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The outstanding success of autoregressive (predictive) DLMs is 
striking from theoretical and practical perspectives because 
they have emerged from a very different scientific paradigm 

than traditional psycholinguist models1. In traditional psycholin-
guistic approaches, human language is explained with interpreta-
ble models that combine symbolic elements (for example, nouns, 
verbs, adjectives and adverbs) with rule-based operations2,3. In 
contrast, autoregressive DLMs learn language from real-world 
textual examples ‘in the wild’, with minimal or no explicit prior 
knowledge about language structure. Autoregressive DLMs do not 
parse words into parts of speech or apply explicit syntactic trans-
formations. Rather, they learn to encode a sequence of words into 
a numerical vector, termed a contextual embedding, from which 
the model decodes the next word. After learning, the next-word 
prediction principle allows the generation of well-formed, novel, 
context-aware texts1,4,5.

Autoregressive DLMs have proven to be extremely effective in 
capturing the structure of language6–9. It is unclear, however, if the 
core computational principles of autoregressive DLMs are related 
to the way the human brain processes language. Past research 
has leveraged language models and machine learning to extract 
semantic representation in the brain10–18. But such studies did not 
view autoregressive DLMs as feasible cognitive models for how the 
human brain codes language. In contrast, recent theoretical papers 
argue that there are fundamental connections between DLMs and 
how the brain processes language1,19,20.

In agreement with this theoretical perspective, we provide 
empirical evidence that the human brain processes incoming 
speech similarly to an autoregressive DLM (Fig. 1). In particular, the 
human brain and autoregressive DLMs share three computational 
principles: (1) both are engaged in continuous context-dependent 
next-word prediction before word onset; (2) both match pre-onset 
predictions to the incoming word to induce post-onset surprise 
(that is, prediction-error signals); (3) both represent words using 
contextual embeddings. The main contribution of this study is  
the provision of direct evidence for the continuous engagement of 
the brain in next-word prediction before word onset (computa-
tional principle 1). In agreement with recent publications14,16,21–24,  
we also provide neural evidence in support of computational  
principles 2 and 3.

Principle 1: next-word prediction before word onset. The constant 
engagement in next-word prediction before word onset is the bed-
rock objective of autoregressive DLMs6–9,25. Similarly, the claim that 
the brain is constantly engaged in predicting the incoming input is 
fundamental to numerous predictive coding theories26–30. However, 
even after decades of research, behavioral and neural evidence for 
the brain’s propensity to predict upcoming words before they are 
perceived during natural language processing has remained indirect. 
On the behavioral level, the ability to predict upcoming words has 
typically been tested with highly controlled sentence stimuli (that is, 
the cloze procedure31–33). Thus, we still do not know how accurate 
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listeners’ predictions are in open-ended natural contexts. The first 
section of the paper provides new behavioral evidence that humans 
can predict forthcoming words in a natural context with remarkable 
accuracy, and that, given a sufficient context window, next-word 
predictions in humans and an autoregressive DLM (GPT-2)8 match. 
On the neuronal level, we provide new evidence that the brain is 
spontaneously engaged in next-word prediction before word onset 
during the processing of natural language. These findings provide 
the missing evidence that the brain, like autoregressive DLMs, is 
constantly involved in next-word prediction before word onset as it 
processes natural language (Fig. 1).

Principle 2: pre-onset predictions are used to calculate 
post-word-onset surprise. Detecting increased neural activity  

400 ms after word onset for unpredictable words, documented 
across many studies34,35, has traditionally been used as indirect evi-
dence for pre-onset predictions. Recent development of autoregres-
sive DLMs, like GPT-2, provides a powerful new way to quantify the 
surprise and confidence levels for each upcoming word in natural 
language14,22,23. Specifically, autoregressive DLMs use the confidence 
in pre-onset next-word predictions to calculate post-word-onset 
surprise level (that is, prediction error; Fig. 1)14,22,23. Here we map the 
temporal coupling between confidence level (entropy) in pre-onset 
prediction and post-word-onset surprise signals (cross-entropy). 
Our findings provide compelling evidence that, similarly to DLMs, 
the biological neural error signals after word onset are coupled to 
pre-onset neural signals associated with next-word predictions.

Principle 3: contextual vectorial representation in the brain. 
Autoregressive DLMs encode the unique, context-specific meaning 
of words based on the sequence of prior words. Concurrent find-
ings demonstrate that contextual embeddings derived from GPT-2 
provide better modeling of neural responses in multiple brain 
areas than static (that is, non-contextual) word embeddings16,17. 
Our paper goes beyond these findings by showing that contextual 
embeddings encapsulate information about past contexts as well 
as next-word predictions. Finally, we demonstrate that contextual 
embeddings are better than non-contextual embeddings at predict-
ing word identity from cortical activity (that is, decoding) before 
(and after) word onset. Taken together, our findings provide com-
pelling evidence for core computational principles of pre-onset  
prediction, post-onset surprise, and contextual representation, 
shared by autoregressive DLMs and the human brain. These results 
support a unified modeling framework for studying the neural  
basis of language.

Results
Prediction before word onset. Comparison of next-word prediction 
behavior in autoregressive deep language models and humans. We 
developed a sliding-window behavioral protocol to directly quan-
tify humans’ ability to predict every word in a natural context (Fig. 
2a,b). Fifty participants proceeded word by word through a 30-min 
transcribed podcast (‘Monkey in the Middle’, This American Life 
podcast36) and provided a prediction of each upcoming word. The 
procedure yielded 50 predictions for each of the story’s 5,113 words 
(Fig. 2c and Methods). We calculated the mean prediction perfor-
mance for each word in the narrative, which we refer to as a ‘predict-
ability score’ (Fig. 2d). A predictability score of 100% indicates that 
all participants correctly guessed the next word, and a predictability 
score of 0% indicates that no participant predicted the upcoming 
word. This allowed us to address the following questions: First, how 
good are humans at next-word prediction? Second, how closely do 
human predictions align with autoregressive DLM predictions?

Word-by-word behavioral prediction during a natural story. 
Participants were able to predict many upcoming words in a com-
plex and unfamiliar story. The average human predictability score 
was 28% (s.e. = 0.5%), in comparison to a predictability score of 6% 
for blindly guessing the most frequent word in the text (‘the’). About 
600 words had a predictability score higher than 70%. Interestingly, 
high predictability was not confined to the last words in a sentence 
and applied to words from all parts of speech (21.44% nouns, 14.64% 
verbs, 41.62% function words, 4.35% adjectives and adverbs, and 
17.94% other). This suggests that humans are proficient in predict-
ing upcoming words in real-life contexts when asked to do so.

Human and deep language model next-word predictions and prob-
abilities. Next, we compared human and autoregressive DLM pre-
dictions of the words of the podcast as a function of prior context. 
As an instance of an autoregressive DLM, we chose to work with 
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Fig. 1 | Shared computational principles between the brain and 
autoregressive deep language models in processing natural language. 
For each sequence of words in the text, GPT-2 generates a contextual 
embedding (blue), which is used to assign probabilities to the identity 
of the next word (green box). Next, GPT-2 uses its pre-onset predictions 
to calculate its surprise level (that is, error signal) when the next word is 
revealed (purple box). The minimization of the surprise is the mechanism 
by which GPT-2 is trained to generate well-formed outputs. Each colored 
box and arrow represents the relationship between a given computational 
principle of the autoregressive DLM and the neural responses. The green 
boxes represent that both the brain and autoregressive DLMs are engaged in 
context-dependent prediction of the upcoming word before word onset. The 
green arrow indicates that we take the actual predictions from GPT-2 (for 
example, the top-one prediction ‘ocean’ for the example sentence ‘our story 
begins deep in the…’) to model the neural responses before word onset 
(Fig. 4). The purple boxes represent that both the brain and autoregressive 
DLMs are engaged in the assessment of their predictions after word 
onset. The purple arrow indicates that we take the actual perceived next 
word (‘rainforest’ in our example), as well as GPT-2’s surprise level for the 
perceived word (cross-entropy) to model the neural responses after word 
onset (Figs. 4b and 5b). The blue boxes represent that both the brain and 
autoregressive DLMs use contextual embeddings to represent words. The 
blue arrow indicates that we take the contextual embeddings from GPT-2 
to model the neural responses (Figs. 6 and 8). We argue here that, although 
the internal word-processing mechanisms are not the same for the brain and 
DLMs, they do share three core computational principles: (1) continuous 
context-dependent next-word prediction before word onset; (2) reliance on 
the pre-onset prediction to calculate post-word-onset surprise; and finally, 
(3) context-specific representation of meaning.
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GPT-2 (ref. 8). GPT-2 is a pretrained autoregressive language model 
with state-of-the-art performance on tasks related to reading com-
prehension, translation, text summarization and question answer-
ing. GPT-2 is trained by maximizing the log-probability of a token 
given its 1,024 past tokens (context, for a full description see ref. 7).  
For each word in the transcript, we extracted the most probable 
next-word prediction as a function of context. For example, GPT-2 
assigned a probability of 0.82 to the upcoming word ‘monkeys’ when 
it received the preceding words in the story as contextual input: ‘…
So after two days of these near misses, he changed strategies. He put 
his camera on a tripod and threw down some cookies to try to entice 
the _______.’. Human predictability scores and GPT-2 estimations 
of predictability were highly correlated (Fig. 2e; r = 0.79, P < 0.001). 

In this case, the most probable next-word prediction for both GPT-2 
and humans was ‘monkeys’. In 49.1% of the cases, the most prob-
able human prediction and the most probable GPT-2 prediction 
matched (irrespective of accuracy). For baseline comparison, we 
reported the same agreement measure with human prediction for 
2- to 5-gram models in Extended Data Fig. 1 (Methods). Regarding 
accuracy, GPT-2 and humans jointly correctly and incorrectly pre-
dicted 27.6% and 54.7% of the words, respectively. Only 9.2% of the 
words that humans predicted correctly were not correctly predicted 
by GPT-2, and only 8.4% of the words correctly predicted by GPT-2 
were not correctly predicted by humans (Extended Data Fig. 2).

Finally, we compared the match between the confidence level and 
the accuracy level of GPT-2 and human predictions. For example, if 

(Ira Glass) So there's some places where animals almost
never go, places that are designed by humans for humans.
This act ends up in a place like that, but it starts about as far
from there as you can get. Dana Chivvis explains.

(Dana Chivvis) Our story begins deep in the rainforests of
Indonesia on an island called Sulawesi. A few years ago, the
photographer David Slater traveled there from his home in
England to photograph a troop of monkeys.
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Fig. 2 | Behavioral assessment of the human ability to predict forthcoming words in a natural context. a, The stimulus was transcribed for the behavioral 
experiment. b, A ten-word sliding window was presented in each trial, and participants were asked to type their prediction of the next word. Once entered, 
the correct word is presented, and the window slides forward by one word. c, For each word, we calculated the proportion of participants that predicted 
the forthcoming word correctly. d, Human predictability scores across words. e, Human predictability scores versus GPT-2’s predictability scores for each 
upcoming word in the podcast. f, Match between assigned probability for humans and GPT-2 and the actual accuracy for their top-one predictions.  
g, Correlation between human predictions and GPT-2 predictions (as reported in d) for different context window lengths ranging from 2 to 1,024 preceding 
tokens (blue). Correlation between human predictions and 2- to 5-gram model predictions (orange).
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the model (or humans) assigned a 20% probability, would it (or they) 
produce only 20% correct predictions? Both humans and GPT-2 
had a remarkably similar confidence-to-accuracy function (Fig. 2f).  
Specifically, GPT-2 and humans displayed under-confidence in 
their predictions and were above 95% correct when the probabili-
ties were higher than 40%. These analyses suggest that next-word 
predictions of GPT-2 and humans are similar in natural contexts.

Prediction as a function of contextual window size. In natural com-
prehension (for example, listening to or reading a story), predictions 
for upcoming words are influenced by information accumulated 
over multiple timescales: from the most recent words to the infor-
mation gathered over multiple paragraphs37. We tested if GPT-2’s 
predictions would improve as a function of the context window as 
they do in humans. To that end, we varied GPT-2’s input window 
size (from 2 tokens up to 1,024 tokens) and examined the impact 
of contextual window size on the match with human behavior. The 
correlation between human and GPT-2 word predictions improved 
as the contextual window increased (from r = 0.46, P < 0.001 at 
2-word context to an asymptote of r = 0.79 at 100-word context;  
Fig. 2g). For baseline comparison, we also plotted the correlations of 
2- to 5-gram models with human predictions (Fig. 2g and Methods).

Neural activity before word onset reflects next-word predictions. 
The behavioral study indicates that listeners can accurately predict 
upcoming words in a natural open-ended context when explicitly 
instructed. Furthermore, it suggests human predictions and autore-
gressive DLM predictions are matched in natural contexts. Next, 
we asked whether the human brain, like an autoregressive DLM, is 
continuously engaged in spontaneous next-word prediction before 
word onset without explicit instruction. To that end, we used elec-
trocorticography signals from nine participants with epilepsy who 
volunteered to participate in the study (see Fig. 3a for a map of all 
electrodes). All participants listened to the same spoken story used 
in the behavioral experiment. In contrast to the behavioral study, 
the participants engaged in free listening—with no explicit instruc-
tions to predict upcoming words. Comprehension was verified 
using a post-listening questionnaire. Across participants, we had 
better coverage in the left hemisphere (1,106 electrodes) than in the 
right hemisphere (233 electrodes). Thus, we focused on language  
processing in the left hemisphere, but we also present the encod-
ing results for the right hemisphere in Extended Data Fig. 3.  
The raw signal was preprocessed to reflect high-frequency broad-
band (70–200 Hz) power activity (for full preprocessing proce
dures, see Methods).

Below we provide multiple lines of evidence that the brain, like 
autoregressive DLMs, is spontaneously engaged in next-word pre-
diction before word onset. The first section focuses solely on the 
pre-onset prediction of individual words by using static (that is, 
non-contextual) word embeddings (GloVe38 and word2vec39). In the 
third section, we investigate how the brain adjusts its responses to 
individual words as a function of context, by relying on contextual 
embeddings.

Localizing neural responses to natural speech. We used a linear 
encoding model and static semantic embeddings (GloVe) to local-
ize electrodes containing reliable responses to single words in the 
narrative (Fig. 3a,b and Methods). Encoding models learn a map-
ping to predict brain signals from a representation of the task or 
stimulus40. The model identified 160 electrodes in early auditory 
areas, motor cortex and language areas in the left hemisphere (see 
Fig. 3c for left-hemisphere electrodes and Extended Data Fig. 3 for 
right-hemisphere electrodes).

Encoding neural responses before word onset. In the behavioral 
experiment (Fig. 2), we demonstrated people’s capacity to predict  

upcoming words in the story. Next, we tested whether the neu-
ral signals also contain information about the identity of the 
predicted words before they are perceived (that is, before word 
onset). The word-level encoding model (based on GloVe word 
embeddings) yielded significant correlations with predicted neu-
ral responses to upcoming words up to 800 ms before word onset 
(Fig. 4a; for single electrodes encoding models see Extended Data 
Fig. 4). The encoding analysis was performed in each electrode 
with significant encoding for GloVe embeddings (n = 160), and 
then averaged across electrodes (see map of electrodes in Fig. 3c). 
Peak encoding performance was observed 150–200 ms after word 
onset (lag 0), but the models performed above chance up to 800 ms 
before word onset. As a baseline for the noise level, we randomly 
shuffled the GloVe embeddings, assigning a different vector to the 
occurrence of each word in the podcast. The analysis yielded a flat 
encoding value around zero (Fig. 4a). The encoding results using 
GloVe embeddings were replicated using 100-dimensional static 
embeddings from word2vec (Extended Data Fig. 5). To control 
for the contextual dependencies between adjacent words in the 
GloVe embeddings, we demonstrated that the significant encod-
ing before word onset holds even after removing the information 
of the previous GloVe embedding (Extended Data Fig. 6a). This 
supports the claim that the brain continuously predicts semantic 
information about the meaning of upcoming words before they 
are perceived.

To test whether GloVe-based encoding is affected by the seman-
tic knowledge embedded in the model, we shuffled the word embed-
dings. Interestingly, when assigning a non-match GloVe embedding 
(from the story) to each word such that multiple occurrences of the 
same word received the same (but non-match) GloVe embedding, 
the encoding decreased (Extended Data Fig. 7). This indicates that 
the relational linguistic information encoded in GloVe embeddings 
is also embedded in the neural activity.

Encoding neural responses before word onset. To test if the significant 
encoding before word onset is driven by contextual dependencies 
between adjacent words in the GloVe embeddings, we also trained 
encoding models to predict neural responses using 50-dimensional 
static arbitrary embeddings, randomly sampled from a uniform  
[−1, 1] distribution. Arbitrary embeddings effectively removed the 
contextual information about the statistical relationship between 
words included in GloVe embeddings (Fig. 4a). Even for arbitrary  
embeddings, we were able to obtain significant encoding before word 
onset as to the identity of the upcoming word (for single-electrode 
encoding models, see Extended Data Fig. 4). To make sure that the 
analysis does not rely on local dependencies among adjacent words, 
we repeated the arbitrary-based encoding analysis after removing 
bi-grams that repeated more than once in the dataset (Extended 
Data Fig. 6b). The ability to encode the neural activity for the 
upcoming words before word onset with the arbitrary embeddings 
remained significant.

To further demonstrate that predicting the next word before 
word onset goes above and beyond the contextual information 
embedded in the previous word, we ran an additional control 
analysis. In the control analysis, we encoded the neural activity 
using the arbitrary word embedding assigned to the previous 
word (Extended Data Fig. 6c). Next, we ran an encoding model 
using the concatenation of the previous and current word embed-
dings (Extended Data Fig. 6c). We found a significant difference 
between these two models before word onset. This indicates that 
the neural responses before word onset contained information 
related to the next word above and beyond the contextual infor-
mation embedded in the previous word. Together, these results 
suggest that the brain is constantly engaged in the prediction  
of upcoming words before they are perceived as it processes  
natural language.
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Predictive neural signals for listeners’ incorrect predictions. Pre-onset 
activity associated with next-word prediction should match the pre-
diction content even when the prediction was incorrect. In contrast, 
post-onset activity should match the content of the incoming word, 
even if it was unpredicted. To test this hypothesis, we divided the sig-
nal into correct and incorrect predictions using GPT-2 (Methods) 

and computed encoding models. We also ran the same analyses 
using human predictions. We modeled the neural activity using: (1) 
the GloVe embeddings of the correctly predicted words (Fig. 4b); in 
this condition, the pre-onset word prediction matched the identity 
of the perceived incoming word; (2) the GloVe embedding for the 
incorrectly predicted words (Fig. 4b); and (3) the GloVe embedding 
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of the actual unpredictable words that humans perceived (Fig. 4b) 
because in the incorrect predictions condition the predicted word 
did not match the identity of the perceived word.

The neural responses before word onset contained information 
about human predictions regarding the identity of the next word. 
Crucially, the encoding was high for both correct and incorrect 
predictions (Fig. 4b and Extended Data Fig. 8). This demonstrated 
that pre-word-onset neural activity contains information about 
what listeners actually predicted, irrespective of what they subse-
quently perceived. Similar results were obtained using human pre-
dictions (Extended Data Fig. 8). In contrast, the neural responses 
after word onset contained information about the words that were 
actually perceived, irrespective of GPT-2’s predictions (Fig. 4b). The 
analysis of the incorrect predictions unequivocally disentangles the 
pre-word-onset processes associated with word prediction from the 
post-word-onset comprehension-related processes. Furthermore, it 
demonstrates how autoregressive DLMs predictions can be used for 
modeling human predictions at the behavioral and neural levels.

In summary, these multiple pieces of evidence, which are based 
on encoding analyses, suggest that the brain, like autoregressive 
DLMs, is constantly predicting the next word before onset as it pro-
cesses incoming natural speech. Next, we provide more evidence for 
coupling between pre-onset prediction and post-onset surprise level 
and error signals.

Pre-onset predictions and post-onset word surprise. 
Autoregressive language models provide a unified framework for 
modeling pre-onset next-word predictions and post-onset surprise  

(that is, prediction-error signals). We used pretrained GPT-2’s 
internal estimates for each upcoming word (Fig. 1) to establish a 
connection between pre-onset prediction and post-onset surprise 
at the neural level.

Increased activity for surprise 400 ms after word onset. Autoregressive 
DLMs, such as GPT-2, use their pre-onset predictions to calculate 
the post-onset surprise level as to the identity of the incoming word. 
It was already shown that the activation level after onset is corre-
lated with the surprise level14,21–23,41. We replicated this finding in our 
data. In addition, high-quality intracranial recordings allowed us to 
link pre-onset confidence level and the post-onset surprise level. 
Pre-onset confidence level was assessed using entropy (Methods), 
which is a measure of GPT-2’s uncertainty level in its prediction 
before word onset. High entropy indicates that the model is uncer-
tain about its predictions, whereas low entropy indicates that the 
model is confident. Post-onset surprise level was assessed using a 
cross-entropy measure that depends on the probability assigned 
to the incoming word before it is perceived (Fig. 1 and Methods). 
Assigning a low probability to the word before word onset will result 
in a post-onset high surprise when the word is perceived, and vice 
versa for high-probability words.

Pre-onset activity (using the same 160 electrodes used for Fig. 
4a,b) increased for correct predictions, whereas, in agreement with 
prior research, post-onset activity increased for incorrect predictions 
(Fig. 5a). The activity level was averaged for all words that were cor-
rectly or incorrectly predicted. We observed increased activity for 
incorrect predictions 400 ms after word onset (Fig. 5a). In addition, 
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GPT-2’s uncertainty (entropy) was negatively correlated with the 
activation level before word onset (Fig. 5b). In other words, before 
onset, the higher the confidence (low uncertainty), the higher the 
activation level. In contrast, after word onset, the level of surprise 
(cross-entropy) was correlated with activation, and peaked around 
400 ms (Fig. 5b). Because uncertainty correlates with surprise, we 
computed partial correlations between entropy, surprise and neural 
signals. This analysis directly connects GPT-2’s internal predictions 
and neural activity before word onset and GPT-2’s internal surprise 
and the surprise (that is, prediction error) embedded in the neural 
responses after word onset.

In summary, based on encoding and event-related activity, we 
introduce multiple pieces of evidence to link pre-onset next-word 
prediction processes with post-onset surprise processes using GPT-
2’s internal estimates. This section further supports the claim that 
autoregressive DLMs can serve a theoretical framework for lan-
guage comprehension-related processes. Next, we provide more 
evidence that GPT-2 tracks human neural signals and specifically 
that humans represent words in a context-dependent fashion, simi-
larly to DLMs.

Contextual representation. Contextual embeddings predict neural 
responses to speech. A next-word prediction objective enables autore-
gressive DLMs to compress a sequence of words into a contextual 
embedding from which the model decodes the next word. The pres-
ent results have established that the brain, similarly to autoregres-
sive DLMs, is also engaged in spontaneous next-word prediction as 
it listens to natural speech. Given this shared computational prin-
ciple, we investigated whether the brain, like autoregressive DLMs, 
compresses word sequences into contextual representation.

In natural language, each word receives its full meaning based on 
the preceding words42–44. For instance, consider how the word ‘shot’ 
can have very different meanings in different contexts, such as ‘tak-
ing a shot with the camera’, ‘drinking a shot at the bar’ or ‘making 
the game-winning shot’. Static word embeddings, like GloVe, assign 
one unique vector to the word ‘shot’ and, as such, cannot capture 
the context-specific meaning of the word. In contrast, contextual 

embeddings assign a different embedding (vector) to every word as 
a function of its preceding words. Here we tested whether autore-
gressive DLMs that compress context into contextual embeddings 
provide a better cognitive model for neural activity during linguis-
tic processing than static embeddings. To test this, we extracted the 
contextual embeddings from an autoregressive DLM (GPT-2) for 
each word in the story. To extract the contextual embedding of a 
word, we provided the model with the preceding sequence of all 
prior words (up to 1,024 tokens) in the podcast and extracted the 
activation of the top embedding layer (Methods).

Localizing neural responses using contextual embeddings. Replacing 
static embeddings (GloVe) with contextual embeddings (GPT-2) 
improved encoding model performance in the prediction of neural 
responses to words (Fig. 6a and Extended Data Fig. 3). Encoding 
based on contextual embeddings resulted in statistically significant 
correlations in 208 electrodes in the left hemisphere (and 34 in the 
right hemisphere), 71 of which were not significantly predicted by 
the static embeddings (GloVe). The additional electrodes revealed 
by contextual embedding were mainly located in higher-order 
language areas with long processing timescales along the inferior 
frontal gyrus, temporal pole, posterior superior temporal gyrus, 
parietal lobe and angular gyrus37. In addition, there was a noticeable 
improvement in the contextual embedding-based encoding model 
in the primary and supplementary motor cortices. The improve-
ment was seen both at the peak of the encoding model and in the 
model’s ability to predict neural responses to words up to 4 s before 
word onset (for the 160 electrodes with significant GloVe encod-
ing; Fig. 6b and Extended Data Figs. 4 and 9). The improvement 
in the ability to predict neural signals to each word while relying 
on autoregressive DLM’s contextual embeddings was robust and 
apparent even at the single-electrode level (Extended Data Fig. 4). 
These results agree with concurrent studies demonstrating that con-
textual embeddings model neural responses to words better than 
static semantic embeddings15,16,45,46. Next, we asked which aspects of 
the contextual embedding drive the improvement in modeling the 
neural activity.
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Modeling the context versus predicting the upcoming word. The 
improved ability to predict neural responses before word onset 
using contextual embedding can be attributed to two related factors 
that are absent in the static word embeddings (for example, GloVe): 
(1) the brain, like GPT-2, aggregates information about the preced-
ing words in the story into contextual embeddings; and (2) GPT-2 
embeddings contain additional predictive information, not encoded 
in static embeddings, about the identity of the upcoming word in 
the sequence. By carefully manipulating the contextual embeddings 
and developing an embedding-based decoder, we show how both 
context and next-word prediction contribute to contextual embed-
dings’ improved ability to model the neural responses.

Representing word meaning in unique contexts. Going above and 
beyond the information encoded in GloVe, GPT-2’s capacity for 
representing context captures additional information in neural 
responses. A simple way to represent the context of prior words is to 
combine (that is, concatenate) the static embeddings of the preced-
ing sequence of words. To test this simpler representation of context, 
we concatenated GloVe embeddings for the ten preceding words 
in the text into a longer ‘context’ vector and compared the encod-
ing model performance to GPT-2’s contextual embeddings (after 
reducing both vectors to 50 dimensions using principal-component 
analysis). While the concatenated static embeddings were better in 
predicting the prior neural responses than the original GloVe vec-
tors, which only capture the current word, they still underperformed 
GPT-2’s encoding before word articulation (Extended Data Fig. 9). 
This result suggests that GPT-2’s contextual embeddings are bet-
ter suited to compress the contextual information embedded in the 
neural responses than static embeddings (even when concatenated).

A complementary way to demonstrate that contextual embed-
dings uncover aspects of the neural activity that static embeddings 
cannot capture is to remove the unique contextual information 
from GPT-2 embeddings. We removed contextual information from 
GPT-2’s contextual embeddings by averaging all embeddings for 
each unique word (for example, all occurrences of the word ‘mon-
key’) into a single vector. This analysis was limited to words that 
have at least five repetitions (Methods). Thus, we collapsed the con-
textual embedding into a ‘static’ embedding in which each unique 
word in the story is represented by one unique vector. The resulting 
embeddings were still specific to the overall topic of this particular 
podcast (unlike GloVe). Still, they did not contain the local context 

for each occurrence of a given word (for example, the context in 
which ‘monkey’ was used in sentence 5 versus the context in which 
it was used in sentence 50 of the podcast). Indeed, removing con-
text from the contextual embedding by averaging the vector for each 
unique word effectively reduced the encoding model’s performance 
to that of the static GloVe embeddings (Fig. 6b).

Finally, we examined how the specificity of the contextual infor-
mation in the contextual embeddings improved the ability to model 
the neural responses to each word. To that end, we scrambled the 
embeddings across different occurrences of the same word in the 
story (for example, switched the embedding of the word ‘monkey’ 
in sentence 5 with the embedding for the word ‘monkey’ in sen-
tence 50). This manipulation tests whether contextual embeddings 
are necessary for modeling neural activity for a specific sequence 
of words. Scrambling the same word occurrences across contexts 
substantially reduced the encoding model performance (Fig. 6b), 
pointing to the contextual dependency represented in the neural 
signals. Taken together, these results suggest that contextual embed-
dings provide us with a new way to model the context-dependent 
neural representations of words in natural contexts.

Predicting words from neural signal using contextual embeddings. 
Finally, we applied a decoding analysis to demonstrate that, in addi-
tion to better modeling the neural responses to context, contextual 
embeddings also improved our ability to read information from the 
neural responses as to the identity of upcoming words. This dem-
onstrates the duality of representing the context and the next-word 
prediction in the brain.

The encoding model finds a mapping from the embedding space 
to the neural responses that is used during the test phase for predict-
ing neural responses. The decoding analysis inverts this procedure 
to find a mapping from neural responses, across multiple electrodes 
and time points, to the embedding space47. This decoding analy-
sis provides complementary insights to the encoding analysis by 
aggregating across electrodes and quantifies how much predictive 
information about each word’s identity is embedded in the spatio-
temporal neural activity patterns before and after word onset.

The decoding analysis was performed in two steps. First, we 
trained a deep convolutional neural network to aggregate neural 
responses (Fig. 7a and Appendix I) and mapped this neural signal 
to the arbitrary, static (GloVe-based) and to the contextual (GPT-
2-based) embedding spaces (Fig. 7b). To conservatively compare the 
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performance of GPT-2-based embedding to GloVe-based embed-
ding, we used as input the signal from the electrodes that were 
found to be significant for GloVe-based encoding. To further ensure 
that the decoding results were not affected by the electrode selec-
tion procedure, for each test fold, we selected the electrodes using 
the remaining 80% of the data (Methods). To obtain a reliable esti-
mation of accuracy per word label we included words with at least 
five repetitions, which included 69% of the words in the story (for 
the full list of words, see Appendix II). Second, the predicted word 
embeddings were used for word classification based on their cosine 
distance from all embeddings in the dataset (Fig. 7c). Although we 
evaluated the decoding model using classification, the classifier pre-
dictions were constrained to rely only on the embedding space. This 
is a more conservative approach than an end-to-end word classifi-
cation, which may capitalize on acoustic information in the neural 
signals that are not encoded in the language models.

Using a contextual decoder greatly improved our ability to 
classify word identity over decoders relying on static or arbitrary 
embeddings (Fig. 8). We evaluated classification performance using 

the receiver operating characteristic (ROC) analysis with corre-
sponding area under the curve (AUC). A model that only learns to 
use word frequency statistics (for example, only guessing the most 
frequent word) will result in a ROC-AUC curve that falls on the 
diagonal line (AUC = 0.5) suggesting that the classifier does not dis-
criminate between the words48. Classification using GPT-2 (average 
AUC of 0.74 for lag 150) outperformed GloVe and arbitrary embed-
dings (average AUC of 0.68 and 0.68, respectively) before and after 
word onset. To compare the performance of the classifiers based on 
GPT-2 and GloVe at each lag, we performed a paired-sample t-test 
between the AUCs of the words in the two models. Each unique 
word (class) in each lag had an AUC value computed from the 
GloVe-based model and an AUC value computed from the GPT-
2-based model. The results were corrected for multiple tests by con-
trolling the false discovery rate (FDR)49.

A closer inspection of the GPT-2-based decoder indicated that 
the classifier managed to detect reliable information about the iden-
tity of words several hundred milliseconds before word onset (Fig. 8).  
In particular, starting at about −1,000 ms before word onset, when 
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the neural signals were integrated across a window of 625 ms, the 
classifier detected predictive information about the next word’s 
identity. The information about the next word’s identity gradually 
increased and peaked at an average AUC of 0.74 at a lag of 150 ms 
after word onset, when the signal was integrated across a window 
from −162.5 ms to 462.5 ms. GloVe embeddings showed a similar 
trend with a marked reduction in classifier performance (Fig. 8). 
The decoding model’s capacity to classify words before word onset 
demonstrates that the neural signal contains a considerable amount 
of predictive information about the meaning of the next word, up 
to a second before it is perceived. At longer lags (more than 2 s), all 
decoders’ performance dropped to chance.

Discussion
DLMs provide a new modeling framework that drastically departs 
from classical psycholinguistic models. They are not designed 
to learn a concise set of interpretable syntactic rules to be imple-
mented in novel situations, nor do they rely on part of speech con-
cepts or other linguistic terms. Rather, they learn from surface-level 
linguistic behavior to predict and generate the contextually appro-
priate linguistic outputs. The current paper provides compelling 
behavioral and neural evidence for shared computational principles 
between the way the human brain and autoregressive DLMs process 
natural language.

Spontaneous prediction as a keystone of language processing. 
Autoregressive DLMs learn according to the simple self-supervised 
objective of context-based next-word prediction. The extent to 
which humans are spontaneously engaged in next-word predictions 
as they listen to continuous, minutes-long, natural speech has been 
underspecified. Our behavioral results revealed a robust capacity for 
next-word prediction in real-world stimuli, which matches a mod-
ern autoregressive DLM (Fig. 2). Neurally, our findings demonstrate 
that the brain constantly and actively represents forthcoming words 
in context during listening to natural speech. The predictive neural 
signals are robust, and can be detected hundreds of milliseconds 
before word onset. Notably, the next-word prediction processes are 
associated with listeners’ contextual expectations and can be dis-
sociated from the processing of the actually perceived words after 
word onset (Fig. 4b and Extended Data Fig. 8).

Pre-onset prediction is coupled with post-onset surprise. 
Autoregressive DLMs (like GPT-2) provide a unified computational 
framework that connects pre-onset word prediction with post-onset 
surprise (error signals). Our results show that we can rely on GPT-
2’s internal pre-onset confidence (entropy) and post-onset surprise 
(cross-entropy) to model the brain’s internal neural activity as it 
processes language. The correlations between GPT-2’s internal sur-
prise level and the neural signals corroborate the link between the 
two systems50.

Context-specific meaning as a keystone of language processing. 
As each word attains its full meaning in the context of preceding 
words over multiple timescales, language is fundamentally con-
textual51. Even a single change to one word or one sentence at the 
beginning of a story can alter the neural responses to all subsequent 
sentences43,52. We demonstrated that the contextual word embed-
dings learned by DLMs provide a new way to compress linguistic 
context into a numeric vector space, which outperforms the use of 
static semantic embeddings (Figs. 6b and 8 and Extended Data Figs. 
4 and 9). While static embeddings and contextual embeddings are 
different, our neural results also hint at how they relate to each other. 
Our results indicate that both static and contextual embeddings can 
predict neural responses to single words in many language areas16 
along the superior temporal cortex, parietal lobe and inferior frontal 
gyrus. Switching from static to contextual embeddings boosted our 
ability to model neural responses during natural speech process-
ing across many of these brain areas. Finally, averaging contextual 
embeddings associated with a given word removed the contextual 
information and effectively changed GPT-2’s contextual embedding 
back into static word embeddings (Fig. 6b). Taken together, these 
results suggest that the brain is coding for the semantic relation-
ship among words contained in static embeddings while also being 
tuned to the unique contextual relationship between the specific 
word and the preceding words in the sequence53.

Using an autoregressive language model as a cognitive model. We 
describe three shared computational principles that reveal a strong 
link between the way the brain and DLMs process natural language. 
These shared computational principles, however, do not imply that 
the human brain and DLMs implement these computations in a 
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similar way. For example, many state-of-the-art DLMs rely on trans-
formers, a type of neural network architecture developed to solve 
sequence transduction. Transformers are designed to parallelize a 
task that is largely computed serially, word by word, in the human 
brain. Therefore, while transformer models are an impressive engi-
neering achievement, they are not biologically feasible. Many other 
ways, however, are possible to transduce a sequence into a con-
textual embedding vector. To the extent that the brain relies on a 
next-word prediction objective to learn how to use language in con-
text, it likely uses a different implementation54.

Psycholinguistic models versus deep language models. DLMs 
were engineered to solve a fundamentally different problem than 
psycholinguistic language models. Psycholinguistic language mod-
els aim to uncover a set of generative (learned or innate) rules to be 
used in infinite, novel situations55. Finding a set of linguistic rules, 
however, was challenging. There are numerous exceptions for every 
rule, conditioned by discourse context, meaning, dialect, genre, 
and many other factors51,56–58. In contrast, DLMs aim to provide the 
appropriate linguistic output given the prior statistics of language 
use in similar contexts20,59. In other words, psycholinguistic theo-
ries aim to describe observed language in terms of a succinct set 
of explanatory constructs. DLMs, in contrast, are performance ori-
ented and are focused on learning how to generate formed linguistic 
outputs as a function of context while de-emphasizing interpret-
ability60. The reliance on performance creates an interesting con-
nection between DLMs and usage (context)-based constructionist 
approaches to language58,61. Furthermore, DLMs avoid the circular-
ity built into many psycholinguistic language models that rely on 
linguistic terms to explain how language is encoded in neural sub-
strates19,62. Remarkably, the internal contextual embedding space in 
DLMs can capture many aspects of the latent structure of human 
language, including syntactic trees, voice, co-references, morphol-
ogy and long-range semantic and pragmatic dependencies1,63,64. 
This discussion demonstrates the power (over the more traditional 
approaches) of applying brute-force memorization and interpola-
tion for learning how to generate the appropriate linguistic outputs 
in light of prior contexts20.

Observational work in developmental psychology suggests that 
children are exposed to tens of thousands of words in contextu-
alized speech each day, creating a large data volume available for 
learning65,66. The capacity of DLMs to learn language relies on 
gradually exposing the model to millions of real-life examples. Our 
finding of spontaneous predictive neural signals as participants lis-
ten to natural speech suggests that active prediction may underlie 
humans’ lifelong language learning. Future studies, however, will 
have to assess whether these cognitively plausible, prediction-based 
feedback signals are at the basis of human language learning and 
whether the brain is using such predictive signals to guide language 
acquisition. Furthermore, as opposed to autoregressive DLMs, it is 
likely that the brain relies on additional simple objectives at differ-
ent timescales to facilitate learning20,67.

Conclusion
This paper provides evidence for three shared core computational 
principles between DLMs and the human brain. While DLMs may 
provide a building block for our high-level cognitive faculties, they 
undeniably lack certain central hallmarks of human cognition. 
Linguists were primarily interested in how we construct well-formed 
sentences, exemplified by the famous grammatically correct but 
meaningless sentence ‘colorless green ideas sleep furiously’, com-
posed by Noam Chomsky2. Similarly, DLMs are generative in the 
narrow linguistic sense of being able to generate new sentences that 
are grammatically, semantically and even pragmatically well-formed 
at a superficial level. However, although language may play a 
central organizing role in our cognition, linguistic competence  

is insufficient to capture thinking. Unlike humans, DLMs cannot 
think, understand or generate new meaningful ideas by integrating 
prior knowledge. They simply echo the statistics of their input68. 
Going beyond the importance of language as having a central orga-
nizing role in our cognition, DLMs indicate that linguistic compe-
tence may be insufficient to capture thinking. A core question for 
future studies in cognitive neuroscience and machine learning is 
how the brain can leverage predictive, contextualized linguistic rep-
resentations, like those learned by DLMs, as a substrate for generat-
ing and articulating new thoughts.
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Methods
Transcription and alignment. The stimuli for the behavioral and 
electrocorticography experiments were extracted from the story ‘So a Monkey and 
a Horse Walk Into a Bar: Act One, Monkey in the Middle’. The story was manually 
transcribed. Sounds such as laughter, breathing, lip smacking, applause and silent 
periods were also marked to improve the alignment’s accuracy. The audio was 
downsampled to 11 kHz and the Penn Phonetics Lab Forced Aligner was used  
to automatically align the audio to the transcript69. After automatic alignment  
was complete, the alignment was manually evaluated and improved by an 
independent listener.

Behavioral word-prediction experiment. To obtain a continuous measure of 
prediction, we developed a sliding-window behavioral paradigm where healthy 
adult participants made predictions for each upcoming word in the story. A total 
of 300 participants completed a behavioral experiment on Mechanical Turk for a 
fee of $10 (data about age and gender were not collected). We divided the story 
into six segments and recruited six nonoverlapping groups of 50 participants to 
predict every upcoming word within each segment of the story. The first group was 
exposed to the first two words in the story and then asked to predict the upcoming 
word. After entering their prediction, the actual next word was revealed, and 
participants were asked again to predict the next upcoming word in the story. Once 
ten words were displayed on the screen, the left-most word was removed and the 
next word was presented (Fig. 2b). The procedure was repeated, using a sliding 
window until the first group provided predictions for each word in the story’s 
first segment. Each of the other five groups listened uninterruptedly to the prior 
segments of the narrative and started to predict the next word at the beginning of 
their assigned segments. Due to a technical error, data for 33 words were omitted, 
and thus the final data contained 5,078 words. Importantly, before calculating the 
scores we used Excel’s spellchecker to locate and correct spelling mistakes.

n-gram models. We trained 2- to 5-gram models using the NLTK Python package 
and its built-in ‘Brown’ corpus. All punctuations were removed and letters 
lowercased. We trained separate models using no-smoothing, Laplace smoothing 
or Kneser–Ney smoothing. Then we used each model to extract the probability of a 
word given its preceding n − 1 context in the podcast transcript. We also extracted 
the most likely next word prediction to compare agreement with human responses.

Electrocorticography experiment. Ten participants (five females, aged 20–48 years) 
listened to the same story stimulus from beginning to end. Participants were 
not explicitly made aware that we would be examining word prediction in our 
subsequent analyses. One participant was removed from further analyses due to 
excessive epileptic activity and low signal-to-noise ratio across all experimental 
data collected. All participants volunteered for this study via the New York 
University School of Medicine Comprehensive Epilepsy Center. All participants 
had elected to undergo intracranial monitoring for clinical purposes and provided 
oral and written informed consent before study participation, according to the New 
York University Langone Medical Center Institutional Review Board. Participants 
were informed that participation in the study was unrelated to their clinical care 
and that they could withdraw from the study at any point without affecting their 
medical treatment.

For each participant, electrode placement was determined by clinicians based 
on clinical criteria. One participant consented to have a US Food and Drug 
Administration-approved hybrid clinical-research grid implanted, which includes 
standard clinical electrodes as well as additional electrodes in between clinical 
contacts. The hybrid grid provides a higher spatial coverage without changing 
clinical acquisition or grid placement. Across all participants, 1,106 electrodes were 
placed on the left hemisphere and 233 on the right hemisphere. Brain activity was 
recorded from a total of 1,339 intracranially implanted subdural platinum–iridium 
electrodes embedded in silastic sheets (2.3-mm-diameter contacts, Ad-Tech 
Medical Instrument; for the hybrid grids 64 standard contacts had a diameter of 
2 mm and additional 64 contacts were 1 mm in diameter, PMT). Decisions related 
to electrode placement and invasive monitoring duration were determined solely 
on clinical grounds without reference to this or any other research study. Electrodes 
were arranged as grid arrays (8 × 8 contacts, 10- or 5-mm center-to-center spacing), 
or linear strips.

Recordings from grid, strip and depth electrode arrays were acquired using 
one of two amplifier types: NicoletOne C64 clinical amplifier (Natus Neurologics), 
band-pass filtered from 0.16–250 Hz, and digitized at 512 Hz; NeuroWorks 
Quantum Amplifier recorded at 2,048 Hz, high-pass filtered at 0.01 Hz and then 
resampled to 512 Hz. Intracranial electroencephalography signals were referenced 
to a two-contact subdural strip facing toward the skull near the craniotomy site. 
All electrodes were visually inspected, and those with excessive noise artifacts, 
epileptiform activity, excessive noise or no signal were removed from subsequent 
analysis (164 of 1,065 electrodes removed).

Presurgical and postsurgical T1-weighted magnetic resonance imaging (MRI) 
scans were acquired for each participant, and the location of the electrodes relative 
to the cortical surface was determined from co-registered magnetic resonance 
imaging or computed tomography scans following the procedure described by 
Yang and colleagues70. Co-registered, skull-stripped T1 images were nonlinearly 

registered to an MNI152 template and electrode locations were then extracted 
in Montreal Neurological Institute space (projected to the surface) using the 
co-registered image. All electrode maps were displayed on a surface plot of the 
template, using the electrode localization toolbox for MATLAB available at https://
github.com/HughWXY/ntools_elec/.

Preprocessing. Data analysis was performed using the FieldTrip toolbox71, along 
with custom preprocessing scripts written in MATLAB 2019a (MathWorks). In 
total, 66 electrodes from all participants were removed due to faulty recordings. 
The analyses described are at the electrode level. Large spikes exceeding four 
quartiles above and below the median were removed and replacement samples 
were imputed using cubic interpolation. We then re-referenced the data to account 
for shared signals across all channels using either the common average referencing 
method71,72 or an independent component analysis-based method73 (based on the 
participant’s noise profile). High-frequency broadband power frequency provided 
evidence for a high positive correlation between local neural firing rates and high 
gamma activity74.

Broadband power was estimated using six-cycle wavelets to compute the 
power of the 70–200 Hz band, excluding 60, 120 and 180 Hz line noise. Power 
was further smoothed with a Hamming window with a kernel size of 50 ms. To 
preserve the temporal structure of the signal, we used zero-phase symmetric 
filters. The estimate of the broadband power using wavelets and symmetric filters, 
by construction, induces some temporal uncertainty, given that information over 
tens of milliseconds is combined. The amount of temporal uncertainty, however, is 
small relative to the differences between pre-onset and post-onset effects reported 
in the paper. First, as the wavelet computation was done using six cycles and the 
lower bound of the gamma band was 70 Hz, the wavelet computation introduces 
a 6/70-s uncertainty window centered at each time point. Thus, there is a leak 
from no more than 43 ms of future signal to data points in the preprocessed signal. 
Second, the smoothing procedure applied to the broadband power introduces 
a leak of up to 50 ms from the future. Overall, the leak from the future is at a 
maximum of 93 ms. As recommended by Cheveigné et al.75, this was empirically 
verified by examining the preprocessing procedure on an impulse response 
(showing a leak of up to ~90 ms,; Extended Data Fig. 10).

The procedure is as follows:
Despike

•	 Remove recordings that deviate more than three times the interquartile range 
from the mean value of the electrode.

•	 Interpolate the removed values using cubic interpolation.
Detrend

•	 Common average referencing/remove independent component analysis 
components.

Broadband power
•	 Use six-cycle wavelets to compute the power of the 70–200 Hz band, excluding 

60 and 180 Hz.
•	 Natural log transformation
•	 z-score transformation

Temporal smoothing
•	 Use a filter to smooth the data with a Hamming window with a kernel size 

of 50 ms. Apply the filter in forward and reverse directions to maintain the 
temporal structure, specifically the encoding peak onset (zero phase).

Encoding analysis. In this analysis, a linear model is implemented for each lag for 
each electrode relative to word onset, and is used to predict the neural signal from 
word embeddings (Fig. 3b). The calculated values are the correlations between 
the predicted signal and the held-out actual signal at each lag (separately for each 
electrode), indicating the linear model’s performance. Before fitting the linear 
models for each time point, we implemented running window averaging across a 
200-ms window. We assessed the linear models’ performance (model for each lag) 
in predicting neural responses for held-out data using a tenfold cross-validation 
procedure. The neural data were randomly split into a training set (that is, 90% 
of the words) for model training and a testing set (that is, 10% of the words) 
for model validation. On each fold of this cross-validation procedure, we used 
ordinary least-squares multiple linear regression to estimate the regression weights 
from 90% of the words. We then applied those weights to predict the neural 
responses to the other 10% of the words. The predicted responses for all ten folds 
were concatenated so a correlation between the predicted signal and actual signal 
was computed over all the words of the story. This entire procedure was repeated at 
161 lags from −2,000 to 2000 ms in 25-ms increments relative to word onset.

Part of the encoding analysis involves the selection of words to include in the 
analysis. For each analysis, we included the relevant words. Figure 4a includes all 
the words in the transcription that have a GloVe embedding totaling 4,843 words. 
Figure 4b–d comprises 2,886 accurately predicted words (796 unique words) and 
1,762 inaccurately predicted words (562 unique words). Lastly, Fig. 6b comprises 
3,279 words (165 unique words) that have both GloVe and GPT-2 embeddings, to 
allow for comparison between the two, and at least five repetitions for the average 
context and shuffle context conditions.

Nature Neuroscience | www.nature.com/natureneuroscience

https://github.com/HughWXY/ntools_elec/
https://github.com/HughWXY/ntools_elec/
http://www.nature.com/natureneuroscience


Articles NaTUrE NEUrosCIEnCE

Accuracy split. To model the brain’s prediction, the podcast’s transcription words 
were split into two groups. Each word was marked whether it was one of the 
top-five most probable words in the distribution that GPT-2 predicted given its 
past context (up to 1,024 previous tokens) or not (Fig. 1). Around 62% of the words 
included in the top-five predicted words given their context and were classified as 
correctly predicted using this accuracy measure. The other words were classified 
as incorrectly predicted (38%). To control possible confounds stemming from the 
accurately predicted words that are bigger than the inaccurately predicted group, 
we also report results from classifying the words according to top-one probability 
in Extended Data Fig. 8. Using the top-one measure for human prediction, we 
obtained a group of 36% correctly predicted words.

Confidence and surprise measures. We associate pre-onset neural activity with 
confidence in prediction and post-onset neural activity with surprise (prediction 
error). Both could be estimated using GPT-2. Given a sequence of words, 
autoregressive DLMs induce a distribution of probabilities for the next possible 
word. We used the entropy of this distribution as a measure for the confidence in 
prediction:14,22,41

H (X) =

n∑

i=1
P (xi) × logP(xi)

Where n is the vocabulary size and P(xi) is the probability (assigned by the model) 
of the i-th word in the vocabulary.

To estimate the surprise, we used the cross-entropy measure. Cross-entropy 
is the loss function used to attenuate the autoregressive DLMs weights, given its 
predictions (that is, the distribution) and the actual word. The lower the probability 
of the actual word before its onset, the higher the surprise it induces. It is  
defined by:

Cross-entropy (xactual) = − log (xactual)

While entropy represents the distance of a distribution from the uniform 
distribution, the cross-entropy describes the distance between the distribution to 
the 1-hot distribution.

Significance tests. To identify significant electrodes, we used a randomization 
procedure. At each iteration, we randomized each electrode’s signal phase uniform 
distribution, thus disconnecting the relationship between the words and the brain 
signal but preserving the autocorrelation in the signal76. Then, we performed the 
entire encoding procedure for each electrode. We repeated this process 5,000 
times. After each iteration, the encoding model’s maximal value across all 161 
lags was retained for each electrode. We then took the maximum value for each 
permutation across electrodes. This resulted in a distribution of 5,000 values, 
which was used to determine significance for all electrodes. For each electrode, 
a P value (Fig. 3c and 6a and Extended Data Figs. 3 and 4) was computed as the 
percentile of the non-permuted maximum value of the encoding model across all 
lags from the null distribution of 5,000 maximum values. Performing a significance 
test using this randomization procedure evaluates the null hypothesis such that 
there is no systematic relationship between the brain signal and the corresponding 
word embedding. This procedure yielded a P value for each electrode. To correct 
for multiple electrodes, we used the FDR49. Electrodes with q values less than 0.01 
were considered significant.

To test each lag’s significance for two different encoding models for the same 
group of electrodes (Figs. 4a,b and Extended Data Figs. 5, 8 and 9), we used a 
permutation test. Each electrode has encoding values for two encoding models. 
We randomly swapped the assignment of the encoding values between the two 
models. Then we computed the average of the pairwise differences to generate a 
null distribution at each lag. To account for multiple tests across lags, we adjusted 
the resulting P values to control the FDR49. A threshold was chosen to control the 
FDR at q = 0.01.

To set a threshold above which average encoding values are significant (Fig. 4  
and Extended Data Figs. 6 and 7), we used a bootstrapping method77. For each 
bootstrap, a sample matching the subset size was drawn with replacement from 
the encoding performance values for the subset of electrodes. The mean of each 
bootstrap sample was computed. This resulted in a bootstrap distribution of  
5,000 mean performance values for each lag. The bootstrap distribution was then 
shifted by the observed value to perform a null hypothesis test77. To account for 
multiple tests across lags, we adjusted the resulting P values to control the FDR49.  
A threshold was chosen to control the FDR at q = 0.01.

To statistically assess the pre-onset prediction for neural responses to correctly 
predicted words (Fig. 5), we completed a permutation test (such as the one 
described for Fig. 4a,b); however, we were also constrained to lags at which the 
neural responses were significant on their own (not with respect to the neural 
response of the inaccurate conditional brain response). The same procedure was 
implemented for the significant test of post-onset surprise.

Contextual embedding extraction. We extracted contextualized word embeddings 
from GPT-2 for our analysis. We used the pretrained version of the model 

implemented in the Hugging Face environment78. We first converted the words 
from the raw transcript (including punctuation and capitalization) to tokens which 
were either whole words or sub-words. We used a sliding window of 1,024 tokens, 
moving one token at a time, to extract the embedding for the final word in the 
sequence. Encoding these tokens into integer labels, we then fed them into the 
model, and in return, we received the activations at each layer in the network (also 
known as a hidden state). GPT-2 has 48 layers, but we focused only on the final 
one, before the classification layer. Finally, the token of interest was the final word 
of the sequence, yet we used the second-to-last token as the hidden state for the last 
word because it was the same activation embedding that was used to predict that 
word. With embeddings for each word in the raw transcript, we aligned this list 
with our spoken-word transcript that did not include punctuation, thus retaining 
only full words.

Decoding analysis. The input neural data were averaged in ten 62.5-ms bins 
spanning 625 ms for each lag. Each bin consisted of 32 data points (the neural 
recording sampling rate was 512 Hz). The neural network decoder (Appendix I)  
was trained to predict a word’s embedding from the neural signal at a specific 
lag. The data were split into five nonoverlapping temporal folds and used in a 
cross-validation procedure. Each fold consisted of a mean of 717.04 training words 
(s.d. = 1.32). Three folds were used for training the decoder (training set), one 
fold was used for early stopping (development set) and one fold was used to assess 
model generalization (test set). The neural net was optimized to minimize the MSE 
when predicting the embedding. The decoding performance was evaluated using a 
classification task assessing how well the decoder can predict the word label from 
the neural signal. We used the ROC-AUC.

To ensure that the decoding ability was not affected by the electrode selection 
procedure, we used the training and validation folds (80% of the data) to choose 
the electrodes for each model. We used the same significance test as the one used 
to locate GloVe-based significant encodings. This procedure yielded a different 
number of electrodes ranging from 114 to 132.

To calculate the ROC-AUC, we computed the cosine distance between each of 
the predicted embeddings and the embeddings of all instances of each unique word 
label. The distances were averaged across unique word labels, yielding one score 
for each word label (that is, logit). We used a Softmax transformation on these 
scores (logits). For each label (classifier), we used the logits and the information of 
whether the instance matched the label to compute a ROC-AUC for the label. We 
plotted the weighted ROC-AUC according to the word’s frequency in the test set. 
To obtain reliable ROC-AUC scores, we chose words with at least five repetitions in 
the training set (69% of the words in the transcript).

To improve the performance of the decoder, we implemented an ensemble 
of models. We independently trained ten decoders with randomized weight 
initializations and randomized the batch order. This procedure generated ten 
predicted embeddings. Thus, for each predicted embedding, we repeated the 
distance calculation from each word label ten times. These ten values were 
averaged and later used for ROC-AUC.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset will become available 6 months after paper publication. Pending 
anonymization process.

Code availability
All the scripts for analyses can be found at https://github.com/orgs/hassonlab/
repositories/.
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Extended Data Fig. 1 | Figure S1. Comparing agreement with human prediction between most probable predictions based on n-grams or GPT-2. The 
plots show higher agreement between human predictions and GPT-2’s top-1 predictions than all the n-gram model predictions we trained.
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Extended Data Fig. 2 | Figure S2. Comparing GPT-2 predictions and human predictions. Coloring the scatter plot according to GPT-2/human accuracy. 
GPT-2 and humans jointly predicted correctly 27.6% of the words (green). GPT-2 and humans jointly predicted incorrectly and disagreed on the next 
word for 48.8% of the words (red). GPT-2 and humans jointly predicted incorrectly and agreed on the next word for 5.9% of the words (black) 9.2% of 
the words humans predicted correctly were not correctly predicted by GPT-2 (blue). 8.4% of the words correctly predicted by GPT-2 were not correctly 
predicted by humans.
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Extended Data Fig. 3 | Figure S3. Left and right hemisphere encoding results show an advantage for contextual (GPT-2) embeddings over static 
(GloVe) and arbitrary embeddings. Right Hemisphere maps for correlation between. A. Predicted and actual word responses for the arbitrary embeddings 
(nonparametric permutation test; q < .01, FDR corrected). B. Correlation between predicted and actual word responses for the static (GloVe) embeddings. 
C. Correlation between predicted and actual word responses for the contextual (GPT-2) embeddings. Using contextual embeddings significantly improved 
the encoding model’s ability to predict the neural signals for unseen words across many electrodes. Given that we had fewer electrodes in the right 
hemisphere relative to the left hemisphere, this study is not set up to test differences in language lateralization across hemispheres.
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Extended Data Fig. 4 | Figure S4. Contextual embedding significantly improves the modeling of neural signals. Map of the electrodes in the left 
hemisphere with significant encoding for 1) all three types of embeddings (GPT-2 ∩ GloVe ∩ arbitrary, red); 2) for static and contextual embeddings 
(GPT-2 ∩ GloVe, but not arbitrary, yellow); 3) and contextual only (GPT-2, purple) embeddings. Note the three groups do not overlap. A sampling of 
encoding performance for selected individual electrodes across different brain areas: inferior frontal gyrus (IFG), temporal pole (TP), middle superior 
central gyrus (mSTG), superior temporal sulcus (STS), lateral sulcus (LS), middle temporal gyrus (MTG), posterior superior temporal gyrus (pSTG), 
angular gyrus (AG), post central gyrus (postCG), precentral gyrus (PreCG), and middle frontal sulcus (MFS). (Green - encoding for the arbitrary 
embeddings, blue - encoding for static (GloVe) embeddings; purple - encoding for contextual (GPT-2) embeddings).
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Extended Data Fig. 5 | Figure S5. Comparison of GloVe and word2vec-based static embeddings. The encoding procedure was repeated for two additional 
static embeddings using the electrodes that were found significant for GloVe-50 encoding on the left hemisphere (Fig. 3B). Each line indicates the 
encoding model performance averaged across electrodes for a given type of static embedding at lags from -2000 to 2000 ms relative to word onset. The 
error bars indicate the standard error of the mean across the electrodes at each lag. 100-dimensional word2vec and GloVe embeddings resulted in similar 
encoding results to the initial 50-dimensional GloVe embeddings. This suggests that results obtained with static embeddings are robust to the specific 
type of static embeddings used.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNaTUrE NEUrosCIEnCE

Extended Data Fig. 6 | Figure S6. Controlling for correlations among adjacent GloVe embeddings. To ensure that the signal predicted before word-onset 
is not a result of a correlation among adjacent GloVe embeddings we ran the following additional control analyses: A. We projected (by inner product) 
and then subtracted the GloVe embedding of the previous word from each word and re-ran the encoding analysis. The analysis demonstrates that the 
significant encoding before word onset holds even after removing local contextual dependencies in the GloVe embedding of consecutive words. The 
error bars indicate the standard error of the encoding models across electrodes. The horizontal line indicates the significance threshold calculated using 
a permutation test and FDR corrected for multiple comparisons (q < .01). B. We trained an encoding model using arbitrary embeddings on our dataset 
after removing all bi-grams that repeated more than once. The encoding before word onset remained significant after the removal of the bi-grams. The 
error bars indicate the standard error of the encoding models across electrodes. The horizontal line indicates the significance threshold calculated using 
a permutation test and FDR corrected for multiple comparisons (q < .01). C. We compared an encoding model based on arbitrary embeddings using 
the previous word embedding (blue line), to an encoding model where we concatenated previous and current word embeddings (red line). The error 
bars indicate the standard error of the encoding models across electrodes. Red asterisks mark significant differences using a permutation test and FDR 
correction (q < .01). The significant difference between these two models before word onset is another evidence that there is predictive information in the 
neural activity as to the upcoming word, above and beyond the contextual information embedded in the previous word. The horizontal line indicates the 
significance threshold calculated using permutation test and FDR corrected for multiple comparisons (q < .01).
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Extended Data Fig. 7 | Figure S7. GloVe’s space embedding attributes. It can be argued that GloVe based encoding outperforms arbitrary-based encoding 
due to a general property of the space that GloVe embeddings induce (for example, they are closer / further away from each other). To control for this 
possible confound, we consistently mismatched the labels of the embeddings of GloVe and used the mismatched version for encoding. This means that 
each unique word was consistently matched with a specific vector that is actually an embedding of a different label (for example, matching each instance 
of the word ‘David’ with the embedding of the word ‘court’). This manipulation uses the same embedding space that GloVe uses and also induces a 
consistent mapping of words to embeddings (as in the arbitrary-based encoding). The matched GloVe (blue) outperformed the mismatched GloVe 
(black), supporting the claim that GloVe embedding carries information about word statistics that is useful for predicting the brain signal.. The error bars 
indicate the standard error of the encoding models across electrodes.
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Extended Data Fig. 8 | Figure S8. Encoding for correct / incorrect predictions. This is a variation of Fig. 4B where: A. We classify words as correctly 
predicted if they are the most predictable words by humans’ ratings. The error bars indicate the standard error of the encoding models across electrodes. 
B. We classify words as correctly predicted if they are the most predictable by GPT-2 (instead of top-5). The error bars indicate the standard error of the 
encoding models across electrodes.
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Extended Data Fig. 9 | Figure S9. Comparison of GPT-2 and concatenation of static embeddings. The increased performance of GPT-2 based contextual 
embeddings encoding may be attributed to the fact that it consists of information about the previous words’ identity. To examine this possibility, we 
concatenated the GloVe embeddings of the 10 previous words and current word, and reduced their dimensionality to 50 features. GPT-2 based encoding 
outperformed mere concatenation before word onset, suggesting that GPT-2’s ability to compress the contextual information improves the ability to model 
the neural signals before word onset. The error bars indicate the standard error of the encoding models across electrodes.
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Extended Data Fig. 10 | Figure S10. Preprocessing procedure applied to an impulse response. The plot demonstrates the temporal uncertainty introduced 
by the preprocessing procedure (especially by the wavelet and smoothing procedures). At sample 45 after onset (dashed line) the value is back to zero, 
considering the 512 HZ sampling rate this means that the leak from the future is bounded by 93 ms.
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Data exclusions One patient was removed  according   pre-established exclusion criteria of excessive epileptic activity  .
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patient level (which can be considered as replication). No failed replications have be found. 
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