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A B S T R A C T   

Background: Functional movement disorders, a common cause of neurological disabilities, can occur with het-
erogeneous motor manifestations including functional weakness. However, the underlying mechanisms related 
to brain function and connectivity are unknown. 
Objective: To identify brain connectivity alterations related to functional weakness we assessed network centrality 
changes in a group of patients with heterogeneous motor manifestations using task-free functional MRI in 
combination with different network centrality approaches. 
Methods: Task-free functional MRI was performed in 48 patients with heterogeneous motor manifestations 
including 28 patients showing functional weakness and 65 age- and sex-matched healthy controls. Functional 
connectivity differences were assessed using different network centrality approaches, i.e. global correlation, 
eigenvector centrality, and intrinsic connectivity. Motor symptom severity was assessed using The Simplified 
Functional Movement Disorders Rating Scale and correlated with network centrality. 
Results: Comparing patients with and without functional weakness showed significant network centrality dif-
ferences in the left temporoparietal junction and precuneus. Patients with functional weakness showed increased 
centrality in the same anatomical regions when comparing functional weakness with healthy controls. Moreover, 
in the same regions, patients with functional weakness showed a positive correlation between motor symptom 
severity and network centrality. This correlation was shown to be specific to functional weakness with an 
interaction analysis, confirming a significant difference between patients with and without functional weakness. 
Conclusions: We identified the temporoparietal junction and precuneus as key regions involved in brain con-
nectivity alterations related to functional weakness. We propose that both regions may be promising targets for 
phenotype-specific non-invasive brain stimulation.   

1. Introduction 

Functional weakness (FW) is a common motor presentation in func-
tional movement disorders (FMD) that often persists and causes 

significant disabilities (Stone et al., 2010). It can be present with or 
without other symptoms such as tremor, dystonia, gait disorders, and 
myoclonus (Espay et al., 2018a; Stone and Aybek, 2016). Like other FMD 
symptoms, FW is inconsistent, i.e. characterized by a fluctuation of 
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weakness severity over time and discordant performance between clinical 
assessment. It is clinically incongruent with any known neurological 
disease (Espay et al., 2018a) and the underlying neuropathological 
mechanisms are unclear. Thus, in order to shed more light on potential 
FW-related alterations of brain function, the aim of the current paper is to 
identify functional brain connectivity changes related to FW in a group of 
FMD patients using functional magnetic resonance imaging (fMRI). 

Current neurobiological models of FMD symptoms are based on 
predictive coding of perception and movement control (Edwards and 
Bhatia, 2012; Van den Bergh et al., 2017). These models suggest that 
functional symptoms arise from the development of abnormal “priors” 
or predictions, the expression of which is driven by an abnormal allo-
cation of attention. A key assumption of this proposed mechanism is that 
the same basic computational phenomenon can account for functional 
symptoms across motor, sensory, and interoceptive domains (Baizabal- 
Carvallo et al., 2019; Edwards and Bhatia, 2012). These views have been 
reflected in a trans-diagnostic approach to find common mechanisms in 
phenotypically heterogeneous cohorts/groups of patients with func-
tional neurological disorder (Perez et al., 2021). However, only a few 
studies have aimed at identifying subtype-specific changes, such as 
differences between mobile and fixed functional dystonia (Canu et al., 
2020; Tomic et al., 2020) or between FMD and dissociative seizures 
(Sojka et al., 2021). 

Different aspects of abnormal motor control (e.g. movement 
conceptualization, intention, or execution), that are assumed to play a 
role across FMD variants, have only been addressed in a small number of 
functional imaging studies investigating specific subpopulations of pa-
tients (de Lange et al., 2007; Hassa et al., 2016; Maurer et al., 2016; 
Nahab et al., 2017; van Beilen et al., 2011; Voon et al., 2011; Voon et al., 
2010b). Thus, it remains unclear whether the different motor manifes-
tations of FMD have underlying neuroanatomic and neurophysiological 
commonalities or whether they differ. Neural correlates specific to FW 
are unknown but could involve brain areas that are implicated in: motor 
control (i.e. impaired movement initiation or motor inhibition); sensory 
processing (i.e. abnormal pattern of sensory feedback); or areas involved 
in top-down, higher-order regulatory processes, perception of self- 
agency, or other self-referential processes (Baizabal-Carvallo et al., 
2019). 

FMD with abnormal movements have features of voluntary move-
ments but are perceived as involuntary. In contrast to functional 
abnormal movements, FW is associated with a reduced range of motion 
or complete absence of movement despite voluntary effort to execute it 
(Hallett, 2010). Therefore, we hypothesized that FW may be related to a 
different self-referential network not directly linked to the sense of 
agency. In particular, we assumed that the parietal nodes of the default 
mode network (DMN) could play a role in FW, since this network is 
involved in the generation of complex internal models of various aspects 
of self-perception (Igelstrom and Graziano, 2017; Yeshurun et al., 2021). 
We therefore hypothesized that disruption within the parietal lobe may 
play a major role in distinguishing FW from no-FW FMD subjects. In 
order to further investigate the pathophysiological mechanisms of FW, 
we used task-free fMRI in combination with different network centrality 
approaches. 

The approach of task-free (also often called “resting-state”) fMRI was 
established in order to investigate correlations between fMRI time 
courses (Biswal et al., 1995). It was concluded that correlations of low 
frequency fluctuations and thus correlations between the fMRI signals of 
different brain regions reflect functional connectivity. Later it was 
shown that these correlations are altered with ageing (Dennis and 
Thompson, 2014; Ferreira and Busatto, 2013) and different movement 
disorders, e.g. in Parkinson’s disease (Mueller et al., 2018; Tahmasian 
et al., 2015; Wolters et al., 2019), in essential tremor (Li et al., 2021; 
Mueller et al., 2017; Wang et al., 2018), and also in FMD (Maurer et al., 
2016; Nahab et al., 2017). Note that there are various methods for 
investigating brain connectivity alterations using resting-state fMRI 
with graph theory approaches (Bassett and Bullmore, 2006; Bullmore 

and Sporns, 2009; Margulies et al., 2010). The aim of the current study 
was to detect FW-related alterations within the major hubs of functional 
brain connectivity. It is known from other movement disorders as e.g. 
Parkinson’s disease that disease pathology is related to changes within 
the topography of the hubs of functional brain connectivity which can be 
assessed by network centrality (Lou et al., 2015; Mueller et al., 2019; 
Mueller et al., 2017). Therefore, we used various centrality approaches 
to investigate changes within network hubs relating to FW including the 
approach of intrinsic connectivity (Martuzzi et al., 2011) but also 
eigenvector centrality (Lohmann et al., 2010). The comparison between 
different centrality approaches is very interesting from a methodological 
point of view as there is a general debate about the reliability of brain 
connectivity measures with resting-state fMRI (Holiga et al., 2018). We 
expected similar findings with all network centrality measures as we 
hypothesize a major effect of FW on the key nodes of functional brain 
networks. 

To assess FW-related brain connectivity alterations, we used 
different variations of network centrality, namely, global correlation 
(GCOR) (Whitfield-Gabrieli and Nieto-Castanon, 2012), eigenvector 
centrality (EC) (Lohmann et al., 2010), and intrinsic connectivity (ICC) 
(Martuzzi et al., 2011). These network centrality approaches allowed us 
to describe the importance of network nodes and determine the role of 
various brain regions within brain networks in FW. Specifically, we 
analyzed brain connectivity differences between FMD patients with and 
without FW. In order to characterize centrality changes that are specific 
to FW and to contextualize findings as inside or outside the normal 
range, we also assessed centrality differences between patients with FW 
and healthy controls. Finally, as the evidence for neural correlates of 
motor symptom severity in FMD is generally lacking, we further 
searched for a potential relationship between brain connectivity and 
symptom severity, assessed with the Simplified FMD Rating Scale 
(SFMDRS) (Nielsen et al., 2017). We hypothesized that FW-specific 
brain regions would be detected by centrality measurements that 
would also reflect symptom severity. 

2. Methods 

2.1. Participants 

Forty-eight patients with clinically definite FMD according to Gupta 
and Lang criteria (Gupta and Lang, 2009) (37 females, age 45.3 ± 9.7 
years, mean ± SD) with heterogeneous motor phenotypes were 
compared to 65 control subjects (41 females, 46.0 ± 9.4 years, denoted 
as CON). The FMD diagnosis was established following a detailed clin-
ical interview and an examination by an experienced movement disor-
ders specialist (TS) based on positive signs of inconsistence and 
incongruency with other neurological disorders, also in accordance with 
the criteria of the Diagnostic and Statistical Manual of Mental disorders 
(DSM-5) (APA, 2013; Daum et al., 2014; Edwards and Bhatia, 2012; 
Espay and Lang, 2015). All patients exhibited non-paroxysmal motor 
symptoms. For all controls, a complete medical history was obtained and 
a full neurological examination was performed showing no signs of a 
neurological disorder. To provide a naturalistic control group that could 
account for common psychiatric comorbidities found in FMD, controls 
with clinically salient depression, anxiety, and/or with a current pre-
scription of an antidepressant use were also included. Clinically salient 
depression and anxiety are defined as presence of symptoms of depres-
sion and/or anxiety most of the day affecting most or all activities. 
Depression and anxiety were assessed with the Beck Depression In-
ventory (BDI) and the State-Trait Anxiety Inventory (STAI) (Beck et al., 
1961; Spielberger, 1983). The demographic data and basic clinical in-
formation are provided in Table 1. 

For each FMD patient we evaluated and classified symptoms as 
functional weakness (FW) and abnormal movements involving tremor, 
dystonia, myoclonus, or gait disorder. Thereafter, the group of all FMD 
patients was then divided into two subgroups; patients with FW 
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(denoted as FW) and patients without FW (denoted as no-FW, see Table 1 
for further details). Patients with abnormal movements and concomitant 
FW were included in the FW group. For all patients, motor symptom 
severity was further assessed using the Simplified Functional Movement 
Disorder Rating Scale (SFMDRS) (Nielsen et al., 2017). The presence or 
absence of abnormal movement at each of seven body regions was 
recorded and rated according to symptom severity and duration, along 
with gait and speech severity and duration (maximum score: 54). Note 
that the SFMDRS was only published in March 2017 (Nielsen et al., 
2017), and therefore, a subset of 15 patients was assessed retrospec-
tively from video recordings of neurological examinations acquired at 
the inclusion to the study. The video-recordings included a complete 
neurological examination including assessment of rule-in signs demon-
strating inconsistency of abnormal movements and weakness. In all 
patients who were assessed retrospectively, the medical report 
describing the complete neurological examination (both positive and 
negative findings) was reviewed to ensure that all present motor features 
were documented in the video-recording and rated. All neurological 
assessments and SFMDRS ratings (including those from video re-
cordings) were performed by the same examiner (TS). 

All data were collected between September 2014 and February 2021. 
On the day of MRI data acquisition all participants also completed STAI 
(Spielberger, 1983). Concomitant medication with psychotropic effects 
were recorded in all subjects. Antidepressants are known to affect brain 
connectivity (McCabe and Mishor, 2011), therefore the intake of psy-
chotropic drugs was taken into account in data analysis (see below). 
Twenty patients and 15 control subjects were on antidepressant treat-
ment. The study was approved by the ethics committee of the General 
University Hospital in Prague (approval number 26/15 grant) and all 
participants gave their written informed consent to participate in the 
study. All procedures conformed to the Declaration of Helsinki. 

2.2. Image acquisition 

Functional MRI was obtained using a 3-T MAGNETOM Skyra scanner 
(Siemens Healthineers, Erlangen, Germany) using a 32-channel head 
array receive coil with the Syngo MR E11 software and a T2*-weighted 
gradient-echo echo-planar imaging (EPI) sequence (repetition time 2 s; 
echo time 30 ms; flip angle 90◦). The following image dimensions were 
used: acquisition matrix 64×64 pixels, in-plane resolution 3×3 mm2, 30 
axial slices with a slice thickness of 3 mm (0.45 mm gap), ascending slice 
order, nominal image resolution 3×3×3.45 mm3. For every participant, 
304 functional volumes were acquired resulting in a total scanning time 
of 10 min and 8 s. For all subjects, image acquisition was performed in 
the so-called “resting-state”. Participants were instructed to fixate on a 
visual red crosshair, remain still and awake, and not think of anything in 
particular. Note that all participants were scanned with the same scan-
ning sequence, i.e. the scanning sequence was not changed during the 
period of data acquisition. 

2.3. Image pre-processing 

All resting-state fMRI data sets were processed using the CONN 
toolbox rev. 20b (Whitfield-Gabrieli and Nieto-Castanon, 2012) and 
SPM12 rev. 7771 (Wellcome Centre for Human Neuroimaging, Univer-
sity College London, UK) with Matlab 9.10 R2021a (The MathWorks, 
Inc.). Pre-processing was performed using the default pipeline within 
the CONN toolbox including realignment for motion correction and 
unwarping to correct for EPI distortions (using the SPM’s realign and 
unwarp module with the six translational and rotational parameters), 
slice-time correction, and normalization to the Montreal Neurological 
Institute (MNI) space, based on the unified segmentation approach 
(Ashburner and Friston, 2005) that includes image co-registration, tis-
sue classification, and bias correction to be combined within the same 
generative model. Thereafter, spatial filtering was applied using a 
Gaussian kernel with 8-mm full width at half maximum. Image pre- 
processing also included denoising that was performed within the 
CONN toolbox. To correct for nuisance signal fluctuations, a regression 
analysis was computed using the scan-to-scan changes in global signal 
and the framewise displacement timeseries (FD) obtained by the CONN 
toolbox. Note that FD is very sensitive to identify small movements due 
to the lower floor in the signal (Power et al., 2012). Pre-processing was 
finalized using detrending and high-pass filtering using 0.015 Hz to 
achieve a baseline correction. 

2.4. Centrality group analysis 

For each participant global correlation (GCOR) and intrinsic con-
nectivity (ICC) (Martuzzi et al., 2011) was computed within the CONN 
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). In addition, we 
computed a further centrality measure, namely eigenvector centrality 
(EC) (Lohmann et al., 2010), using the Lipsia software (Lohmann et al., 
2001). To obtain the EC, a similarity matrix was computed using the 
correlation coefficient between all fMRI time courses. In order to use a 
similarity matrix with non-negative elements, we added the number one 
to all correlations (the ‘ADD’ approach (Wink et al., 2012)) and further 
used a new correlating metric ‘RLC’ that offers a similarity matrix with 
non-negative entries (Lohmann et al., 2018). Here, ‘RLC’ stands for 
‘ReLU correlation’ based on the Rectified Linear Unit (ReLU) that is 
widely used in the context of artificial neural networks (Nair and Hinton, 
2010). Note that both EC approaches ADD and RLC are programmed in a 
memory-efficient way and can be used with high resolution imaging 
data (Lohmann et al., 2018). 

As global signal regression might introduce spurious correlations and 
thus affect our centrality results (Colenbier et al., 2020; Liu et al., 2017), 
image pre-processing was performed twice with and without nuisance 
regression, and GCOR was computed with both pipelines. 

After computing all four types of network centrality (GCOR, ICC, EC- 
ADD, EC-RLC), group analyses were performed using SPM12 with the 

Table 1 
Demographic data of patients and healthy controls*.   

CON FMD P FW no-FW P        

N 65 48  28 20  
female/male† 41/24 37/11  0.15 24/4 13/7  0.16 
age (years)+ 46.0 ± 9.4 45.3 ± 9.7  0.68 44.2 ± 8.8 46.7 ± 10.9  0.38 
psychotropic drugs yes/no† 15/50 21/27  0.025 13/15 8/12  0.77 
STAI+ 39.7 ± 10.9 48.8 ± 13.1  <0.001 49.1 ± 12.1 48.3 ± 14.6  0.85 
BDI+ 8.2 ± 10.0 19.1 ± 13.9  <0.001 19.3 ± 13.9 18.8 ± 14.3  0.91 
disease onset (years)+ 38.6 ± 10.7  37.0 ± 9.0 40.8 ± 12.5  0.23 
disease duration (years)+ 5.6 ± 5.3  6.4 ± 6.2 4.5 ± 3.5  0.22 
SFMDRS+ 12.1 ± 7.7  13.3 ± 7.5 10.4 ± 7.7  0.20 

*The table lists demographic data and statistical group comparisons between patients with functional movement disorder (FMD) and healthy controls (CON), and 
between FMD patients with and without functional weakness (FW and no-FW). STAI − State-trait anxiety inventory; BDI – Beck depression inventory; SFMDRS −
Simplified FMD rating scale; †Fisher’s exact test (two-tailed); +Independent samples t-test with equal variances (two-tailed). 
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general linear model and a full factorial design implemented with the 
three groups (FW, no-FW, CON). The use of antidepressant/anxiolytic 
medication was included as an additional factor. The model also 
included age, sex, and STAI as additional nuisance covariates. For pa-
tients, we also included disease onset and disease duration to control the 
inhomogeneity within the subgroups of patients. After the parameter 
estimation, a statistical analysis was performed using T-contrasts in 
order to investigate centrality differences between groups. As we were 
primarily interested in FW, we computed the contrasts between FW and 
no-FW, between FW and CON, and between FW and no-FW+ (where no- 
FW+ denotes the joint group of participants without FW: no-FW-patients 
and healthy controls). In addition, we also computed the contrast be-
tween no-FW and CON. The resulting statistical parametric maps were 
assessed using a cluster-defining threshold of P < 0.001. Significant 
clusters were obtained with P < 0.05 including a correction for multiple 
comparisons with family-wise error (FWE) correction at cluster-level 
(Flandin and Friston, 2019; Friston et al., 1994; Worsley et al., 1996). 

In order to further investigate network centrality alterations in terms 
of functional connectivity between brain regions, seed-based connec-
tivity analysis was performed with the CONN toolbox using seed regions 
obtained with the GCOR measure and the FW > noFW+ contrast with a 
threshold of P < 0.0001. For each seed-region, seed-based correlation 
maps were obtained for each subject, and significant FW vs. no-FW+

group differences were detected using the same statistical approach as 
used with the network centrality analysis. 

2.5. Simplified FMD rating scale correlations with centrality measures 

In addition to group analyses investigating brain connectivity dif-
ferences between participants with and without FW, we also studied 
potential correlations between SFMDRS and brain connectivity within 
both the FW and no-FW groups. To identify a potential group difference 
with respect to the correlation between SFMDRS and brain connectivity, 
we assessed the interaction between both factors ‘SFMDRS’ and 
‘GROUP’ (FW/no-FW) with all four centrality measures (GCOR, ICC, EC- 
RLC, and EC-ADD), using the same model as with the group compari-
sons, including the SFMDRS as a covariate of interest. Here, the SFMDRS 
covariate was implemented to model an interaction between SFMDRS 
and GROUP. Subsequent statistical analysis was performed using the 
same statistical threshold as was used with the group comparisons, i.e. 
resulting statistical parametric maps were assessed using a cluster- 
defining threshold of P < 0.001, and significant clusters were obtained 
with P < 0.05 using correction for multiple comparisons with family- 
wise error (FWE) correction at cluster-level (Flandin and Friston, 
2019; Friston et al., 1994; Worsley et al., 1996). After the interaction 
analysis, post-hoc tests were performed within the FW and no-FW 
groups separately, to assess potential positive or negative correlations 
between SFMDRS and the four centrality measures. 

2.6. Motion effects 

Due to motion-induced signal fluctuations, head motion can bias the 
connectivity analysis and resulting connectivity values (Parkes et al., 
2018; Satterthwaite et al., 2012). This could be a particular problem if 
the degree of motion-related artifacts were to vary between patients and 
controls, or between FW and no-FW patients. Therefore, we checked for 
differences in head motion between these groups by computing the 
framewise displacement (FD) calculated as the sum of the absolute 
values of the differential of the realignment estimates (Power et al., 
2012). For input we used the translational and rotational motion pa-
rameters obtained by SPM’s motion correction. For the whole series of 
304 functional images, the motion between volumes was characterised 
using 303 FD values for each subject. Finally, for each subject, all FD 
time courses were characterised by the mean FD, the maximum FD, and 
the number of FD values exceeding 1 mm. 

2.7. Visualisation 

Figures showing orthogonal brain slices were generated using the 
Mango software v4.1 (Research Imaging Institute, University of Texas 
Health Science Center at San Antonio) with the ‘Build Surface’ option 
and the ‘Cut Plane’ feature. Finally, statistical parametric maps were 
imported using the ‘Add Overlay’ function. Dot-plots and contrast esti-
mates were directly obtained from SPM12. 

2.8. Data availability 

Datasets analyzed during the current study are available on reason-
able request. All data will be anonymized. Functional MRI data will be 
available in pre-processed fashion in the NIfTI format without any 
personal metadata. All individual brain connectivity maps and all sub-
sequent statistical analyses using SPM12 are publicly available in the 
Mendeley Data repository “Centrality and seed-based correlation maps 
obtained with functional MRI” (Mueller et al., 2022) https://doi.org/10 
.17632/w35fvmtnf2.1. 

3. Results 

3.1. Clinical phenotypes 

Twenty-eight patients exhibited FW, 15 of them presented with pure 
FW, and 13 with a mixed phenotype combining FW and other types of 
FMD (tremor, dystonia, myoclonus, or gait disorder). Twenty patients 
showed no signs of FW (only positive symptoms of FMD). Thirty patients 
manifested a combined phenotype (e.g. tremor and dystonia, FW and 
myoclonus). Between the FW and no-FW groups there were no signifi-
cant differences in age, sex, STAI, BDI, SFMDRS, disease onset, disease 
duration, or antidepressant/anxiolytic medication (see Table 1). Note 
that we found a significant correlation between STAI and BDI in patients 
(R = 0.87, P < 0.001) and controls (R = 0.83, P < 0.001). 

3.2. Centrality group analysis 

When investigating centrality differences between patients with and 
without FW, using the contrast FW > no-FW, we obtained very consis-
tent results with all four centrality measures. We obtained a significant 
cluster in the left temporoparietal junction (TPJ) with GCOR and both 
measures of EC (Table 2A; Fig. 1A). This result was also obtained with 
ICC using an uncorrected threshold. In addition to the left TPJ, the 
comparison FW > no-FW revealed another significant cluster in the 
precuneus with both GCOR and EC-ADD (Table 2A; Fig. 1A). This result 
was also obtained with EC-RLC and ICC when using an uncorrected 
threshold. 

Looking at the contrast FW > CON, we again obtained a significant 
centrality difference in the left TPJ with GCOR, EC-RLC, and ICC 
(Table 2B; Fig. 1B; Fig. 2), and with EC-ADD using an uncorrected 
threshold (Fig. 2C). We also obtained a significant centrality difference 
in the precuneus with all four centrality measures. Thus, we found the 
same anatomical brain regions with both comparisons FW > no-FW 
(Table 2A; Fig. 1A) and FW > CON (Table 2B; Fig. 1B). Looking at FW >
no-FW+ using the extended no-FW+ group including all participants 
from both groups no-FW and CON, we received a robust finding in the 
left TPJ and in the precuneus with all four centrality measures (Table 2C; 
Fig. 1C). 

Investigating GCOR with and without nuisance regression showed 
only subtle differences between both analyses. Skipping the regression 
analysis during pre-processing, we received the same FW-related GCOR 
increase using the contrasts FW > no-FW, FW > CON, and FW > no- 
FW+ (compare Fig. 1 and Supplementary Figure S1). 

We also looked at the inverse contrasts relating to a diminished 
network centrality in FW compared to the other groups, however, the 
contrast FW < no-FW did not show any significant centrality results. 
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However, the comparison FW < CON showed a significant centrality 
decrease in the supplementary motor area (SMA) with ICC and both 
measures of EC (Table 3A; Fig. 3B). The same region was found with 
GCOR using an uncorrected threshold. Moreover, we also found a sig-
nificant cluster in the right insula with all four centrality measures 
(Table 3A; Fig. 3B). Note that neither cluster (the SMA and the right 
insula) showed up for the FW < no-FW contrast with any of the cen-
trality measures (Fig. 3A). Which raises the question of whether these 
findings really relate to FW. 

In order to further elaborate a potential diminished centrality in 
FMD, we looked at the comparison between all FMD patients and 
healthy controls, i.e. FMD < CON. Interestingly, this comparison showed 
centrality differences in the same anatomical brain regions as obtained 
with FW < CON: The comparison FMD < CON showed the same cluster 
in the SMA obtained using GCOR and ICC (Table 3B; Fig. 3C), and with 
both EC measures at an uncorrected level. Further, the comparison FMD 
< CON also revealed the right insula using an uncorrected level. Thus, 
both comparisons FMD < CON and FW < CON led to the same findings, 
and no results were obtained with FW < no-FW. 

Albeit the primary goal of this study was aimed at FW and the 
comparison between FW with both groups no-FW and CON, we also 
looked at potential centrality differences between no-FW and CON. 
Investigating the contrast no-FW > CON, we did not find any significant 
result with all four centrality measures. The inverse contrast no-FW <
CON showed a significant difference in the posterior cingulate cortex 
with the centrality measures GCOR and EC-ADD (see Supplementary 
Figure S2). The same cluster was found with EC-RLC without FWE- 
correction, but no cluster was found with ICC even when using an un-
corrected threshold. 

In addition to network centrality group differences described above, 
we also investigated seed-based correlation using the left TPJ and the 

precuneus as seed regions. Investigating seed-based correlation maps 
with the FW > no-FW+ contrast, we obtained an FW-related connec-
tivity increase between both seeds and the middle temporal gyrus (MTG) 
(Supplementary Figure S3). With the left TPJ as seed region, we also 
found an FW-related connectivity increase between left TPJ and pre-
cuneus, and between left TPJ and left cerebellum. Note that we did not 
obtain any significant functional connectivity decrease (using the FW <
no-FW+ contrast) with both seed-regions. 

3.3. Simplified FMD rating scale correlations 

To investigate the relationship between brain connectivity and the 
clinical severity of the FW patients, we studied potential correlations 
between SFMDRS and network centrality across the whole brain. To test 
for potential group differences (FW vs. no-FW) with respect to a corre-
lation between SFMDRS and brain network centrality, we used a GLM 
implementing the interaction between the factors SFMDRS and GROUP 
(FW/no-FW). Here, we obtained a significant result in the left TPJ using 
GCOR and both measures of EC (Table 4B; Fig. 4C). We also obtained 
this result with ICC when using an uncorrected threshold. 

To further investigate which group was driving the obtained inter-
action, post-hoc tests were performed to investigate a potential positive 
or negative correlation between SFMDRS and network centrality within 
each group separately. Within the group of FW patients, we observed a 
significant positive correlation between SFMDRS and network centrality 
in the left TPJ with GCOR and both eigenvector centrality measures EC- 
RLC and EC-ADD (Table 4A; Fig. 4A). This result was also obtained with 
ICC using an uncorrected threshold. For the FW patients, we also ob-
tained a significant positive correlation in the precuneus with all four 
centrality measures (Table 4A; Fig. 4A). Note that this correlation 
analysis revealed the same cluster pattern as obtained with the group 

Table 2 
Brain network centrality increase in functional weakness (FW)*.     

cluster-level peak-level    

PFWE k P T Z x y z 

A: FW > no-FW TPJ GCOR  0.011 230  0.001  4.34  4.14  − 44  − 58  32 
EC-RLC  0.002 327  <0.001  4.77  4.52  − 44  − 58  32 
EC-ADD  0.004 292  <0.001  4.50  4.28  − 44  − 58  32 
ICC  0.372 67  0.048  3.64  3.52  − 36  − 60  36 

Precuneus GCOR  0.009 238  0.001  4.45  4.24  − 8  − 62  32 
EC-RLC  0.052 157  0.006  4.51  4.30  − 10  − 60  30 
EC-ADD  0.024 201  0.003  4.76  4.51  − 10  − 60  30 
ICC  0.189 95  0.022  3.74  3.61  0  − 68  32 

B: FW > CON TPJ GCOR  0.036 171  0.004  4.54  4.32  − 42  − 68  34 
EC-RLC  0.027 189  0.003  4.61  4.38  − 42  − 66  32 
EC-ADD  0.080 141  0.009  4.34  4.14  − 44  − 66  32 
ICC  <0.001 618  <0.001  5.66  5.37  − 40  − 68  34 

Precuneus GCOR  0.017 207  0.002  4.23  4.05  − 14  − 56  38 
EC-RLC  0.011 234  0.001  4.10  3.93  − 8  − 58  36 
EC-ADD  0.015 225  0.002  4.21  4.03  − 14  − 56  38 
ICC  <0.001 625  <0.001  4.70  4.46  0  − 56  36 

C: FW > no-FW+ TPJ GCOR  0.002 330  <0.001  4.59  4.37  − 42  − 58  32 
EC-RLC  <0.001 433  <0.001  4.84  4.58  − 44  − 58  32 
EC-ADD  0.001 372  <0.001  4.59  4.37  − 42  − 58  32 
ICC  <0.001 471  <0.001  4.65  4.42  − 40  − 70  34 

Precuneus GCOR  0.001 355  <0.001  4.84  4.58  − 8  − 62  32 
EC-RLC  0.003 311  <0.001  4.60  4.37  − 10  − 60  30 
EC-ADD  0.003 323  <0.001  4.86  4.60  − 8  − 62  32 
ICC  <0.001 632  <0.001  4.35  4.16  0  − 64  30 

*(A:) Comparing between patients with and without functional weakness (A: FW > no-FW), we obtained increased brain network centrality in the left temporoparietal 
junction (TPJ) and the precuneus with global correlation (GCOR) and eigenvector centrality (EC-RLC and EC-ADD, respectively). Intrinsic connectivity (ICC) showed 
centrality differences in the same regions with an uncorrected threshold (shown in italics). (B:) Comparing FW patients with healthy controls (B: FW > CON) revealed 
the same centrality differences as obtained with comparison to the no-FW patients, however, in contrast to (A:), significant results were also obtained with ICC. (C:) 
Comparing FW patients with all participants showing no FW (C: FW > no-FW+) showed again the same centrality differences obtained with both comparisons (A:) and 
(B:). Significant differences were obtained with P < 0.05 using family-wise error (FWE) correction at cluster-level. Non-significant differences are shown in italics. PFWE 
– P-value after FWE correction at cluster-level; k – size of cluster in voxels; x, y, z – coordinates in mm. 
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Fig. 1. Brain network centrality increase with functional weakness (FW) using global correlation (GCOR). Significant GCOR differences were found in the precuneus 
and in the left temporoparietal junction (TPJ) with both comparisons between patients with and without FW (A: FW > no-FW), and between FW patients and healthy 
controls (B: FW > CON). The same result was obtained when comparing FW patients with all participants showing no FW (C: FW > no-FW+ ). Bar plots show contrast 
estimates for the maximum voxel in the left TPJ and the precuneus. Significant results are shown in red with P < 0.05 using family-wise error (FWE) correction at 
cluster-level (see Table 2 for all 4 centrality measures). x, y, z – coordinates in mm; L – left; R – right. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 2. Brain network centrality increase in functional weakness (FW) compared to healthy controls (CON). Significant centrality alterations were found in the 
precuneus and the left temporoparietal junction (TPJ) with all four centrality measures: global correlation (A: GCOR), intrinsic connectivity (D: ICC), and both 
measures of eigenvector centrality with two different approaches handling the negative correlations (B: EC-RLC and C: EC-ADD, respectively). Note that the left and 
the right TPJ was found with ICC. Significant results are shown in red with P < 0.05 using family-wise error (FWE) correction at cluster-level (see also Table 2). The 
blue color shows the result with EC-ADD using an uncorrected threshold. x, y, z – coordinates in mm; L – left; R – right. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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comparison FW > no-FW (left TPJ, precuneus), and thus, FW patients 
with increased SFMDRS notably contribute to the group difference 
found in the FW > no-FW comparison. Note that, within the group of FW 
patients, we did not find any significant negative correlation between 
SFMDRS and network centrality with any of the four centrality 
measures. 

In the no-FW group, we did not obtain any significant positive cor-
relations between SFMDRS and network centrality with any of the four 
centrality measures (see Fig. 4B). Note that we did obtain a significant 
cluster showing a negative correlation between SFMDRS and network 
centrality with GCOR and both measures of EC, however, this cluster 
was located in the primary visual cortex. No significant negative cor-
relations were obtained in the TPJ and/or precuneus. 

To investigate the effect of nuisance regression to the relationship 
between SFMDRS and network centrality, correlation analysis was 
performed twice with GCOR obtained with and without nuisance 
regression. Skipping nuisance regression during pre-processing does not 
affect the results as we again obtained a significant positive correlation 
between SFMDRS and GCOR in the FW group (compare Fig. 4A and 
Supplementary Figure S4A). We also obtained a significant interaction 
between the factors SFMDRS and GROUP (FW/no-FW) showing that the 
positive GCOR-SFMDRS-correlation is specific to FW (compare Fig. 4C 
and Supplementary Figure S4C). 

3.4. Motion effects 

The analysis of head motion during MR scanning yielded overall very 
subtle effects. The mean FD was below 0.5 mm for all patients and 
control subjects, with the exception of two no-FW patients showing a 
mean FD of 0.57 mm and 0.77 mm, respectively. The maximum FD was 
less than the nominal voxel size of 3 mm except in a single patient that 
showed a maximum FD of 3.1 mm. Only 210 out of 34,352 frames from 
the entire study (i.e. 113 patients × 304 image volumes) indicated single 
head movements of >1 mm, corresponding to 0.61%. Most importantly, 
there were no significant FD differences between patients and controls 
(P > 0.3 for both mean and maximum FD), and no significant FD dif-
ferences between the subgroups of FW and no-FW patients (P > 0.2 for 
both mean and maximum FD). 

4. Discussion 

In this study, we used different centrality approaches to detect sig-
nificant alterations in functional brain connectivity within functional 
networks specific to FW in a heterogeneous group of FMD patients. Our 
major findings were:.  

1. With all four different centrality measures, we consistently found an 
increased interconnectedness of both the left TPJ and the precuneus 
in FW patients when compared to the no-FW group, and when 
compared to the group of controls. 

2. When comparing FW and no-FW patients, we did not find any cen-
trality decrease with FW. However, comparing FW patients with 
healthy controls revealed a brain network centrality decrease in the 
insula and in the SMA. Interestingly, a similar pattern was found 
when comparing all FMD patients with healthy controls.  

3. Within the group of FW patients, a significant positive correlation 
between SFMDRS and TPJ centrality was observed with global cor-
relation (GCOR) and both measures of eigenvector centrality. 
Importantly, this correlation was not found in no-FW group, and a 
significant group difference (i.e. an interaction between the factors 
GROUP and SFMDRS) was found in the left TPJ. 

Using a task-free paradigm and whole-brain analysis, this study 
provides evidence for the involvement of the TPJ and the precuneus in 
the context of FW as a specific motor manifestation of FMD. The pos-
terior part of the TPJ and the precuneus are higher-order association 
cortices which have been hypothesized to be dysfunctional in FMD 
(Baizabal-Carvallo et al., 2019). Importantly, both regions are also part 
of the DMN (Buckner and DiNicola, 2019). Thus, in agreement with our 
hypothesis, our findings suggest that hyperconnectivity of the posterior 
parietal or the DMN regions may constitute a biomarker of FW. Addi-
tional confirmation of the DMN significance in the FW pathophysiology 
also comes from our seed-based correlations (see Supplementary Figure 
S3) showing increased connectivity within the areas of this network. In 
line with this observation, a previous resting-state fMRI study reported 
an increased functional connectivity strength only in the DMN in pa-
tients with pure FW compared to controls (Monsa et al., 2018). How-
ever, further (including motor task-based fMRI) studies comparing pure 

Table 3 
Brain network centrality decrease in functional movement disorders*.     

cluster-level peak-level    

PFWE k P T Z x y z 

A: FW < CON SMA GCOR  0.067 142  0.007  4.17  4.00  6  14  46 
EC-RLC  0.004 290  <0.001  4.65  4.42  6  14  46 
EC-ADD  0.037 178  0.004  4.40  4.20  6  14  46 
ICC  <0.001 397  <0.001  4.78  4.53  − 2  14  40 

Insula GCOR  0.008 246  0.001  4.06  3.90  52  6  − 12 
EC-RLC  0.010 239  0.001  4.24  4.06  52  14  − 12 
EC-ADD  0.025 197  0.003  3.95  3.80  46  20  − 10 
ICC  0.004 271  <0.001  4.32  4.13  50  4  − 6 

B: FMD < CON SMA GCOR  0.013 220  0.001  4.26  4.07  8  − 8  36 
EC-RLC  0.305 78  0.039  4.20  4.02  6  12  46 
EC-ADD  0.331 76  0.045  3.93  3.78  8  12  46 
ICC  0.007 244  0.001  4.60  4.37  6  12  46 

Insula GCOR  0.113 119  0.013  4.05  3.89  46  18  − 8 
EC-RLC  0.211 94  0.026  4.34  4.15  46  18  − 8 
EC-ADD  0.310 79  0.042  4.15  3.98  46  18  − 6 
ICC  0.068 138  0.007  4.36  4.16  54  18  0 

*(A:) Comparing FW patients with healthy controls (A: FW < CON), a significant brain network centrality decrease was obtained in the insula and in the supplementary 
motor area (SMA) with both measures of eigenvector centrality (EC-RLC and EC-ADD, respectively) and with intrinsic connectivity (ICC). Global correlation (GCOR) 
also showed a significant centrality decrease in the insula, however, the SMA was only found with an uncorrected threshold (shown in italics). (B:) The comparison 
between all patients with functional movement disorder (FMD) and healthy controls (B: FMD < CON) revealed a significant centrality decrease in the SMA using the 
centrality measures of global correlation (GCOR) and intrinsic connectivity (ICC). The other results were obtained without correction for multiple comparisons (see 
lines in italics). PFWE – P-value after family-wise error (FWE) correction at cluster-level; k – size of cluster in voxels; x, y, z – coordinates in mm. 
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FW with other subtypes of FMD will be necessary for confirmation on 
whether hyperconnectivity of these posterior parietal regions is a spe-
cific fingerprint of FW. 

A large body of evidence in literature further supports the role of the 
TPJ and precuneus in the FMD pathophysiology. Previous fMRI studies 
using different paradigms in FMD patients have shown abnormal ac-
tivity and functional connectivity in the TPJ and anatomically and 
functionally overlapping regions within the supramarginal gyrus, the 
angular gyrus, or the inferior parietal lobule (IPL) (Aybek et al., 2014; 
Baek et al., 2017; de Lange et al., 2010; Diez et al., 2019; Hassa et al., 
2017; Igelstrom and Graziano, 2017; Schrag et al., 2013; van Beilen 
et al., 2010; van der Kruijs et al., 2012; Voon et al., 2010b; Wegrzyk 
et al., 2018). Several of those studies have specifically implicated the 
right TPJ in abnormal self-agency in FMD patients (Baek et al., 2017; 
Maurer et al., 2016; Nahab et al., 2017; Voon et al., 2010b). In our study, 

we found an involvement of the TPJ in the pathophysiology of FW 
predominantly in the left hemisphere. While the right TPJ/IPL is a key 
structure in the self-agency network and in the right-lateralized ventral 
attentional control network implicated in stimulus-driven reorienting of 
spatial attention (Corbetta and Shulman, 2002; Nahab et al., 2011), the 
left TPJ/IPL has strong connectivity with the executive control network 
and is pivotal for configuring non-spatial and motor attention or control 
processes related to attention (Mengotti et al., 2020). Thus, our finding 
of increased connectivity of the left TPJ is consistent with our hypothesis 
that FW is not directly linked to the sense of agency. However, purely 
attentional mechanisms seem to be unlikely, given that both abnormal 
movements and FW present with clinically similar attentional effects 
such as distractibility. Bilateral TPJ seems has been implicated in 
updating and adjustments of top-down predictions (Geng and Vossel, 
2013) suggesting that these processes may be specifically involved in 

Fig. 3. Decreased brain network centrality in functional movement disorder (FMD). (A:) Comparing patients with and without functional weakness (FW), we did not 
obtain any significant centrality decrease with all centrality measures. (B:) Comparing FW patients with healthy controls (CON), a diminished intrinsic connectivity 
(ICC) was found in the supplementary motor area (SMA) and insula. (C:) Comparing all FMD patients with healthy controls, the same pattern of centrality decrease 
was obtained as shown in (B:), however, the insula was only found using an uncorrected threshold (shown in blue). Significant results are shown in red with P < 0.05 
using family-wise error (FWE) correction at cluster-level (see Table 3 for all 4 centrality measures). x, y, z – coordinates in mm; L – left; R – right. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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FW. 
Involvement of the precuneus was also reported in patients with 

various functional neurological disorders including FMD in studies using 
different motor or emotion task-based fMRI (Espay et al., 2018b; Hassa 
et al., 2017; Sojka et al., 2019; Stone et al., 2007). It has also been re-
ported in studies on self-agency in FMD patients (Baek et al., 2017; 
Nahab et al., 2017; Voon et al., 2010b) and resting state studies in 
various populations (Maurer et al., 2016) where the changes in activa-
tion or functional connectivity also involved the TPJ. Recent work has 
also investigated connectivity in FMD and has shown alterations 
including dynamic changes of functional brain connectivity in the pre-
cuneus and posterior midline (Marapin et al., 2021; Marapin et al., 
2020). 

The current neurobiological model of FMD is based on predictive 
coding (Edwards and Bhatia, 2012; Van den Bergh et al., 2017). This 
influential concept posits that the brain’s network architecture is an 
active inference generator that works according to the Bayesian 
approach to probability via a multilevel neuronal cascade. Learned be-
liefs about the world and about oneself act as top-down predictions 
explaining sensory signals that pass prediction errors up the neuronal 
hierarchy (Friston, 2010). It has also been proposed that the top-down 
dynamics of generative models detached from sensory or task-specific 
signals is closely related to the spontaneous activity in brain networks 
during resting state (Pezzulo et al., 2021). Importantly, the DMN is 
thought to lie at the top of this processing hierarchy involved in 
generating and retrieving the most complex and context-dependent 
schemas of various aspects of the self and the external environment 
(Friston, 2010; Igelstrom and Graziano, 2017; Yeshurun et al., 2021). 
The predictive coding account of FMD by Edwards and colleagues 
(Edwards et al., 2012) proposed that abnormal proprioceptive pre-
dictions related to the dynamics of movement are formed within an 
intermediate motor area (e.g. the SMA) and are afforded too much 
precision via misdirected attentional gain from higher hierarchical 
levels. The signal is propagated down the motor hierarchy, producing a 
proprioceptive prediction error peripherally that is fulfilled by move-
ment or lack of movement in FW. Prediction errors in reporting the 
unpredicted content of that movement to higher cortical areas (e.g., pre- 
SMA) are explained in terms of a symptomatic interpretation as invol-
untary movements or as failure to realize the movement that was 
intended in FW (Edwards et al., 2012). In our study, however, we found 
differences between FW and no-FW subjects in the left TPJ and the 

precuneus that are not directly involved in motor control. Therefore, in 
agreement with our hypothesis, it is conceivable that hyperconnectivity 
in these regions that are part of the DMN may reflect excessively strong 
or dysfunctional priors or schemas related to the body and the sense of 
the inability to move in FW. 

Interestingly, the comparison between FW and no-FW patients 
showed larger contrast differences than the comparison between FW 
patients and healthy controls. This connectivity pattern with normal 
subjects’ connectivity being in the middle between FW and no-FW (see 
contrast estimates in Fig. 1) seems also to favor reflection of abnormal 
predictions formation rather than attentional processes or self-agency 
abnormalities which have been mostly associated with the right TPJ 
(Baek et al., 2017; Maurer et al., 2016; Nahab et al., 2011; Voon et al., 
2010b). 

In our study, the role of the bilateral TPJ and the precuneus in FW 
pathophysiology is further supported by a complementary, within- 
subgroup approach which found a positive correlation between motor 
symptom severity and centrality and general connectivity measures in 
these regions only in FW patients, but not the no-FW group. Note that 
only one of the previous fMRI studies identified correlates of objectively 
assessed functional motor symptom severity in a small sample of FMD 
patients (Faul et al., 2020). 

Comparing patients with and without FW using all different cen-
trality measures, we did not find any significant FW-related centrality 
decrease. Comparing FW patients with healthy controls, we obtained a 
centrality decrease in the insula and in the SMA, however, due to the 
absence of this result in the comparison within patients, it is unclear 
whether this finding can be specifically related to FW. This lack of sig-
nificant difference might be due to insufficient power caused by a small 
sample size. Moreover, we found a centrality decrease in the same 
anatomical regions (insula and SMA) when comparing all FMD patients 
to healthy controls indicating that this decrease might not be specific to 
FW, and rather related more to FMD then to FW. That would be also in 
line with recent findings showing an involvement of the insula within 
multimodal integration, interoception processing, and self-agency that 
have been previously shown in different populations of FMD patients 
(Maurer et al., 2016; Perez et al., 2017; Stone et al., 2007; Voon et al., 
2011). The SMA is a key structure in voluntary movement initiation and 
its hypoactivity was previously reported in numerous studies (Aybek 
et al., 2015; Kozlowska et al., 2017; Maurer et al., 2016; Voon et al., 
2010a; Voon et al., 2011). Our data thus replicated these findings in a 

Table 4 
Positive correlation between Simplified Functional Movement Disorders Rating Scale (SFMDRS) and brain network centrality in patients with functional weakness 
(FW)*.     

cluster-level peak-level    

PFWE k P T Z x y z 

A: Correlation in FW TPJ GCOR  0.005 237  <0.001  4.75  4.14  − 46  − 62  30 
EC-RLC  0.005 242  <0.001  4.78  4.19  − 38  − 68  40 
EC-ADD  0.005 253  <0.001  4.57  4.05  − 42  − 60  32 
ICC  0.160 86  0.014  4.39  3.91  − 40  − 52  20 

Precuneus GCOR  <0.001 1328  <0.001  5.29  4.53  10  − 54  38 
EC-RLC  <0.001 1119  <0.001  6.31  5.17  12  − 56  40 
EC-ADD  <0.001 1188  <0.001  5.31  4.55  14  − 54  40 
ICC  <0.001 490  <0.001  4.94  4.30  14  − 56  40 

B: Interaction TPJ GCOR  0.002 277  <0.001  5.08  4.39  − 38  − 54  34 
EC-RLC  0.008 223  <0.001  5.27  4.52  − 38  − 54  34 
EC-ADD  0.009 227  <0.001  5.34  4.57  − 38  − 54  34 
ICC  0.091 105  0.008  4.32  3.86  − 38  − 60  38 

*(A:) Within the group of FW patients, a significant positive correlation between SFMDRS and brain connectivity was observed with global correlation (GCOR) and 
both measures of eigenvector centrality (EC-RLC and EC-ADD, respectively). Consistently with all 3 approaches, significant positive correlation was detected in the left 
temporoparietal junction (TPJ), and in the precuneus. Intrinsic connectivity (ICC) showed this positive correlation in the same regions, however, the left TPJ was only 
found with an uncorrected threshold (see line in italics). (B:) A significant interaction between the factors GROUP (FW/no-FW) and SFMDRS was found in the left TPJ 
with the centrality measures GCOR, EC-RLC, and EC-ADD. Using ICC, this interaction was only obtained with an uncorrected threshold (see line in italics). Significant 
results were obtained with P < 0.05 using family-wise error (FWE) correction at cluster-level. PFWE – P-value after FWE correction at cluster-level; k – size of cluster in 
voxels; x, y, z – coordinates in mm. 
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Fig. 4. Positive relationship between global correlation (GCOR) and the Simplified Functional Movement Disorder Rating Scale (SFMDRS) in patients with functional 
weakness (FW). (A:) Within the group of FW patients, a significant positive correlation between GCOR and SFMDRS was obtained in the precuneus and in the left and 
right temporoparietal junction (TPJ). (B:) No significant correlation was obtained in the group of patients showing no FW (no-FW). (C:) A significant interaction 
between the factors GROUP (FW/no-FW) and SFMDRS was found in the left TPJ. Significant results are shown in red with P < 0.05 using family-wise error (FWE) 
correction at cluster-level (see Table 4 for all 4 centrality measures). x, y, z – coordinates in mm; L – left; R – right. The dot-plot on the bottom shows the GCOR-values 
in the left TPJ for the FW group (in red) and for the no-FW group (in gray). The bigger dots show the fitted GCOR values within the statistical model while the smaller 
dots show the zero-mean GCOR values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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larger and more heterogeneous sample of FMD patients and suggests 
that SMA involvement is rather less phenotype specific. 

The finding of increased connectivity of the left TPJ and the pre-
cuneus associated with the presence and severity of FW has important 
clinical implications and provides potential for new treatment ap-
proaches. Non-invasive brain stimulation techniques such as repetitive 
transcranial magnetic stimulation (rTMS) and transcranial direct cur-
rent stimulation (tDCS) have been applied over the TPJ/parietal cortex 
for treatment of different conditions including auditory hallucination, 
tinnitus, and depersonalization (Donaldson et al., 2015). It has also been 
shown that subjective and behavioral responses to self-referential tasks 
can be modulated through TMS and tDCS (Bao et al., 2021). Recent 
experiments with rTMS over the right TPJ have also shown that the self- 
agency network was amenable to neuromodulation in heathy partici-
pants and suggested that manipulation of impaired self-agency in FMD 
could be used as part of treatment (Zito et al., 2020). We propose that 
different non-invasive brain stimulation protocols should be tested 
based on the phenotypical classification and modulation of both the left 
and the right TPJ and should be studied in interventional trials. Spe-
cifically, the effects of inhibitory protocols using cathodal tDCS (Inukai 
et al., 2016) or lower frequency rTMS (Chen et al., 1997) should be 
addressed in patients with FW. However, a relative imbalance of TPJ 
activity between the two hemispheres, which was previously reported in 
functional dystonia (Schrag et al., 2013), might also play a role in the 
pathophysiology of motor FMD as it was suggested for neglect syndrome 
(Mengotti et al., 2020). Carefully selected tasks, individualized neuro-
navigation, and more targeted and focal TPJ stimulation should be a 
priority in future studies. Using neurophysiological or imaging tech-
niques either concurrently or pre-post stimulation will help to assess 
broader distributed effects of non-invasive brain stimulation (Dalong 
et al., 2021) along with behavioral outcomes. 

Note that there are various limitations of this study: The comorbidity 
of FW and abnormal movements did not allow for a direct comparison of 
more homogeneous subgroups. Further, the subjects did not undergo a 
standardized psychiatric examination/structured interview, which 
would allow for control of a potential bias resulting from different 
psychiatric comorbidities. The abnormities identified in this study may 
be disease related, compensatory, or the consequence of differences in 
unidentified predisposing vulnerabilities and comorbidities. A major 
limitation is the small sample size. The group of no-FW patients had only 
a sample size of 20 patients, and two of the no-FW patients showed 
subtle head movements during MRI data acquisition. Note that the 
method itself using “resting-state” fMRI has its own drawbacks. There-
fore, apart from this technique, future studies should also investigate 
FW-related connectivity changes using a suitable motor task using the 
approach of psychophysiological interaction (Friston et al., 1997) using 
TPJ and precuneus as seed-regions. 

5. Conclusions 

In this fMRI study comparing patients with and without FW, we 
identified an FW-associated increase of functional connectivity in the 
left TPJ and the precuneus. Further, these increases correlated with 
motor symptom severity. The TPJ and the precuneus are important 
nodes of the multisensory integration network and are known to be 
involved in self-referential processing, including self-agency and moni-
toring of one’s own performance, the integration of top-down atten-
tional control with bottom-up processing, and adjustments of top-down 
predictions. Consistent with predictive coding accounts of FMD, our 
findings suggest that alterations in these mechanisms might underly 
different motor phenotypes such as FW. Our findings have important 
implications for new treatment approaches. Future interventional trials 
using non-invasive brain stimulation techniques should consider a 
phenotype-specific pattern of functional connectivity. Specifically, 
protocols inducing inhibition of the left parietal cortex should be studied 
in presence of FW. 
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