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When searching for new gravitational-wave or electromagnetic sources, the n signal parameters
(masses, sky location, frequencies,...) are unknown. In practice, one hunts for signals at a discrete
set of points in parameter space, called a template bank. These may be constructed systematically
as a lattice, or alternatively, by placing templates at randomly selected points in parameter space.
Here, we calculate the fraction of signals lost by an n-dimensional random template bank (compared
to a very finely spaced bank). This fraction is compared to the corresponding loss fraction for the best
possible lattice-based template banks containing the same number of grid points. For dimensions n <
4 the lattice-based template banks significantly outperform the random ones. However, remarkably,

for dimensions n > 8, the difference is negligible.

outperform the best known lattices.

I. INTRODUCTION

Many searches for gravitational-wave and electromag-
netic signals are carried out using matched filtering,
which compares instrumental data to waveform tem-
plates [IH3]. Because the parameters of the sources are
not known a priori, many templates are required, form-
ing a grid in parameter space [4H9]. Like the mesh on a
fishing net, the grid needs to be spaced finely enough that
signals don’t slip through. But if the grid has far more
points than are needed, the computational cost becomes
excessive. For this reason, a substantial technology has
evolved to create these grids [I0HI6] What choice of tem-
plate bank is best?

The traditional literature on the topic asserts that, for
a fixed number of grid points, the optimal template bank
is the one that minimizes the maximum distance (twice
the covering radius) between any grid point and its clos-
est neighbor [10] 12} 13| 15 I7H20]. However, as recently
shown in [21], this is incorrect.

If the goal is to maximize the number of detections
and the templates are closely spaced, then the optimal
template bank minimizes the average mismatch: the av-
erage squared distance between any point in parameter
space and the closest grid point. The bank which mini-
mizes this quantity (at fixed grid point density) is called
the optimal quantizer. An extensive introduction to the
topic of optimal quantizer lattices can be found in the
remarkable book by Conway and Sloane [22], and an up-
date on the current status in [23].

Lattice-based template banks can be challenging to
construct. An alternative approach is to build template
banks by placing search grid points at random [13] in pa-
rameter space. Because they are simple and quick to con-
struct, and because they can easily accommodate arbi-
trary parameter-space constraints and boundaries, such
“random template banks” are appealing [14, 24]. Note

* Ibruce.allen@aei.mpg.de

In high dimensions, random template banks

that random template banks may be improved by prun-
ing away|[25] grid points that are not needed. The result
is then called a “stochastic template bank” [12].

Here, we provide a simple exact analysis of the per-
formance of a random template bank. This could have
been done a decade ago, when such template banks were
introduced [13]. However, the authors of [13] (following
the mistaken conventional wisdom described above, see
[21], Section IV]) assessed the performance in terms of the
covering radius [I3] rather than in terms of the average
mismatch.

Our analysis of random template bank performance
has important consequences. We find that in low dimen-
sions, a random template bank performs poorly in com-
parison with a well-chosen lattice. But as the dimension
increases, the performance of a random template bank
quickly approaches, and then surpasses the performance
of even the best lattices.

This paper assumes that the reader is familiarity with
[21], and is structured as follows. Section [LI] defines the
average mismatch (r?) in the usual quadratic approxi-
mation, and reviews its relationship to the fraction of
signals lost and to the scale invariant second moment G
of a lattice. Section [[TI] defines a random template bank
as Poisson process in n dimensions, and calculates (r?)
following an argument from [26]. This is compared to the
best currently know lattices, and the best theoretically
possible lattices. In Sectionwe use results from [23] to
calculate lost signals in template banks which are Carte-
sian products, since these are often used. In Section [V]we
extend the results to cover the case of large mismatch, by
replacing the normal quadratic approximation to the mis-
match with the recently proposed spherical ansatz [27].
This is followed by a short conclusion.

The reader who is primarily interested in the results
and not in the details should see Eq. for the frac-
tion f of lost detections, and then consult Fig. [1] and
Table [l These show the performance of a random tem-
plate bank, also comparing it to the best currently known
lattice-based template banks, and to the best theoreti-
cally achievable template banks.
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II. AVERAGE MISMATCH AND THE SECOND
MOMENT G

As we have explained, the performance of a template
bank is determined by the average mismatch [21]. For
a given region of parameter space and a given number
of grid points, this in turn is proportional to the scale
invariant second moment G.

To define G and show it’s relationship to the average
mismatch, let x € R™ be parameter-space coordinates,
and let V C R™ be the region of interest (for example
corresponding to the desired ranges of masses and fre-
quencies of interest in a search). Here, = denotes a vector
with n Cartesian components, and we employ the stan-
dard Euclidean metric and norm.

The parameter-space n-volume is V' = V(V), where

V(S) = /S iz,

is the volume of some subset S C R".
Suppose that N search templates are located at grid
points x1,...,zx. Define the mismatch function

(2.1)

r2(x) = min(|z — 1%, |z — 22|, ..., Jz — 2n[?), (2.2)

which is the squared distance from x to the nearest tem-
plate. For the given template bank it is the fractional loss
in (squared) signal-to-noise ratio (SNR) at each point in
parameter space. The average of this quantity,

T2:i r?(z)d"x
o) =3 [ P,

is the average mismatch [2§]

The goal of the template-bank architect is to minimize
the average mismatch. This is because the fraction of
signals which are lost (compared to a template bank with
a very finely spaced grid) is given by [21, Eq. (5.6)]

D,

f - 2 <T >a
where D is the effective dimension of the source distri-
bution, which usually lies in the range 2 < D < 3. (See
[21} Eq. (5.1)] for the definition of the source distribution
function, and note that here, to avoid confusion with the
differential symbol, we use D rather than d to denote the
dimension of the source distribution.)

For example, suppose that 100 sources would in princi-
ple be detectable with a very finely spaced template bank,
and that these sources were distributed uniformly in
space (D = 3). Then a template bank with an (r?) = 3%
average mismatch loses about f = 5% of potential detec-
tions, so on average 95 sources would be detected and 5
would be lost.

To compare the relative performance of different tem-
plate banks (i.e., different choices of the N grid point lo-
cations x;), it is convenient to define the scale-invariant
second moment

(2.3)

(2.4)

G = %ﬁ (2.5)

Note that our definition in Eq. is the conventional
one [22, Ch 2 Eq (87)], in spite of the appearance of N.
This is because in the conventional definition, V' denotes
the volume per grid point, which here is V/N.

The performance indicator f, which is the fraction of
potentially detectable signals that are lost because of the
discreteness of the template bank, may be expressed in
terms of G, as

f=1inD(V/N)¥"G. (2.6)
Here, the “effective source dimension” D is set by the
spatial distribution of signal sources, and V/N is the
parameter-space volume per grid point.

To compare the performance of different template
banks, fix the number of templates N, the parameter
space dimension n, and the volume of parameter space
V. Then, the template grid with the smallest G is the
best choice, since it loses the smallest fraction of detec-
tions.

The simplest lattice, which is the n-dimensional cu-
bic lattice, has a dimensionless second moment G(Z") =
1/12 ~ 0.08333. A table showing the current records
for the smallest G among lattices (and also comparing
the covering thickness) can be found in [21] and a larger
and more recent table in [23]; these latter values are also
shown in Fig.

III. RANDOM TEMPLATE BANKS

We now compute the performance of a random tem-
plate bank. As first proposed by [I3], this is created by
randomly placing grid points uniformly within V), locat-
ing each point independently of the positions of the other
points. Here, “uniformly” means a Poisson process: the
probability of finding a grid point within an infinitesimal
volume dV is

P =pdV, (3.1)
where p = N/V is the density of grid points: the number
of grid points per unit parameter-space volume.

By standard arguments for Poisson processes [30,
Chapter 14-4], the probability of finding ¢ points within
a finite volume v is

pe) = O e,

(3.2)

Here, and throughout, we assume that N is large enough
that truncating this distribution for ¢ > N has no signif-
icant effect, or equivalently, that the n-volume V — oo
with the density of grid points p held constant, or equiv-
alently, that the volume v under consideration is small
compared to V, so that v/V << 1.

We now calculate (r?) and G following a beautiful ar-
gument [31] given by Torquato in [26]. Let E(r) denote
the empty probability. This is the probability that an
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FIG. 1.

The current record-holding (smallest G) lattice template banks [23] Table 1] (blue points) lie above the conjectured

Conway & Sloane [29] lower bound (cyan curve). The random template bank G (orange) has its performance given by the Zador
upper bound Eq. . For a fixed number of grid points, in dimensions n > 8, a random template bank has a performance
(detection loss) which is within 10% of the theoretically best possible template bank (see Table E[) In many higher dimensions
(for example 15 or 19) the random template bank outperforms any known lattice.

n-ball of radius r, randomly placed in parameter space,
contains no grid points. The ball’s n-volume is

V(B Gl 3.3
(B(r)) = mr ’ (3.3)
where the gamma function is defined by
I'(z) = / t*~letdt (3.4)
0

on the half-plane R(z) > 0, and by analytic continua-
tion elsewhere. Setting ¢ = 0 in Eq. (3.2)), the empty
probability is

E(r) = P(0) = e PV (BM), (3.5)
Now, by definition, E(r + dr) is the probability that a
slightly larger ball of radius r + dr, randomly placed in
parameter space, contains no grid points. This is a bit
smaller than E(r), and the difference,

E(r)— E(r+dr) = ———dr, (3.6)

dr

is the probability that the closest grid point to a random
point z lies in the shell of radius r € (r,r + dr) from z.

Since —% dr is the probability that the closest grid
point lies in the shell of radius (r,r + dr), it follows im-
mediately that the average squared distance to the closest
point in the template bank is

(3.7)

where on the second line we have integrated by parts, and
on the third line we have substituted Eq. (3.5)), changed
variables, and used the definition Eq. of the gamma
function, along with 2T'(z) = T'(z + 1).

The scale-invariant second moment G of the random
template bank follows from Egs. and (3.7), since p =
N/V. This reproduces [26, Eq. (99)], and furthermore, as
noted by Torquato, gives exactly the Zador upper bound
[32] for the optimal scale-invariant second moment

GRandom = GZador upper

1 2
=—TI(1+2)=T(1+2). 3.8
—T(A+35)"T(1+3) (3-8)

This is plotted as the orange curve in Fig.



n Ges Grandom Max Gain %
1 0.08333 0.50000 500
2 0.08019 0.15915 98.5
3 0.07787 0.11580 48.7
4 0.07609 0.09974 31.1
5 0.07465 0.09132 22.3
6 0.07347 0.08608 17.2
7 0.07248 0.08248 13.8
8 0.07163 0.07982 114
9 0.07090 0.07778 9.7
10 0.07026 0.07614 8.4
11 0.06969 0.07480 7.3
12 0.06918 0.07367 6.5
13 0.06872 0.07272 5.8
14 0.06831 0.07189 5.2
15 0.06793 0.07116 4.8
16 0.06759 0.07053 4.3
TABLE I. An ideal template bank has a loss factor G at

the Conway & Sloane lower bound Gcs, whereas a random
template bank has a loss factor of Grandom. The final column
shows the fractional difference in percent. For example, in
n = 9 dimensions, if an ideal template bank were spaced to
lose 5% of detectable signals, then s random template bank
with the same number of grid points would lose about 5.5%
of detectable signals (9.7% more).

As can be seen from Fig. [I] and Table [} the perfor-
mance of a random template bank is very dependent
upon dimension. In small dimensions, the performance is
poor. For example in one dimension, for a given param-
eter space volume, signal source, and number of tem-
plates, a one-dimensional random template bank loses
six times as many signals as the uniformly spaced grid
Z. In dimension two, the random template bank loses al-
most twice as many signals as the hexagonal lattice As,
and in dimension three, it loses about 47% more signals
than the optimal quantizer, which is the body-centered-
cubic (bee, A%) lattice. But the relative performance of a
random template bank improves rapidly with dimension.
By dimension 7, its performance is better than that of
the hyper-cubic lattice Z™. By dimension 8, the random
template bank loses only 11% more signals than the best
known quantizer lattice Eg, which is likely optimal [33].

As the parameter space dimension n — oo, both the
Conway & Sloane conjectured lower bound and the Zador
upper bound approach G, = 1/2me =~ 0.058549. In this
sense, in higher dimensions, a random template bank,
whose performance is equal to the Zador upper bound, is
as good as one can get. In practice, this limit is quickly
reached. If one selects a random template bank, then the
final column of Table [l shows the maximum fractional
improvement (decrease from optimal) that is possible if
there were a lattice that lies on the Conway & Sloane
conjectured lower bound. This potential fractional im-
provement drops below 10% in dimension 8, and below

5% in dimension 15.

IV. PRODUCT TEMPLATE BANKS

It is often desirable to construct a template bank as
the Cartesian product of two lower-dimensional template
banks. For example, if one of the parameter space di-
mensions is frequency, and the signal-to-noise statistics
are obtained via a fast Fourier transform (FFT) from
time-domain data. Such an FFT yields evenly-spaced
frequency bins. As a second example, if one of the pa-
rameter space dimensions is binary coalescence time, and
it is sampled at the same sample rate as the data, or
at some sub-harmonic of that rate. In both examples,
the parameter space grid then has a factor which is the
evenly-spaced one dimensional lattice Z.

In the most general approach to such cases, the tem-
plate bank on the full n-dimensional parameter space is
the Cartesian product of two lower-dimensional template
bank “factors”, whose dimensions are n, and n;, with
n = ng + np. Recent work [23] shows how the relative
grid-spacings of the two factors can be scaled or adjusted
to achieve the smallest possible value of G for the result-
ing product. After that scaling, the product template
bank has a scale-invariant second moment given by [23|
Eq. (41)]

G =G Gy, (4.1)
where GG, and (53, are the scale-invariant second moments
of the two factors. Since G(Z) = 1/12, the one di-
mensional examples above correspond to n, = 1 and
G, =1/12.

In this way, the results of this paper can also be used to
characterize the optimal performance of template banks
that are constructed as a product of a random template
bank with a lattice, or of two independent random tem-
plate banks.

V. LOSS FRACTION AT LARGE MISMATCH

Up to this point in the paper, we have only consid-
ered “closely spaced” random template banks. We now
generalize those results to arbitrarily large spacing. To
distinguish these two cases, it is helpful to define

s 174 1/n
A:pl/ :<N) ,

which is the characteristic distance between grid points.

If the templates are closely spaced, then A is small.
From Egs. and , this ensures that the fraction
of lost signals

(5.1)

D 2
f=TA+3)"T(1+2)A°

= (5.2)



is small: f << 1. However, the treatment in Section [[T]
clearly breaks down if the grid spacing A becomes too
large, since in that case the loss fraction f in Eq.
would exceed unity. This is inconsistent, since by defini-
tion f < 1. This inconsistency arises because Section [IT]
assumes the “quadratic approximation” to the mismatch,
which is is invalid for large separations.

In this Section, we make use of the “spherical ansatz”
of [27] to compute the loss fraction of a random template
bank for arbitrarily large template grid spacing A. As
before, the calculation for a random template bank is
much simpler than for a lattice.

Employing the spherical ansatz, the loss fraction of

Eq. (2.4) f = D(r?)/2 is replaced by

f={s(r), (5.3)
where
) 1- cosPr for r < /2, and
s(r) = {1 for r > /2. (5:4)

(These equations are derived in [27, Eq. (5.10)] and [34}
Eqns. (3.6) and (3.7)]. When r is small, expansion of
Eq. in a Taylor series for small r gives s(r) ~ Dr?/2,
recovering Eq. (2.4).)

To calculate (s(r)) we proceed as in Section [[II)) begin-
ning with Eq. to obtain

G0 == [ sty

= /OOO djl(:)E(r) dr

w/2 d
:/ E(r)—(1 — cos? r) dr.
0 d

. (5.5)
In the second line we have integrated by parts, since s(r)
vanishes at » = 0 and E(r) vanishes as r — co. The
third line follows because the derivative of s(r) vanishes
for r > /2.

To compute this in closed form, we rewrite the integral
in terms of the “expected values” of even powers of r.
(These are defined as in [2I, Eq. (5.11)], with the caveat
that the corresponding integrals are truncated at r =
/2. To emphasize this, we use R rather than r inside the
angle brackets.) Thus we define the truncated moments

7\'/2 d ,
B(r) 2
/0 (r) drr dr

p _p n.e
=AP 1+ <)~y
72 I 2) (

(RP) (5.6)

§TL
p L)
n’ 2nAnD(1+ 2)7

where the lower incomplete gamma function is defined
by
x
’y(z,a?):/ t*~tetat. (5.7)
0

To use these moments to compute the loss fraction from
Eq. (5.5, first expand cos” 7 in a Taylor series, and then
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FIG. 2. The fraction of signals which are lost by a ran-
dom template bank as function of the grid spacing A. These
are computed using the spherical ansatz for the mismatch,
for a D=3-dimensional source distribution; the curves show
parameter-space dimensions n = 2,4,...,12. The dashed
lines show the quadratic approximation for the mismatch,
which is accurate at small grid spacings.

replace the (even) powers of  using Eq. (5.6). One ob-
tains the loss fraction f = (s(r)) given by

D, , 3D2—2D, , 15D3—30D2+16D,
J=5(B) = —— (R + 720 (R”)
105D* — 420D? 4 588D2 — 272D,
- (R®) +....
40320

The loss fractions f for random template banks are shown
in Figure 2] for a D = 3—dimensional source distribution.
Note that while Eq. does not show the expansion
terms proportional to (R'?) and (R!?), these are never-
theless included in Figure [2] providing accuracy substan-
tially greater than the plotting line width.

VI. CONCLUSION

Random template banks are practical to employ be-
cause they are quick and simple to construct. It is re-
markable that their performance is so easily character-
ized.

This analysis would have been possible when random
template banks were first introduced [13]. However, as
we have explained, the authors of that work were focused
on the covering radius, or more strictly speaking, on the
“effective covering radius”. Here, “effective” means that
a specified (large) fraction of the parameter space was
within a region covered by balls of the specified radius.
This approach was necessary, because the covering radius
is defined by the first positive root of the empty proba-
bility E(r). But, as can be seen from Eq. (3.5), in the
case of a random template bank, E(r) has no positive
roots. Hence the authors of [I3] made use of an effec-
tive covering radius, at which E(r) had decreased to an



acceptably small value. This leads to a more complex
treatment than the one given here.

For simplicity in this short paper, we have concen-
trated on the simplest case, with a flat parameter-space
metric. However, these results also apply to the non-
flat case, provided that the density of grid points is large
enough to ensure that the signal manifold around each
grid point is well approximated by flat space in the vicin-
ity of the nearest neighboring n grid points. If so, then a
Poisson random template bank may be created by plac-
ing grid points with a constant probability density per
unit volume dV = y/det g.pd"z, where gqp is the param-
eter space metric. This could also be modified to account

for a varying probability of sources, as in [21] Section VI].

These results should be of use in constructing and char-
acterizing template banks, and in understanding to what
degree those template banks might be improved.
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