. 11. We preliminarily note that the excitation num-
ber of the target state is not bounded in this case. On
the other hand, the Law and Eberly protocol allows us to
reach only the first N Fock states in N preparation steps.
Thus, the optimal strategy will project the target state into
the Hilbert space spanned by the first N Fock states and
can be obtained using the Law and Eberly algorithm. This
procedure also allows us to find the smallest possible infi-
delity. We choose N = 20, corresponding to the minimal
infidelity F ≈ 6 × 10−5.

The fidelity as a function of the number of training iter-
ations (or, equivalently, trajectories used during training)
for ten different training runs is shown in Fig. 11(a). As
should be expected, given that the control parameters slide
down a rugged learning landscape, the line shape of the
fidelity depends strongly on the initialization. Neverthe-
less, it displays robust features in the form of a series of
plateaus the heights of which do not depend on the initial-
ization. It turns out that the states ρ̂(tN ) prepared following
strategies obtained in different runs but corresponding to
the same fidelity plateau are also approximately equal. In
Figs. 11(b) and 11(c), we show the Wigner function and
excitation number distribution 〈n|ρ̂(tN )|n〉 obtained with a
representative strategy for each plateau in Fig. 11(a). We
note that the state is approximately the projection of the
target state on a Hilbert space containing the first Nth Fock
states with the threshold excitation numbers Nth = 8, 12,
and 16 [cf. Fig. 11(c)]. Importantly, each of these states is
prepared using a different strategy in the various training
runs [cf. Fig. 11(d)]. Indeed, it is easy to construct several
different strategies to prepare exactly these states setting
2(N − Nth) controls to zero and choosing the remaining
2Nth controls to solve the Law and Eberly equation [see
Eq. (D6)] for Nth preparation steps. It can also be shown
that such suboptimal strategies correspond to saddle points
of the optimization landscape and that the curvature of
the optimization landscape in the direction of increasing
fidelity is zero, giving rise to a narrow valley. In this way,
we can construct many suboptimal strategies for N prepa-
ration steps from an optimal strategy with Nth ≤ N steps.
Each of these suboptimal strategies corresponds to a nar-
row valley in the optimization landscape. These valleys
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FIG. 11. The preparation of a four-component kitten state with
average excitation number n̄ = 9, as in Fig. 3(d) of the main text.
(a) The infidelity as a function of the number of trajectories seen
during training for ten training runs with different initial con-
ditions. The Wigner function of the target state is shown as an
inset. (b),(c) The Wigner function (b) and the excitation-number
distribution (c) after state preparation for three different control
strategies discovered during training. The fidelity and number of
trajectory used during training are marked in (a) as dots of the
same color as the frames in (b) and (c). In (c), the target distri-
bution is also shown in green. The use of seven different training
runs leads to approximately the same fidelity after 1000 train-
ing iterations [cf. the pink dot in (a)]. (d) The corresponding
underlying strategies. For each strategy, the controls as a func-
tion of the time step are shown as dots of the same color. Each
of these strategies leads to the preparation of approximately the
same state, displayed in the second row of (b) and (c).

can cause the training to stall in a suboptimal solution.
In fact, we are unable to recover an optimal solution in
any of the ten training runs, each comprising 1000 training
iterations. Nonetheless, we are able to obtain very good-
quality solutions. The best solution we obtain (in one out
of ten runs) allows us to prepare the oscillator in the target

state projected onto an Hilbert space with cut off Nth = 16
[third row in Figs. 11(b) and 11(c)]. This corresponds to
the last valley before reaching an optimal solution. We
also run a set of ten simulation runs, also comprising the
same number of learning iterations but with a larger num-
ber of preparation time steps (N = 28). In this set of runs
(not shown), we reach the fidelity plateau corresponding to
Nth = 16 more consistently and can even reach the plateau
for Nth = 20.

In conclusion, our analysis indicates that the optimiza-
tion landscape for the preparation of complex superpo-
sitions of Fock states using open-loop Jaynes-Cummings
controls features a very large number of narrow valleys. In
this setting, it is crucial to have direct access to the land-
scape gradient to be able to slowly but steadily slide down
the optimization landscape. Very good-quality solutions
can be consistently obtained.

APPENDIX G: STATE PREPARATION WITH SNAP
AND DISPLACEMENT GATES

In this appendix, we report our results for the open-
loop control state preparation of an oscillator state using
the universal control scheme based on a set of inter-
leaved SNAP gates Ŝ({ϕn})) =

∑
n eiϕn |n〉〈n| and displace-

ment gates D̂(α) = exp[αâ† − α∗â] [66] [cf. Fig. 12(a)].
In this case, the control parameters are the real and imag-
inary parts of the phase-space displacement αj together
with the phases ϕj

n for the first NSNAP Fock states (the
remaining phases are set to zero). This very same optimiza-
tion task has been already considered by Sivak et al. [38]
to demonstrate their model-free optimal control approach.
This allows an instructive comparison of our model-based
results with results obtained using a cutting-edge model-
free approach. In order to facilitate the comparison, we use
a similar controller as in Ref. [38], i.e., an RNN that takes
as input the time step j (cf. Table IV).

The authors of Ref. [38] have found that the main lim-
iting factor in the way of preparing ever more complex
quantum states using their model-free approach is a trade-
off introduced by the choice of the hyperparameter NSNAP:
It is helpful to increase this hyperparameter to improve the
expressivity of the sequence of control gates. At the same
time, the resulting increased dimensionality of the control-
parameter space can make the training unstable. In order
to remain in the regime of efficient training, they choose
NSNAP = 30 for N = 9 preparation steps. Overall, this cor-
responds to a 288-dimensional control-parameter space. In
their numerical experiments, this trade-off became appar-
ent during the preparation of large finite-energy grid states,
|ψGKP

) 〉 = Ê)
∑

j ∈Z D̂(j
√
π)|0x〉, where |0x〉 is a position

eigenstate localized in the origin and Ê) = exp[−)2â†â]
is the envelope operator. These states have been proposed
by Gottesman, Kitaev, and Preskill [61] to encode logi-
cal qubit states in an oscillator Hilbert space. They are
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FIG. 12. The state preparation (open-loop control) of a grid
state with more powerful controls. (a) The sequence of
parametrized controls during a time-evolution trajectory. Each
time step consists of two phase-space displacement gates sepa-
rated by a SNAP gate Ŝ({ϕn}). The phases ϕn for 0 ≤ n < NSNAP

are predicted by an RNN that is given the time j as an input (for
n ≥ NSNAP ϕn = 0). Also shown are the Wigner functions of the
initial state and of the target grid state. (b) The mean value of the
two (finite-energy) stabilizers Ŝx,) and Ŝp ,) as a function of the
number of trajectories sampled during training (or, equivalently,
the number of training iterations) for four values of NSNAP (three
runs each; the best run is displayed as a solid line). The target
grid state is in the manifold with 〈Ŝx,)〉 = 〈Ŝp ,)〉 = 1. The run-
ning average over 100 trajectories is plotted. Also shown is the
Wigner function after training for NSNAP = 50 and NSNAP = 130.
For small NSNAP, the tail of the Wigner function is distorted, while
for larger NSNAP it is indistinguishable from the target Wigner
function by the naked eye. This indicates that the quality of the
strategy is limited by the expressivity of the parametrized con-
trol sequence. Compared to model-free RL [38], the model-based
approach used here allows us to explore a higher-dimensional
parameter manifold (larger values of NSNAP) and, thus, to obtain
better quality results for large grid states. The parameters are as
follows: N = 9 and for the grid state ) = 0.15 corresponding
to

√
var(n) ≈ n̄ ≈ 1/(2)2) ≈ 22 (the Hilbert space contains 130

Fock states).

eigenstates of the stabilizers Ŝx,) = Ê)D̂(
√
π)Ê−1

) and
Ŝp ,) = Ê)D̂(i

√
π)Ê−1

) with eigenvalue +1. For small ),
their Wigner function displays a very fine structure in
phase space in the form of a large grid of peaks in phase
space. The Wigner function of the largest grid state consid-
ered in Ref. [38] (corresponding to ) = 0.15) is shown in
Fig. 12(a). In that work, the authors considered as a figure
of merit the stabilizer mean value 〈Ŝx,) + Ŝp ,)〉/2, which
has optimal value 〈Ŝx,) + Ŝp ,)〉/2 = 1. They were able to
demonstrate a best value of 〈Ŝx,) + Ŝp ,)〉/2 ≈ 0.93 out of
six training runs with ) = 0.15, which was limited by the
expressivity of their control sequence with NSNAP = 30.

In our GRAPE-type approach, due to the direct access
to the gradient of the reward, our training remains effi-
cient for much larger values of NSNAP [cf. Fig. 12(b)].
More precisely, we consider NSNAP up to 130 with the
same number of preparation time steps (N = 9) and the
same type of controller (an RNN that takes the time step
as input) as in Ref. [38]. This corresponds to a 1188-
dimensional control space, much larger than the one that
can be handled in the model-free approach. In spite of this
larger control-parameter space, training requires only 1%
of the trajectories. Most importantly, we obtain a better-
quality solution, as reflected by the best stabilizer value
of 〈Ŝx,) + Ŝp ,)〉/2 ≈ 0.995 out of three training runs with
) = 0.15 and NSNAP = 130.

APPENDIX H: DETAILS ON FEEDBACK-GRAPE
ALGORITHM AND ON PHYSICAL SIMULATIONS

As explained in the main text, in the feedback-GRAPE
approach presented in this paper, we can produce the con-
trol values (conditioned on previous measurement results)
either with the help of an NN or with the help of a
look-up table (containing trainable control values). In
this appendix, we present more details on both of these
approaches, as implemented for the specific numerical
examples shown in the main text.

In our illustrative physical scenario (the feedback-
controlled Jaynes-Cummings model), there are four con-
trol parameters: αj , βj , γj , and δj . In the most general case,
where arbitrary superpositions should be generated, αj and
βj need to be complex. In the scenarios the results of which
are displayed in the main text, this is not needed due to
the nature of the target states. However, we check inde-
pendently that the whole approach works just as well for
complex control parameters.

1. Neural network
We first discuss the case when the controls are computed

by means of an NN. This network can receive the mea-
surement results so far, m1, m2, . . . , mj . Alternatively, we
can also supply it with the quantum state as input, which
has been updated according to the measurement outcomes.
Both techniques supply the full information content needed
to apply the next control.

For the “state-as-input” approach, we define a fully con-
nected NN that takes the density matrix of the system
as input. Since the density matrix is complex valued, we
choose to split it into its real and imaginary parts and to
stack it in such a way that for a NH × NH density matrix,
the input tensor has shape [NH × NH , 2].

The fully connected NN is employed both for the no-
feedback case (pure-state preparation), where in principle
no such input would be needed (but can still be helpful for
convergence) and also for the more interesting feedback
cases.
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TABLE II. The hyperparameters of the fully connected NN.

Parameter Value

Neurons [[NH × NH , 2], Flatten, 30, 30, 2, or 4]
Batch size 1
Activation ReLU
Initializer Glorot uniform
Initial-bias last layer π

If, on the other hand, we want to supply the measure-
ment results directly, then we employ an RNN. For our
scenario, its input at each time step is a binary measure-
ment outcome mj ∈ {−1, +1}. When an RNN is used,
due to the probabilistic outcome of the trajectories dur-
ing a simulation, it is useful to feed batches of multiple
randomly sampled trajectories as input to the network.

As already mentioned, both types of NN output real-
valued controls αj , βj , γj , and δj to be applied in the next
time step. When complex-valued controls are required, two
additional neurons can be added to the output of the NNs
and they correspond to the imaginary parts of αj and βj .
In the main text, we do not use complex controls, because
these are not needed for the tasks considered there.

Our NNs are implemented using KERAS and their hyper-
parameters are shown for completeness in Tables II–IV.

2. Look-up table
Another way to represent the entire feedback-based con-

trol strategy is to use a look-up table, which essentially is
just a list of optimizable parameters. In the case of feed-
back, we have to build a look-up table that encodes the
structure of a decision tree. For binary measurement out-
comes (as used here), this has

∑N
n=0 2n entries, each of

which is the vector of all control parameters, i.e., in our
scenario (αj , βj , γj , δj ). Each column of this table repre-
sents the 2j possible control-parameter vectors at time step
j ∈ {0, . . . N }. At j = 0, we have only one set of numbers,
which stand for the (only) possible control vector to apply
(not dependent on any previous measurement; in our case,

TABLE III. The hyperparameters of the RNN for Figs. 5, 15
and 16.

Parameter Value

Type RNN-cells GRU
Neurons [30, 2, or 4]
Batch size 10
Dropout 0.2
Input shape [BATCH_SIZE, 1, 1]
Activation tanh
Recurrent activation Sigmoid
Initializer Glorot uniform
Initial-bias last layer π

TABLE IV. The hyperparameters of the RNN used for Figs. 7
and 12. The batch size is 16 and one for Figs. 7 and 12, respec-
tively. The hyperparameter NSNAP is 15 for Fig. 7 and varies from
30 to 130 in Fig. 12 (cf. the inset). For Fig. 12 the input is the time
step j , 0 ≤ j < N = 9, while for Fig. 7 it is the measurement
outcome mj .

Parameter Value

Type RNN-cells GRU
Neurons [30, 30, 30, 2+NSNAP]
Input shape [BATCH_SIZE, 1, 1]
Activation dense layers ReLU
Recurrent activation Sigmoid
Initializer Glorot uniform
Initial-bias last layer 0.1

reduced to only the entries controlling the first measure-
ment). At step j = 1, we have two sets of numbers and
we apply the set of controls corresponding to the observed
measurement and so on and so forth. By doing so, we can
apply controls conditioned on the “memory” of all previ-
ous measurements, at the cost of keeping an exponentially
growing number of entries in the memory of the computer.
Many of those will likely not be explored at all, if their
probabilities are too small.

In our numerical experiments, we go as far as look-
up tables containing about 221 ∼ 2 × 106 entries, which
is still easily handled. The initial condition for the whole
table is to set each parameter value to a random number
uniformly distributed within (0,π).

For Fig. 8, we use a large batch of size 10 000 (1000)
in the approaches with (without) Monte Carlo sampling.
For the approach with random initialization, the look-up-
table entries ḡτi(mj −1) are uniformly distributed within
(−2π , 2π). In the approach with smart initialization,
the initial entries are weakly randomized: for mj −1 =
(1, . . . , 1), we choose ḡτj (mj −1) = π + z(mj −1) with
z(mj −1) uniformly distributed in the interval (0, 1); for the
remaining measurement outcomes, we set τj (mj −1) = 0.

In several results mentioned in the main text, we use a
look-up table “without memory.” This means that there is
just one control-parameter vector for each step j , instead of
a tree-type structure with an exponentially growing num-
ber of parameters. Thus, we still optimize the controls but
ignore the result of previous measurements. This is used
both for the “nonadaptive” scheme for the purification task
in Fig. 4(c) and in Fig. 5(g).

A sketch of all of the three feedback-based strategies
discussed here and in the main text (NN with state as input,
RNN with measurement sequence as input, and a tree-type
look-up table) is shown in Fig. 13.

In any case, in whatever ways we choose to parametrize
our controls, we have a finite number of parameters that
need to be learned. In order to do so, the optimizer
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FIG. 13. A sketch of the three alternative types of trainable controls that can be employed in feedback GRAPE. (a) A fully connected
NN that receives the density matrix (quantum state) of the system as input and outputs the controls. (b) An RNN with gated-recurrent-
unit (GRU) cells as recurrent neurons (input = measurements). (c) A look-up table (input = measurements) with

∑N
n=0 2n entries (when

feedback is required and when the measurement outcomes are binary, as shown here), and each entry contains the controls that need
to be applied after observing a particular measurement sequence.

employed for every example is ADAM [86] and its hyper-
parameters are shown in Table V.

3. Physical simulations
In the unitary case, we simply apply the sequence of

parametrized unitaries, as explained in the main text. In
the case of decay (in the state-stabilization scenario), we
solve the master equation for the density matrix during
the respective time intervals (where decay is present).
Specifically, we simulate the weak Markovian coupling of
the oscillator to a zero-temperature bath via the Lindblad
master equation,

˙̂ρ = κ

(
âρ̂â†−1

2
{
â†â, ρ̂

})
. (H1)

We discretize this continuous time evolution applying the
fourth-order Runge-Kutta method.

We choose the Hilbert space to have a finite dimension
NH with a cutoff in the Fock-state excitation number. An
appropriate choice of the cutoff depends on both the ini-
tial and the target state and ranges from ten to 130 in our
simulations.

APPENDIX I: FURTHER NUMERICAL RESULTS

In this appendix, we present a few more numerical
results to illustrate various options or aspects of the tech-
nique.

TABLE V. The ADAM hyperparameters.

Parameter Value

LEARNING_RATE 0.01a

BETA_1 0.9
BETA_2 0.999
EPSILON 1E-7
CLIPNORM 1
CLIPVALUE 0.5

aUnless otherwise specified.

1. Effect of different initial conditions on the training
In order to assess the variability during the training, we

show in this subsection how the results of Figs. 4 and 5 can
change, depending on the choice of different random initial
conditions of the algorithm. As a first example, we show
in Fig. 14 a plot equivalent to Fig. 4(c) but in this case
we want to differentiate the distinct strategies found by
feedback GRAPE. The majority of the adaptive runs can
systematically reach higher purities then the other strate-
gies (random and nonadaptive). Nonetheless, one should
be aware of such variability of strategies at the end of the
training.

To further analyze the variability of training, we focus
on the state-preparation case from a thermal state, as in
Fig. 5. In Fig. 15, the performance for many different tar-
get states is evaluated, along with the uncertainty due to
different initial conditions.

2. Impact of the batch size on generalization
A final analysis that we conduct deals with the effect of

the batch size during training. We want to analyze both the

0 1 2 3 4 5
Steps

10−3

10−2

10−1

1

Im
pu

rit
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FIG. 14. The purification of a thermal state (with n̄ = 2) as in
Fig. 4(c) of the main text. Here, the shaded lines show ten dif-
ferent strategies found by repeated runs of the algorithm, from
different random starting points. The thick lines represent the best
strategy found.
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FIG. 15. State preparation from a thermal state (n̄ = 1), employing feedback, as in Fig. 5). We show the final infidelity as a function
of the number of time steps available for the strategy. The columns represents various final target states, while the rows show the
three different approaches to obtaining the control parameters: (a) an NN being fed the current quantum state as input; (b) a RNN
obtaining the measurement sequence stepwise; (c) a look-up table as defined in the main text). Each dot represents a different training
run with different initial conditions. For each number of steps, five runs are shown. Their mean and standard deviation are represented,
respectively, as the center and width of the shaded area. For the kitten and the |1〉 + |2〉 + |3〉 state, we add as reference the data (plotted
as stars) shown in Fig. 5.

performance during training and the generalization capa-
bilities of the strategy learned. In order to assess that, we
focus on the state-preparation case from a thermal state
(Fig. 5). We carry out different training runs with distinct
batch sizes (ranging from one to 100). For each batch size,
we carry out five different training runs. We then posts-
elect the best one, by computing the average fidelity on a
much larger batch size (i.e., 1000). In Fig. 16 we then show
the best-performing NN, RNN, or look-up table. Interest-
ingly, even though the training is noisier with a lower batch
size, it seems that feedback GRAPE can converge faster
and to higher-fidelity solutions. Also, it seems that lower
batch sizes can generalize well to higher ones. The better

performance of lower batch sizes could be due to the pos-
sibility that the optimizer can escape local minima more
efficiently than at larger batch sizes.

APPENDIX J: DETAILED ANALYSIS OF
STRATEGIES DISCOVERED BY FEEDBACK

GRAPE FOR THE JAYNES-CUMMINGS MODEL
SCENARIO

In our work, we choose several different tasks within a
Jaynes-Cummings model to illustrate the performance of
our approach. Despite being only an illustrative physical
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FIG. 16. State preparation from a thermal state (here, n̄ = 1) and for target state ψ = (|1〉 + |2〉 + |3〉)/
√

3, in six steps. Each
training run is carried out with a different batch size (encoded in the color), and the performance of the resulting strategy—(a) NN, (b)
RNN, and (c) look-up—is evaluated with a larger batch size (here, 1000) to suppress statistical noise. The training curves are plotted
with a moving average of 50 trajectories in order to suppress fluctuations. The number of trajectories (i.e., batch size × number of
gradient optimization steps) for each curve is the same.
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example in this context, the model is of sufficient inter-
est as a paradigm for actual feedback control of quantum
optical systems. In this appendix, we describe some of
the insights we are able to extract by closer inspection
of the numerical results obtained by feedback GRAPE, in
situations with feedback.

In the main text, we show the decision tree for the purifi-
cation of a thermal state with initial occupation number
〈â†â〉 = 2 in four measurements. Here, we want to show
how the insight gained by analyzing the decision tree for
this special case allows us to derive an analytical solu-
tion for an optimal purification strategy that is valid for
an arbitrary temperature and number of measurements.

We start by reviewing the physics for the building-
block measurement [cf. Eq. (4)]. This type of measurement
has been originally proposed in Ref. [62] and has been
used extensively in quantum optics experiments with fly-
ing Rydberg atoms, e.g., to monitor the occupation number
of a cavity in the presence of very small thermal fluc-
tuations [65] or to prepare a Fock state starting from an
initial coherent state [64]. After each measurement, the
Fock-state probability distribution Pj (n) is updated by
multiplying it with a sinusoidal mask,

Pj +1(n) ∝ Pj (n) cos2
[
γin + δi

2
+ π(1 − mj )/4

]
. (J1)

To better understand the effects of the measurement, it is
important to keep in mind two key insights. (i) If the mea-
surement strength can be well approximated with a rational
multiple of π , γi = πpi/qi, where pi and qi are coprime
numbers, the denominator qi represents the period of the
mask. Thus, the relative occupations P(n)/P(n′) of any
pair of Fock states that have the same excitation number
modulus qi, (n − n′) mod qi = 0 do not change after the
measurement. (ii) If the phase δi satisfies either condition

π
pi

qi
ni + δi

2
= 0 mod π , or = π/2 mod π ,

for an integer ni, one measurement outcome (mi = −1
or mi = 1, respectively) rules out the infinite set of Fock
states with excitation numbers n satisfying n mod qi = ni.
We note that if qi is an even number, any δi that sat-
isfies the first condition for ni ≡ ni,−1 also satisfies the
second condition for ni = ni,1 ≡ (ni,−1 + qi/2) mod qi. In
this scenario, each of the two possible measurement out-
comes rules out a (different) infinite set of Fock states,
ni,±1 mod qi for mi = ±1. We note further that there are
infinitely many values of δi satisfying one of the two con-
ditions in Eq. (J1) for the same ni. All of these values of δi
are rational multiples of π .

Motivated by insights (i) and (ii), we write an algorithm
that identifies values of γi and δi that are close to ratio-
nal multiples of π with small denominators (we allow

a deviation of 1% of π ) and we display these rational
values (in units of π ) in the decision tree as shown in
Fig. 4(d). By inspecting this decision tree, one can imme-
diately observe that the NN tends to use measurement
strength γj corresponding to the period qj = 2j for the
j th measurement. In order to understand this pattern, we
inspect the phases δj selected by the NN. For the first mea-
surement, the measurement strength is γ1 = π/2 and the
phase δ1 = 0. This corresponds to n1,−1 = 0 and n1,1 = 1.
In other words, the Fock states 0 (1), along with all other
even (odd) states, are ruled out by the measurement m1 =
−1 (m1 = 1). Thus, the net effect is that, irrespective of
the measurement outcome, the probability of every sec-
ond Fock state is set to zero. Such a measurement extracts
exactly 1 bit of information in the large-temperature limit.
For the second measurement, the NN doubles the period
of the sinusoidal mask, q2 = 4 (independent of the out-
come of the first measurement). By inspecting the phases
δ2 chosen adaptively by the NN, we find out that they
always allow us to rule out either of the two most likely
states after the measurement. For example, in the upper
branch (corresponding to m1 = 1), all odd states are dec-
imated and, thus, the two more likely states are the 0
and 2 Fock states. From the tree, we see that δ2 = π/2
in this branch. This indeed satisfies the two conditions
in Eq. (J1) with ni = n2,−1 = 2 and ni = n2,1 = 0, respec-
tively. In other words, the Fock states with n mod 4 = 0
(n mod 4 = 2) are ruled out by the measurement out-
come m2 = 1 (m2 = −1). Since all odd Fock states have
already been ruled out after the first measurement, the
overall effect of the first two measurements is to postse-
lect every fourth Fock state, n mod 4 = 0 (n mod 4 = 2)
for m1 = 1 and m2 = −1 (m1 = m2 = 1). Likewise, the
choice of the phase δ2 = −π/4 in the lower branch allows
us to postselect every fourth Fock state—now, n mod 4 =
1 and n mod 4 = 3 for m2 = 1 and m2 = −1, respectively.
This strategy can be easily generalized for any arbitrarily
large number of measurements J : the period qi is dou-
bled after every measurement, qj = 2j , independent of the
measurement outcomes, and appropriate adaptive phases
δj are selected to always rule out either of the two most
likely states. Such a strategy allows us to postselect the
Fock states with n mod 2J = ni, where ni depends on
the measurement history. More precisely, there is a bijec-
tive mapping between 0 ≤ ni < 2J − 1 and the 2J possible
measurement outcomes. Indeed, a close inspection of the
strength γi and phases δi selected by the NN shows that
the NN adopts this strategy for all four measurements in
most (but not all) branches. A notable exception is the
third measurement in the lowest branch (corresponding to
m1 = m2 = −1). This choice results in an ineffective mea-
surement that does not allow us to exclude either of the two
most likely states. Interestingly, in this case the NN selects
for the fourth measurement the measurement settings that
were already expected (according to the strategy identified
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above) for the third measurement. We believe that this sub-
optimal strategy corresponds to a local minimum for the
gradient ascent. We note that the strategy the tree for which
is displayed in Fig. 4(d) is obtained after selecting the best
gradient-ascent training run out of ten runs with different
random initializations. A tree without any such subopti-
mal measurements could be obtained by performing more
gradient-ascent runs or, more efficiently, by increasing the
temperature of the initial mixed state (which will punish
more suboptimal purification strategies).

The same optimal strategy as discussed above can be
implemented for infinitely many different choices of γj
and δj . In particular, different bijective mappings between
the measurement outcomes and the most likely state nj
after j measurements can be implemented. To find a sim-
ple analytical solution for the phases γj for one of the
implementations of the optimal strategy, we choose pj = 1
and, thus, γj = π/2j . In addition, we choose nj as the
number the binary representation of which is dj −1 . . . d2d1
with di = (1 − mi)/2, e.g., for m1 = m2 = −1 correspond-
ing to d1 = d2 = 1 we have n3 = 1 + 2 = 3. This mapping
is implemented if the phase δj always allows us to rule
out the Fock state with the largest probability (or, equiva-
lently, the lowest excitation number among the states that
have not yet been decimated by previous measurements)
for the measurement outcome mj = −1. With these con-
straints, we find a simple analytical solution for the phases,
δj = πnj /2j .

APPENDIX K: SYMMETRY OF THE
OPTIMIZATION LANDSCAPE FOR SPIN-STATE

PREPARATION WITH UNCERTAIN
PARAMETERS

In this appendix, we analyze the symmetries of the
optimization landscape for the learning of feedback strate-
gies to prepare an ensemble of qubits in the excited state
investigated in Sec. III F of the main text.

For N = 2, the 3D optimization landscape displayed as
three cuts in Fig. 8(d) is the average 〈〈F2〉m〉g∼P(g) of the
coupling-dependent fidelity

〈F2〉m = sin2[gτ0/2] cos2[gτ1(m0 = −1)/2]

+ cos2[gτ0/2] sin2[gτ1(m0 = 1)/2]. (K1)

We note that this function has three mirror planes because
it is invariant under a sign change of τ0, τ1(m0 = 1), or
τ1(m0 = −1). In addition, in the plane τ1(m0 = −1) = 0,
corresponding to the leftmost cut in Fig. 8(d), it can be
rewritten as

〈F2〉m = sin2[gτ0/2] + sin2[gτ1(m0 = 1)/2]

− sin2[gτ0/2] sin2[gτ1(m0 = 1)/2]. (K2)

From the above expression, it becomes clear that one can
exchange τ0, τ1(m0 = 1) without changing the fidelity.
These symmetries are present for any value of g and, thus,
also for any weighted average over g and, in particular, for
the optimization landscape 〈〈F2〉m〉g∼P(g). Since the opti-
mal solutions lie on the plane τ1(m0 = −1) = 0, there are
eight symmetry-related optimal solutions corresponding to
the same coupling-dependent fidelity 〈F〉m.

This result can be generalized to the case of N mea-
surements. On the hyperplane with τj (mj −1) = 0 for all
mj −1 /= (1, . . . , 1) the coupling-dependent fidelity is the
function

〈FN 〉m =
N−1∑

j =0

sin2[gτj /2]
N−2∏

j ′=0

cos2[gτj ′/2], (K3)

where τj = τj (mj −1), with mj −1 = (1, . . . , 1). It is easy to
show that this function is symmetric under permutation of
its N variables τj . This leads to 4 × N ! optimal solutions
with the same coupling-dependent fidelity 〈F〉m.
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