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Abstract

People routinely make decisions based on samples of numerical values. A common

conclusion from the literature in psychophysics and behavioral economics is that observers

subjectively compress magnitudes, such that extreme values have less sway over people’s

decisions than prescribed by a normative model (underweighting). However, recent studies

have reported evidence for anti-compression, that is, the relative overweighting of extreme

values. Here, we investigate potential reasons for this discrepancy in findings and propose

that it might reflect adaptive responses to different task requirements. We performed a

large-scale study (n = 586) of sequential numerical integration, manipulating (i) the task

requirement (averaging a single stream or comparing two interleaved streams of numbers),

(ii) the distribution of sample values (uniform or Gaussian), and (iii) their range (1 to 9 or

100 to 900). The data showed compression of subjective values in the averaging task, but

anti-compression in the comparison task. This pattern held for both distribution types and

for both ranges. In model simulations, we show that either compression or

anti-compression can be beneficial for noisy observers, depending on the sample-level

processing demands imposed by the task. This suggests that the empirically observed

patterns of over- and underweighting might reflect adaptive responses.

Public Significance Statement

In decisions based on numbers, people tend to either over- or underweight extreme values.

This study provides a new framework to explain why sometimes overweighting and

sometimes underweighting is observed. In simulations, we show that either of the two types

of distortion can be performance-maximizing for noisy observers, depending on the

processing demands of the task. This framework is empirically supported by a large-scale

study showing that the type of distortion (over- or underweighting) displayed by

participants varied with task demands, but not with other experimental factors. The

results address long-standing questions as to why humans make seemingly irrational



OVER- AND UNDERWEIGHTING OF EXTREME VALUES

decisions, and reconcile discrepant findings in the previous literature.

Keywords: decision making, numerical cognition, computational modeling, adaptive

cognition
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Over- and Underweighting of Extreme Values in

Decisions from Sequential Samples
Many decisions are based on sampling numerical values—for example, when glancing

through the prices in the menu of a new restaurant that has opened up in the neighborhood

to judge whether it is affordable. A common observation in experimental studies is that

decision makers tend to distort sample values away from their objective magnitude, for

instance, giving relatively greater weight to mid-range values, and relatively less weight to

more extreme values. Such subjective compression (underweighting of extreme values) is

observed not only in psychophysical judgments of perceptual information (as described by

the Weber–Fechner law; Fechner, 1860), but also in economic decisions involving numerical

or monetary values (Bernoulli, 1954; Kellen et al., 2016; Tversky & Kahneman, 1992). On

a neurocognitive level, compression is assumed to optimize information transfer in capacity-

limited channels (efficient coding; e.g., Barlow, 1961; Bhui & Gershman, 2018) and to enable

robust ensemble judgments (de Gardelle & Summerfield, 2011; Vandormael et al., 2017) that

may protect against the deleterious effects of “late” decision noise (see below; e.g., Juechems

et al., 2021; Li et al., 2017).

However, several recent studies of sample-based decision making have observed the op-

posite type of distortion, namely anti-compression. With anti-compression, extreme values

are given relatively greater weight than implied by their objective magnitude (overweighting

of extreme values; Kunar et al., 2017; E. A. Ludvig et al., 2018; E. A. Ludvig et al., 2014;

Prat-Carrabin & Woodford, 2020; Shevlin et al., 2022; Spitzer et al., 2017; Tsetsos et al.,

2012; Tsetsos et al., 2016; Vanunu et al., 2019). The reasons for this discrepancy in findings

are currently unclear. Complicating matters, both types of distortion have been associated

with performance benefits in the face of “late” decision noise (i.e., noise that occurs down-

stream of sensory-perceptual encoding—for instance, when evidence from multiple samples

is combined into a binary choice; Li et al., 2017; Spitzer et al., 2017; Tsetsos et al., 2016).

Based on model simulations, one proposal has been that compression maximizes the perfor-
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mance of noisy observers when the sample values are normally (i.e., Gaussian) distributed,

whereas anti-compression may be beneficial when the distribution is uniform (e.g., Li et al.,

2017; Spitzer et al., 2017; Summerfield & Li, 2018).

Alternatively, whether participants show compression or anti-compression may also be

influenced by other task aspects (see also Summerfield & Parpart, 2021). Many of the exper-

imental tasks in which anti-compression has been observed posed relatively high cognitive

demands, for instance, requiring evaluation of relational information in rapid sequential dis-

plays (e.g., Tsetsos et al., 2012; Tsetsos et al., 2016), and the degree of anti-compression

has been found to increase with task complexity (Spitzer et al., 2017; Vanunu et al., 2019).

Compression, in contrast, has often been observed in more direct perceptual (and arguably

simpler) judgments of ensemble information, such as the average magnitude or orientation of

a stimulus set (de Gardelle & Summerfield, 2011; Katzin et al., 2021; Li et al., 2017; Vandor-

mael et al., 2017). The type of distortion observed (i.e., compression or anti-compression)

may thus hinge on the processing resources required to evaluate the sample information in

the context of the specific decision task at hand.

Here, we show in simulations that compression confers performance benefits under

noise (see also Juechems et al., 2021; Li et al., 2017) only when the individual samples

in a set can be evaluated with relatively little processing effort. In contrast, when their

evaluation is more demanding—such that limited processing resources need to be traded off

between the different samples in a trial—we find the optimal policy to be anti-compression.

In other words, whether compression or anti-compression is the favorable policy for noisy

observers may depend on the sample-wise processing requirements imposed by the task.

We tested this proposal in a large participant sample (N = 586), manipulating the task

requirement (simple averaging vs. comparison of number sequences; see Methods). We

additionally manipulated the distribution of sample values (uniform vs. Gaussian, see above;

Li et al., 2017; Spitzer et al., 2017), and also their range (1 to 9 vs. 100 to 900), as there



OVER- AND UNDERWEIGHTING OF EXTREME VALUES 3

is some evidence that nonlinear distortions might be more pronounced with higher than

with lower numbers (Birnbaum & Chavez, 1997; Wakker & Deneffe, 1996). Our results

show that whether participants’ decisions reflected compression or anti-compression was

determined solely by the processing requirement of the task, and that they adopted the

favorable weighting policy in the respective task context. Thus, we present a theoretical

framework supported by empirical data to explain a previously puzzling heterogeneity in the

literature, namely, that decision makers sometimes overweight and sometimes underweight

extreme values in sample-based decisions.

Methods

Transparency and Openness

All data and analysis code as well as experimental materials are available at https:

//osf.io/x83pk (Clarmann von Clarenau et al., 2022). The data were analyzed using Matlab

version R2020b (The MathWorks, 2020a), with the Statistics and Machine Learning Toolbox

(The MathWorks, 2020e), the Econometrics Toolbox (The MathWorks, 2020b), the Parallel

Computing Toolbox (The MathWorks, 2020c), the Optimization Toolbox (The MathWorks,

2020d), and the BayesFactor Toolbox (Krekelberg, 2022). The study design and analyses

were not preregistered. The study was approved by the ethics committee of the Max Planck

Institute for Human Development.

Participants

We aimed at recruiting 800 young adults (n = 100 per condition) via Prolific (https:

//www.prolific.co). The target sample size was based on model simulations and previous

lab studies of psychometric distortions (see Introduction) and was increased to accommodate

anticipated drop-outs in online testing. Eventually, N = 778 participants (222 female, 442

male, 114 data on sex unavailable; mean age 24.83 ±5.02 years, range 18–41 years) took part

in the experiment. All participants gave written informed consent prior to performing the

experiment and received a basic reimbursement of 5.40 GBP per hour and a performance-

dependent bonus of up to 0.9 GBP. Participants were excluded if they failed on attention

https://osf.io/x83pk
https://osf.io/x83pk
https://www.prolific.co
https://www.prolific.co
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checks (see below) or if their performance in the main task was not significantly above chance

(p < 0.01, binomial test against 0.5, corresponding to at least 56% correct responses). We

further excluded 13 subjects who had participated repeatedly (in different conditions). After

exclusion, n = 586 participants (185 female, 390 male, 11 data on sex unavailable; Mage =

24.74 ±4.85 years) were retained in the analysis (mean n = 73.4 per experimental condition;

min: 68, max: 78).

Stimuli, Task, and Procedure

The experiment was conducted online using Qualtrics (https://www.qualtrics.com). In

each of the 8 experimental conditions, participants were asked to judge sequences of 8 number

samples displayed in red or blue (Figure 1a). The beginning of each trial was indicated by

a fixation cross displayed in the middle of the screen for 1 second. Subsequently, 8 numbers

(Arabic digits; 4 in red and 4 in blue font, presented in random order) were sequentially

displayed at fixation at a rate of 350ms per sample. Each sampled number was softly

faded out after 270ms to smoothen stimulus transitions. The samples were drawn randomly

(see below) and independently from the range of either 1 to 9 (in steps of 1; small-range

conditions) or 100 to 900 (in steps of 100; large-range conditions).

After the last sample had been presented, participants were asked to enter a binary

decision via key press. In the single-stream “averaging” task, they were asked to indicate

whether the average of all samples (regardless of color) was larger or smaller than a reference

value (5 in the small-range conditions; 500 in the large-range conditions). In the dual-stream

“comparison” task, they were asked to indicate whether the red samples had a higher average

value than the blue samples or vice versa. Thus, both tasks required participants to evaluate

all 8 sample values. The two tasks differ in the processing requirements associated with

each sample: in the single-stream task, all numbers are evaluated within the same frame

of reference (i.e., a larger number always evidences “larger”). In the dual-stream task, in

contrast, the decision value of a sample flips depending on its color—that is, a red number

evidences “red” when it is large, but “blue” when it is small, and vice versa for blue numbers

https://www.qualtrics.com
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(see Computational Modeling, Eq. 2). Arguably, this renders the evaluation of the individual

samples inherently more effortful than in the single-stream task. In both tasks, a response

had to be given within 3 seconds; otherwise a time-out message was displayed and the trial

was discarded from analysis (this applied to 0.43% of trials, on average).

Note that the differences between sample values (i.e., red vs. blue) that are to be

evaluated in the dual-stream task can be numerically larger (up to twice as large) than the

differences of the sample values from the reference value (e.g., “5”) in the single-stream task

(see Figure 1a). The dual-stream task might thus be considered to be easier than the single-

stream task. However, in sequential integration, the evidence in favor of one or the other

choice (e.g., “ >” or “<”) provided by the individual samples in a trial can be assumed to

be identical in both tasks (see Psychometric Model). In fact, our empirical results confirmed

that the dual-stream task was harder (not easier) than the single-stream task (see Human

Participant Results).

We also manipulated the distribution from which the sample values were drawn (Figure

1b). In uniform conditions (Figure 1b, upper panel), the sample values were drawn from

a uniform distribution. In Gaussian conditions (Figure 1b, lower panel), the values were

drawn from truncated normal distributions with a standard deviation of σ = 3 (small-range

conditions) or σ = 300 (large-range conditions). To compensate for anticipated differences

in task difficulty, we moderately shifted the Gaussian mean away from the midpoint of the

sample range (by 0.6 in the small-range and by 60 in the large-range conditions); we derived

the magnitude of the shift from pilot data and model simulations, which examined which

shift would be necessary to approximate similar performance levels as with uniform samples.

In the single-stream task, positive/negative shifts were randomly varied across trials. In the

dual-stream task (where red and blue samples had opposite decision values, Figure 1b), the

shifts were applied with opposite signs (positive/negative) to the distributions from which

the red and blue samples in a trial were drawn (with random assignment across trials). Trials
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on which no objectively correct response could be given because the mean of the number

stream was exactly 5 (single-stream condition; 5.67% of trials) or identical for red and blue

samples (dual-stream condition, 5.32% of trials) were excluded from analysis.

The three experimental factors (i.e., “task”, “range”, and “distribution”) were fully

crossed in a 2 × 2 × 2 between-subjects design. In each condition, participants performed

250 trials in blocks of 50. After each block, summary performance feedback was provided

(percentage of correct responses). After every 25th trial, participants were asked to perform

a brief attention check task consisting of 4 trials. Here, they were shown a geometric shape

(square or circle) and asked to indicate its name via key press. If a participant passed

fewer than 3 (75%) of the trials on any given attention check, the experimental session

was terminated and their data were discarded (see Participants). After the main task,

participants in the Gaussian conditions additionally performed the Berlin Numeracy Test

(Cokely et al., 2012) and a brief number line estimation task (“number-to-position”; Siegler

& Opfer, 2003), the results of which are not reported here. Participants who successfully

completed the experiment were paid a performance-dependent bonus (up to 0.9 GBP) on

top of their basic reimbursement.

Descriptive Analysis

We used a reverse correlation approach (Neri et al., 1999; Spitzer et al., 2016) to

calculate decision weights for each sample value (1-9). Specifically, in the single-stream task

conditions, we calculated for each sample value (e.g., 3) the proportion of times a sample of

this value was followed by a “larger” decision. In the dual-stream task conditions, decision

weights for each sample value were computed analogously, as the proportion of times the

color of the sample (i.e., red or blue) was subsequently chosen to be larger. In either of

the two tasks, the choice proportions express how much influence a sample value had on

a participant’s decision; this yields a psychometric weighting function over sample values,

where a choice proportion of 0.5 (indifference) corresponds to zero decision weight (see Figure

3, left and right y-axis labels). For comparison with model predictions (see below), we
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computed analogous weighting functions also from the choice probabilities (Eq. 5) predicted

under the best-fitting model parameterization for each participant. For additional analysis of

the weighting functions’ local slopes (see Results, Complementary Analyses), we calculated

the difference in decision weight between neighbouring sample values (e.g., 1 vs. 2) and

compared it between outlying (1 vs. 2 and 8 vs. 9) and inlying value pairs (4 vs. 5 and 5

vs. 6).

Psychometric Model

We modeled decisions in our tasks using a simple psychometric model as reported in

Spitzer et al. (2017). In the model, each sample value X (normalized to range from −1 to

1) is transformed into a subjective decision value dv according to a sign-preserving power

function of the form:

dv = X + b

|X + b|
× |X + b|k, (1)

where k < 1 implies underweighting (i.e., compression) and k > 1 implies overweighting (i.e.,

anti-compression) of extreme values, relative to a linear transformation (i.e., k = 1; Figure

2a). Non-zero values of parameter b indicate an offset bias in terms of a shift of the function’s

indifference point. The dvs of the N = 8 individual samples in a trial are accumulated to

yield a trial-level decision value DV :

DV =
N∑

i=1

dvi × ci

g
, (2)

where ci is an indicator variable (+1 or −1) that codes the color category of the sample (i.e.,

red or blue). In the single-stream conditions (where color is irrelevant), ci is fixed at +1.

In the dual-stream conditions, ci effects a sign-flip of dvs for one color relative to the other,

effectively implementing a comparison between the two color categories.

g is a scaling factor that normalizes the gain of the transformation in Eq. 2 (quantified
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by the integral of the decision values; Figure 2a–c) to be constant for any values of k and b:

g =
∑ |f + b|k∑ |f |

. (3)

We considered two variants of this normalization. In one variant (Figure 2b), we defined f

as the 9 possible input values of X (see Eq. 1), which normalizes the gain over the range

of stimuli that could potentially occur in the experiment (e.g., 1 to 9 in the small-range

condition). In a second, more refined variant, we computed g on the individual trial level,

where f refers to the concrete sequence of input values X presented on a given trial (see

Figure 2c). This second type of normalization ensures that equivalent gain of processing

is available for each individual number sequence, for every parameterization of Eq. 2 (see

Simulation Results for details).

To capture potential recency effects (i.e., greater weighting of samples occurring closer

to the decision; Hogarth & Einhorn, 1992), we also included a leakage parameter l that

modulates the weight of a sample as a function of its temporal position i = 1...N (with

N = 8 samples) in the number stream:

DV =
N∑

i=1

dvi × ci

g
× (1 − l)N−i, (4)

where larger values of l indicate a stronger recency effect. The trial-level DV was then

transformed into a choice probability CP using a logistic choice rule,

CP = 1
1 + e

−DV
s

, (5)

where CP is the probability of responding “larger” (single-stream condition) or “red > blue”

(dual-stream condition) and s reflects decision noise (with higher values indicating more

random responses).
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Parameter Estimation

The psychometric model was fitted to the experimental data of each participant indi-

vidually by minimizing the negative log-likelihood of the model given the observed responses.

Parameter values were restricted to ranges derived from previous work (k: 0–5, s: 0–5, b:

−1–1, l: −0.5–1, see also Spitzer et al., 2017). Model performance was assessed using mean

BICs on the group level and examined statistically using conventional inferential statistics

(two-tailed). For our main analyses of the empirical data (Figures 3-5), we used the model

without gain normalization (i.e., g was set to 1). Note that g is not a free model parameter

but acts as a scaling factor on noise parameter s, which does not systematically affect the

other model parameters or the model’s goodness of fit (Spitzer et al., 2017, see also Parame-

ter Recovery below). When comparing the empirical estimates of k and s with those values

that optimized performance in our simulations (Figures 2e–f), we fitted the model with the

same gain-normalization settings as were used in the respective simulations to warrant com-

parability.

Parameter Recovery

To ensure that our estimated model parameters were valid, we performed parameter

recovery simulations. Specifically, we iteratively simulated group data sets analogous to

those obtained in our experiment. Across iterations, we varied the value of each parameter

(in steps of 0.2) within its range (see above) while fixing the remaining parameters at their

empirical estimates. Binary responses were generated by drawing for each trial from a

binomial distribution with p = CP . We then fitted our model to the simulated data,

using the same procedure as in the modeling of the empirical data. The recovered mean

parameter values mostly correlated strongly with their respective values in the simulation

(single-stream conditions: mean r = 0.84, min: r = 0.71, max: r = 0.92; dual-stream

conditions: mean r = 0.60, min: r = 0.45, max: r = 0.77), while cross-correlations between

different parameters were generally lower (single-stream condition: mean r = 0.03, min:

r = −0.04, max: r = 0.19; dual-stream condition: mean: r = 0.05, min: r = −0.05,
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max: r = 0.17). The parameter of our main interest (k) was recovered well both in the

single-stream (mean r = 0.85) and in the dual-stream task conditions (mean r = 0.54),

without major distortions by other model parameters (single-stream task: min r = −0.03,

max r = 0.09; dual-stream task: min r = −0.01, max r = 0.17).

Performance Simulations

We used the psychometric model to simulate task performance under different parame-

ter settings. Accuracy was inferred from the predicted choice probabilities CP (if the correct

response was “larger”; 1 − CP otherwise). We simulated performance across different values

of k (0 to 2.5 in steps of 0.01) and s (0 to 2 in steps of 0.01). For each value of k, we examined

the difference in accuracy relative to linear (i.e., undistorted) transformation (i.e., k = 1) at

any given noise level s (see Figure 2d-f). In our a priori model simulations shown in Figures

2d-f, we set l = 0 (i.e., no leakage) and b = 0 (i.e., no offset bias). However, qualitatively

very similar results were obtained when using the empirical estimates of l and b derived

from our participants, both in the single-stream and in the dual-stream tasks. Note that

in our model, the single- and dual-stream tasks are formally equivalent (see Eq. 2), except

for a difference in how bias (b) affects the response (see also Results). Thus, the simulation

results illustrated in Figures 2d-f hold a priori for the single-stream and dual-stream tasks

alike. While we present the simulation results for sequences of 8 samples (using the same

sequences that had been used in the experiments with human participants), qualitatively

identical results were also obtained in exploratory simulations with shorter (e.g., 4 samples)

or longer sequences (e.g., 10 samples).

Results

Simulation Results

We examined choice behavior in variants of a sample-based decision task (Figure 1)

where observers judge a sequence of 8 numbers. We used a generic psychometric model that

formalizes single-stream (i.e., mean >/< 5) and dual-stream judgments (i.e.,

mean[red]>/<mean[blue]) in the same way (see Methods). The simulation results reported
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in the following thus hold identically for both types of task.
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Den
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Uniform
b
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11Single-stream
19Dual-stream
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22Single-stream
28Dual-stream

Evidence for "<" | Evidence for ">"

33Single-stream
37Dual-stream

Evidence for "<" | Evidence for ">"

44Single-stream
46Dual-stream

Evidence for "<" | Evidence for ">"

55Single-stream
55Dual-stream

Evidence for "<" | Evidence for ">"

66Single-stream
64Dual-stream

Evidence for "<" | Evidence for ">"

77Single-stream
73Dual-stream

Evidence for "<" | Evidence for ">"

88Single-stream
82Dual-stream

Evidence for "<" | Evidence for ">"

99Single-stream
91Dual-stream

Evidence for "<" | Evidence for ">"

-1 -0.5 0 0.5 1Sample evidence

a

Figure 1. Task and Key Experimental Manipulations. a, Example stimulus sequence

used in both tasks (single-stream averaging and dual-stream comparison). On each trial, eight

number samples (drawn from 1 to 9 in the small-range conditions; from 100 to 900 in the

large-range conditions) appeared in either red or blue font at a rate of 350ms/sample. In

the single-stream task, participants were asked to indicate whether the average of all samples

(regardless of color) was larger or smaller than 5 (in the small-range conditions) or than 500

(in the large-range conditions). In the dual-stream task, participants were asked to indicate

whether the red samples had a larger or a smaller average value than the blue samples. b,

Distribution of sample values in the uniform (top) and Gaussian (bottom) conditions. Digits

on bottom illustrate the mapping (x-axis) onto red (top row) and blue (bottom row) sample

stimuli (cf. a) in the respective task conditions. The panel for the Gaussian condition shows

two distributions because we varied trial-by-trial within each task whether the mean of the

distribution was in favor of “smaller” or “larger” (see Methods).
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We simulated the effects of compressive or anti-compressive distortions of sample val-

ues (here 1 to 9) on task performance, taking into account different types of processing

limitations. We started by replicating previous findings showing that, without further as-

sumptions, compressive weighting policies (k < 1) are performance-maximizing in the face

of decision noise (s ≫ 0; Figure 2a and d; see also e.g., Juechems et al., 2021; Li et al., 2017).

However, compressive transformations are also characterized by overall larger decision values

(in terms of absolute decision values ∑ |dv|) than linear or anti-compressive transformations

(Figure 2a, inset bar graph). In other words, with compressive weighting, the sample values

are transformed with a greater “gain” of processing (Li et al., 2017), which can be assumed

to be costly (e.g., in terms of metabolic resources) for biological observers (Baddeley et al.,

2000; Kostal et al., 2013). The beneficial effect of compression on performance in Figure

2d can thus be explained by the recruitment of greater processing resources, resulting in an

overall steeper weighting curve (Figure 2a) which counteracts the effects of decision noise

(Li et al., 2017).

It is commonly assumed that neural gain is a finite resource (Cowan, 2001; Lennie,

2003; Marois & Ivanoff, 2005; Tombu et al., 2011). Thus, in some task contexts (e.g., when

sample processing is computationally demanding), giving a higher decision weight to one

sample may come at the cost of other samples. For instance, selectively focusing on one type

of stimulus may lead to reduced processing of other stimuli (Alonso et al., 2011; Eldar et al.,

2013). In previous work, such processing limit was modeled by normalizing the gain of the

transformations (in terms of the integral ∑ |dv| over the range of input values; here, 1 to 9) for

every value of k (Figure 2b, see Eq. 3; see Li et al., 2017; Spitzer et al., 2017). When repeating

the simulation with this normalization, compression (k < 1) maximized performance only

when the samples were drawn from a Gaussian distribution (Figure 2e, lower panel; see also

Li et al., 2017). When the samples were drawn from a uniform distribution, in contrast,

performance was maximized under anti-compression (k > 1; Figure 2e, upper panel; see also

Spitzer et al., 2017).
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Figure 2. Simulated task performance under processing limitations. a, Functions

mapping numerical sample values (1 to 9) onto decision values dv, for exemplary values of

exponent k (see Equation 1). Inset bar graph shows the mean integral (∑ |dv| across the

samples in a trial) for trials with uniformly (left) and Gaussian (right) distributed samples

(see Figure 1b). b, same as a, but normalized to have equivalent gain (∑ |dv| across the range

of sample values 1 to 9) for each value of k. c, Decision values normalized for equivalent

gain on any given trial (∑ |dv| across the samples occurring in a trial) for each value of k.
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Illustrated is an example trial with 8 samples in the single-stream task. d–f, Performance

simulations. Colormaps show the difference in choice accuracy ∆(acc) relative to linear

weighting (k = 1) across values of k and s, for the different types of gain normalization

illustrated in a–c. Solid black lines indicate the maximal performance improvement under

each noise level. Dotted white lines indicate k = 1. Dots show empirical parameter estimates

in the single-stream and dual-stream tasks. Large dots: mean estimates, error bars show

SEM. Small dots: individual participants. Note that fitting with gain normalization in e

and f yields numerically smaller estimates of decision noise s, but equivalent patterns of

distortions k. Parameter estimates outside the axis limits are plotted at the plot boundaries.

Upper panels: uniform conditions (see Figure 1b, upper panel); lower panels: Gaussian

conditions (see Figure 1b, lower panel).

Critically, for samples from a uniform distribution, the normalization shown in Figure

2b is equivalent to limiting the processing resources that are available to an observer (on

average) on any given trial (see bar graph in Figure 2b). For samples from a Gaussian

distribution, in contrast, compressive distortions (k < 1) will still require greater resources

overall, since mid-range samples (e.g., 4 or 6), which are more resource-intensive under

k < 1 (see Figure 2b), will occur relatively more frequently. To resolve this imbalance, we

implemented gain normalization on the single-trial level (Figure 2c), such that each trial

sequence was transformed with equivalent gain of processing for any value of k (see bar

graph in Figure 2c). The trial-level normalization implements a hypothetical scenario where

an observer would process each trial with a fixed amount of resources, such that different

distortions k would distribute these resources differently across the individual samples in a

trial. This type of normalization thus implements the idea that limited processing resources

are traded off between the individual samples in a trial, such that giving extra weight to some

samples comes at the cost of discarding others. In a sequential integration framework (cf.

Eq. 2), an observer may discard (or downweight) the other samples also retroactively, for
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instance, by discarding (downweighting) the evidence accumulated thus far (∑
dv) in favor

of a later sample (cf. also Eq. 4). When we repeated our simulations with this alternative

type of normalization, the performance under noise (s > 0) was always maximized by anti-

compression (k > 1), both when the samples were uniformly or Gaussian distributed (Figure

2f). In other words, for both distributions, anti-compression (k > 1) allocated the gain of

processing more efficiently among the individual samples in a sequence, resulting in higher

task performance without recruiting greater resources.

To summarize our simulation results, whereas compression can improve the perfor-

mance of a noisy observer by allocating overall more resources to the samples in a trial,

anti-compression is favorable when these resources are exceeded, as anti-compression yields

higher performance with equivalent resources on the trial level. Importantly, our simulations

predict that which type of distortion is favorable in a given task will not primarily depend

on the samples’ distribution (i.e., uniform or Gaussian; see Li et al., 2017; Spitzer et al.,

2017; Summerfield and Li, 2018). Instead, it should hinge on the extent to which limited

processing resources need to be traded off between the different samples in a trial. We as-

sume this trade-off to be weak (favouring compression as an optimal policy) in tasks where

evaluating the decision value of a sample is relatively easy, and to be stronger (favoring anti-

compression) when sample evaluation is more resource-intensive, so that a capacity-limited

observer would not be able to integrate every sample in full.

Human Participant Results

We tested whether human participants would adopt performance-maximizing weighting

policies in an online experiment (n = 586) where we manipulated the sample-level processing

demand of the task (Figure 1a). The participants were either asked to judge the average

of the whole stream (single-stream task) or to decide whether the red or the blue numbers

had a larger average (dual-stream task). In the dual-stream task, whether a given number

sample supports one or the other decision depends on its color (see Methods, Psychometric

Model), posing an additional processing requirement for each sample. Across subgroups of



OVER- AND UNDERWEIGHTING OF EXTREME VALUES 17

participants in each task, we further manipulated the range of sample values (1 to 9 or 100

to 900) as well as their distribution (uniform or Gaussian, see Figure 1b).

Descriptive results

Participants’ mean accuracy was 79.80 ± 0.44% in the single-stream task and 75.52 ±

0.44% in the dual-stream task. A 2 × 2 × 2 ANOVA with the factors “task” (single, dual),

“distribution” (uniform, Gaussian), and “range” (small, large) showed a main effect of “task”

[F (1, 578) = 51.67, p < 0.001, η2 = 0.08], confirming that the dual-stream task was more

difficult. In addition, there was a main effect of “distribution” [F (1, 578) = 34.25, p < 0.001,

η2 =0.05], indicating higher performance in the Gaussian (M = 79.41 ± 0.44%) than in

the uniform conditions (M = 75.96 ± 0.45%). No other main effects or interactions were

significant (all F < 1.2, all p > 0.28, all η2 < 0.002).

We inspected descriptive weighting functions (see Methods) to gauge how strongly each

numerical sample value contributed to participants’ choices (see Figure 3, solid lines). The

weighting functions showed different shapes depending on the task (single- or dual-stream).

While a compressive curve (i.e., relatively shallower local slopes near extreme values than

near intermediate values) was evident in the single-stream task, an anti-compressive curve

(i.e., steeper local slopes near extreme values) emerged in the dual-stream task. Descriptively,

this pattern was evident for both small and large sample ranges (see Figure 3a,b and Figure

3c,d, respectively) and for both distribution types (see Figure 3 top and bottom rows).

Modeling results

We next fitted our psychometric model to the empirical data. On average across all

participants, the full model showed a better performance (mean BIC = 430.27 ±6.42) than

simpler variants that did not include a leakage (l = 0; mean BIC = 449.46 ±6.05, Z = 4.48, p

< 0.001, r = 0.02; Wilcoxon signed-rank test) or bias parameter (b = 0; mean BIC = 444.73

±6.22, Z = 6.91, p < 0.001, r = 0.02; Wilcoxon signed-rank test). All subsequent analyses

are therefore based on the full model, which includes a leakage and a bias parameter (see
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Eq. 1–4).

Our main interest was in the k parameter, which indicates whether there is under-

weighting (k < 1; compression) or overweighting (k > 1; anti-compression) of extreme

values. The best-fitting estimates of k (Figure 4a) corroborate our observations with the

psychometric weighting functions (see Figure 3). In the single-stream task, k was signifi-
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Figure 3. Descriptive weighting functions and model fits. Decision weights (see

Methods) for numbers 1 to 9 (small range condition, a,b) and 100 to 900 (large range

condition, c,d). Single-stream task conditions in panels a and c; Dual-stream task conditions

in panels b and d); Dots: behavioral data; error bars show SEM. Colored (curved) lines:

predictions from the fitted psychometric model (see Figure 4). Black (straight) lines show

the model predictions for k = 1. Dashed horizontal lines indicate indifference (i.e., decision

weight = 0 or choice probability = 0.5, see left and right y-axes). Upper panels: uniform

conditions; lower panels: Gaussian conditions.
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cantly smaller than 1 (M = 0.66, SE = 0.03; Z = −11.21, p < 0.001, r = −0.04, Wilcoxon

signed-rank test against 1), indicating compression. In contrast, in the dual-stream task,

k was significantly larger than 1 (M = 1.86, SE = 0.06; Z = 11.77, p < 0.001, r = 0.04,

Wilcoxon signed-rank test against 1), indicating anti-compression. For further inspection,

we performed a 2 × 2 × 2 ANOVA (specified as for accuracy above) of the estimates of k

in each experimental condition. The analysis showed a main effect of task [single vs. dual:

F (1, 578) = 311.28, p < 0.001, η2 = 0.35], but no other main effects or interactions (all F

< 3.46, all p > 0.06, all η2 < 0.004). In other words, the type of distortion (compression or

anti-compression) was significantly modulated only by the “task” requirement (averaging a

single stream or comparing dual streams), and not by the other factors under study (“range”

and “distribution”).

We next examined effects of the manipulations on the decision noise parameter s (Fig-

ure 4b). A 2 × 2 × 2 ANOVA (specified as above) showed a main effect of “task” [F (1, 578)

= 33.98, p < 0.001, η2 = 0.05], reflecting that the dual-stream task was more difficult than

the single-stream task (see also Descriptive Results; mean s: 1.41, SE = 0.07 vs. 0.9, SE

= 0.05). Further, also mirroring the results for accuracy, there was a main effect of “distri-

bution” [F (1, 578) = 7.08, p = 0.008, η2 = 0.01], with lower s in the Gaussian than in the

uniform conditions (mean s: 1.04, SE = 0.06, vs. 1.26, SE = 0.06). The difference in s

(and accuracy) between the two distribution types likely reflects that their difficulty levels

could be pre-experimentally matched only in approximation (see Methods) based on smaller

pilot samples. No other main effects or interactions were significant (all F (1, 578) < 2.92,

all p > 0.09, all η2 < 0.005).

Analogous analyses for the bias (b) and leakage (l) parameters showed no differences

between conditions (all F < 1.71, all p > 0.19, all η2 < 0.003), with the exception that b

differed between tasks [F (1, 578) = 84.88, p < 0.001, η2 = 0.13; see Figure 4]. We refrain

from interpreting this latter effect because, for technical reasons, the estimates of b are not
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Figure 4. Parameter estimates. Parameter estimates for exponent k (a), noise pa-

rameter s (b), offset bias b (c) and leakage l (d). Upper panels: uniform conditions; lower

panels: Gaussian conditions. Black dots show the average across individuals, error bars show

SEM. Small dots show the parameter estimates for the individual participants. The shaded

half-violin outline illustrates the probability density of the parameters, smoothed by a kernel

density estimator. Left two violin plots per panel: single-stream task; Right two violin plots

per panel: dual-stream task. Light colors: small-range conditions, dark colors: large-range

conditions. The black horizontal lines indicate k = 1 (no distortion) in a, b = 0 (no bias)

in c, and l = 0 (no leakage) in d.

directly comparable between the two tasks (e.g., b can effect an overall displacement of the

psychometric functions in the single- but not in the dual-stream task; see Eq. 1 and 2).

For completeness, we report that the b parameter was significantly positive (> 0) in both
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tasks (single-stream: Z = 8.52, p < 0.001, r = 0.03, Wilcoxon signed-rank test against 0;

dual-stream: Z = 9.19, p < 0.001, r = 0.03, Wilcoxon signed-rank test against 0), consistent

with previous findings (Spitzer et al., 2017). Lastly, the leakage parameter l was significantly

larger than 0 (indicating greater weighting of later samples) in both tasks (single-stream:

Z = 8.95, p < 0.001, r = 0.03, Wilcoxon signed-rank test against 0; dual-stream: Z =

9.95, p < 0.001, r = 0.03, Wilcoxon signed-rank test against 0). Thus, there were generally

recency effects in our tasks, consistent with previous findings (Anderson, 1964; Appelhoff

et al., 2022a; Cheadle et al., 2014; Hubert-Wallander & Boynton, 2015; Spitzer et al., 2017;

Summerfield & Tsetsos, 2015; Weiss & Anderson, 1969; Yashiro et al., 2020).

Correlations between degree of distortion and decision noise

Our simulations not only indicated that the ideal type of distortion (i.e., compression

or anti-compression) should depend on the task requirements, but also that the degree of

distortion (of either type) should increase with the level of decision noise (s) (see Figure 2d

and f). Hence, if participants adopted ideal weighting policies given their individual noise

levels, we would expect to observe opposite correlations between the distortion parameter

k and noise s in the two tasks. Specifically, for participants with higher noise levels (s),

estimates of k should be lower (k ≪ 1, stronger compression) in the single-stream task

and higher (k ≫ 1, stronger anti-compression) in the dual-stream task. Our data support

this prediction: There was a negative correlation between k and s in the single-stream task

(Figure 5a, r = −0.32, p < 0.001), but a positive correlation in the dual-stream task (Figure

5b, r = 0.24, p < 0.001). Both correlations were robust to the exclusion of outliers near the

parameter boundaries (excluding data points < 0.1 or > 4.9 in either k or s: single-stream:

r = −0.25, p < 0.001; dual-stream: r = 0.18, p = 0.003). As the correlations were of opposite

signs, they are unlikely to be due to parameter interdependencies (Krefeld-Schwalb et al.,

2022, see Methods, Parameter Recovery). Together, these results empirically corroborate the

complex relationship between psychometric distortions and decision noise that we identified

in our simulations of theoretically ideal policies (Figure 2).



OVER- AND UNDERWEIGHTING OF EXTREME VALUES 22

0 1 2 3 4 5k
0
1
2
3
4
5

Noi
se (

s)
Single-stream

r= -0.32 p < 0.001

a

0 1 2 3 4 5k
0
1
2
3
4
5 Dual-stream

r= 0.24 p < 0.001

b

Figure 5. Correlations between k and noise (s) across participants in the (a)

single-stream and (b) dual-stream tasks. Lines show the linear trend. Higher levels of decision

noise were associated with stronger compression in the single-stream task, but with stronger

anti-compression in the dual-stream task.

Comparing experimental results with predicted optimal distortions

To compare participants’ behavior with the results of our simulations (Figure 2d–f),

we repeated our model fitting with the respective normalizations illustrated in Figure 2a–c

(see also Methods, Eq. 3). The results for the single-stream task matched reasonably well

with our simulations without gain limitations (2d), as we would expect given that sample

evaluation in this task was relatively easy. In the dual-stream task, in contrast, there was a

trend towards the ideal solution under a trial-level gain limit (for the uniform and Gaussian

conditions alike; Figure 2f), as we would expect given that the higher demands of this task

forced participants to trade off processing resources between samples. Quantitatively, the

degree of either type of distortion (compression or anti-compression) fell short of the model-

predicted optimum under the respective noise level (see Figures 2e and f). However, our

model simulations only delineate the endpoints of a continuum (from no to full exhaustion

of sample-level resources) on which we assume our experimental tasks to differ. It would be
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relatively straightforward to extend our framework to simulate any position a task may take

between these two extremes [e.g.„ through parameterization of g: gpartial = 1 + α(g − 1),

where α (ranging from 0 to 1) would reflect the extent to which processing resources are

exhausted].

Complementary Analyses

We performed supplementary analyses to back up our key empirical finding of com-

pression in the single-stream task and anti-compression in the dual-stream task. First, we

used Bayesian t-tests to corroborate that the distortion parameter k was only modulated by

the factor “task” (single- or dual-stream) and not by the other factors under study (“distri-

bution” and “range”). The Bayes factors showed extreme evidence for an effect of the factor

“task” (single- or dual-stream; BF10 > 100), but moderate evidence for the null hypothesis

(no effect) when examining the factor “distribution” (BF10 = 0.11), and anecdotal evidence

for the null hypothesis when examining the factor “range” (BF10 = 0.604).

Second, we directly tested for differences in the descriptive weighting functions’ local

slopes, to examine whether they showed the hallmarks of compression or anti-compression

in the single- and dual-stream conditions, respectively (collapsed across the other manip-

ulations). Specifically, we compared the mean local slope of outlying values (e.g., 1-2 and

8-9) against that of inlying values (e.g., 4-5 and 5-6) using paired t-tests. As expected, the

difference in local slopes was significantly negative (i.e., steeper for inlying values) in the

single-stream task (M = −0.041, SE = 0.003, t(295) = −12.31, p < 0.001), but significantly

positive (i.e., steeper for outlying values) in the dual-stream task (M = 0.017, SE = 0.003,

t(289) = 5.55, p < 0.001). Thus, the key features of compression or anti-compression were

evident even in model-free analyses of the data.

Finally, given the observation of an overall bias towards larger numbers (i.e., b > 0;

see also Spitzer et al., 2017), we asked whether the above slope differences were only driven

by large sample values. That did not seem to be the case, as the same pattern was evident
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when restricting the analysis to the lower end of the value range (e.g., comparing 1-2 vs. 3-4;

single-stream task: M = −0.01, SE = 0.004, t(295) = −2.23, p = 0.026; dual-stream task:

M = 0.01, SE = 0.005, t(289) = 2.22, p = 0.027). Together, these supplementary results

support the main findings from our computational modeling analysis.

Discussion

Evaluating samples of magnitude, such as in decisions based on numbers, is integral

to adaptive human behavior. Previous research has found evidence for opposite types of

distortion of numerical values—compression and anti-compression—in tasks requiring the

integration of number sequences (Li et al., 2017; E. Ludvig et al., 2014; E. A. Ludvig et

al., 2014; Spitzer et al., 2017; Vanunu et al., 2019). Here, we showed that whether people

subjectively compress or anti-compress numerical values depends on whether they are asked

to assess the average value of a single stream or to compare the values of two interleaved

streams. Arguably, the latter task is cognitively more effortful, because evaluating a sample’s

decision value for the comparison requires more cognitive operations (see also Appelhoff

et al., 2022b). The pattern of results matches the predictions of our simulations with a

psychometric model, which showed that compression yields a performance benefit for noisy

observers when tasks are within their processing limit, whereas anti-compression improves

performance in computationally demanding tasks (i.e., where evaluating a sample properly

comes at the cost of missing the decision information in other samples). Taken together,

our results suggest that participants adopted a favorable weighting policy in the respective

task context, given their capacity limitations—in other words, that their choice of weighting

policy was adaptive.

Our findings speak to the long-standing question as to why people distort objective

magnitude information in decision making. It has recently been proposed that well-known

distortions, such as those of outcome and probability information in choices between mon-

etary gambles (Kellen et al., 2016; Tversky & Kahneman, 1992), may serve a rather basic

goal, namely to maximize objective returns (Juechems et al., 2021; Spitzer et al., 2017). A
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central insight from this recent work has been that for noisy observers (e.g., humans and

other biological agents), distortions of sample information can lead to higher returns than

a normatively correct linear mapping (Juechems et al., 2021; Li et al., 2017). Here, we ex-

tended this approach by showing that very different types of distortion (i.e., compression or

anti-compression) can optimize the performance of noisy observers, depending on the extent

to which a task taxes their processing capacities.

Importantly, the basic shape of distortion (compression or anti-compression) was not

related to the overall difficulty of making a choice. In our simulations, the ideal extent of

either type of distortion increased with higher levels of late decision noise, that is, with

overall declining accuracy. Likewise, in our empirical data, noisier participants (with lower

accuracy) showed stronger compression in simple numerical averaging, but stronger anti-

compression in the more effortful dual-stream comparison task. As an explanation for this

pattern, we propose that limitations (or bottlenecks) at different stages of the processing

hierarchy may impact differently on the shape of psychometric distortions.

Previous work has suggested a distinction between “early” sensory noise (e.g., due to

limits in sensory acuity; Lavie & Fockert, 2003; Pelli, 1991; Treisman & Geffen, 1967) and

“late” decision noise (e.g., due to the difficulty of integrating multiple feature values into a bi-

nary response; Baek & Chong, 2020; Drugowitsch et al., 2016; Findling & Wyart, 2021; Juslin

& Olsson, 1997; Solomon, 2020; Summerfield & Parpart, 2021) as limiting factors in human

decision making. The present findings highlight another processing bottleneck intermediate

to these early and late processing stages: the difficulty of evaluating the decisional meaning

of a sample within the context of a given task. We assume this processing to occur after

sensory encoding and prior to combining the information from different samples into a final

response. Tasks that load strongly on this intermediate (sample-by-sample) bottleneck may

enforce a trade-off of processing resources between samples and promote selective integration

(Tsetsos et al., 2016) of extreme values (i.e., anti-compression) as a performance-maximizing
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policy. Protection against late decision noise, in contrast, can be achieved through stronger

distortions of either type (see also Li et al., 2017; Spitzer et al., 2017), depending on task

context. In this framework, the optimal weighting policy under late noise may even be linear

(undistorted; as observed in, e.g., Kang & Spitzer, 2021), namely, if a task poses moderate

sample-level demands.

Contrary to expectations based on previous work (Li et al., 2017; Prat-Carrabin &

Woodford, 2020; Spitzer et al., 2017; Summerfield & Li, 2018), neither the distribution

of sample values (uniform or Gaussian) or their “range” (small or large) had an impact

on participants’ weighting policy. This observation is consistent with the results from our

model simulations, which assume an upper bound on the processing resources available to an

observer on any given trial (cf. Li et al., 2017; Spitzer et al., 2017). It remains to be shown

whether our experimental results with symbolic numbers generalize to other input formats

(e.g., sensory-perceptual information Liu et al., 2015; Marinova et al., 2020; Pekár & Kinder,

2019; Rosenbaum et al., 2021; Sato & Motoyoshi, 2020), where the distribution and range of

input values may play an additional role. For instance, while the discrete numerical samples

in our experiment were easily readable (i.e., early sensory noise was presumably negligible),

other sensory-perceptual inputs may be more prone to, for example, range adaptation effects

(Brenner et al., 2000; Fairhall et al., 2001; Smirnakis et al., 1997; Wark et al., 2007), which

might also impact the shape of psychometric weighting.

An alternative explanation for our empirical results warrants consideration. In our

single-stream task, numbers had to be evaluated against a fixed reference value (e.g., 5),

whereas in our dual-stream task, two streams of numbers had to be contrasted. One might

thus argue that the finding of compression or anti-compression did not depend on sample-

level demands, but on whether the samples had to be evaluated against a fixed or a variable

reference value. In light of recent studies by Rosenbaum et al. (2021) and Vanunu et al.

(2019), such alternative explanation for our results seems unlikely. These studies examined



OVER- AND UNDERWEIGHTING OF EXTREME VALUES 27

decision behavior in tasks that required evaluation within a fixed reference frame (like our

single-stream task) but under conditions that were computationally demanding. The authors

observed anti-compression, which is consistent with our interpretation of the present results

in terms of processing demands.

For completeness we note that in addition to our main finding of adaptive distortions,

participants’ decisions also showed characteristics that were not encompassed by our model

simulations: a “leakage” of sample information over time (i.e., a “recency” bias towards

later presented samples), and an overall bias towards larger numbers (e.g., choices were more

strongly driven by sample values “9” than “1”, although the latter provided equally strong

objective evidence). Both of these biases have been reported repeatedly in previous work

(Anderson, 1964; Appelhoff et al., 2022a, 2022b; Cheadle et al., 2014; Hubert-Wallander &

Boynton, 2015; Luyckx et al., 2019; Spitzer et al., 2017; Summerfield & Tsetsos, 2015; Weiss

& Anderson, 1969; Yashiro et al., 2020), but their precise origin and functional role remain

unclear. These biases were not modulated in interpretable ways by our present experimental

manipulations, leaving their further investigation to future work.

A limitation of our simulation framework is that it cannot be used to predict the

extent to which a given task will exhaust an observer’s sample-level processing capacities.

It thus remains difficult to determine a priori which kind of distortion (compression or

anti-compression) would maximize a noisy observer’s returns. A interesting direction for

future research could be to quantify, using simulations and/or neuroscientific approaches,

the extent to which processing resources are expected to be traded off between the samples

in a given task, as hypothesized here. A related question for future work is how participants

may have learned to use different weighting policies in different tasks contexts. Whereas

our model simulations identified ideal policies through objective performance maximization,

the computations by which human participants select their weighting policy for a given task

may be different. Furthermore, while our study highlights sample-level processing demands
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as a key determinant of psychometric distortions, other factors may also play a role (Pachur

et al., 2018; Pachur et al., 2017; Rosenbaum et al., 2021; Vanunu et al., 2020). For instance,

Rosenbaum et al. (2021) showed that the type of stimulus information (numerical or sensory-

perceptual; which is unaccounted for in our model) can alter the weighting of samples in

ensemble judgments. Finally, while our framework formally describes subjective distortions

as parameterized psychometric functions, similar behaviors might arise from (mixtures of)

heuristic policies (Gigerenzer et al., 2011), such as selective counting of sample values that

a participant deems diagnostic in a given trial.

In conclusion, our work offers a theoretical framework and empirical data to explain

why decision makers may over- or underweight extreme values in decisions based on sequen-

tial samples. Rather than reflecting idiosyncratic quirks of the human mind, subjective dis-

tortions of decision information may improve the objective performance of capacity-limited

observers. Our results reconcile conflicting findings about the form of such performance-

maximizing distortions and suggest that human participants intuitively adopt a decision

policy that is beneficial for the task at hand.

Constraints on Generality

Our study examined a large international sample of adult participants aged between 18

and 41 years who in all likelihood possessed basic numeracy skills. Participants completed

the study remotely via a web browser. We have no reason to assume that different results

would be obtained in a laboratory setting. In terms of materials and stimuli, we used ranges

of symbolic numbers with a limited granularity of 9 discrete steps. Whether or not the

results generalize to more finely sampled number ranges, to non-symbolic numbers, and/or

to non-numerical magnitudes yet remains to be shown.
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