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Abstract: In this contribution, advanced modeling of
thermo-mechanical effects in machine tools with nonlin-
ear machine components is investigated using the exam-
ple of a feed axis. Strategies of model order reduction
for this coupled thermo-mechanical model with nonlinear
subsystem are presented. Numerical investigations of the
performance of the resulting reduced-order model com-
pared to the original one conclude this article.
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Zusammenfassung: In diesem Beitrag wird die erweiterte
Modellierung thermomechanischer Effekte in Werkzeug-
maschinenmit nichtlinearenMaschinenkomponenten am
Beispiel einer Vorschubachse untersucht. Es werden Stra-
tegien zur Modellordnungsreduktion für dieses gekop-
pelte thermomechanische Modell mit nichtlinearem Teil-
system vorgestellt. Numerische Untersuchungen der Leis-
tungsfähigkeit des resultierendenModells reduzierterOrd-
nung im Vergleich zum ursprünglichen Modell schließen
den Artikel ab.
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1 Introduction

Machine tools are permanently exposed to complex static,
dynamic and thermal loads. An undesirable displacement
of the tool center point (TCP) limiting the achievable work
piece quality at given productivity is the consequence. The
technical complexity of machine tools requires advanced
modeling approaches to describe static, dynamic and ther-
mal effects accurately, since bothmachine structural parts
and machine components affect the overall behavior.

The finite element method (FEM) is a powerful and
vastly used tool to model static, dynamic and thermal ef-
fects in machine tools, which is reflected in a wide range
of scientific work in this field. Yet, current research im-
pulses in the context of model-based data analytics strive
for process parallel solutions processing machine inter-
nal data [1]. In order to combine existing modeling capa-
bilities with modern data-driven approaches, a massive
reduction of calculation times is a fundamental require-
ment. At this point,model order reduction (MOR) becomes
crucial. Sophisticated MOR strategies enable the compu-
tation of compact low-dimensional models for fast simu-
lations of entire machine tool models while preserving a
certain model accuracy.

Within the scope of this paper, a thermo-mechanical
FE model of a feed axis is set up. As integral part of a
modern 5-axismachine tool, this assembly group includes
the relevant characteristics of machine tools mentioned
above. Nonlinear boundary conditions, which are chal-
lenging in the field of MOR, are considered. Furthermore,
novel preprocessing techniques allow classic linear MOR
to be applied and, thus, enable for drastically reduced
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computing times. Transient thermo-mechanical interac-
tions of the feed axis are calculated in a final investigation.

2 Modeling of coupled
thermo-mechanical systems

2.1 Thermo-mechanical behavior of machine
tools

To date, the areas of thermal [2, 3, 4] andmechanical [5, 6]
simulation have been widely studied. For subsystems like
the main spindle unit, interactions between both thermal
and mechanical domain were investigated and respective
simulation models were derived [7].

For a body of homogeneous and temporally constant
material properties (density ρ, heat capacity cp and con-
ductivity λ), the thermal behavior can be expressed ana-
lytically, resulting in a partial differential equation for the
temperature field T (1). Here, the external thermal load q̇
(head flux density) has a spatial (δ) and temporal (t) de-
pendency,where δdenotes the three-dimensional position
coordinates,

ρcp
à
àt
T − λ∇(∇T) = q̇(δ, t). (1)

Elastostatic equilibrium for solid bodies can be ex-
pressed by Navier-Cauchy equation

(λ + μ)∇(∇δ) + μ∇2δ = −F. (2)

Again, constant material parameters (Lamé parameters
λ and μ) are considered and F represents a volume-
distributed force. Although we restrict our considerations

Figure 1: Closed loop of thermo-mechanical interactions in machine
tools.

to constant material parameters, the approach is not lim-
ited to this assumption.Note that in the case of variable pa-
rameters methods of MOR for parameter-varying systems,
see [8], would have to be applied to (21) in Sec. 3.2.

Combined thermo-elastic behavior of solid bodies is
often assumed tobe linear. Althoughmachine toolsmainly
consist of large structural parts, machine components like
bearings, linear guideways or ball screws represent func-
tionally relevant elements that usually act as coupling ele-
ments between the structural parts. Due to their nonlinear
mechanical characteristics, thermal expansion of struc-
tural parts, for example,may affectmechanical conditions
in machine components as displayed in Fig. 1.

In general, machine components act as significant
heat sources in thermally sensitive regions of a machine
tool. While bearings of the main spindle, for example,
are characterized by the installation in structures of high
power density, linear guideways induce heat along large
structural parts that significantly contribute to the over-
all TCP error [9]. In reaction, transient temperature fields
cause thermal expansion and thermal stress that ulti-
mately result in reactive forces. These forces, in turn, in-
fluence contact pressings in machine components affect-
ing their frictional behavior that initially caused the heat
generation.

In order to investigate the effects of cross-domain be-
havior, an FE-based coupled model for a feed axis of a
5-axis machine tool is designed (Fig. 2).

Besides two structural parts (P1 and P2) that represent
the slide and the headstock, the assembly group contains
two linear guideways, arranged in parallel, with two car-
riages each, i. e. four machine components in total (C1 to
C4). While the structural parts are modeled via FEM, the
components are represented as spring damper elements
with nonlinear, load-dependent characteristics. A more
detailed description is given below.

2.2 Modeling of structural parts

The given thermo-elastic partial differential equations
in (1) and (2) are solved numerically. By discretizing in
space and time, for each structural part of the assembly,
a matrix equation

(CP + dt ⋅ KP)ΘP
t = C

P ⋅ ΘP
t−1 + dt ⋅ B

Put , (3)

with BPut denoting the external influences on the system,
can be derived.

Here, the heat capacity matrix CP only contains non-
zero entries for thermal degrees of freedom (DOFs). In con-
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Figure 2: Feed axis of a modern 5-axis vertical milling machine.

trast, thematrixKP is composed of a thermal heat conduc-
tion partKP

th, an elastic stiffness partK
P
el and a part consid-

ering thermal elongation KP
el,th. Due to the different time

scales of the thermal and mechanical system, dynamic ef-
fects in the mechanical part are negligible. Thus, the me-
chanical system ismodeled as static, and also the coupling
from elastic to thermal degrees of freedom is neglected, in
this paper. The resulting structure of each system matrix
is visualized in Fig. 3, highlighting the asymmetric struc-
ture.

Figure 3: System matrices CP1 and KP1.

The machine structure is meshed with tetrahedral,
quadratic SOLID227 coupled-field elements using ANSYS.
As a result, for each node four DOFs

ΘP = [ΔP TP]
T
= [δx δy δz T]

T (4)

follow. The vector ΘP contains structural DOFs ΔP (trans-
latoric displacements δ in x-, y-, and z-direction) and one
thermal DOF TP (nodal temperature).

2.3 Modeling of machine components

On the one hand, linear guideways are designed to en-
sure backlash- and friction-free motion in feed direction
(z-direction in Fig. 2). On the other hand, the other DOFs
except the linear feed direction are supposed to be locked.
Since dynamic effects are not considered in this paper, lin-
ear guideways are modeled as nonlinear spring elements
with 7 DOFs

Θc = [Δc ϕc Tc]
T

= [δx δy δz φx φy φz T]
T
. (5)

In addition to the considered DOFs for structural parts (4),
Θc does also contain respective rotations φ around all
three coordinate axes in ϕc.

Since the stiffness matrix

Kc =
[[[[[

[

Kδxδx ⋅ ⋅ ⋅ 0 0
...

. . . 0 0
0 0 Kφzφz

0
0 0 0 KT

]]]]]

]

(6)

refers to the geometric center, only direct stiffness entries
on the main diagonal are included.

The scalar entries Kδxδx to KT represent mechanical
elasticity and thermal heat conductivity of the respective
machine component. Since these values depend on the
conditions in each rolling contact inside the component,
they are updated explicitly based on previous calculation
results. In general, contact stiffness can be calculated an-
alytically, with Hertzian theory [10], based on the relative
positioning of the contact partners to each other. Further-
more, the equilibrium of external forces and internal con-
tact forces of each roller element is calculated iteratively in
each time step. In [11], respective analytic-numerical mod-
els for machine components like linear guideways, ball



J. Vettermann et al., Compact thermo-mechanical machine tool models | 695

screws and bearings were developed. Based on these ex-
isting models, the nonlinear behavior of the components
is calculated apriori for different operatingpoints andpro-
vided in tables. Explicitly calculated nonlinear stiffness of
guideways can be expressed as follows:

Kc
t = f (Θ

C
t−1); ΘC

t−1 = f (K
c
t−1, Ft−1,Tt−1). (7)

One spring element of seven DOFs connects two so-
called condensation nodes of same dimension each. Thus,
the resulting stiffnessmatrix describing onemachine com-
ponent has the dimension 14 × 14 and the structure

KC = [
Kc −Kc

−Kc Kc ] . (8)

2.4 General assembly of the coupled system

Based on thermal and mechanical modeling of structural
parts and machine components, the coupled system can
be assembled. In this procedure, the following steps are
performed:
1. Definition of boundary conditions (BC) and couplings

between structural parts
2. Formulation of multi-point constraints (MCs)
3. Assembly of coupled system.

In step one, relevant machine components as couplings
between structural parts are identified. For each coupling,
an initial stiffness matrix and condensation nodes are set
up. After that, multi-point constraints connect contact re-
gions on structural parts with previously defined conden-
sation nodes. For this purpose, an RBE3 formulation is
used [6]. Based on the principle of virtual work, (9) rep-
resents the equations that couple seven DOFs of a conden-
sation node with all N coupling nodes of the associated
contact area of the structural part. The formulation forme-
chanical energy used to couple structural DOFs is there-
fore expanded to an equivalent thermal formulation con-
taining the heat flux Q̇ and temperatures T.

[[

[

Fc

Mc

Q̇c

]]

]

⋅ [[

[

Δc

ϕc

Tc
]]

]

=
N
∑
n=1
([

FPn
Q̇P
n
] ⋅ [

ΔPn
TPn
]) . (9)

Furthermore, condensation nodemomentsMC are put
in equilibriumwithmoments coming from coupling forces
FPn with corresponding lever arms ΔPn , expressed as the
cross-product

MC =
N
∑
n=1
(ΔPn × F

P
n ). (10)

In matrix notation,

LMC [
ΔP

ΔC
] = 0 (11)

provides the connection of condensation and coupling
DOFs.

Based on this formulation, the global coupling matrix
L for one structural part and one condensation node to be
coupled can be assembled as follows:

L =
[[[[[

[

I 0 0 0

0 I 0 0
0 0 −LMC 0
0 0 0 I

]]]]]

]

. (12)

By applying dual assembly based on theory of dy-
namic substructuring [12], the system represented by the
uncoupled stiffness matrix K is coupled by multiplying
with the matrix L from both sides. A priori,K is assembled
by stacking the individual subsystems KP

i and KC
j diago-

nally,

Kcoupled = L
TKL. (13)

Although forces FC and moments MC of condensa-
tion nodes, as well as coupling forces FP, were added as
additional DOFs to the system of equations, only respec-
tive condensation node forces andmoments remain, here-
inafter referred to as Lagrange multiplier λ. The overall
vector of DOFs Θ now consist of structural part DOFs ΘP,
machine component DOFs ΘC and Lagrange multiplier λ,

Θ = [[
[

ΘP

ΘC

λ

]]

]

=

[[[[[[[[[[[

[

ΔP

TP

ΔC

ϕC

TC

λ

]]]]]]]]]]]

]

. (14)

The considered feed axis is composed of twoparts and four
components. The coupled stiffness matrix is

Kcoupled =
[[

[

KPi 0 KPiCj

0 KCj −I
KPiCj −I 0

]]

]

. (15)

Fig. 4 shows the global stiffness matrix with its three
different sub-blocks. The first, by far largest block repre-
sents part-DOFs with constant entries. The second block
with condensation-DOFs contains variable entries that
need to be updated every time step. However, this block
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Figure 4: Structure of the coupled stiffness matrix.

Table 1: Overview over all considered DOFs.

2 parts 4 components + TCP Lagrange multiplier

84,977 nodes 9 condensation nodes 9 condensation nodes
4 DOFs p. node 7 DOFs p. node 7 DOFs p. node
339,908 DOFs 63 DOFs 63 DOFs

only covers 56 DOFs while the assembled model has
340,034 DOFs in total (see Tab. 1). In addition, block three
realizes the coupling of part and component blocks. For
static assemblieswithout relativemotion, this block is also
constant. In case of a relative motion, this block needs to
be updated based on the current position of the feed axis.
This could be achieved through the discretization of the
rails of linear guideways into discrete sections. Then, for
each section a multi-point constraint has to be modeled
and the corresponding matrix LMC has to be set up. As a
result, a coupling blockKPiCj containing connections to re-
spective couplingnodes exists for each rail section andhas
to be updated position-based within the model.

3 MOR for a coupled system with
nonlinear subsystem

MOR aims at finding a low-dimensional surrogate model
approximating the high-dimensional dynamical system,
which, as in the case at hand, is often obtained by a spa-
tial discretization, e. g. by FEM. Then, the reduced order
model (ROM) replaces the original model in applications,
where fast and repeated model evaluations are required,
such as real-time predictions, optimization or control. In

the scope of this paper, the much smaller ROMs are uti-
lized to speed up the thermo-mechanical simulation of a
feed axis.

3.1 MOR for linear time-invariant (LTI)
systems

We aim to separate the linear part of the above simulation
model and reintegrate a much smaller surrogate into the
coupled simulation.Hence, herewe consider the represen-
tation of a linear time-invariant (LTI) system in generalized
state-space form

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t)

(Σ)

with constant systemmatrices E,A ∈ ℝn×n, which describe
the dynamics of the system, the input map B ∈ ℝn×m,
the output map C ∈ ℝp×n and the feedthrough matrix
D ∈ ℝp×m, respectively. The vector x ∈ ℝn denotes the
state, which includes the DOFs in the considered model
and the outputs y ∈ ℝp contain values in points of in-
terest, like temperatures in sensor positions or the TCP-
displacement. The vector u together with the input map B
describe the external influences on the system, e. g., in our
case, the heat fluxes induced to the linear parts from the
ambient temperature or the nonlinear components of the
machine.

The goal of our projection-based MOR is the compu-
tation of truncation matrices V,W ∈ ℝn×r, which restricts
the model to an r-dimensional subspace with r ≪ n, while
the essential information on the input-to-output dynamics
of the system is preserved. The ROM is of the form

Ẽ ̇x̃(t) = Ãx̃(t) + B̃u(t),
ỹ(t) = C̃x̃(t) + Du(t)

(Σ̃)

with the reduced matrices Ẽ := WTEV, Ã := WTAV, B̃ :=
WTB and C̃ := CV, the reduced state x̃(t) ∈ ℝr and the
approximated outputs ỹ(t) ≈ y(t) ∈ ℝp. The output error
||y − ỹ|| is required to be small in a suitable norm.

There are several well known MOR techniques for LTI
systems (Σ), which differ in the way the truncation matri-
ces V andW are determined. Besides the energy-based re-
ductionmethods, like balanced truncation (BT), which we
use to demonstrate our approach in this paper, also meth-
ods based on Krylov subspaces, e. g. moment matching
techniques and rational interpolation, enjoy great popu-
larity in the field of MOR. Another class of MOR methods
are the training-based approaches, which rely on repeated
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Figure 5: Sketch of the position of the feed axis model used for the
simulations.

system simulations, like proper orthogonal decomposition
(POD) and reduced basis (RB) methods. More information
on the various MOR techniques, especially concerning the
basic principles, algorithms, stability and error estimation
can be found in, e. g. [13, 14, 15, 16] and the references
therein. In principle, all these methods could be used for
the reduction of the linear part in our framework.

3.2 MOR for fixed relative positions

We consider the fixed pose in Fig. 5 of the feed axis model
described in Section 2. In order to develop a strategy to
compute a ROM for this system, we have to analyze, and
make use of, the structure. After the spatial discretization
by the FEM and the assembly of the coupled system (Sec-
tion 2.4) we set

x1 = Θ
P , x2 = [

ΘC

λ
] ,

A11 = −K
P , A12 = [0 −KPC] ,

A21 = [
0
−KPC] , A22(x2) = [

f (x2) −I
−I 0

] ,

to obtain the following coupled system Σ in generalized
state-space form

[
E11 0
0 0
] [

ẋ1
ẋ2
] = [

A11 A12
A21 A22

] [
x1
x2
] + [

B1
B2
] u,

y = [C1 C2] [
x1
x2
] .

(16)

The system consists of a linear thermo-elastic part Σlin of
dimension n1, which is coupled to a nonlinear system Σnl
of dimension n2 through the couplingmatricesA12 andA21.
A22 is the nonlinear subsystem consisting of the stiffness
of each linear guide and respective condensation DOFs.
Since A22 realizes the coupling of the structural machine
parts, it is responsible for relative displacements and ro-
tations of the rigid bodies, on the one hand, and heat ex-
change between the bodies, on the other hand. In conse-
quence, the impact of flexible bodies is extended by the
rigid body behavior. f (x2) ∈ ℝ

n2
2 ×

n2
2 represents the nonlin-

ear part of the stiffnessmatrix and equalsKCj in (15),which
is dependent on theDOFs of themulti-point constraints x2.
In the simulation this part has to be updated after every
time step. Thereby for every component submatrix (one
submatrix for each carriage) a factor is calculated, which
depends on the difference between the displacementDOFs
in x-direction of the respective carriage and a product spe-
cific parameter representing the linear guideways. Thema-
trix E11 consists of the heat capacity matrix in the thermal
part and zeros in the elastic part, which is considered to be
static (see Section 2), and thus E11 is singular.

To achieve an efficient reduction process, the linear
andnonlinear parts of the systemare separated, in order to
treat each with the most appropriate method. This is done
by a decomposition of the coupling blocks A12 and A21 in
the form A12 = BlinCnl and A21 = BnlClin, analogous to [17].
Both can be achieved by the (economy-size) singular value
decomposition (SVD). For large sparse matrices, the re-
quired subset of singular values and vectors can be com-
puted efficiently, by first determining the structural rank
of the matrix and then running the sparse SVD with that
number of desired values and vectors. Afterwards the sys-
tem can be reformulated as an interconnected system [18]
with an explicit coupling in the form of additional internal
input matrices Blin,Bnl and output matrices Clin,Cnl:

Σlin :

{{{{{{
{{{{{{
{

E11ẋ1 = A11x1 + [B1 Blin] [
u
ynl
] ,

[
y1
ylin
] = [

C1
Clin
] x1.

(17a)

Σnl :

{{{{{{
{{{{{{
{

0 = A22(x2)x2 + [B2 Bnl] [
u
ylin
] ,

[
y2
ynl
] = [

C2
Cnl
] x2.

(17b)

For systems with a large number of coupled DOFs it is rec-
ommended to use a low-rank approximation of the cou-
pling blocks [17, Ch. 8], to keep the numbers of inputs and
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outputs small, compared to the original system dimen-
sion. Systems with many inputs and outputs may require
special, numerically more expensive, MOR techniques,
e. g. [19], introducing an additional outer approximation
step, and consequently additional approximation errors.
For a general overview of MOR for coupled dynamical sys-
tems, see e. g. [20].

Due to the small dimension of the nonlinear subsys-
tem compared to that of the linear one, we decided to re-
duce only the linear part and preserve the full nonlinear
subsystem. In case the dimension of Σnl gets too large, suit-
able techniques for the reduction of nonlinear systems can
be found e. g. in [14, Sec. 3], [21] and the references therein.

With a grouping of the states by thermal and elastic
degrees of freedom, xth = T and xel = [δx δy δz]T, and the
combined input uel,th = [u ynl]T from external inputs u and
internal inputs ynl from the nonlinear subsystem, we can
write Σlin as

[
0 0
0 Eth
] [

ẋel
ẋth
] = [

Ael Ael,th
0 Ath

] [
xel
xth
] + [

Bel
Bth
] uel,th, (18)

yel,th = Celxel + Cthxth, (19)

where the subscripts el and th denote the parts of the elas-
tic and the thermal system and thematrixAel,th represents
the coupling of the temperature field xth in direction of the
displacement field xel. Note that the influence of the defor-
mation on the temperature field is considered negligible
and, thus, set to the zero matrix 0.

This representation takes the form of a semi-explicit
differential-algebraic equation (DAE) of index 1 [22,
Ch. 5.1], andallows for an index-reductionas itwas applied
to a thermo-elasticmachine tool assembly in [23]. From the
first block-row of (18), we get

xel = −A
−1
el Ael,thxth − A

−1
el Beluel,th. (20)

At this point it has to be guaranteed that Ael has to be in-
vertible, whichwill be addressed inmore detail in Sec. 3.3.
Inserting (20) into the second block row and the output
equation (19) leads to a representation of the same sys-
tem dynamics by a set of ordinary differential equations
together with an updated output equation

Ethẋth = Athxth + Bthuel,th,

y = Cel(−A
−1
el Ael,thxth − A

−1
el Beluel,th) + Cthxth

= (Cth − CelA
−1
el Ael,th)xth − CelA

−1
el Beluel,th. (21)

Now defining E = Eth, A = Ath, x = xth, B = Bth,
C = Cth−CelA−1el Ael,th andD = −CelA−1el Bel,we receive a stan-
dard LTI state-space system (Σ). If both thermal and elastic

degrees of freedom use the same mesh and ansatz func-
tions in the FE-formulation and for a three-dimensional
problem, as in our case, the system dimension in (21) is
already reduced to 1

4 of the state-dimension in (18), while
the information of the elasticity system is completely cap-
tured in the output equation of (21). Note that for a two-
dimensional problem the system dimension would be re-
duced to 1

3 by the index-reduction. Now, we can further
reduce (21), which represents the index-reduced formula-
tion of the linear subsystem Σlin in (17a), using standard
MOR methods for LTI systems. Finally, the resulting ROM
Σ̃lin is recombined with the nonlinear part Σnl. Here, spe-
cial attention has to be drawn to the structure of the new
feedthrough matrix D, since it also contains parts includ-
ing the artificial internal inputs and outputs, which have
to be considered in the newly coupled system. The specific
structure of D can be split into four parts containing the
feedthrough for the coupled system, but also describes the
influence of the inputs u on the nonlinear states, the in-
teraction of the linear and nonlinear states, as well as the
influence of the nonlinear states on the output:

D = [ D1,ext D1,nl
Dlin,ext Dlin,nl

] . (22)

Consequently, a reduced coupled system of the form

[
Ẽ11 0
0 0
] [
̇x̃1
ẋ2
] = [

Ã11 B̃linCnl
BnlC̃lin Aup

] [
x̃1
x2
] + [

B̃1
Bup
] u,

ỹ = [C̃1 Cup] [
x̃1
x2
] + D1,extu

(23)

with the updated matrices

Aup = A22(x2) + BnlDlin,nlCnl,
Bup = B2 + BnlDlin,ext,

Cup = C2 + D1,nlCnl

is obtained.

3.3 Freed rigid body modes

An important fact, which has to be considered in the con-
text of decoupling an interconnected system containing a
mechanical part, is the problem of freed rigid bodymodes.
In our case, the nonlinear part of the system represents
the carriages, which connect the slide with the headstock.
Thus, in the considered use case, decoupling the linear
and nonlinear part of the system also leads to 6 rigid body
modes in the headstock model.
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Due to zero eigenvalues, Ael is not invertible, but the
invertibility is a prerequisit for the application of (20). In
the following we want to discuss some strategies to tackle
this problem.

An obvious idea is a change in the FE-model itself
based on an additional fixing of the concerned assemblies.
However, this could be disadvantageous due to an exces-
sive stiffness in the FE-model and restrictions in the mod-
eling process.

A second possibility results from a numerical per-
turbation of the model, leading to a shift of the eigen-
values. We follow this strategy in the numerical experi-
ments in this contribution. To this end, we introduce an
ϵ-perturbation of the form Âel = Ael − ϵI in (18), analogous
to [24], in our case using ϵ = 10−5. In that case we have to
condone the loss of error bounds of the MOR method as a
drawback.

A third opportunity will be part of future investiga-
tions. Here a change from the stationary elasticity model
to a dynamic second-order elasticity model including the
massmatrix enables the treatment of the rigid bodymodes
as part of MOR methods used in the context of elastic
multibody simulation, see [25, 26].

4 Numerical experiments

The model was established in ANSYS and the matri-
ces needed for the representation (16) were exported for
the nonlinear simulation and MOR in MATLAB®. The FE
model consists of 340,034 DOFs, 20 inputs and 63 outputs.
The simulated loadcase includes a nodal heat flux at TCP
of 50W, a nodal heat flux of 20W at each carriage and rail,
as well as a surface heat flux of 30Wm−2 on the slide, tak-
ing the effects of the z-motor into account. The decoupled
and index-reduced system (21) was reduced with balanced
truncation and the ROM was again coupled with the non-
linear part as described in (23). For the MOR of the linear
part we used the BT implementation for large sparse sys-
tems, included in the open sourceMATLAB toolM-M.E.S.S.
— the MATLAB Matrix Equation Sparse Solvers [27]. The
truncation tolerance and thus the BT error bound was set
to 10−2. With that tolerance we obtain a recoupled ROM of
the form (23) with a reduced order of 207, inwhich the non-
linear part is of order 126. Consequently, the linear part of
the model was reduced from 339,908 DOFs to 81 reduced
DOFs. First we want to have a look at the reduction error
for a completely linear simulation (A22 = const.) and after-
wards with active nonlinearity (A22 = A22(x2)). Hence, we

can classify the errors resulting from the reduction process
and from the nonlinearity.

Data and code availability
All MATLAB codes for execution of the experiments re-
ported here are available as a code package authored by
J. Vettermann, J. Saak and A. Steinert [28]. The data matri-
ces for a testmodel are provideddiffering in systemdimen-
sion and used parameters to the here presentedmodel and
thus generating slightly different results.

4.1 Results

The generation of the ROM and all simulations have been
executed on a compute server, whose hardware and soft-
ware specifications are described in Tab. 2, at TU Chem-
nitz. Since we did not have exclusive access to the ma-
chine, timings beloware expected tobe representative, but
mayhavebeenaffectedbyother computationson the same
machine.

Table 2: Hardware and software environments for the experiments.

CPU Intel(R) Xeon(R) CPU E7-4880 v2 @ 2.50GHz
Cores 4×15
RAM 1 TB
OS Ubuntu 18.04.6 LTS
Platform type x86_64 (64Bit)
MATLAB R2021b
M-M.E.S.S. 2.1 [27]

From a physical point of view, relevant compari-
son variables are the relative x-displacement between
shoes and rails of the linear guideways and the abso-
lute z-displacement of the TCP. While the former effect
has significant influence on the component stiffness and
thus on the absolute displacement under static load, the
latter effect directly affects the achievable working accu-
racy.

Weobserve a very goodconformity between the results
of the original full ordermodel (FOM) and the ROMboth in
the linear andnonlinear case, as Fig. 6, 7 and8 showexem-
plary for the positionpictured in Fig. 5. The simulationwas
executed with the implicit Euler method for a time span of
100 s with a constant time step size of 0.1 s, thus we have a
total number of 1,000 time steps. The plots in Fig. 6 and 7
show the errors of the difference between the temperature
DOFs as well as the displacement DOFs in x-direction of
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Figure 6: Relative and absolute errors of the relative x-displacement between shoes and rails of the linear guideways and the related tem-
perature difference for the ROM for the fixed position sketched in Fig. 5 simulated as fully linear system.

Figure 7: Relative and absolute errors of the relative x-displacement between shoes and rails of the linear guideways and the related tem-
perature difference for the ROM for the fixed position sketched in Fig. 5 simulated with active nonlinearity.
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Figure 8: Comparison of the results for the FOM and the ROM at the TCP for the fixed position sketched in Fig. 5 simulated with active nonlin-
earity.

Table 3: Comparison of reduction and simulation times tred and tsim
for the linear (l) and the nonlinear (nl) simulation (time step size:
0.1 s, 1000 time steps).

Model Size tred tsim

FOM, l 340,034 – 835.6 s
ROM, l 207 341.6 s 1.5 s
FOM, nl 340,034 – 140220 s ∼ 39h
ROM, nl 207 341.6 s 3.3 s

the carriages. A good match of these displacement values
is of particular importance, due to the fact, that the update
of the nonlinear part of the system depends on them.With
average relative displacement errors of order 10−2 and thus
a reduction error smaller than the expected FE-modeling
error, the model accuracy is preserved. We aim at a good
approximation of the displacement and temperature re-
sults in the ROM at our point of interest — the TCP. A re-
liable approximation especially of the TCP displacement
in the ROM is crucial for, e. g. real-time error correction of
the thermally induced TCP error during themanufacturing
process. As Fig. 8 shows, a very good reproduction of the
FOM trajectory with the ROM simulation with a relative er-
ror of order 10−3 can be achieved for the z-displacement,
the temperature results are even better with a relative er-
ror of order 10−4.

In Tab. 3 the order of the models as well as the times
needed for the reduction and simulation process for the in-
vestigated simulation models are summarized. Note that
we achieve a speedup of the simulation time in the fully
linear case, for FOM and ROM, by the reuse of the LU-
decomposition in the linear solver for the step, which is
possible due to the linearity of the system and the use of

a constant time step size in the integration step. This ex-
plains the large difference between the simulation times
for the FOM in the linear and nonlinear cases.

We see that the simulation of the ROM comes up with
a formidable speedup of the simulation times compared
to the FOM. Even in the case that just one simulation is re-
quired, the sum of the time needed for the reduction and
simulation process of the ROM is smaller than one simu-
lation cycle of the FOM. Furthermore, a comparison of the
storage amount of the FOM and ROM might be an impor-
tant fact, which plays a major role if a model has to be
saved directly on the numerical control system of the ma-
chine tool.We cannot only observe a drastical reduction of
the simulation time, but also of the memory requirements
for the ROM.While the FOMneeds 212.81MB, the ROM just
requires 0.23MB.

5 Conclusions

This contribution combines advanced modeling tech-
niques to consider nonlinear component behavior in a
classical FE-model and a MOR strategy tailored to the par-
ticular needs of the resulting differential-algebraic ma-
chine tool model with geometrically local nonlinearities.
The numerical investigations showed a drastic reduction
of the simulation times achieved by the use of a suitable
ROM while preserving a certain model accuracy.

In a further step, an approach to handle the problem
of relative movement and thus moving loads in the model
will be investigated. For this task a switched system shall
be compared to a formulation as a parameter-varying sys-
tem, see e. g. [23, 29]. Furthermore, the ROM will be used
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as surrogate model in different use-cases, for example the
computation of transient thermo-mechanical interactions
affecting the life time of the feed axis, as well as compu-
tations for data driven approaches, e. g. the generation of
training data for artificial neural networks.

Funding: Funded by the German Research Foundation –
Project-ID 174223256 – TRR 96.
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