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Abstract

Risk stratification and treatment decisions for leukemia patients are regularly based on clini-

cal markers determined at diagnosis, while measurements on system dynamics are often

neglected. However, there is increasing evidence that linking quantitative time-course infor-

mation to disease outcomes can improve the predictions for patient-specific treatment

responses. We designed a synthetic experiment simulating response kinetics of 5,000

patients to compare different computational methods with respect to their ability to accu-

rately predict relapse for chronic and acute myeloid leukemia treatment. Technically, we

used clinical reference data to first fit a model and then generate de novo model simulations

of individual patients’ time courses for which we can systematically tune data quality (i.e.

measurement error) and quantity (i.e. number of measurements). Based hereon, we com-

pared the prediction accuracy of three different computational methods, namely mechanistic

models, generalized linear models, and deep neural networks that have been fitted to the

reference data. Reaching prediction accuracies between 60 and close to 100%, our results

indicate that data quality has a higher impact on prediction accuracy than the specific

choice of the particular method. We further show that adapted treatment and measurement

schemes can considerably improve the prediction accuracy by 10 to 20%. Our proof-of-prin-

ciple study highlights how computational methods and optimized data acquisition strategies

can improve risk assessment and treatment of leukemia patients.

Introduction

Myeloid leukemias are characterized by aberrations affecting the proliferation and maturation

of myeloid progenitor cells, leading to the progressive displacement of functional blood cells

by immature and dysfunctional leukemic cells. Depending on the time scale of the displace-

ment process, myeloid leukemias are further divided in chronic and acute leukemias.
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Patients with chronic myeloid leukemia (CML) typically carry a disease-specific chromo-

somal translocation forming the BCR-ABL1 fusion gene [1–4]. Tyrosine kinase inhibitors

(TKI) have been established as a targeted therapy leading to molecular remission in most

patients under continuous drug administration [5]. Molecular monitoring of disease-specific

BCR-ABL1 mRNA in peripheral blood is the established strategy to quantify the leukemic bur-

den under ongoing therapy. Current therapeutic challenges include the cessation of TKI treat-

ment, upon which about 50% of CML patients develop a molecular recurrence and do not

maintain treatment-free remission [6–8].

Acute myeloid leukemia (AML) is a highly heterogeneous disease with a variety of muta-

tional profiles involved [9]. Commonly, a cyclic induction therapy with cytotoxic drugs such

as cytarabine and anthracyclines aims to achieve sustainable remission, while a subsequent

consolidation therapy supports the maintenance of the remission status. Molecular detection

of mutated oncogenes or their transcripts is increasingly used to monitor leukemic burden in

treated AML patients and can help to prospectively identify patients at the onset of disease

recurrence [10, 11].

Disease recurrence after treatment-induced remission is a significant risk for all leukemia

patients. Although the reappearance of CML after TKI cessation can be targeted well by

restarting the treatment, physical and psychological side effects of retreatment can be mini-

mized if a prospective identification of ineligible patients can be achieved. AML relapse usually

occurs after completion of intensive chemotherapy treatment [12] and is associated with a

poor prognosis [13]. In those case, the ability to prospectively predict the risk and timing of

relapse or molecular recurrence is of highest importance to optimize and adjust the individual

treatment strategy.

Currently, treatment decisions are based on the recommended risk stratification schemes.

Those risk assessments are commonly based on static measurements from single time points,

often at diagnosis [14, 15]. In contrast, treatment response dynamics, such as the speed of ini-

tial remission, are only rarely evaluated for risk stratification [16]. However, it was shown that

molecular disease dynamics indeed correlate with therapy response and future relapse occur-

rence [17–22]. We reason that the direct integration of molecular response dynamics in the

form of time-series data, which are increasingly available from standard disease monitoring, is

a crucial element to improve the patient-specific risk stratification.

Assessing this question from a technical point of view, there are several, conceptually differ-

ent approaches to integrate time-series data from molecular disease monitoring into an

improved risk assessment. It is so far not clear how well these approaches are suited for time

course data of hematological malignancies, and what their particular strengths and weaknesses

are in this context. In order to address this question, we study three methods representing typi-

cal examples of the methodological spectrum:

• Mechanistic models (MM) describe the molecular disease dynamics as a functional conse-

quence resulting from the interaction between relevant system components (such as cell

types, drugs, cytokines etc.). They are commonly implemented as systems of ordinary differ-

ential equations (ODE) or as stochastic models. While some model parameters might be

directly measurable, other model-specific parameters are obtained by optimally fitting the

simulated time course to the available patient data. Evolving the model further in time allows

to simulate the expected future behavior. Although MMs require considerable expert knowl-

edge about the underlying mechanisms, the results of these models are readily interpretable

as the model parameters typically carry explicit biological meaning.

• On the other end of the spectrum, deep learning approaches [23–25] use generic neural net-
work models (NN) to adapt them on a training data set for which time-series data and the
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corresponding future behavior is known. Roughly speaking, the NN implicitly identifies

characteristic features within the time course data that correlate with future outcomes.

Those methods require no a priori knowledge about the underlying mechanisms, but they

are not suitable to directly interpret underlying biological mechanisms. Moreover, the train-

ing of NN requires a sufficient amount of annotated data.

• Classical statistical models like logistic regression classifiers can be used to correlate charac-

teristic, predefined features of the time course data (such as speed of remission or remission

level) with the known outcome. Such statistical models are summarized as generalized linear
models (GLM) [26]. Herein, prior knowledge about general treatment dynamics is directly

incorporated as an explicit feature of the GLM, while no understanding of the underlying

biological mechanisms is required. Although GLMs are typically easier to interpret than neu-

ral networks (as the influence of parameters on the prediction can be assessed [27]) this

probabilistic approach does not allow for explicit mechanistic interpretations as it is the case

for MMs.

In this work, we systematically compare these three methods. In particular, we study the

influence of data size, sampling density and measurement error on their prediction accuracy.

As available data sets of relevant molecular time courses for AML and CML are currently lim-

ited, we first generate an artificial patient cohort (synthetic data) using different established

mathematical models of those diseases [20, 28] (Fig 1). This artificial data set closely mimics

the features of a smaller sample of real patient time courses, while the number of measure-

ments and the particular noise level can be varied systematically and consistently. Based on

this reference simulations, we are further able to suggest alternative disease surveillance

schemes that may enhance the predictive power.

Materials and methods

Mechanistic models

To generate the synthetic data, we used two of our recently published mechanistic models for

AML [20] and CML [28], both implemented as systems of ordinary differential equations

(ODE). For the AML scenario, four ODEs are used to describe both leukemic and healthy

stem cells. Two out of 11 model parameters are optimized to account for patient-specific dif-

ferences in the disease characteristics, while the others were chosen to account for the general

treatment dynamics. For the CML models, three ODEs represent active and inactive leukemic

cells plus a population of interacting immune cells. In this case, we estimate 7 of 13 model

parameters to optimally describe a patient’s response. Details of the model setup are provided

in the S6 and S7 Figs.

Patient data

For the generation of a set of realistic parameters, we fitted the respective mechanistic model

to previously published time course data reflecting the patient’s leukemia remission during

and after therapy. In particular, we used the time courses of 275 NPM1-mut AML patients, in

which the level of NPM1-mut/ABL abundance is used as a measure of leukemia load (median

follow-up time of 10 months, the median number of 5 measurements [20]). Furthermore, we

integrated data sets from 21 CML patients reflecting both their BCR-ABL1/ABL1 remission

levels under TKI therapy and after therapy cessation (median follow-up time of 84 months, the

median number of 28 measurements [28]). Examples of model fits to patient data, and the

mean absolute error for each fitted patient can be found in S1 Fig.
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Parameter fitting

Both, the AML and the CML model are initially fitted to the available patient data. Technically,

we vary possible configurations of free parameters of the model such that the difference to the

data is minimized (measured in terms of the sum of squares of the residuals on the logarithmic

axis). While a simple optimization routine (sequential quadratic programming) is sufficient for the

AML models, we apply a genetic algorithm combined with a gradient-based method for the CML

scenarios which is better suited to avoid local minima. For further details we refer to the S1 File.

The same optimization routines are applied when the MMs are fitted to the artificial refer-

ence data for which we can tune data density and measurement noise (see below).

Generation of artificial data

To generate artificial patient data, we take random samples from the sets of parameters that

were initially derived from fitting the mechanistic models to the available patient data.

Fig 1. Conceptual overview of our methodological approach. (a) We developed mathematical models for both AML and CML from mechanistic and

empirical knowledge [20, 28]. The models are first fitted to actual patient data to obtain realistic parameter distributions. (b) We sampled from these

empirical parameter distributions to simulate dense, synthetic data (D). We gradually reduced the data quality to mimic actual clinical measurements by

introducing noise (dense-noisy, DN), introduce sparsity (sparse-noisy, SN) and a minimum detection limit (artificial patient data, AP). Additionally, we

introduced a more informative scheme (artificial scheme, AS), in which the temporal measurements are optimally spaced (AML) or a period of reduced

treatment dose precedes therapy cessation (CML). (c) We systematically compared the performance of our mechanistic model (MM), a generalized

linear model (GLM) and a neural network (NN) to predict the outcome (relapse/no relapse) of our virtual patient data with varying quality.

https://doi.org/10.1371/journal.pone.0256585.g001
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In the case of AML, it was sufficient to randomly sample new parameter combinations from

the set of empirically observed parameters plus adding a small, normally distributed variation

to prevent the generation of identical duplets (see S1 File). For the treatment regime (namely

the number and timing of induction cycles) we sampled one particular clinical chemotherapy

schedule which we observed in the given patient data. Only artificial patients that reached

remission (i.e. leukemic burden fell below the threshold of 1%) were included in the data sets.

Using this parameterization and the corresponding schedules, we simulated artificial time

courses of 24 months length. In analogy to the clinical situation, AML relapse is assigned if the

fraction of leukemic increases above the threshold of 1% within 2 years after treatment start.

For the corresponding artificial CML time-courses, we sampled the seven model parame-

ters from the distribution of empirical estimates in the available data basis under the condition

that their mutual correlations are maintained (for details see S1 File). The time of therapy ces-

sation was sampled based on kernel density estimates from the cessation time of the given

patients (avg of 92 months with a standard deviation of 28.2 months). This information was

then used in de novo forward simulations to generate artificial time-courses of varying dura-

tion until treatment stop plus 10 years thereafter. CML recurrence was defined as leukemia

abundance > 0.1% (corresponding to BCR-ABL1/ABL1 = 0.1%, MR3).

In order to study how the data quality influences the prediction quality, we generated the

following five reference data sets for both disease scenarios (examples in S2 and S3 Figs):

• Dense data (D): with weekly (AML) or monthly (CML) exact measurements, respectively.

• Dense-noisy data (DN): where white noise was added to each measurement, according to

the noise level found in the given clinical patient data.

• Sparse-noisy data (SN): generated from the DN data set by reducing the number of data

points to reflect the measurement frequency in clinical patient data.

• Artificial-Patient data (AP): by adding a detection limit to the SN data as found in the clinical

patient data.

• Artificial scheme data (AS): Similar to AP data but using an improved sampling scheme

compared to the clinical patient data. For AML measurements are made at the end of each

chemotherapy cycle and every six weeks afterwards. For CML, the treatment dose is reduced

to half of the usual dose 12 months before therapy cessation with frequent measurements

during this period.

Using this synthetic reference data, we use the following setup to evaluate the correctness of

predictions. For AML, all measurements from the initial treatment phase to 9 months after diag-

nosis are provided to the three methods and a corresponding relapse prediction within the sub-

sequent 15 months is derived. For CML, we use all measurements up to the treatment stop to

predict whether a patient will present with disease recurrence within ten years thereafter. The

long timespan has been chosen to reflect the slow evolution of CML. To obtain the correspond-

ing model predictions from the MM, we fitted the model parameters to the initial time course

data (see above) and then simulated the future behavior using the fitted model parameters for

each dataset individually. In contrast, both GLM and NN are optimized using a 10-fold cross val-

idation on labelled data sets for which the respective outcome of relapse occurrence is provided.

Explicit features of time series for GLM analysis

As the Generalized Linear Model, we use a logistic regression classifier. The model uses explicit

features that describe characteristics of the time-course data. We took the two characteristics
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of AML time-courses defined in our previous work [19]: the elimination slope α, describing

the speed of decrease of leukemic burden over the time of treatment and the lowest measured

leukemic burden after treatment n. In this work, we further added three additional features

obtained from a segmented regression approach: the leukemic burden at diagnosis (y0, the fol-

lowing decreasing slope during the times of treatment (a) and the increasing slope of the leu-

kemic burden in between treatment cycles (b) (S4A Fig).

For CML, we defined seven features from fits of a bi-exponential function that described

the decrease of the leukemic burden after treatment start. These features include the bi-expo-

nential parameters (A, α, B, β), the corresponding deviation of the fit and the data (σ), the ces-

sation time and the BCR-ABL1 value before cessation or half dose. For the AS data, we expand

these features with the behavior of the leukemic burden during the time of dose reduction

including linear function parameter (γ), the deviation during half dose (C) and the last mea-

sured value before cessation (S4B Fig).

Neural network

NN were only trained on the raw time course data with no explicit features provided. To pre-

dict the occurrence of relapse, we used a bidirectional Long-short-term-memory (LSTM) net-

work as a default architecture to handle sequence data with varying length. The model consists

of a bidirectional LSTM layer followed by a fully connected feature extractor and a binary clas-

sification output. We use the respective cross-entropy loss to train the network. We imple-

mented the network in Python using the Keras library [29]. To get a robust estimate of the

model performance, we conducted 10 training runs on the same dataset and chose the network

with the highest validation accuracy. We then did 10-fold cross-validation for the entire exper-

iment to assess the average and the variability of the results. Further details about the network

architecture and training can be found in the S1 File.

Accuracy

We use the traditional definition of accuracy as the ratio of the number of correct predictions

over the total number of predictions: acc ¼ #correct
#total ¼

TPþTN
TPþFPþTNþFN where TP, TN, FP, and FN are

true positives, true negatives, false positives and false negatives respectively.

Results and discussion

Artificial patient data provide a suitable basis to systematically analyze the

performance of predictive, computational models

We apply two mechanistic, mathematical models to simulate the dynamics of AML and CML

[20, 28] thereby creating sets of artificial response data. To make sure that the artificial data

resemble real patient time-courses as closely as possible, we fitted the models to respective data

sets obtained from 275 AML patients carrying a traceable NPM1-mutation (consisting of a

total of 1567 measurements quantifying the relative amount of NMP1-mut transcript [20] over

time on a log10-scale) and 21 CML patients (with in total 478 measurements [28] quantifying

the relative amount of BCR-ABL transcripts over time on a log10-scale). We report on the

overall fitting quality in S1 Fig The fitted model parameters are used to simulate synthetic time

courses (Fig 1a and 1b). To assess the influence of data quality, we gradually degraded the fully

sampled, noise-free time series. We used estimates of the measurement frequencies and mea-

surement errors obtained from the patient data to adjust the corresponding sampling density

and noise level for the synthetic data (see S1 File). In total, we created four different datasets

with 5000 time-courses from each model to systematically study the influence of data quantity
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and quality: (i) a dense (D) data set consisting of weekly (AML) or monthly (CML) measure-

ments of the leukemic burden free of any measurement error. (ii) For the dense-noisy (DN)

data we added a normally distributed “technical” noise (see S1 File) to all data points of D to

match the measuring error (AML) or the residuals observed between real data and their corre-

sponding model fits (CML). (iii) In a third step, we reduced the total number of measurements

per patient, creating a sparse-noisy (SN) data set that matches the measurement frequency in

the real data. (iv) Finally, to make the data as realistic as possible, we also added a detection

limit for very low measurements, called artificial patient (AP) data. Example time courses for

all data sets can be found in S2 and S3 Figs.

To verify that the created artificial patient data (AP) sets are indeed similar to the real

patient data, we derived characteristic features to quantitatively compare them. Those charac-

teristic features refer to typical time scales and remission levels of the patient’s response (see S4

Fig, Materials and methods). The features are computed separately for the AP data and the

given patient data. The visual comparison in S5 Fig indicates that the median values of the

characteristic features are very similar between AP and real data. It appears, that especially for

the case of CML, the synthetic data sets yield a larger variance compared to the real data. A

closer look at the data reveals that this is effect, at least partially, results from a sampling effect,

as the variance measurement is only based on a small data set (n = 21) of real patients.

Data quality has a strong influence on prediction accuracies, but the drop

in performance considerably differs between models and use-cases

Similar to the clinical presentation, we classified the synthetic time-courses as whether they

show a relapse or not. For both CML and AML, we define disease recurrence by an increase of

the leukemic burden (measured in terms of relative transcript abundance) within a predefined

period above a given threshold (AML: leukemic burden increasing > 1% after treatment ter-

mination; CML: leukemic burden> 0.1% for at least one month).

We then systematically compared the accuracy of relapse predictions between the three

general methods (namely MM, GLM, NN). To do so we provide each method with data from

the initial treatment phase and compare the resulting predictions with the ground truth from

the artificial data sets. For AML, we provide all measurements from the initial treatment phase

until 9 months after diagnosis and derive a corresponding prediction on whether a relapse is

expected within the subsequent 15 months. For CML, we use all measurements up to treat-

ment stop to predict whether a patient will present with disease recurrence within ten years

thereafter. We use the following strategy to derive predictions for the three methods: MM: fit-

ting the mechanistic model to the initial treatment data only and further simulating the future

time course, GLM: feeding the explicit features of the initial time-course (see Materials and

methods) into a GLM classifier and NN: using an end-to-end learning approach with a neural

network model applied to the initial time-course, which has been trained previously on an

annotated reference data set (Fig 1c).

Next, we analyzed how well the different approaches (MM, GLM, NN) can predict the out-

come for the artificial patient data and how model performance changes with varying data

quality (Fig 1b and 1c, and Experimental Procedures). The results of the 10-fold cross-valida-

tion of the model performance are depicted in Fig 2. As expected, the prediction accuracy (see

Materials and methods) declines for all approaches when the data quality decreases. We point

out that the decrease in data quality differs between use-cases and models. In the case of AML,

the introduction of sparsity leads to a relatively sharp drop in model performance. This drop

illustrates the strong dependency on the number of measurements per time series: as in the

given patient we only have a median of 4 measurements in the SN and AP data, compared to
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39 weekly measurements in the dense data set (D) set. In line with this argument, we observe a

more gradual decline in performance when comparing the effect of introducing noise and

sparsity in the CML case. Here, we face a median of 25 measurements in the SN and AP data,

compared to 93 monthly measurements in the dense data (D).

Interestingly, the difference in model performance is not consistent across the two use-

cases. For the sparser AML data, all models perform similarly on the dense (D) and noisy data

(DN). However, when introducing more sparsity into the data, a mechanistic model performs

more robustly than the generic NN model (a difference in the accuracy of 6.3 and 7.4 percent-

age points for the SN and AP) and the GLM model performance is in between MM and NN.

This result reflects the importance of introducing prior knowledge (or inductive bias) when

dealing with very few data (Fig 2a).

We observe a different situation in the CML case. Here, the prediction accuracy for the

mechanistic model drops down substantially more compared to the statistical GLM model and

the generic NN when data quality decreases (a difference in accuracy between MM and NN of

19.7% for SN and 19.8% for AP, respectively). We recall that the noise-free data (D) was gener-

ated by the very same mechanistic model (compare Fig 2b). The high prediction accuracy for

this data indicates that the correct (generative) MM can truly be identified. However, given the

higher number of free parameters (n = 7) in the CML case, a reduction of data quality (either

resulting from noisy or sparse measurements) more strongly affects the identifiability of the

correct MM, while the GLM and the NN appear more robust.

Focusing on the artificial patient samples (AP), which best mimic the available patient data

sets, the suggested models reach an accuracy of up to 70% (compare Fig 2a and 2b). These

findings shows that predictive computational methods can indeed support risk assessment in

myeloid leukemias based on nontrivial patterns in time series data obtained during treatment.

However, the resulting prediction accuracy might not adhere to the expected standards for

clinical decision support. Our systematic analysis shows how data characteristics, in particular

the measurement schedule, effects the performance. Data scarcity and limited accuracy of

available measurements per patient appears as a limiting factor for the overall prediction accu-

racy for relapse occurrence. Given those constrains on the data side, we are skeptical that struc-

tural changes to the computational methods (e.g. by refining the neural network architecture)

Fig 2. Prediction accuracy across data quality and computational models. (a, b) Comparison of performance between mechanistic model (MM),

generalized linear model (GLM) and neural network (NN) to predict relapse in synthetic data for AML (a) and CML (b) using 10-fold cross-validation.

Data quality gradually decreases from fully sampled, noise-free data (D), to noisy (DN), sparse and noisy (SN), and artificial patient data (AP) (see main

text for details).

https://doi.org/10.1371/journal.pone.0256585.g002
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can substantially improve the overall performance. However, below we outline the potential in

optimizing the measurement process to yield more informative sampling schemes.

Refined measurement and treatment schemes lead to improved prediction

accuracies

We demonstrated that a significant limitation for the prediction accuracy results from the

sparsity of the available data, in particular for the case of AML. Here, molecular diagnostics

and especially bone marrow aspirates are limited resources in the clinical setting. As only

increasing the sampling frequency is not an option in many cases, we wondered whether an

optimized timing of the measurements could lead to better predictions while the overall num-

ber of measurements remains the same. To investigate this question, we created an additional

set of artificial patients (AS) with consistent measurement intervals during the nine-month

treatment period (i.e. the first day of each therapy cycle and every six weeks during the treat-

ment-free phase). This typically results in 4 to 8 (median = 7) measurements per patient,

which is only a moderate increase to the reported median of 5 measurements in the clinical

sample. Fig 3a indicates that for this amended sampling regimen, we can already increase the

accuracy of all prediction approaches (MM and NN by up to 12%, less pronounced for GLM).

This finding strongly suggests that an adapted sampling scheme can considerably contribute

to better relapse predictions, e.g. using methods from an optimal experimental design [30–33].

Owing to the establishment of regular BCR-ABL measurements in TKI-treated CML

patients, available time courses are usually sufficient to monitor treatment response and remis-

sion status. It is still controversial, to which extend treatment free remission correlates with the

observed time course of initial response [22, 28]. However, results from the DESTINY trial

[34] suggest that dynamics of BCR-ABL increase during TKI dose reduction correlates with

the remission status after treatment cessation [18]. The DESTINY trial differs from other TKI

stop trials as patients in molecular remission reduced their TKI dose to 50% of the original

dose for 12 months before TKI was finally stopped [34]. Motivated by this study, we simulated

a corresponding data set in which a 12-month dose reduction is explicitly added to the model

simulation (AS dataset). Training the prediction approaches to explicitly integrate this addi-

tional 12 month perturbation period, we found a substantial increase in the prediction accu-

racy of up to 19.1% (Fig 3b). We argue that probing the system’s response to perturbation

Fig 3. Dedicated measurement schemes. (a, b) A dedicated measurement scheme (AS) improves prediction performance with the same number of data

points for all models compared to the AP data both for AML (a) and CML (b) data.

https://doi.org/10.1371/journal.pone.0256585.g003
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(such as dose reduction) provides additional information about control mechanisms that can-

not be obtained from ongoing monotherapy [16, 18, 28].

Our analysis demonstrates that optimized measurement schedules or systematic treatment

alterations can substantially improve the accuracy of relapse predictions.

Conclusions

We showed that qualitatively different computational approaches, ranging from machine

learning approaches to mechanistic models, are in principle suited to support relapse predic-

tion based on time-series data of leukemia remission levels. To this end, we employed simu-

lated time course data generated by mechanistic mathematical models, which we previously

developed to describe disease and treatment dynamics in CML and AML. It is the advantage

of this approach that we obtain highly controlled, although idealized, remission curves as a ref-

erence set from which we can abstract different levels of sampling density and measurement

error. The simulated data allows us to refer to the ground truth of the underlying generative

model. Using this artificial reference data, we could demonstrate that data quality in terms of

measurement frequency and measurement error has a more substantial influence on the accu-

racy of the prediction than the employed prediction method, which is particularly evident in

the AML data. Our results for the CML case indicate that fitting a more complex mechanistic

model (in terms of the number of model parameters) to noisy data yields a greater uncertainty

compared to a statistical predictor like a GLM or a NN.

Our analysis illustrates that generic methods, such as NN work well for the prediction of

disease recurrence if frequent measurements are available (as in the CML data). For diseases

with sparse measurements and limited data on the other hand (exemplified in the AML data),

neural networks (and representation learning in general) is less suited for identifying the criti-

cal factors underlying the disease dynamics. In such cases, it is beneficial to incorporate prior

knowledge to yield better predictions using either mechanistic models of the disease, if avail-

able, or statistical approaches based on explicit (phenomenological) features. In our current

study, we used a long-short-term-memory (LSTM) NN as the standard approach for analyzing

sequential data. An interesting next step is to assess if more complex neural network models

[35, 36] can even improve the LSTM results, although we suspect that data quality is the major

limiting factor.

Overfitting is a known problem of all machine learning approaches and applies to both the

GLM and the NN method we presented. In order to minimize this risk, we applied a 10-fold

cross validation which was also used to estimate the variation of the estimated accuracies. Our

general approach is limited by the generation of time course data from generative models

which intrinsically do not reflect “unexpected” behaviors. As long as the true data basis of clin-

ical time courses is limited, only the additional consideration of alternative generative models

could help to address this issue.

Regardless of the exact choice for a predictive computational method, our study indicates

that the optimization of measurement schemes and clinical protocols is a promising strategy

to improve the overall prediction accuracy without necessarily requiring more measurements

per patients. In our predictions for AML recurrence, we could reach a level of accuracy of

about 80% for the prognosis of relapse occurrence within two years after diagnosis. This result

would already exceed the prediction accuracy for relapse-free survival after 12 months in the

study by [15]. As our results are based on synthetic data which most likely does not reflect the

full heterogeneity that could be seen in larger patient data sets, our comparison should be

treated with caution and needs to be validated using independent clinical data obtained in a

comparable context. Still, our findings indicate that standardized measurement schedules add
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critical leverage to improve the ability for predicting relapse no matter what computational

methods are used. Our artificial measurement schemes indicated a clear improvement, while

we did not even apply formal optimization criteria to obtain most suitable regimes that maxi-

mizes accuracy while minimizing the number of measurements. This finding opens a clear

perspective for future research on optimized measurement strategies that balance a maximized

gain of information from clinical data with an economical use of resources. We argue that

such refined schedules can contribute to reaching a level of prediction accuracy, which indeed

supports clinical decision making.

In this work, we focused on the accuracy of relapse prediction employing three different,

prototypic computational approaches working on time-series data. However, their implemen-

tation in a decision-making context also requires an intuitive understanding of how the

method works. Although NN do not require any prior knowledge and can achieve excellent

prediction accuracies, it is not trivial to identify which aspects of the data are causative for a

particular prediction [37, 38]. In other words, the "black box" nature of NN does intrinsically

not reveal the key features of the data on which a decision is based. There is a general, ongoing

scientific discussion whether this intrinsic limitation of NN should prevent its application for

particular questions, especially in health care [39, 40]. Currently, decision-makers and regula-

tory authorities hardly consider such methods for integration into clinical routines, although

this might change in the future. Orthogonal developments in the field of “explainable AI” are

currently pushing towards interpretability and the identification of causal relations between

different system components [41–43]. As for now, MM represent the other side of the

"interpretability spectrum" as they superimpose a principal understanding of the causal

interactions onto the final observations. It appears tempting to favor this type of approach.

However, it comes with other limitations: such models are highly specific and not easily trans-

ferable to other disease entities, and it cannot be guaranteed that all essential interactions are

indeed mapped (compare [20]). The extent to which the non-representation of potential inter-

actions effects the model predictions is hard to quantify and most likely highly disease specific.

GLMs represent a middle ground and balance several aspects of NN and MM approaches.

They can be helpful if detailed mechanistic knowledge is missing while important features of

the response characteristics can readily be named, estimated and also interpreted. However,

their overall performance depends strongly on the choice of those hand-crafted features and is

also vulnerable to missing critical aspects.

The increasing availability of diagnostic methods to track molecular remission in different

cancer types over extended time periods will establish a rich data source to explore further

how this dynamic information can be correlated with the future course of treatment and dis-

ease [16]. Obtaining a systematic understanding of how different computational methods can

be used to exploit this data is of crucial importance to provide usable predictions. Sufficient

model validation within the particular domain is the prerequisite to integrate such computa-

tional models into decision making in a clinical context.

Supporting information

S1 Fig. Mechanistic model fit to patient data. (a) Example time-course of an AML patient

(measured in terms of NPM1-mut abundance relative to reference gene ABL; blue dots) from

start of chemotherapy at time point 0 until molecular relapse and the respective model fit

(solid line; leukemic burden, rescaled by a factor 100 to match the clinical NPM1-mut/ABL

ratios [20]). Red lines indicate time of chemotherapy administration. (b) Mean absolute error

(MAE) for the fit of the mechanistic model to all 275 AML patients time-courses. (c) Example

time-course of a CML patient (measured in terms of BCR-ABL/ABL abundance; black dots;
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triangles indicate undetectable BCR-ABL levels with the corresponding detection threshold)

from start of TKI treatment at time point 0 until disease recurrence after treatment stop (grey

region) and respective model fit (solid line). (d) MAE of all 21 fitted CML patients.

(TIFF)

S2 Fig. Generation of the artificial AML data sets. We use a sample patient for which we

obtain weekly and precise measurements, referred to as dense data (D). Adding a technical,

normally distributed noise to each measurement on the log-scale, we obtain dense-noisy data

(DN). Sparse-noisy data (SN) was generated from the DN data set, by reducing the number of

data points to meet the measurement frequency in real patients. Artificial patient data (AP) is

the data set most similar to the real patient data, which differs from the SN data set only by the

inclusion of a detection limit (dashed red line), as it is found in the real data. Artificial scheme
data (AS) is a data set, close to real data, with a measurement scheme, where measurements

are made at the end of each chemotherapy cycle and every 6 weeks afterwards.

(TIFF)

S3 Fig. Overview of artificial CML data sets. Dense data (D) was simulated with monthly

exact measurements. Dense-noisy data (DN) was obtained by adding normally distributed

noise to each measurement. Sparse-noisy data (SN) was generated from the DN data set, by

reducing the number of data points to meet the measurement frequency in real patients. Artifi-
cial-Patient data (AP) is the data set most similar to the real patient data, which differs from

the SN data set only by the inclusion of a detection limit, as it is found in the real data. Artificial
scheme data (AS) is a data set, close to real data, with an additional 12-month period of half-

dose TKI treatment (shown in grey).

(TIFF)

S4 Fig. Derived features of the time-courses. (a) Features describing AML time courses: y0
the leukemic burden at diagnosis, a the decreasing slope during treatment cycles, b the increas-

ing slope in treatment free intervals (where y0, a and b are obtained from a segmented regres-

sion approach), α the overall decreasing slope during treatment (shown as dashed line,

separately fitted to the measurements) and n the minimal leukemic burden after treatment.

(b) Features describing CML time courses: A, B and C being the intercepts of the straight lines

fitted to the first and the second part of the bi-exponential approximation and to the increase

of the leukemic burden during half-dose periods, respectively. α, β and γ are the respective

slopes.

(TIFF)

S5 Fig. Similarity of artificial patients and real patients. A distribution comparison of statis-

tical parameters: Comparison of distribution of parameters describing the course characteris-

tics between artificial patient data (AP, blue) and real data (RD, black). (a) Parameters

characterizing AML response: a—decreasing slope during chemotherapy cycle, b—increasing

slope during treatment-free periods, y0—initial burden on log scale, α—elimination slope, n—

minimal measured leukemia burden after primary treatment. (b) Parameters characterizing

CML response: the intercepts A and B (on a log scale) as well as the slope parameters α (on log

scale) and β.

(TIFF)

S6 Fig. Schematic overview of the mathematical model for AML. Both, leukemic L and

healthy H stem cells can reversibly change between two states (according to the rates t): the

quiescent state Q with carrying capacity KQ and the active state A with carrying capacity KA.

Cells in A undergo proliferation with rate p, differentiation with rate d and are subject to
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chemotherapy with kill rate c.
(TIFF)

S7 Fig. Schematic overview of the mathematical model for CML. Leukemic stem cells (LSC)

can reversibly change between two states X and Y (according to the rates pXY and pYX, respec-

tively): X defines the quiescent, non-replicating cells, Y defines the active, proliferating cells.

LSC in Y proliferate according to a logistic growth model with maximal proliferation rate pY
and carrying capacity KY. The TKI-effect is described by a constant rate eTKI affecting the leu-

kemic cells in Y. Immune cells in Z are activated by cells in Y (immune recruitment), following

an immune window approach (see Supporting information). At the same time the immune

cells kill proportional target cell in Y. Immune cells in Z are generated with rate rz and decay

with rate a.

(TIFF)

S1 File. Supporting information.

(PDF)
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