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‡Present address: Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA

Abstract

The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the

interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic

histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative

agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this

species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an

arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical

analyses, we assessed the geographical, historical, and genome-wide variation of genetic diversity in this fungal pathogen.

We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the

multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the

last 0.5 Myr. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding

with the assumed time of maize domestication. Although the genome average genetic diversity is low compared with other fungal

pathogens, we estimated that the rate of nonsynonymous adaptive substitutions is three times higher in genes located within

virulence clusters compared with nonclustered genes, including nonclustered effector genes. These results highlight the role that

these singular genomic regions play in the evolution of this pathogen.

Key words: Ustilago maydis, population genomics, demographic history, adaptive mutation rate, virulence clusters, se-

quentially Markov coalescent.

Introduction

The coevolution between plant pathogens and their hosts

impacts the genetic diversity of the interacting species. The

response to these reciprocal selective forces depends on mul-

tiple factors, including the genome architecture of the organ-

isms (e.g., genome size and karyotype structure), their life-

history traits (e.g., importance and frequency of sexual repro-

duction), but also stochastic factors in relation to demography

(e.g., variable population size and population structure).

Consequently, plant domestication and the subsequent emer-

gence of agriculture, which typically results in a population

bottleneck and a strong directional selection, had a strong

impact on the selected organisms (Tang et al. 2010; Milla

et al. 2015). It also affected the evolution of the associated

pathogens, because domestication resulted in significant

losses of genetic variation and strong selection on a few genes
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(Glemin and Bataillon 2009). For example, speciation of the

rice blast pathogen Magnaporthe oryzae, the wheat patho-

gen Zymoseptoria tritici, and the barley pathogen

Rhynchosporium secalis from their wild relatives was associ-

ated with the domestication of their host plants (Couch et al.

2005; Stukenbrock et al. 2007; Zaffarano et al. 2008). Here,

we investigate the evolutionary history of the maize pathogen

Ustilago maydis, a basidiomycete from the group of smut

fungi (family: Ustilaginaceae). This family comprises about

550 described species (Begerow et al. 2014), among which

are pathogenic species of grasses, including crops like maize,

sorghum, wheat, barley, and sugarcane (Agrios 2005). The

genomes of several crop pathogens have been sequenced

(K€amper et al. 2006; Schirawski et al. 2010; Laurie et al.

2012; Que et al. 2014; Taniguti et al. 2015; Dutheil et al.

2016; Benevenuto et al. 2018) as well as some species para-

sitizing wild grasses or dicot plants (Sharma et al. 2014; Rabe

et al. 2016; Ye et al. 2017). Dating of speciation events be-

tween these species suggested that their divergence predates

the domestication of their hosts and therefore occurred in

their wild ancestors (Munkacsi et al. 2007; Schweizer et al.

2018). Among these species, U. maydis is the best studied and

serves as a model for elucidating the molecular basis of bio-

trophic host–pathogen interactions (Matei and Doehlemann

2016; Lanver et al. 2017). These studies showed that the in-

teraction with the host plant maize is largely controlled by

secreted effector proteins of which about half lack known

functional domains (Lanver et al. 2017). Genome compari-

sons of U. maydis and related species revealed that many

effector genes reside in gene clusters in the genome, an ar-

rangement that is so far not described in other filamentous

plant pathogens. Despite the high divergence level of these

clustered effectors, homology between clusters of distinct

species was established due to conserved synteny between

genomes (Schirawski et al. 2010; Dutheil et al. 2016).

Functional analyses of such clusters showed that they contain

important virulence determinants in the barley pathogen

Ustilago hordei (Ali et al. 2014), in U. maydis (K€amper et al.

2006; Schirawski et al. 2010; Brefort et al. 2014; Navarrete

et al. 2019), and in the maize pathogen Sporisorium reilianum

(Ghareeb et al. 2018).

It is hypothesized that the center of origin of U. maydis lies

in Mexico from where it spread following the domestication

of maize from teosinte (Sanchez et al. 1998), starting 6,000 to

10,000 years ago (Matsuoka et al. 2002; Hake and Ross-Ibarra

2015). Investigating infected maize fields demonstrated that

U. maydis shows a single generation and limited spreading

between host plants in one growing season (Baumgarten

et al. 2007). Moreover, an analysis of amplified fragment

length polymorphism markers of isolates sampled in the

USA and Uruguay showed that U. maydis reproduces pre-

dominantly by out-crossing, and this finding was independent

of differences in agricultural practice at the sampling sites

(Barnes et al. 2004).

Munkacsi et al. (2008) investigated the impact of maize

domestication on the evolution of U. maydis, using ten micro-

satellite markers. Samples from different locations revealed

that subpopulations in Mexico diverged within a time window

that is consistent with the domestication and cultivation of

maize in the Americas. Moreover, genetic diversity of

U. maydis was not found to be greater in Mexico (the pre-

sumed origin of the species) than in other parts of the

Americas, suggesting that the domestication of maize from

teosinte imposed a bottleneck that reduced the ancient ge-

netic diversity in U. maydis (Munkacsi et al. 2008).

Furthermore, analyses of sequence polymorphisms in

18 U. maydis isolates originating from 11 locations in

Europe, North America, and South America with a focus on

the virulence clusters 2A and 19A as well as the single effector

pep1 demonstrated low genetic variation in these regions and

uncovered three subpopulations based on geographic origin

(Kellner et al. 2014). Although these studies of individual ge-

nomic loci highlighted the effect of domestication on the evo-

lutionary history of U. maydis, they did not allow the detailed

inference of the demographic history and genome-wide pat-

terns of selection in this species. Such studies require the avail-

ability of full genome sequences (Stukenbrock et al. 2011;

Grünwald et al. 2016).

To extend our understanding of the evolutionary history of

U. maydis, we employed a population genomics approach

and sequenced 22 isolates originating from five different

regions in Mexico (Valverde et al. 2000). We used this data

Significance

The maize pathogen Ustilago maydis is a model species to study fungal cell biology and biotrophic host–pathogen

interactions. Population genetic studies of this species, however, were so far restricted to using a few molecular

markers, and genome-wide comparisons involved species that diverged more than 20 Ma. Here, we sequenced the

genomes of 22 Mexican U. maydis isolates to study the recent evolutionary history of this species. We identified two

coexisting populations that went through a recent bottleneck and whose divergence date overlaps with the time of

maize domestication. Contrasting the patterns of genetic diversity in different categories of genes, we further showed

that effector genes in virulence clusters display a high rate of adaptive mutations, highlighting the importance of these

effector arrangements for the adaptation of U. maydis to its host.
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set to investigate the population structure and the demo-

graphic history of the sampled isolates. We further assessed

patterns of genome-wide nucleotide diversity and inferred the

rate of adaptive substitutions in distinct categories of genes,

allowing us to highlight the unique role of virulence clusters in

the adaptive evolution of this fungal plant pathogen.

Materials and Methods

Origin, Genomic DNA Extraction, and Sequencing of
Haploid U. maydis Isolates

We sequenced the genome of 22 Mexican U. maydis isolates

that are part of an earlier described isolate collection (Valverde

et al. 2000; supplementary table S1, Supplementary Material

online). All isolates were collected from tumors of naturally

infected maize plants during the rainy season in 1997. The

isolates were stored as haploid sporidia in glycerol stocks at

�80 �C. Isolates were thawed by plating them on potato-

dextrose (PD) plates (3.9% [w/v] potato-dextrose agar, 1%

[v/v] Tris–HCl [1 M, pH 8.0]) and incubating them for 2 days at

28 �C. Next, fungal cells were scratched off the PD plates and

ground together with glass beads in liquid nitrogen. Genomic

DNA was extracted by adding 500ml TE-phenol/chloroform

(1:1) and 500ml lysis buffer (100 mM NaCl, 10 mM Tris–HCl

[pH 8.0], 1 mM EDTA, 2% Triton X-100, and 1% SDS) fol-

lowed by precipitation in 70% Ethanol. RNA was removed

from the samples with the Master Pure Complete DNA & RNA

Purification Kit (Biozym Scientific, Hessisch Oldendorf,

Germany). DNA concentration was adjusted to about 150–

400 ng/ml and about 1mg of DNA was used for sequencing.

After fragmentation of the genomic DNA, sequencing librar-

ies were prepared using the TruSeq DNA LT Kit (Illumina, San

Diego, USA) and sequenced at the Max Planck Genome

Centre (Cologne, Germany) using the HiSeq sequencing kit

on a HiSeq2000 cycler (Illumina). Paired-end sequencing was

performed with a 100-bp read length and for each sequenc-

ing library, at least 21.6 million reads were generated, corre-

sponding to a 100-fold average coverage (supplementary

table S1, Supplementary Material online). All Illumina

paired-end reads were deposited at NCBI (BioProject ID:

PRJNA561077).

De Novo Genome Assemblies

A de novo assembly of the haploid genome was generated

individually for each Mexican isolate with SOAPdenovo2 (Luo

et al. 2012) as follows: all odd kmer lengths ranging from 51

to 83 were tested and the kmer length yielding the highest

N50 was selected for each library. The estimated genome size

(option�z) was set in all cases to 20,000,000 bp, the genome

size of the reference genome for U. maydis isolate 521

(K€amper et al. 2006). Resulting genome assembly statistics,

including N50 contig lengths for each kmer and isolate are

summarized in supplementary table S4, Supplementary

Material online. Next, SOAPdenovo2 was used to get a ge-

nome for each isolate with the determined optimal kmer

length. A sparse pregraph was built, and contigs were then

computed, mapped, and assembled into scaffolds. Finally, the

GapCloser program was used to close remaining assembly

gaps. The assembled genome sequences were deposited at

NCBI (BioProject ID: PRJNA561077).

Multiple Genome Alignment

We generated a multiple genome alignment that comprised

the de novo assembled genomes of the 22 Mexican U. maydis

isolates together with the U. maydis reference genome of the

isolate 521 (K€amper et al. 2006). The reference genome se-

quence was obtained from Mycocosm of the Joint Genome

Institute (Grigoriev et al. 2014) in version 2_2 from December

5, 2017. The 23 genomes served as input for the Multiz ge-

nome aligner from the Threaded Blockset Aligner package

(Blanchette et al. 2004). The resulting alignment was then

projected on the reference genome, yielding an alignment

length of 20,028,090 bp. This alignment was then processed

using MafFilter (Dutheil et al. 2014). First, all synteny blocks

were realigned using Mafft (Katoh and Standley 2013), with

blocks of a length greater than 10 kb being first split before

alignment for computational efficiency. This unfiltered align-

ment was then subjected to two pipelines. The first pipeline

focused on protein coding genes and extracted all exons from

the unfiltered alignment (see below, Building gene families).

In the second pipeline, the realigned synteny blocks were fil-

tered to remove ambiguously aligned regions. This was

achieved in two steps: first, only blocks that comprised

sequences from all 23 isolates are kept and alignment blocks

with multiple “paralogous” sequences per species were dis-

carded. Second, alignment blocks were further processed

with a sliding window approach. Within 10-bp windows slid

by one nucleotide, short indels were identified and the win-

dow was discarded if it contained at least one indel shared by

at least two isolates, or, alternatively, if the quantity of gap

characters in the 23 isolates was higher than 100 gaps in the

window. In these two steps, unresolved base positions were

assigned as gaps. These filtering steps yielded a final align-

ment with a length of 19,224,664 bp in 2,676 blocks.

Alignment lengths and number of blocks resulting from

each filtering step are summarized in supplementary table

S5, Supplementary Material online. We generated a second

alignment using the same protocol, including this time all

23 U. maydis sequences together with the genome sequence

of S. reilianum SRZ2 (version 2) which we obtained from the

PEDANT database (Walter et al. 2009). The corresponding

alignment statistics for each filtering step are provided in sup-

plementary table S5, Supplementary Material online. Pairwise

similarity distances were computed using MafFilter and a

global tree was constructed using the FastME software

(Lefort et al. 2015), with default nucleotide model, nearest
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neighbor interchange (NNI), and subtree pruning regrafting

(SPR) topology optimization. One thousand bootstrap repli-

cates were performed in order to assess the support of each

clade.

Analyses of Population Structure

Single-nucleotides polymorphisms (SNPs) were called from

the filtered alignment using MafFilter and exported to a file

in the Variant Call Format. The set of SNPs was thinned

according to linkage disequilibrium using the bcftools (Li

2011), and only pairs with r2 < 0.6 in 250 kb windows

were kept. The resulting “unlinked” SNP set was exported

to a file in PLINK format using plink 1.9 (Purcell et al. 2007).

The smartPCA software (Patterson et al. 2006) was used to

compute principal components from the unlinked SNP set,

and results were plotted with the R statistical environment

(Ortutay and Ortutay 2017). Model-based inference of popu-

lation structure was conducted using the ADMIXTURE soft-

ware (Alexander et al. 2009) on SNPs filtered as for the

principal component analysis (PCA). We performed a cross-

validation analysis for a range of models with one to six ge-

netic components. Each model was rerun from ten random

initial conditions and results were summarized using the

PONG software (Behr et al. 2016).

Analyses of Nucleotide Diversity

The mean number of nucleotide differences between all pairs

of sequences (p), GC content, and fixation index FST were

computed in nonoverlapping windows of 10 kb from the mul-

tiple genome alignment of U. maydis isolates. The divergence

between U. maydis and S. reilianum reference genomes was

computed from the multiple genome alignment with out-

group in nonoverlapping windows of 10 kb. A Tamura 92

model (Tamura 1992) was fitted independently in each win-

dow in order to account for multiple substitutions while ac-

counting for variable ratios of transitions over transversions, as

well as nonhomogeneous GC content. FST values were calcu-

lated using Hudson’s 1992 estimator (Hudson et al. 1992). All

calculations were performed using the MafFilter program

(Dutheil et al. 2014). The distribution of FST values showed a

tail of extreme FST values (supplementary fig. S2,

Supplementary Material online) and was best fitted with a

mixture of normal distributions using the “fitdistr” function

from the MASS package (Venables and Ripley 2002) for R (R

Core Team 2020). To assess the significance of high FST val-

ues, we computed the probability that the FST value belonged

to the lower mode of the distribution, using the estimated

parameters of the two normal distributions. The 191 regions

for which this probability was lower than 1% were considered

as high FST regions and were subsequently scanned for genes,

resulting in 751 candidate genes.

Detection of Gene Ontology Term Enrichments

All annotated U. maydis proteins were used as input for an

Interpro search with version 5.35-74.0-64 (Mitchell et al.

2019), and mapped Interpro domains for each protein are

listed in supplementary table S6, Supplementary Material on-

line. Next, the Interpro domains were linked to Gene

Ontology (GO) Terms with the file “interpro2go,” which is

provided by the GO consortium (version 2019/05/02

15:27:19; http://current.geneontology.org/ontology/exter-

nal2go/interpro2go). In this way, 1,948 unique GO terms

could be assigned to 4,147 U. maydis proteins (supplementary

table S6, Supplementary Material online). Each GO Term was

associated with one of the three major subontologies

“Cellular Component,” “Biological Process,” or “Molecular

Function” with the Bioconductor package topGO (Alexa et al.

2006). Enriched GO Terms were then identified by computing

P-values for each GO term using Fisher’s classic test with

parent-child correction (Grossmann et al. 2007). For this anal-

ysis, genes with a high FST value were compared with all genes

for which FST values could be computed, and results were

considered to be significant at the 5% level.

Inference of Demography Using the Multiple Sequentially
Markov Coalescent

We used MSMC2, a re-implementation of the multiple se-

quentially Markov coalescent (Malaspinas et al. 2016) to esti-

mate the time variation of coalescence rates. The filtered

alignment was converted to MSMC input format using the

MafFilter program (Dutheil et al. 2014). MSMC2 was then run

with default options. In order to convert time estimates from

coalescent units to years and coalescence rates into effective

population sizes, measures of generation time and average

mutation rate are needed. Munkacsi et al. provided estimates

of the synonymous mutation rate in smut fungi using six spe-

cies comparisons, in four different genes, leading to 24 esti-

mates fxig of the mutation rate (table 4 in Munkacsi et al.

2007). These estimates are exponentially distributed, and we

therefore computed a genome geometric mean (u) using the

formula u ¼ exp(
P

i log(xi)/24), leading to a value of

u¼ 5.23� 10�9 mutations per site per generation. We fur-

ther considered a generation time of 1 year (Munkacsi et al.

2008). Cross-coalescence rate analyses were conducted fol-

lowing the protocol described in the documentation of the

MSMC2 program. In order to assess the significance of the

pattern of cross-coalescence rate between two samples, we

randomly permuted genomes in samples and recomputed the

rates of cross-coalescence. A total of 10 permutations was

conducted.

Building Gene Families

We used the multiple genome alignment of U. maydis isolates

to extract nucleotide sequences of protein coding genes

Schweizer et al. GBE
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according to the annotation of the U. maydis reference ge-

nome, obtained from Mycocosm of the Joint Genome

Institute (Grigoriev et al. 2014). This annotation encompassed

6,785 protein coding genes, of which we discarded 36 genes

with splice variants. We extracted nucleotide sequences for

6,742 genes (supplementary table S6, Supplementary

Material online). An outgroup sequence from the related spe-

cies Sporisorium reilianum f. sp. zeae was further added using

the procedure described below. We obtained the proteome

of S. reilianum (Schirawski et al. 2010) from the protein data

base PEDANT (Walter et al. 2009) with 6,676 proteins. The

proteome of the U. maydis isolate 521 was searched against

the S. reilianum proteome using BLASTp, and the result was

used as input for the SiLiX algorithm in order to reconstruct

gene families (Miele et al. 2011). This software infers homol-

ogous relationships based on two criteria: the percent identity

between two sequences and the coverage, defined as the

relative length of a hit compared with the total length of

the two sequences. We used a range for coverage and iden-

tity thresholds between 5% and 95% in 5% steps to identify

values that result in the largest number of families with one-

to-one homologs. The thresholds of 45% identity and 55%

coverage were selected, because they lead to the maximum

number (5,685) of families comprising one gene each in

U. maydis and S. reilianum (supplementary table S7,

Supplementary Material online). This allowed us to map a

single S. reilianum ortholog to 5,678 genes that were

extracted from the multiple genome alignment. Several pro-

teins in virulence clusters, however, could not be assigned to

families of 1:1 orthologs predicted by SiLiX, because such

genes evolved by duplication (Dutheil et al. 2016). In order

to identify an outgroup sequence for these genes, we con-

ducted a second BLASTp search with, as query, all U. maydis

genes that could be extracted from the multiple genome

alignment but had not been mapped to a S. reilianum ortho-

log. We used all S. reilianum proteins that are not mapped to

a U. maydis ortholog by SiLiX as target. We considered only

hits with an E-value < 10�6 for further analyses and found

404 cases where one U. maydis gene mapped to one

S. reilianum gene and vice versa. In summary, we could assign

a S. reilianum outgroup sequence to 6,082 U. maydis genes

out of 6,742 genes that could be extracted from the multiple

genome alignment (supplementary table S6, Supplementary

Material online). This set of gene families was aligned at the

codon level using MACSE (Ranwez et al. 2011), with the ex-

ception of one gene (UMAG_10543) for which the program

failed to output an alignment. Two genes (UMAG_00001 and

UMAG_10807) were additionally discarded as their annota-

tion changed since the previous version of the genome used

in Dutheil et al. (2016) and they were, therefore, not included

in the prediction of effector clusters. 6,051 genes were

detected in all 22 Mexican isolates and were selected for sub-

sequent analyses. Of these genes, 56 have at least one pre-

dicted in-frame stop codon before the end of the coding

sequence in the reference genome and were discarded, as

they could correspond to polymorphic open reading frames or

contain sequencing errors. The final data set contained a total

of 5,993 genes. Annotations of candidate effector genes

were taken from the “strict” prediction described in Dutheil

et al. (2016), which contained 553 genes predicted to encode

secreted effector proteins. In the same study, 156 effector

genes were found in gene clusters. The filtered data set stud-

ied here contained 95 genes in virulence clusters, 344 non-

clustered effectors, and 5,554 other noneffectors,

nonclustered genes.

Reconstruction of Site Frequency Spectra

Filtered alignments were analyzed with the bppPopStat pro-

gram from the bppSuite software (Gu�eguen et al. 2013) in

order to compute the unfolded synonymous and nonsynon-

ymous site frequency spectra (SFS) for each gene of the 22

Mexican isolates. Ancestral alleles were inferred using a mar-

ginal reconstruction after fitting a codon model (Yang and

Nielsen’s model with F3X4 frequencies; Yang and Nielsen

1998), including the outgroup sequence. When computing

the SFS, positions with more than two alleles were ignored, as

well as positions where the outgroup displayed an allele dis-

tinct from the set of alleles in the ingroup.

Estimation of the Distribution of Fitness Effects of
Mutations and Rate of Adaptive Substitutions

Gene-specific SFS for each gene category (gene in virulence

cluster, nonclustered effectors, or nonclustered, noneffector

genes) set were obtained by pooling the SFS for each consti-

tutive gene to generate the input file for the Grapes program

(Galtier 2016). A model selection procedure was conducted

for each set separately, using the “-m all” option of Grapes.

We further used the ‘-no_div_param’ option to use diver-

gence predictions from the polymorphism data instead of

using the sequence of the outgroup to estimate the corre-

sponding parameters (Rousselle et al. 2018). The best model

according to the Akaike’s information criterion (AIC) was

found to be the scaled beta distribution for the nonclustered

effector genes, whereas the gamma-exponential distribution

and gamma-gamma distributions best fitted clustered genes

and noneffector nonclustered genes, respectively (see supple-

mentary table S3, Supplementary Material online). In all cat-

egories of genes, however, these three models had very

similar AIC values, and we performed a model averaging pro-

cedure by weighting each model with its relative likelihood

(Dormann et al. 2018). In order to assess the sampling vari-

ance of the inferred distribution of fitness effects (DFE) and

rate of adaptive substitutions for each set of genes, a boot-

strap procedure was conducted by re-sampling genes in each

category 100 times. Parameters of the DFE as well as rates of

adaptive substitutions were estimated for each bootstrap rep-

licate, using the model with the best fit for each gene
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category, and their distribution used to compute confidence

intervals. To assess the significance of observed differences in

parameters between gene categories, we performed a per-

mutation test, shuffling all genes between the three catego-

ries a 1,000 times and rerunning Grapes with the selected

model on each sample. For each pair of gene sets, P-values

were then computed using the formula (
P

i[jSij � jSobsj]þ 1)/

(nþ 1) where Si denotes the difference in parameter esti-

mates for replicate i,
P

i[jSij � jSobsj] is the number of repli-

cates for which the absolute difference is greater or equal to

the observed difference, and n is the number of replicates for

which parameters could be successfully estimated. The fol-

lowing comparisons were performed: clustered genes versus

nonclustered effectors, clustered genes versus nonclustered

noneffector genes, and nonclustered effectors versus non-

clustered noneffector genes, and the resulting P-values

were corrected for multiple testing (Benjamini and

Hochberg 1995). The parameters tested included nonsynon-

ymous diversity (pN), synonymous diversity (pS), and their ratio

(pN/pS), ratio of nonsynonymous to synonymous divergences

(dN/dS ¼ x), the rate of nonadaptive nonsynonymous substi-

tutions (xNA), the rate of adaptive nonsynonymous substitu-

tions (xA), and the proportion of adaptive nonsynonymous

substitutions (a). In order to control for protein length, a sim-

ilar analysis was conducted after selecting a subset of non-

clustered effector genes and nonclustered, noneffector genes

with protein length similar to that of clustered genes. This was

achieved by selecting, for each clustered gene, the corre-

sponding gene with the most similar protein length in the

nonclustered effector (resp. nonclustered, noneffector) gene

sets. The generated sets have, therefore, the same number of

genes as the clustered set, and their average length did not

differ significantly (Kruskal–Wallis rank sum test, P-value ¼ 1,

supplementary file S1, Supplementary Material online).

Analysis of Mating Type Loci

Sequences from the a and b mating type loci were extracted

from the genome alignment using annotations from the

U. maydis reference genome. The corresponding genes are

UMAG_02382 (1 exon), UMAG_02383 (4 exons), and

UMAG_02384 (3 exons) for the a-locus on chromosome 5,

and UMAG_12052 (2 exons) and UMAG_00578 (2 exons) for

the b-locus on chromosome 1. The complete region was

extracted for each locus. Sequences of the two genes of

the b-locus were combined with publicly available sequences

(K€amper et al. 2020), and phylogenetic trees were recon-

structed for each gene using the PhyML program (Guindon

et al. 2010), using a Le and Gascuel model of protein evolu-

tion (Le and Gascuel 2008) with a 4-classes discrete Gamma

distribution of rates. The “Best of NNI and SPR” topology

search option was selected, and 100 nonparametric boot-

straps were generated. Nodes with a bootstrap value below

60% were set as unresolved. Trees were plotted using the

“ggtree” package for R (Yu et al. 2016).

Verification of the a Mating Type Locus of Isolate A

All reads were mapped on the assembly of the isolate A using

bwa mem (Li and Durbin 2009). Site-specific coverage and

read heterogeneity were computed using the mpileup pro-

gram from the samtools (Li et al. 2009) and further processed

by python and R scripts. We performed a second independent

genomic DNA extraction for isolates A and B. Isolates were

streaked out from a glycerol stock and were cultivated for 2

days on PD plates at 28 �C. Next, a single colony was inocu-

lated in YEPS-light liquid medium (1% [w/v] yeast extract, 1%

[w/v] peptone, 1% [w/v] sucrose) and grown over night at

28 �C. Cells were pelleted and lysed with ca. 0.3 g glass

beads, 500ml TE-phenol/chloroform (1:1), and 500ml lysis

buffer for 15 min on a Vibrax shaker. The supernatant was

precipitated with 70% v/v ethanol and dissolved in TE-buffer

(1 mM Na2-EDTA, 10 mM Tris–HCl with pH 8.0) supple-

mented with RNaseA.

The Phusion high fidelity PCR master mix (New England

BioLabs) was prepared with 0.2mM primers (forward se-

quence: CTAGCTACACCAGCGAGGACGATA; reverse se-

quence: TCATTCCTAGCTCTTCTTGCGTTGA) and 100 ng

genomic DNA as template in a 20ml reaction volume. The

PCR was performed as follows: initial denaturation at 98 �C

for 1 min; 30 cycles with10 s denaturation at 98 �C, 15 s

annealing at 67 �C, 5 min extension at 72 �C, and 7 min final

extension at 72 �C. Products from the PCR were analyzed by

gel electrophoresis. The entire volume of the samples was

mixed with 3ml of bromophenol blue dye and loaded on

1% agarose gel prepared in TAE buffer (40 mM Tris, 20 mM

acetic acid, 1 mM EDTA with pH 8.0).

Results and Discussion

We sequenced 22 haploid isolates of U. maydis originating

from five locations in Mexico (Valverde et al. 2000; fig. 1A and

supplementary table S1, Supplementary Material online). We

performed a de novo genome assembly for each isolate and

computed a multiple genome alignment including the previ-

ously sequenced reference isolate 521 (K€amper et al. 2006).

After filtering for alignment uncertainty, the length of the

alignment totalized 19.2 Mb, covering 97.76% of the

U. maydis reference genome. A total of 61,745 SNPs was

called from the newly sequenced isolates, corresponding to

a mean number of nucleotide differences of 9� 10�4 per

nucleotide. This level of diversity is comparable to that found

in populations of great apes or of Drosophila melanogaster

(Nam et al. 2015; Haudry et al. 2020), but remarkably low for

a fungal pathogen (Zheng et al. 2013; McMullan et al. 2018;

Stukenbrock and Dutheil 2018). Moreover, 6,742 genes out

of the 6,785 annotated genes in the reference genome had a

Schweizer et al. GBE
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homologous sequence in all Mexican isolates, and of these,

5,993 had both a coding sequence without predicted in-

frame stop codon and an identifiable homolog in

S. reilianum. This high level of sequence conservation shows

1) that the generated data set is of high quality and encom-

passes a large proportion of the genome of the pathogen and

2) that the genetic diversity of the population at the center of

origin is very low, in line with previous reports (Munkacsi et al.

2008; Kellner et al. 2014). Such low diversity can result from

demographic effects (population bottleneck), or genomic fac-

tors such as a low mutation rate. In this respect, it mirrors the

low frequency of transposable elements (TEs) and the high

level of synteny in this species group (Schirawski et al. 2010;

Dutheil et al. 2016). Furthermore, the sexual development of

U. maydis is intimately coupled with host colonization, infec-

tion being possible only after mating of compatible strains.

The highly efficient homologous recombination system of

U. maydis might allow to more efficiently eliminate deleteri-

ous mutations and contribute to its low diversity.

The Investigated Isolates Represent Two Subpopulations

To infer the level of similarity between the sequenced isolates,

we constructed a global tree (fig. 1B). We found that all

Mexican isolates (Valverde et al. 2000) are more similar to

each other than they are to the genome of the reference

isolate 521, which was collected from a corn field near St

Paul/Minnesota, USA (Holliday 1961). Within the Mexican

isolates, isolates P, Q, and R were all collected from Sinaloa

and cluster in one group. Moreover, the isolates S, T, and U

from Toluca clustered independently of all other isolates.

Isolates M and K appeared to be very similar, displaying less

than one SNP per chromosome on average after quality fil-

tering, suggesting that the two individuals are very closely

related. Overall, we detected only a loose association between

sampling origin and genome similarity, suggesting that pop-

ulation structure, if any, is not induced by geography. To fur-

ther investigate the population structure, we performed a

Principal Component Analysis (PCA; Patterson et al. 2006).

The results of the PCA were consistent with those of the

global genome similarity tree (fig. 2A and B): the first principal

components distinguished three groups of isolates. The first

set, consisting of isolates D, E, F, G, I, K, M, N, and O (referred

below as the “DEFGIKMNO” or “DEFGIKNO” population,

depending on whether the M isolate was included in the

analysis, see below) formed a well-supported group in the

similarity tree containing four of the five isolates from

Pachuca, three of the five isolates from Oaxaca, and two of

the five isolates from Irapuato. The second set, consisting of

isolates A, B, C, P, Q, R, S, T, U, and V (referred below as the

“ABCPQRSTUV” population), grouped the four isolates from

Toluca, the three isolates from Sinaloa, and three of the five

isolates from Irapuato. The third group was found in between

800 km

N
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FIG. 1.—Genome similarity of isolates is only loosely associated with their geographic origin. (A) Mexican U. maydis isolates (named with letters from A to

V) originated from the five regions: Irapuato, Oaxaca, Pachuca, Sinaloa, and Toluca. The reference isolate 521 was collected in the USA. (B) Tree showing the

genome-wide similarity levels between isolates and their sampling location as shown in (A). Numbers indicate bootstrap support values as percentage from

1,000 replicates, and branch lengths are the mean number of substitutions per site.
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these two populations and consisted of only three isolates:

isolates J and H from Oaxaca and isolate L from Pachuca. To

corroborate this finding, we employed the ADMIXTURE pro-

gram (Alexander et al. 2009). Cross-validation favored a

model with two subpopulations. Rerunning the model esti-

mation procedure with distinct initial conditions showed that

this model is also the most consistent, that is, 10 replicates out

of 10 agreed on the population partitioning (supplementary

fig. S1, Supplementary Material online). The two inferred sub-

populations matched the grouping of the PCA analysis and

the similarity tree, showing that the isolates H, L, and J are a

mixture of these two subpopulations with a ratio of approx-

imately 70% to 30% (fig. 2C). Our findings are in line with

previous studies that also reported the presence of subpopu-

lations of U. maydis in Mexico (Munkacsi et al. 2008).

Interestingly, the reference isolate 521 grouped together

with the ABCPQRSTUV population, while showing some

low degree of admixture with the DEFGIKMNO group.

Deep sampling outside of Mexico is required to confirm the

relationship of the reference isolate to the Mexican popula-

tions. The mechanisms of divergence of the two populations

remain to be elucidated. Teosinte occurs in Mexico with two

subspecies, Zea mays ssp. parviglumis and Zea mays ssp. mex-

icana (Fukunaga et al. 2005; Ross-Ibarra et al. 2009). An in-

teresting hypothesis is that the two populations of U. maydis,

while being able to infect maize, could represent formae spe-

ciales primarily adapted to each of these two subspecies of

teosinte.

Both Subpopulations Experienced Strong Bottlenecks

We elucidated the demographic history of the two subpopu-

lations using a multiple sequentially Markovian coalescent

(MSMC2) approach (Malaspinas et al. 2016), which we ap-

plied to the two population components that we inferred

from the population structure analysis. We found that the

ABCPQRSTUV population displayed a relatively constant ef-

fective population size between 1,000,000 and 7,000 years

ago, but experienced a strong bottleneck ending about

500 years ago (fig. 3A). The second subpopulation

DEFGIKMNO showed a similar trend, although experiencing

first a population increase before going through a stronger
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bottleneck starting 10,000 and ending 500 years ago. The

time frame of these bottlenecks coincides with the beginning

of maize domestication 6,000 to 10,000 years before present

(Matsuoka et al. 2002; Hake and Ross-Ibarra 2015), indicating

that the demography of U. maydis was most likely affected by

the domestication of its host plant, although to a different

extent in the two populations. To assess the timing of differ-

entiation between the two populations, we conducted a

cross-coalescence analysis (fig. 3B). This analysis showed

that the differentiation of the two populations occurred rap-

idly between 5,000 and 1,000 years before present.

Permutations of samples between the two populations con-

firmed that this pattern is very well supported by the data.

The MSMC approach infers variation of the coalescence

rate in the past. Under a standard coalescent model, the co-

alescence rate is inversely proportional to the effective popu-

lation size; thus, it provides a snapshot of the demographic

history. However, assuming a standard coalescent may lead to

the inference of an artificial bottleneck when the sampled

population is structured (Mazet et al. 2016). Furthermore,

the presence of loci under purifying selection can result in

the inference of a recent expansion (Platt and Harris 2020).

The data set presented here is potentially subject to these

issues, given the presence of population structure and the

high density of protein coding regions. While in line with

the expectation that the domestication of maize impacted

the evolution of the pathogen U. maydis, the inferred demo-

graphic scenarios should, therefore, be taken with necessary

caution.

We searched for regions putatively involved in the diver-

gence of the two populations (Wolf and Ellegren 2017) by

computing FST values in 10-kb windows along the genome

(fig. 4A), with the aim to highlight genes with a role in the

adaptation of the pathogen during the domestication of the

host. The genome-wide distribution of FST values had a mode

around 0.2, and a skew toward high positive values. This

distribution is well modeled by a mixture of two normal dis-

tributions (supplementary fig. S2, Supplementary Material on-

line). One hundred and ninety-one regions were found to be

within the high FST component with a 1% significance level

and contained 751 genes. These genes were not found to be

enriched in candidate effector genes (Fisher’s exact test, P-

value ¼ 0.86), and GO-term enrichment analysis of these

genes only exhibited top-level metabolic categories (supple-

mentary table S2, Supplementary Material online). In sum-

mary, these results provide no support for the existence of
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FIG. 3.—Both subpopulations experienced a recent bottleneck that started at a time overlapping with the supposed start of the domestication of maize,

between 6,000 and 10,000 years ago (gray area). (A) The effective population size Ne (vertical axis) is shown over the last 1 Myr (horizontal axis). The green

line shows the result that is obtained when considering all isolates, whereas the purple, orange and yellow lines represent results for a subset of isolates as

indicated. (B) A cross-coalescence analysis reveals the timing of the differentiation between the two subpopulations and shows that divergence happened

rapidly within a time frame that coincides with the domestication of teosinte.
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FIG. 4.—Values for different measures of genetic diversity vary at the fine (but not chromosomal) scale. The horizontal axis depicts the chromosome

number, and the vertical axes show values of the fixation index (A), the nucleotide diversity in both subpopulations (B), the level of divergence between

U. maydis and S. reilianum (C), and the GC content (D). Blue and gray colors of data points indicate different chromosomes. Orange lines indicate the

localization of gene clusters as defined in Dutheil et al. (2016), and green lines show the localization of the a mating type locus on chromosome 5 and the b

mating type locus on chromosome 1, respectively. Pop1 includes isolates A, B, C, P, Q, R, S, T, U and V and Pop2 the isolates D, E, F, G, I, K, M, N, and O.
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highly differentiated loci that may drive the divergence of the

two subpopulations. Further analyses, notably accounting for

recombination rate variation, are required to identify loci pos-

sibly involved in population differentiation (Booker et al.

2020).

The a Mating Type Locus Carries Alleles That Are
Conserved within the Mexican Population but Different
from the Reference Isolate

Ustilago maydis possesses a tetrapolar mating system where

two loci, a and b, are involved (Bakkeren et al. 2008). Our

data set contains two idiomorphs of the a-locus: isolates B, D,

J, K, L, M, N, O, Q, R, and U share the same a1 idiomorph as

the reference isolate, whereas the other isolates have another

one, similar to a2 (Bölker et al. 1992; Urban et al. 1996).

Because distinct idiomorphs share no homology (Froeliger

and Leong 1991), the a2 mating type regions could not be

aligned with the reference genome and are represented as

gaps in our genome alignment (supplementary file 1,

Supplementary Material online). The a1 and a2 idiomorphs,

however, differ from the previously published sequences of

a1 in the 521 isolate (accession number U37795) and a2 in

the RK32 isolate (accession number U37796; Bölker et al.

1992; Urban et al. 1996). All Mexican a1 alleles are 100%

identical to each other, but display a few SNPs, and a (non-

coding) deletion of thymine at position 5,556 with respect to

the a1 sequence of isolate 521 (supplementary file 1,

Supplementary Material online). The SNPs are distributed as

follows: one nonsynonymous SNP is located at position eight

in the mfa1 gene (leading to asparagine instead of threonine

in the a1 pheromone precursor protein). The pra1 genes con-

tain four SNPs in their coding regions, of which two are non-

synonymous (resulting in glycine instead of alanine at position

63 and leucine instead of proline at position 103 of the amino

acid sequence). The Mexican a2 alleles differ from each other

only at position 62 in the rga2 gene, where isolates E, F, G,

and I encode a glycine instead of a serine. The Mexican alleles

all differ, however, from the published RK32 sequence of a2

(accession number U37796). They feature a noncoding inser-

tion of 20 nucleotides at position 1,222 and a three-

nucleotide insertion at position 1,300 of the a2 sequence

from isolate RK32 (supplementary file 1, Supplementary

Material online), more than 2.5 kb downstream the pra2

gene. SNPs in coding regions are distributed as follows: three

in gene pra2, among which two nonsynonymous at positions

218 (leading to alanine instead of arginine) and 294 (threo-

nine instead of alanine), and three in lga2, among which one

nonsynonymous at position 63 (threonine instead of alanine).

In addition to position 62, the rga2 gene differs from the a2

sequence found in isolate RK32 by two other SNPs, including

a nonsynonymous one at positions 45 (serine instead of iso-

leucine). The region between positions 1,981 to 3,735 of the

U37796 sequence is notably absent in all Mexican isolates

(supplementary file 1, Supplementary Material online). This

region contains the pseudogenized mfa gene copy in a2 of

RK32 reported in Urban et al. (1996), which was hypothesized

to be a remnant of a multiallelic ancestor containing two

pheromone genes. This result suggests that either the ances-

tor of the Mexican isolates lost this remnant, or that the

degenerated pseudogenized mfa gene was not ancestral

but inserted in the ancestor of the RK32 isolate originating

from Germany.

We further observed that the assembly of the A isolate

contained two complete a1 and a2 loci, only separated by

13 nucleotides and identical to the ones found in other

Mexican isolates. We note that these 13 nucleotides include

a N character, indicating that the two loci were on separate

contigs and only assembled at the scaffolding stage. In order

to investigate the possibility of wrong assembly or contami-

nation, we performed a second independent DNA extraction

and amplified the mating type region in isolate A, using isolate

B (containing the a1 idiomorph) as a comparison. We used

primers matching unique sequences upstream and down-

stream of the mating type locus, so that only one fragment

of the a locus can be amplified (see supplementary fig. S3A,

Supplementary Material online for the expected sizes based

on the two idiomorphs). However, the results revealed the

presence of two amplified fragments in the A strain (the a1

þ a2 variant) instead of the single long fragment predicted

from the assembly. The sizes of these two fragments matched

those of the Mexican a1 and a2 idiomorphs, confirming their

presence in the isolate. From isolate B (an a1 strain) only one

segment of the expected size for a1 could be amplified (sup-

plementary fig. S3, Supplementary Material online). This result

makes it likely that the a1 and a2 loci in strain A are not

consecutive in the genome. To investigate possible coverage

variation, we mapped all reads along the scaffold containing

the a mating type locus in isolate A. We show that each

idiomorph is supported by a coverage lower than the average

of the rest of the scaffold, approximately 2/3 for the a1 idio-

morph and 1/3 for the a2 idiomorph (supplementary fig. S4,

Supplementary Material online). Altogether, these results sug-

gest that the region containing the a mating type locus of the

A isolate may have been diploid, and that the A isolate might

be aneuploid. The amplified fragment corresponding to the

a2 locus is less strong than the amplified fragment represent-

ing the a1 locus (supplementary fig. S3, Supplementary

Material online). Although this could be due to the larger

size of the a2 segment impeding the amplification efficacy,

we note that it mirrors the lower coverage of the a2 sequence

in the genome sequencing (supplementary fig. S4,

Supplementary Material online). An intriguing possibility could

be that the presumed aneuploid strain is unstable and lost one

of the idiomorphs during subsequent mitotic divisions. If the

a2 idiomorph is preferentially lost or if cells carrying the a2

idiomorph are dividing more slowly than cells carrying a1 be-

cause of autocrine pheromone stimulation, the final cell
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culture may contain unequal proportion of a1 and a2 sequen-

ces. Further genetic and cytological investigations are needed

to confirm this hypothesis.

In order to assess whether the presumed diploid status of

the A isolate could impact our population genomic analyses,

we examined the read mapping to search for possible hetero-

zygous positions. After mapping all reads on the assembled

genome, we counted the number of mismatches in reads for

each assembled position. If the genome was diploid, we

would expect heterozygous positions to have alternative

states in the reads, in a proportion of 50% on average. We

counted the proportions of sites with an alternative state pre-

sent in at least 20% of the reads: isolate A had 0.15% of such

positions, whereas isolate B had 0.21% and isolate C had

0.20% of such sites. Scaffold 79 of strain A, which contains

the a locus, only had 0.05% of sites with more than 20% of

read supporting an alternative state. This suggests that either

the potential aneuploidy of isolate A is restricted to the geno-

mic region containing the a locus, or that the aneuploid re-

gion is highly homozygous. In either case, aneuploidy did not

have a significant impact on the genome sequencing of iso-

late A outside the mating type locus.

Genetic Diversity Is Higher at the b Mating Type Loci

The b mating type locus located on chromosome 1 represents

a hotspot of diversity (fig. 4C), presumably because the un-

derlying genes evolve under balancing selection (May et al.

1999). Reconstructing the phylogenetic relationships between

all previously sequenced alleles (described in K€amper et al.

[2020]) and alleles that could be extracted from the multiple

genome alignment showed that the allele in isolate T is very

similar to the b2 allele. The b7 allele is identified in isolates B

and U. The b14 allele is detected in isolates G, I, K, M, N, and

Q. The b15 allele is present in isolates P and R. The b17 allele is

found in isolates H, J, and L, and the b18 allele is present in

isolate V (supplementary fig. S5, Supplementary Material on-

line). Interestingly, two alleles, one from isolates A and C and

one from isolates D, E, F, O, and S did not cluster with any

previously identified allele and may therefore be potentially

novel. This finding needs to be corroborated with in vitro

mating assays and successful plant infections.

The GC Content of U. maydis Correlates with
Chromosome Size and Is Lower in Virulence Clusters

We investigated several patterns of genetic diversity in win-

dows of 10 kb along the genome of U. maydis. The GC con-

tent, divergence with S. reilianum and mean number of

nucleotide differences within the two subpopulations all

appeared to be homogeneous at the chromosome scale

(fig. 4B–D). We report a slightly significant negative correla-

tion between the average GC content per chromosome and

the chromosome length (Kendall’s rank correlation test, tau¼
�0.296, P-value¼ 0.04984). A negative correlation between

chromosome size and average recombination rate is fre-

quently observed in eukaryotes and usually explained by small

chromosomes having a higher recombination rate (Kong et al.

2002; Jensen-Seaman et al. 2004). A positive correlation be-

tween GC content and recombination rate could be the result

of GC-biased gene conversion (Lesecque et al. 2013), and this

could drive the higher GC content in smaller chromosomes.

Finally, we report that the GC content is significantly lower in

regions encompassing clusters of effectors (Wilcoxon’s rank

test, P-value ¼ 1.372� 10�14), in agreement with the previ-

ous report that virulence clusters are associated with AT-rich

repeat elements (Dutheil et al. 2016). Below, we further dis-

cuss the link between repeat elements and virulence clusters.

Genetic Diversity Is Higher around Clusters of Effector
Genes

In U. maydis and related species, several effector genes are

organized in gene clusters, and many of them have a role in

virulence (K€amper et al. 2006; Schirawski et al. 2010;

Navarrete et al. 2019). We previously reported that, when

comparing multiple related species, these gene clusters are

enriched in genes evolving under positive selection (Schweizer

et al. 2018). Here, we find that the mean number of nucle-

otide differences was on average higher in windows overlap-

ping with a virulence cluster: the median across 10-kb

windows of the mean number of nucleotide differences is

0.0011 in virulence cluster regions, compared with 0.0008

for the rest of the genome in population ABCPQRSTUV

(Wilcoxon test, P-value ¼ 5.131� 10�7), and 0.0007 versus

0.0004 in population DEFGIKMNO (Wilcoxon test, P-value ¼
0.02154), consistent with a previous report based on a smaller

set of genes (Kellner et al. 2014). This higher diversity may

result from a locally higher mutation rate and/or distinct se-

lection regime. A higher mutation rate can be caused by the

activity of TEs, directly or indirectly: active TEs may locally in-

troduce mutations, the generated occurrence of repeated se-

quence may lead to increased slippage of the DNA

polymerase, and mechanisms protecting the genome against

TEs may be leaky and affect surrounding regions (Horns et al.

2012; Laurie et al. 2012; Dutheil et al. 2016). In addition,

selection may impact diversity along the genome

(Charlesworth 2009; Gossmann et al. 2011; Grandaubert

et al. 2019). All these mechanisms may act simultaneously

and are difficult to disentangle. Additional insights may be

obtained by contrasting different classes of polymorphisms

in protein coding regions.

Clustered Effector Genes Show a High Rate of Adaptive
Mutations

To elucidate the selection regime under which different cate-

gories of genes evolve, we assigned each gene in U. maydis to

one of the three categories “clustered genes” (genes in pre-

dicted virulence clusters), “nonclustered effectors” (genes

Schweizer et al. GBE
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predicted to encode an effector protein, but not located in a

predicted cluster) or “remaining genome” as defined earlier

(Dutheil et al. 2016). We then computed the amount of syn-

onymous and nonsynonymous divergence, which we com-

pared with the amount of synonymous and

nonsynonymous polymorphism for each category of genes.

We find no significant difference of synonymous nucleotide

diversity (pS, fig. 5A), a slightly higher nonsynonymous diver-

sity (pN, fig. 5B) in nonclustered effectors compared with non-

clustered noneffectors genes (P-value ¼ 0.0450), and no

significant difference in the ratio of nonsynonymous to syn-

onymous diversity (pN/pS, fig. 5C) between genes in the three

categories. This contrasts with results obtained in other fungal

pathogens such as Z. tritici, where genes encoding effector

proteins are evolving under relaxed purifying selection evi-

denced by a higher pN/pS ratio (Grandaubert et al. 2019).

The ratio of nonsynonymous to synonymous divergences

(dN/dS ¼ x), however, was found to be significantly higher

in clustered genes than in nonclustered effectors, which have

a significantly higher dN/dS than nonclustered noneffector

genes (fig. 5D; P-value ¼ 0.0030). In order to disentangle

the adaptive and nonadaptive part of the dN/dS ratio, we fit-

ted models of DFE on polymorphic data for genes in each

category (Galtier 2016), and estimated the rate of nonadap-

tive nonsynonymous substitutions (xNA), the rate of adaptive

nonsynonymous substitutions (xA), and the proportion of

nonsynonymous substitutions that are adaptive (a). Because

distribution of fitness effects (DFE) models are fitted on site

frequency spectrum data (Moutinho et al. 2020), multiple

genes have to be combined in order to estimate model

parameters. Although we cannot assess the rate of adaptive

evolution in single genes or even single clusters of effectors, it

is possible to contrast evolutionary rates in distinct gene cat-

egories, providing enough genes are present in each category.

We find that genes located in clusters of effectors have a

lower rate of nonadaptive nonsynonymous mutations (model

averaged xNA ¼ 0.06, fig. 5E and supplementary table S3,

Supplementary Material online) compared with nonclustered

effector genes (xNA ¼ 0.19, P-value ¼ 0.0499) and nonclus-

tered noneffector genes (xNA ¼ 0.12), although nonsignifi-

cant in the latter case (P-value¼ 0.3271). The rate of adaptive

mutations was found to be significantly higher in genes
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FIG. 5.—Genes in virulence clusters display a higher rate of adaptive substitutions. P-values for pairwise comparisons between clusters of effector genes,

unclustered effector genes and nonclustered, noneffector genes are computed as described in Materials and Methods. (A) Mean number of synonymous

nucleotide differences (pS), (B) mean number of nonsynonymous nucleotide differences (pN), (C) ratio of the mean number of nonsynonymous nucleotide

differences and mean number of synonymous nucleotide differences (pN/pS), (D) ratio of nonsynonymous over synonymous divergence (dN/dS), (E) rate of

nonadaptive nonsynonymous substitutions (xNA), (F) rate of adaptive nonsynonymous substitutions (xA), (G) proportion of nonsynonymous adaptive

substitutions (a). Box-and-whiskers plots indicate the median, first and third quantiles over 100 bootstrap replicates performed using the best model

according to Akaike’s information criterion. Gray diamonds indicate the corresponding value when averaging over all models of distribution of fitness

effects (see Materials and Methods for details).
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located in effector clusters (xA ¼ 0.38, fig. 5F), compared

with nonclustered effectors (xA ¼ 0.11; P-value ¼ 0.0031)

and nonclustered, noneffector genes (xA ¼ 0.11; P-value ¼
0.0031). The proportion of adaptive nonsynonymous substi-

tutions (a¼xA/x) was found to differ marginally between

genes in effector clusters (a ¼ 86%, fig. 5G), nonclustered

effector genes (a� 36%; P-value ¼ 0.0499) and nonclus-

tered, noneffector genes (a¼ 48%; P-value ¼ 0.0663).

These results are consistent with previous reports that genes

encoding effector proteins undergo a higher rate of adaptive

evolution (Stukenbrock and Bataillon 2012; Grandaubert

et al. 2019). Differences in evolutionary rates can be explained

by differences in the effective population size, Ne, or by the

selection coefficient, s, of the mutations. Consequently, two

nonexclusive hypotheses for this observation can be invoked.

First, because some effector genes are essential for virulence,

the fitness effect of mutations at these genes might be larger.

Under an arms race scenario, mutations creating new alleles

that prevent recognition by the host will have a large positive

effect (large positive value of s, leading to a high value of xA).

When established, however, successful effector alleles are un-

der strong negative selection so that most mutations are

highly deleterious (larger negative value of s, impeding the

accumulation of nonadaptive mutations and leading to a low

value of xNA), until the plant target protein evolves a se-

quence that prevents interaction with the effector.

Examples for such conserved effectors include Pep1

(Doehlemann et al. 2009) and Pit2 (Doehlemann et al.

2011), which are inhibitors of the maize peroxidase POX12

and a group of papain-like cysteine proteases, respectively

(Hemetsberger et al. 2012; Müller et al. 2013; Misas et al.

2019). Other examples of important effectors are ApB73 and

Cce1, but their molecular function remains to be elucidated

(Stirnberg and Djamei 2016; Seitner et al. 2018). Second, the

pattern of selection may result from the genomic context of

the underlying genes. A higher recombination rate in the re-

gion of effector clusters is predicted to locally increase Ne by

reducing linkage disequilibrium and, therefore, to increase the

efficacy of both negative and positive selection (Charlesworth

and Campos 2014; Croll et al. 2015; Grandaubert et al.

2019). However, we could not infer a recombination map

based on the 22 Mexican U. maydis isolates, because the

small sample size and low genetic diversity prevented the ap-

plication of linkage disequilibrium-based methods (Winckler

et al. 2005). Moreover, the small chromosome and genome

size as well as the high density of protein coding genes (about

61.2% of the genome) did not allow us to obtain reliable

results with approaches based on sequentially Markovian co-

alescent processes like iSMC (Barroso et al. 2019).

Constructing a recombination map for U. maydis, therefore,

would require the sampling of more isolates from diverse

geographic origins.

Effector genes are characterized by their relatively short

size, and genes in virulence clusters are, therefore,

significantly shorter than nonclustered genes (390 amino

acids on average vs. 618 amino acids for nonclustered genes,

Wilcoxon test, P-value < 1.23� 10�10). Short genes have

been shown to evolve faster, as the encoded proteins have

a higher proportion of exposed residues, which tend to expe-

rience a higher frequency of adaptive substitutions (Moutinho

et al. 2019). In order to test whether the shorter protein size

of genes in virulence clusters explains their higher rate of

adaptive evolution, we created samples of genes with similar

lengths to that of genes in virulence clusters (see Materials

and Methods and supplementary file S1, Supplementary

Material online). We then conducted the same analyses on

the size-restricted data sets. The results, including estimates of

xA and xNA are very similar when controlling for protein

length (yet less significant owing to the smaller number of

genes and larger variance of the estimates), suggesting that

protein size does not account for the observed differences

(supplementary fig. S6, Supplementary Material online).

Lastly, we note that predicted effector genes that are not

located in virulence clusters do not show an increased rate of

adaptive evolution, contrasting with other pathogens where

effector-encoding genes show an increased evolutionary rate

(Stukenbrock et al. 2011; Hacquard et al. 2012; Huang et al.

2014; Sharma et al. 2014; Sperschneider et al. 2014). In ad-

dition, the genome of U. maydis is almost devoid of TEs,

which are mostly concentrated in the region of virulence clus-

ters. This distribution may result from TEs being locally toler-

ated, as they could be providing a supply of mutations in

rapidly evolving regions. Another explanation is that negative

selection against TEs is locally not strong enough, owing to

recurrent positive selection on genes in virulence clusters,

which reduces the local effective population size because of

linkage. These two explanations are not exclusive and can

both contribute positively to the local accumulation of TEs.

Altogether, these results highlight the singular role that viru-

lence clusters play in the adaptation of U. maydis to its host.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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