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Double Copy from Homotopy Algebras

Leron Borsten, Hyungrok Kim, Branislav Jurčo, Tommaso Macrelli, Christian Saemann,
and Martin Wolf*

We show that the BRST Lagrangian double copy construction of = 0 supergravity as the ‘square’ of Yang–Mills
theory finds a natural interpretation in terms of homotopy algebras. We significantly expand on our previous work
arguing the validity of the double copy at the loop level, and we give a detailed derivation of the double-copied
Lagrangian and BRST operator. Our constructions are very general and can be applied to a vast set of examples.

1. Introduction and Results

Recent years have witnessed a resurgence of the idea that gravity can, in some sense, be viewed as the product of two gauge theories,

‘gravity = gauge⊗ gauge’. (1.1)

This notion goes back at least to the 1960’s[1,2] and was realised concretely at the level of tree-level scattering amplitudes via the
Kawai–Lewellen–Tye (KLT) relations of string theory[3]: closed string tree amplitudes can be written as sums over products of open
string tree amplitudes. The field theory limit of the KLT relations implies a relationship between tree-level Yang–Mills amplitudes and
those of = 0 supergravity, the universal massless sector of closed string theories consisting of Einstein–Hilbert gravity coupled to
a Kalb–Ramond two-form and dilaton.
This paradigmwas dramatically advanced with the advent of the Bern–Carrasco–Johansson (BCJ) colour–kinematics duality and the

double copy prescription.[4–6] Firstly, it was conjectured[4] that gluon amplitudes can be recast so as to manifest a duality between their
colour and kinematical data. This was quickly established at the tree level,[7,8] however it remains conjectural at the loop level. Then,
given a gluon amplitude in colour–kinematics-dual form, it can be ‘double-copied’ to yield a bona fide amplitude of = 0 supergravity.
In our previous work,[9] we have shown that the double copy can be realised at the level of ‘off-mass-shell’ perturbative quantum

field theories. Specifically,

(i) the Yang–Mills Becchi–Rouet–Stora–Tyutin (BRST) Lagrangian can be made to manifest tree-level colour–kinematics duality for
the full BRST-extended Fock space and

(ii) the Yang–Mills BRST Lagrangian itself double-copies to yield the perturbative = 0 supergravity BRST Lagrangian.
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An immediate corollary is that the double copy of gluon amplitudes yields the amplitudes of  = 0 supergravity to all orders in
perturbation theory, at trees and loops.
Goals of This Work: In this work, we shall

(i) give a detailed exposition of the central ideas contained in [9]. As a warm-up we apply our methodology to the Lagrangian double
copy of the non-linear sigma model, which gives a special galileon theory to all orders in perturbation theory;

(ii) show that colour–kinematics duality and the BRST Lagrangian double copy can be elegantly articulated in terms of homotopy
algebras. In particular, the Batalin–Vilkovisky (BV) L∞-algebra of Yang–Mills theory admits a twisted factorisation, and thismakes
the double copy construction manifest;

(iii) address some of the implications of this perspective for generalisations beyond Yang–Mills theory, colour–kinematics duality,
the double-copy, and scattering amplitudes.

Since one of our aims is to cater to both the scattering amplitudes and the homotopy algebra communities, our discussion will be
self-contained to a high level. We also provide separate introductory sections for both the double copy (Section 1.1) and homotopy
algebras (Section 1.2) in the following. The reader familiar with both of these areas may want to skip directly to the results presented
in Section 1.3, the outlook given in Section 1.4, or the reading guide provided in Section 1.5.

1.1. Double Copy

Squaring Gauge Theory: Heuristically, by (1.1) we mean that one can regard the tensor product of two gauge potentials as the field
content of a gravitational theory summarised by

‘A𝜇 ⊗ Ā𝜈 = g𝜇𝜈 ⊕ B𝜇𝜈 ⊕ 𝜑’ . (1.2)

Here, A𝜇 and Ā𝜈 are the gauge potentials of two distinct Yang–Mills theories with two colour or gauge Lie algebras 𝔤 and �̄�. After
stripping off the colour component, the tensor product of A𝜇 and Ā𝜇 yields a metric g𝜇𝜈 , the Kalb–Ramond Abelian two-form gauge
potential B𝜇𝜈 , and a scalar field 𝜑 called the dilaton. The latter form the field content of  = 0 supergravity, the common Neveu–
Schwarz-Neveu–Schwarz sector of the 𝛼′ → 0 limit of closed string theories with classical action

S=0 := ∫ ddx
√
−g

{
− 1
𝜅2
R − 1
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, (1.3)

where 2𝜅2 = 16𝜋G(d)
N is Einstein’s gravitational constant, R the scalar curvature, and H𝜇𝜈𝜅 the curvature of B𝜇𝜈 .

We can refine our interpretation of Equation (1.2) to on-shell states of scattering amplitudes, if we regard it as the tensor product
of the corresponding space–time little group representations,

ℝd−2 ⊗ ℝd−2 ≅
⨀2

0ℝ
d−2 ⊕

⋀2ℝd−2 ⊕ ℝ ,
Ai ⊗ Āj ≅ g(ij)0 ⊕ B[ij] ⊕ 𝜑 ,

(1.4)

where ℝd−2 is the vector representation of 𝖲𝖮(d − 2),
⨀2

0 ℝ
d−2 denotes the trace-free symmetric product, and i, j = 1,… , d − 2. In the

context of scattering amplitudes, this amounts to the decomposition of the tensor product of two transverse gluon polarisation tensors
into the polarisation tensors of the graviton (transverse-traceless), Kalb–Ramond two-form (transverse) and dilaton,1

𝜀𝜇�̄�𝜈 =
(
𝜀(𝜇�̄�𝜈) −

1
d
𝜂𝜇𝜈𝜀

𝜌�̄�𝜌

)
+ 𝜀[𝜇�̄�𝜈] +

1
d
𝜂𝜇𝜈𝜀

𝜌�̄�𝜌 . (1.5)

Given this identification of on-shell states, it is natural to wonder about a corresponding identification of scattering amplitudes of
 = 0 supergravity. The latter relation, however, has to be subtle. In particular, given that the Weinberg–Witten theorem[10] forbids
composite gravitons under the assumption that there exists a Lorentz covariant conserved energy–momentum tensor, how should one
make sense of such a proposal? Moreover, what happens to the gauge groups and from where would the diffeomorphism invariance
of (1.3) arise?
The earliest non-trivial concrete realisation of (1.2) came from string theory in the guise of the aforementioned KLT relations[3]:

the tree-level scattering amplitudes of closed strings are sums of products of open string amplitudes. The intuition is clear as closed
string spectra are given by the tensor product of left and right moving open string spectra. The low energy effective field theory limits
of closed (open) strings are given by gravity (Yang–Mills) theories, so the graviton, Kalb–Ramond two-form and dilaton states arise as
the tensor product of the gluon states, and we should expect precisely the couplings of (1.3).

1 This expression is meant to be schematic. In particular, the trace piece corresponding to the dilaton must be supplemented by additional terms to
render it left- and right-transverse.
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The KLT relations were deduced directly from the tree-level string vertex operators, tying both them and their field theory descen-
dants intrinsically to the tree level. Nonetheless, early on, the ‘closed = open⊗ open’ picture was used to construct one-loop graviton
amplitudes,[11] indicating that such relations may extend beyond the semi-classical regime. The key technical development in this
regard was a shift to an ‘on-shell’ perspective that dispensed with the familiar Lagrangian starting point and relied instead on gauge-
invariant on-shell amplitude structures, such as recursion relations and unitarity cuts. For example, unitarity methods[12–18] were
employed to build d = 4,  = 8 supergravity two-loop amplitudes from  = 4 supersymmetric Yang–Mills theory, by-passing the
usual Lagrangian and Feynman diagram prescription entirely.[19] Such results motivated a search for a general all-loop amplitude fac-
torisation.
Colour–Kinematics Duality: Importantly, the on-shell methodology uncovered properties of amplitudes not readily visible in the

underlying Lagrangians. This includes the colour–kinematics duality of Yang–Mills theory.[4,5] Let us briefly summarise this duality
here; we will give the details in Section 2.2. For pedagogical introductions and further references see [20–24].
Firstly, one can write any gluon amplitude entirely in terms of trivalent graphs by ‘blowing’ up the four-point contact terms, see

Section 2 for details and notation. The resulting trivalent diagrams are thus not the Feynman diagrams of the original theory, but
of an equivalent theory. Having done so, the colour–kinematics duality conjecture states that there exists a reparametrisation of the
amplitude such that

(i) for any triple of graphs, (i, j, k) with colour factors 𝖼i, 𝖼j, and 𝖼k, which are built entirely from the structure constants fab
c of the

gauge Lie algebra, obeying a Jacobi identity 𝖼i + 𝖼j + 𝖼k = 0, the corresponding kinematic factors, 𝗇i, 𝗇j, and 𝗇k, which are built
from the momenta and polarisation tensors, also obey the same Jacobi-type identity 𝗇i + 𝗇j + 𝗇k = 0 and

(ii) for any diagram, i, such that 𝖼i → −𝖼i under the interchange of two legs then 𝗇i → −𝗇i.

Kinematic factors 𝗇i satisfying the colour–kinematics duality conditions are referred to as the BCJ numerators.
Whilst the colour factors satisfy Jacobi identities by definition, it is not at all obvious that the kinematic factors should obey the

same rules; it is certainly not evident form the Yang–Mills Lagrangian. A reorganisation admitting this surprising relationship between
colour and kinematic data exists for all n-point tree-level amplitudes, as has been demonstrated from a number of perspectives.[25–29]

Although there is as yet no proof that the colour–kinematics duality will continue to hold for general loop amplitudes, there are many
highly non-trivial examples providing supportive evidence.[30–37]

The kinematical Jacobi identities have important implications for the structure of the scattering amplitudes themselves, such as the
existence of BCJ relations amongst colour-ordered partial amplitudes, reducing the number of independent n-point partial amplitudes
down from (n − 2)! to (n − 3)!.[4] The perhaps most important implication is the double copy of tree-level scattering amplitudes.
Double Copy: Consider the BCJ double copy prescription.[5,6] Concretely, take the two n-point L-loop Yang–Mills amplitudes, both

written in trivalent formwith respective colour and kinematic factors (𝖼i, 𝗇i) and (�̃�i, �̃�i), at least one of which has been successfully cast
in a colour–kinematics-duality respecting form, say (𝖼i, 𝗇i). We can construct a corresponding gravitational theory amplitude by simply
replacing each colour factor in (𝖼i, �̃�i) with the corresponding kinematic factor of (𝖼i, 𝗇i), that is, (𝖼i, �̃�i) → (𝗇i, �̃�i). We have removed
all reference to the gauge group and ‘doubled’ the kinematic terms. This addresses the first of our earlier questions: the gauge Lie
algebra is replaced by a ‘kinematic algebra’. The second question concerning diffeomorphisms ismore subtle, but also rests on colour–
kinematics duality. For example, assuming colour–kinematics duality, the residual gauge invariance of the Yang–Mills amplitudes
implies the invariance of the double copy amplitude under residual diffeomorphisms.[38] For two Yang–Mills theories, again with
possibly unrelated gauge Lie algebras, this double copy procedure generates all possible tree amplitudes of = 0 supergravity, giving
precise meaning to the heuristic Equation (1.2), at least at the semi-classical level.
This prescription generalises to supersymmetric Yang–Mills theory with both unrelated supersymmetry and gauge algebras. For ex-

ample, we could take the (𝖼i, 𝗇i) from = 4 supersymmetric Yang–Mills amplitudes and the (�̃�i, �̃�i) from purely bosonic Yang–Mills
theory and double-copy them to the amplitudes of  = 4 supergravity.[39] Alternatively, if both factors are  = 4 supersymmetric
Yang–Mills theories, we produce the amplitudes of  = 8 supergravity.[5] This can be thought of as the (low energy limit of the)
dimensional reduction on a six-dimensional torus of the ‘type II = type I⊗ type I’ relation of d = 1 + 9 superstring theory. By varying
the left and right factors over all colour–kinematics duality compatible gauge theories, we generate all double-copy constructible grav-
itational theories. Whilst concrete constructions are complicated, there is nonetheless a rapidly multiplying zoology of double copy
constructible gravity theories.[5,6,30,38,40–42,42–62]

The double copy is clearly conceptually provocative, suggesting a deep relationship between perturbative quantum Yang–Mills
theory and gravity. It is also computationally expedient, bringing seemingly intractable calculations within reach. This has advanced
our understanding of perturbative quantum gravity,[30,31,34,41,63–68] revealing a number of unexpected features and calling into question
hitherto accepted arguments regarding divergences.
For instance, the early expectations[69,70] regarding the onset of divergences were false in the case of the four-point graviton ampli-

tude of  = 8 supergravity, which was shown to be finite to four loops in [30]. This four-loop cancellation can be accounted for by
supersymmetry and 𝖤7(7) U-duality.

[71–76] However, at seven loops any cancellations could not be ‘consequences of supersymmetry in
any conventional sense’[72] and would be due to ‘enhanced cancellations’, where the terminology reflects the fact that they cannot be
explained by any standard symmetry argument2.

2 See [77] for possible explanations at three loops that nonetheless fail at four loops.
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The seven loop case has not yet been verified, but there is evidence for enhanced cancellations from theories with less supersym-
metry and, correspondingly, less protection against divergences. For example, the four-point amplitude of d = 4, = 5 supergravity
has been shown to be finite to four loops, contrary to expectations from standard symmetry arguments.[31] This casts serious doubt
on the divergence of = 8 supergravity at seven loops.
Currently, the cutting edge is the = 8 four-point five-loop amplitude, which was performed using generalised colour–kinematics

duality and the double copy.[68,78] It was found to be finite, but the degree of finiteness was in agreement with the standard symmetry
arguments, a disappointing outcome for anyone looking for enhanced cancellation thatmightmake for a seven-loopmiracle. However,
this conclusion was reached in d = 24

5
where the five-loop amplitude first diverges and there is a 𝜕8R4 counter-term.

Altogether, without a complete understanding of the amplitudes, including hidden features such as the double copy construction
and enhanced cancellations, such questions about divergences of amplitudes remain open in the absence of explicit calculations.
Why Do Colour–Kinematics Duality and The Double Copy Work: Given these remarkable results, we are compelled to ask why the

colour–kinematics duality and the double copy prescription work and whether they remain valid in the full quantum perturbation
theory. Although colour–kinematics duality and the double copy were arrived at through an on-shell lens, it may prove instructive to
step back to an off-shell, or Lagrangian, point of view. In our previous work,[9] we took the middle road, incorporating elements of the
on-shell picture to facilitate a fully off-shell BRST Lagrangian double copy.3 This construction incorporated and generalised three key
ideas from the existing literature, which we briefly review here. We shall give a more detailed account of each in the main body of this
work.

(i) The tree-level colour–kinematics duality for physical gluon scattering amplitudes can be made manifest at the level of the Yang–
Mills Lagrangian through the introduction of an infinite tower of ‘identically zero terms’.[6,80] As we shall explain, this is not
special to the colour–kinematics duality of Yang–Mills theory and can be implemented for any theory admitting a generalised (or
even trivial) internal–kinematics duality. Here ‘internal’ stands for the (possibly trivial) Lie algebra of any internal symmetry, such
as colour or flavour symmetries. For example, we shall discuss the flavour–kinematics duality of the non-linear sigma model in
Section 3. Even Maxwell theory has a trivial 𝖴(1)–kinematics duality.

(ii) The tree-level colour–kinematics duality manifesting action can itself be double-copied.[6] By construction, the tree-level ampli-
tudes of the double copy Lagrangian will match exactly those obtained by the double copy of the tree-level colour–kinematics-dual
amplitudes themselves. In the Lagrangian double copy the (polynomials of) colour structure constants are replaced by a second
copy of the corresponding differential operators, which can be regarded as ‘kinematic structure constants’. For self-dual Yang–
Mills theory it has been shown that there is a corresponding ‘kinematic algebra’ of area preserving diffeomorphisms[81–83] with
further generalisations given in [84, 85]. Note that complementary to the Lagrangian double copy is the idea that gravitational
actions4 can be written in a form that factorises order-by-order.[6,86–90]

(iii) There is an off-shell field theory ‘product’ of BRST quantised gauge theories, including the ghost fields, that generates the BRST
complex of the double copy theory.[91–93] Applying the Lagrangian double copy and truncating out the dilaton and Kalb–Ramond
sector, it has been explicitly shown to give Einstein–Hilbert gravity to cubic order (where colour–kinematics duality is trivially
satisfied).[94] The necessity of the inclusion of BRST ghosts in the context of ‘closed = open⊗ open’ in string theory was stressed
some time ago by Siegel.[95,96] For our purposes, the key observation is that the linear BRST transformations of the resulting
gravity theory follow from those of the gauge theory factors.[92,93] A related perspective on the double copy of symmetries has
recently been used to derive all-order diffeomorphisms and extended Bondi–Metzner–Sachs symmetries in the self-dual sector[97]

(see e.g. [98–104] for the construction of all hidden symmetries in self-dual Yang–Mills theory and gravity). Combined with
sufficient global symmetry, this picture can then be used to identify the gravity theory uniquely,[55,59,91,93,105–109] revealing some
interesting properties of double copy theories such as the appearance of the Freudenthal–Rosenfeld–Tits magic square and its
generalisation, the magic pyramid.[105,106] Remarkably, this perspective may be used as a guide to identifying new theories that
have no perturbative limit to start with, such as the twin superconformal theories of [110].

In our previous work,[9] each of these ideas was generalised or reformulated to show that the BRST Lagrangian double copy holds
to all orders, and here, we shall describe their homotopy algebras underpinnings.
Other Aspects of The Double Copy: Let us also mention some of the other generalisations and applications of the double copy. At the

classical level, one can apply a double-copy-type construction for classical solutions to generate non-perturbative Kerr–Schild solutions
in theories of gravity, such as black holes, or bi-adjoint scalar solutions from gauge theory solutions.[111–124] This classical double-copy
can be used to relate other features of gauge and gravity theories[125–127] and may also be implemented perturbatively.[128] There is an
elegant formulation of this idea connecting Yang–Mills field strengths to the Weyl tensor, which has expanded the space of amenable
solutions.[129–133] The field theory product[91] can also be used to elucidate the classical solution double-copy[134] and to construct,
for example, supersymmetric (single/multi-centre) black hole solutions in = 2 supergravity,[135,136] in the weak-field limit.
Alternatively, one can bend amplitudes and the double copy to the problem of classical black hole scattering, strongly motivated by

the advent of gravity-wave astronomy.[137–150] Another interesting approach is to seek a geometric and/or world-sheet understanding
of these relations through string theory[7,8,25,151–154] or ambitwistor strings and the scattering equations.[155–165]

3 See also [79] for recent work on a plain Lagrangian double copy.
4 Specifically those gravity theories that derive from the double copy.
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1.2. Homotopy Algebras and Quantum Field Theory

In physics, we describe infinitesimal symmetries by Lie algebras and their action on field configurations by Lie algebroids. In the case
of gauge symmetry, the latter are more familiar in their dual realisation, known as the Chevalley–Eilenberg picture. The Chevalley–
Eilenberg differential encoding the Lie algebra of gauge symmetries as well as its action is called the BRST operator.
L∞-Algebras and the BV Formalism: The classical observables of a field theory are given by field configurations that satisfy the

equations of motion. We can — and sometimes5 must — incorporate the equations of motion into the BRST picture, extending the
BRST operator to the Batalin–Vilkovisky (BV) operator.[166–171] This Chevalley–Eilenberg differential, however, no longer describes a
mere Lie algebra, but a homotopy generalisation thereof, known as L∞-algebra or strong homotopy Lie algebra. These algebras first
emerged in string field theory[172] taking inspiration from the definition of A∞-algebras,

[173,174] and were further developed in [175–
177]. Note that in the same sense as L∞-algebras generalise Lie algebras, A∞-algebras generalise associative algebras.
To be somewhat more explicit, an L∞-algebra is a generalisation of a differential graded Lie algebra in which the Jacobi identity, as

well as its nested forms, is satisfied only up to homotopies. This means that besides the differential 𝜇1 and the binary products 𝜇2,
there are also products of higher arity 𝜇i such that, for example,

𝜇2(𝓁1,𝜇2(𝓁2,𝓁3)) ± 𝜇2(𝓁3,𝜇2(𝓁1,𝓁2)) ± 𝜇2(𝓁2,𝜇2(𝓁3,𝓁1))

= 𝜇1(𝜇3(𝓁1,𝓁2,𝓁3)) ± 𝜇3(𝜇1(𝓁1),𝓁2,𝓁3) ± 𝜇3(𝓁1,𝜇1(𝓁2),𝓁3) ± 𝜇3(𝓁1,𝓁2,𝜇1(𝓁3)) ,
(1.6)

where the signs depend on the precise ℤ-grading of the arguments. The right-hand side is the Jacobiator, measuring the failure of
the Jacobi identity to hold, and importantly, it is given by a homotopy. For 𝜇i = 0 for i ≥ 3, we recover a differential graded Lie algebra
and a (graded) Lie algebra if also 𝜇1 = 0. We collected more details on L∞-algebras in Appendix A.3.
Classically, any BV quantisable field theory is fully described by an L∞-algebra,

[178,179] see [180–194] for earlier and partial accounts.
The Maurer–Cartan theory of L∞-algebras, which in itself is a vast generalisation of Chern–Simons theory for Lie algebras, encom-
passes the action, the field equations, and all symmetries of general observables, such as gauge and Noether symmetries. Most inter-
estingly, Maurer–Cartan theory also describes the (tree-level) scattering amplitudes of the field theory in question.
In this sense, the L∞-framework provides a very natural and unifying description of Lagrangians and scattering amplitudes of a

field theory, resolving the question about what should be regarded as fundamental:

(i) The mathematically appropriate notion of equivalence between L∞-algebras is given by quasi-isomorphisms, and classically
equivalent field theories correspond to L∞-algebras which are quasi-isomorphic; see Sections 4.3, Appendix A.3 for details.

(ii) Every L∞-algebra is quasi-isomorphic to an L∞-algebra in which the differential 𝜇1 vanishes identically,
[195,196] and such L∞-

algebras are known as minimal models. A minimal model and its higher products describe precisely the tree-level scattering
amplitudes of the corresponding field theory,[178,179,196,197] and we explain this in Section 4.3. Notice that minimal models are
related to a Feynman diagram expansion in general, following earlier suggestions,[198] and this was used in [199] to derive Wick’s
theorem and Feynman rules for finite-dimensional integrals.

(iii) The notion of an L∞-algebra can be generalised to that of a quantum L∞-algebra,
[172,200,201] which corresponds to a solution to the

quantum master equation in the BV formalism, see Section 4.2. Ultimately, such an quantum homotopy algebra encapsulates
the quantum aspects of the corresponding field theory. In particular, quantum L∞-algebras also come with a (quantum) minimal
model,[201] and their higher products describe precisely the full scattering amplitudes of the corresponding field theory,[202,203] as
we shall review in Section 4.3. For aspects regarding renormalisation in this context, see e.g. [204, 205] and in particular.[206,207]

(iv) Since both classical and quantum minimal models can be computed recursively by the homological perturbation lemma,[208,209]

see Section 4.3 for details, we obtain Berends–Giele-type recursion relations for amplitudes in any BV quantisable field theory
both at the tree and loop levels.[202,203,210,211] See also [212] for related discussions of the S-matrix in the L∞-language,

[213,214]

for the tree-level perturbiner expansion,[215] for an L∞-interpretation of tree-level on-shell recursion relations, and [216] for the
construction of a homotopy BV algebra6 description of the BCJ relations and BCJ colour–kinematics duality at the tree level.

Because homotopy algebras are the key algebraic structure underlying string field theory, it is perhaps not very surprising that
they also play an important role in analysing string and field theories. They are vital in approaches to non-perturbatively completing
string theory to M-theory, and we refer the interested reader to the recent review[218] (and references therein) which gives a condensed
overview about the various applications of homotopy algebras in physics as well as a basic introduction into higher structures.
Homotopy Algebras and Factorisations: Besides the strong homotopy Lie algebras, or L∞-algebras, there are other homotopy algebras

that are important for our purposes. In particular, we will make use of strong homotopy associative algebras, orA∞-algebras and strong
homotopy commutative algebras, or C∞-algebras (see e.g. [219] and references therein). A good example to demonstrate their use is
colour-stripping of Yang–Mills theory.

5 For example, in the case of open BRST complexes such as the ones arising in (unadjusted) higher gauge theories.
6 See e.g. [217] for the definition of homotopy BV algebras.
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The L∞-algebra of Yang–Mills theory 𝔏YM can be obtained as the anti-symmetrisation of an underlying A∞-algebra 𝔄YM.[202] As
explained there, this A∞-algebra allows for an interesting factorisation,

𝔄YM = 𝔄col ⊗𝔄kin , (1.7)

where𝔄col is a gauge matrix algebra, regarded as an A∞-algebra concentrated in degree zero which encodes the colour structure, and
𝔄kin is concentrated in degrees 0,… , 3 and encodes the colour-stripped interactions.
As we shall show in Section 6.2, this interpretation of colour-stripping7 can be improved by factorising the L∞-algebra of Yang–Mills

theory 𝔏YM as

𝔏YM = 𝔤⊗ ℭYM , (1.8)

where 𝔤 is indeed the colour or gauge Lie algebra and ℭYM is the (unique) C∞-algebra which fully describes the colour interactions. A
related application of C∞-algebras was given in [190].
At first glance, the latter factorisation seems suitable for the description of the double copy. On closer inspection, however, we ob-

serve that the factorisation of the Yang–Mills scattering amplitudes is really a factorisation into three parts: the colour part, the form
kinematics part and an underlying scalar field theory with cubic interactions, which acts as a ‘skeleton’ for the Feynman diagram ex-
pansion.
Since homotopy algebras underlie the string field theory actions and because the double copy prescription linking gauge theory

and gravity amplitudes is motivated by ‘closed = open ⊗ open’ string duality, it is not surprising that homotopy algebras provide a
good framework for understanding this duality.

1.3. Results and Discussion

In this paper, we provide an explicit account of the BRST Lagrangian double copy[9] and its articulation in terms of homotopy algebras.
Here we summarise the key results and features of the BRST Lagrangian double copy, its implications for scattering amplitudes and
BCJ numerators, and the ‘homotopy double copy’. We also list some collateral results on the relation between homotopy algebras and
field theories.
BRST Lagrangian Double Copy: Our central result is that the Yang–Mills BRST Lagrangian double-copies to give the perturbative

 = 0 supergravity BRST Lagrangian to all orders. The logic of the underlying argument, and the key sub-results entering into it, are
summarised here (cf. Figure 1):

(i) The tree-level Yang–Mills scattering amplitudes with external states from the extended BRSTHilbert space including the physical
transverse gluons, the unphysical forward/backward polarised gluons, and (anti)ghost states, can be made to satisfy colour–
kinematics duality. See Section 8.4.

(ii) This extended tree-level BRST colour–kinematics duality can be made manifest in the Yang–Mills BRST Lagrangian. Unlike the
colour–kinematics duality for physical gluons, this requires the addition of non-vanishing vertices to the Yang–Mills BRST La-
grangian. However, they may be introduced exclusively through the gauge-fixing fermion and so preserve perturbative quantum
equivalence. See Section 8.4.

(iii) The extended tree-level BRST colour–kinematics duality manifesting Yang–Mills BRST Lagrangian can be ‘strictified’ to possess
purely cubic interactions in an extended colour–kinematics duality preserving manner through the introduction of an infinite
tower of auxiliary fields. See Section 8.3.

(iv) The strict (i.e. cubic) Yang–Mills Lagrangian which manifests tree-level BRST colour–kinematics duality can be double copied to
give a putative perturbative = 0 supergravity BRST Lagrangian. Similarly, the Yang–Mills BRST operator is double copied to
give a putative = 0 supergravity BRST operator. See Section 9.4.

(v) By construction, the physical tree-level  = 0 supergravity amplitudes of the double copy Lagrangian match those of  = 0
supergravity.

(vi) The double copy BRST charge is valid on-shell due to tree-level BRST colour–kinematics duality, and the linear double copy BRST
charge implies that the double copy amplitudes satisfy the BRSTWard identities. This implies perturbative quantum equivalence
to = 0 supergravity. See Section 9.5.

Some comments are in order here. Firstly, we work perturbatively. This implies that, as in [6, 80], the BRST colour–kinematics
duality manifesting action of [9] requires an infinite tower of vertices and hence the strictified action contains an infinite tower of
auxiliary fields. The intuition is clear: perturbative gravity has all order interactions and these are generated by the double copy of the

7 Note that colour-stripping is not automatically possible, even if all fields take values in the adjoint representation: it requires that the colour co-
efficients in the interaction terms consist exclusively of (contractions of) the Lie algebra structure constants f c

ab
. For example, the non-Abelian

Dirac–Born–Infeld action fails this criterion, even though all fields are adjoint, since its interactions also involve the coefficient dabc := tr({𝚎a, 𝚎b}𝚎c).
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Figure 1. Diagrammatic description of the double copy.

vertices enforcing BRST colour–kinematics duality. The n > 3 point interactions of gravity ensure diffeomorphism invariance, and
in the BRST framework this follows from the BRST colour–kinematics duality. Note, however, that perturbatively, i.e. at any finite
n-point, L-loop order we only require a finite number of auxiliary fields and terms in the actions.
Scattering Amplitudes and Bern–Carrasco–Johansson Numerators: An immediate corollary of this argument is that the Yang–Mills

scattering amplitudes double copy into amplitudes of  = 0 supergravity to all orders, tree and loop. The former are computed
directly from the tree-level BRST colour–kinematics duality manifesting Lagrangian, which can be used to construct ‘almost BCJ
numerators’ that double-copy correctly. Note that to any finite n-point, L-loop order, deriving this Yang–Mills Lagrangian is a purely
algebraic exercise, i.e. there is no need to solve for functional colour–kinematics duality relations.
To be more precise:

(i) At n points and L loops, one constructs the tree-level BRST colour–kinematics duality manifesting Yang–Mills Lagrangian up
to the necessary finite order in auxiliary fields. Being exclusively tree-level, this is a purely algebraic operation. Nonetheless, the
number of required auxiliary fields grows quickly, as one needs the largest trivalent tree8 that can be glued into a cubic n-point
and L-loop diagram, i.e. at one loop and n points one needs n + 2 point vertices. Already at four points and two loops one needs
up to eight points, which requires about 150 auxiliary fields. We should stress, this is the worst case scenario. It is likely that one
can do better by incorporating on-shell methods, in particular generalised unitarity. Also, the process can be automated using
computer algebra programmes.

(ii) Equipped with such an action, the ‘almost BCJ numerators’ are given by the sums the numerators of all Feynman diagrams
with the same topology (i.e. one ignores the distinction amongst the different fields that can sit on the internal lines), which by
definition have the same colour numerators and propagators.

(iii) The ‘almost’ qualifier indicates that the numerators so constructed will not necessarily satisfy perfect colour–kinematics duality
at the loop level. It might be that there are some hidden miracles and they do satisfy perfect colour–kinematics duality, but our
arguments do not ensure this, and we have not encountered any reason to think that this should happen generically.

(iv) Nonetheless, these ‘almost BCJ numerators’ will double copy to yield the corresponding  = 0 supergravity numerators. This
gives a bona fide = 0 supergravity n-point and L-loop amplitude integrand.

8 i.e. a tree with exclusively trivalent vertices.
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(v) From a pragmatic point of view, perfect colour–kinematics duality at the loop level is (very probably, i.e. barring the miracles
mentioned above) unnecessarily strong. It would be of practical importance to turn this statement into a precise set of loop
integrand ‘almost colour–kinematics duality’ conditions independent of the underlying BRST Lagrangian argument. We intend
to address this in future work. The most powerful ‘almost colour–kinematics duality’ conjecture motivated by our construction
(i.e. the conjecture with the weakest condition for loop-level double copy) is that loop integrands with enough internal lines cut
to be tree must satisfy perfect colour–kinematics duality.

Double Copy from Homotopy Algebras: Our central result is that the L∞-algebra of the strict Yang–Mills Lagrangian which man-
ifests tree-level BRST colour–kinematics duality factorises into a colour factor, a kinematic vector space, and a scalar theory factor.
Schematically,

𝔏YM = 𝔤⊗𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩, (1.9)

where 𝔤 is the colour part,𝔎𝔦𝔫 the kinematic part,𝔖𝔠𝔞𝔩 the scalar part. The tensor product between the kinematic and scalar factors
is twisted with twist datum 𝜏; see Section 6.3 for details. One can think of this twisting as a form of semi-direct tensor product, and
it generates a kinematic algebra acting on the scalar factor.
Given the factorisation, to double copy is to replace the colour factor with another copy of the twisted kinematic factor. This yields

the L∞-algebra 𝔏=0 of perturbatively BRST quantised = 0 supergravity, up to a quasi-isomorphism compatible with quantisation.
The action, scattering amplitudes and all other features are encoded in the L∞-algebra.

9 Perturbatively, it is the complete quantum
gravity theory up to the point of renormalisation. Alternatively, one can replace kinematics with colour to give the cubic biadjoint
scalar field theory. The scalar factor is common to all three theories.
Schematically,

Biadjoint scalar field theory ←← Yang–Mills theory ←→  = 0 supergravity
𝔤⊗ 𝔤⊗𝔖𝔠𝔞𝔩 𝔤⊗𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩 𝔎𝔦𝔫⊗𝜏 𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩 (1.10)

Let us expand on the key elements entering this picture. Our starting point is the observation that BV quantised Yang–Mills theory
corresponds to an L∞-algebra, denoted 𝔏YM

BV , which upon gauge-fixing yields a BRST L∞-algebra, denoted 𝔏
YM
BRST. The BV operatorQYM

BV
is uniquely determined by the higher products of 𝔏YM

BV , i.e. it is the dual Chevalley–Eilenberg differential, cf. Section 4.2. The BRST
operator QYM

BRST then follows from its gauge-fixing.
As we saw above, a crucial step in the double copy is the reformulation of scattering amplitudes in terms of cubic interaction vertices.

This is particularly natural from the point of view of homotopy algebras, where this is a well-known process known as strictification or
rectification. The statement of the strictification theorem for homotopy algebras is that any homotopy algebra is quasi-isomorphic to
a strict homotopy algebra with higher products that have either one or two inputs and one output, see Appendix A.4. Field theories
with exclusively cubic interaction vertices then simply correspond to strict homotopy algebras. Moreover, quasi-isomorphisms are the
proper homotopy algebraic articulation of physical equivalence, since they are isomorphisms on the cohomology and thus preserve
the space of physical states while allowing for field redefinitions and for the integrating in and out of auxiliary fields.
While in general, there are many possible strictifications of a homotopy algebra, the double copy singles out a particular class,

namely those corresponding to manifestly BRST colour–kinematics-dual Lagrangians. Each such strict L∞-algebra �̃�YM, st
BRST is quasi-

isomorphic to 𝔏YM
BRST. The non-trivial observation making the double copy manifest is the factorisation of �̃�YM, st

BRST :

�̃�YM, st
BRST = 𝔤⊗ (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩) . (1.11)

Let us provide some further details on the identification (1.11):

(i) 𝔤 is the familiar colour Lie algebra, i.e. an L∞-algebra with only 𝜇2, the Lie bracket, being non-trivial.
(ii) 𝔎𝔦𝔫st is the kinematic algebra. It is a graded vector space of the Poincaré representations carried by all the fields of the theory,

including the strictification auxiliaries. Restricting to the familiar BRST fields A, c, c̄, and b, it is given by

𝔎𝔦𝔫st :=
𝚐

ℝ[1]
⏟⏟⏟
=:𝔎𝔦𝔫−1

⊕

(
𝚟𝜇

𝕄d ⊕
𝚗
ℝ

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=:𝔎𝔦𝔫0

⊕
𝚊

ℝ[−1]
⏟⏟⏟
=:𝔎𝔦𝔫1

⊕ ⋯ , (1.12)

where we have labelled the basis vectors of the ghost c, the gauge potential A, the Nakanishi–Lautrup b, and anti-ghost c̄ Poincaré
modules suggestively by 𝚐, 𝚟𝜇 , 𝚗, and 𝚊. The ellipses denote the Poincaré modules of all the auxiliary fields required for the
strictification of the BRST colour–kinematics duality manifesting Lagrangian.

9 Strictly speaking, we also have to provide a path integral measure for the loop amplitudes; we always work with the one arising from canonically
quantising all fields.
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(iii) 𝔖𝔠𝔞𝔩 is the L∞-algebra of a cubic scalar field theory. Since it is cubic, this L∞-algebra has only two higher products, the unary and
the binary ones 𝜇1 and 𝜇2. Explicitly, 𝜇1 is simply the wave operator, the unique Lorentz invariant possibility, and 𝜇2 encodes a
cubic scalar interaction, the skeleton of the strictified Yang–Mills interactions.

(iv) The map 𝜏 is the twist datum of the tensor product, 𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩. Physically, it encodes the kinematic (differential operator)
factors of the Yang–Mills interactions. It is fully determined by the BRST colour–kinematics-dual form of the colour-stripped
action of Yang–Mills theory, and it induces the correct tensor product for factorising the L∞-algebra of = 0 supergravity.

For this factorisation of the L∞-algebra to be sensible, the expected tensor products of homotopy algebras need to exist first. One
of our collateral results is that, as mentioned above, colour-stripping in Yang–Mills theory can be regarded as a factorisation of the
L∞-algebra of Yang–Mills theory into a colour or gauge Lie algebra and a kinematical C∞-algebra. Here, we have

�̃�YM, st
BRST = 𝔤⊗ ℭYM, st

BRST , (1.13)

where ℭYM, st
BRST describes the colour-stripped part of manifestly colour–kinematic-dual, strictified Yang–Mills theory.

The double copy strongly suggests the further factorisation

ℭYM, st
BRST = 𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩, (1.14)

and our notion of twisted tensor product of homotopy algebras is essentially constructed such that this factorisation is possible, see
Section 6.1. For example, the action of the differential 𝗆𝜏11 : 𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩 → 𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩 on 𝚟𝜇 ⊗ 𝜑(x) ∈ 𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩 looks
schematically like

𝗆
𝜏1
1 (𝚟

𝜇 ⊗ 𝜑(x)) ∼ 𝚟𝜇 ⊗□𝜑(x) + 𝚗⊗ 𝜕𝜇𝜑(x). (1.15)

Given the full factorisation of the Yang–Mills L∞-algebra, the double copy prescription becomes manifest. Replace the colour factor
𝔤 with another copy of the kinematics factor𝔎𝔦𝔫st and twist the tensor product by 𝜏:

�̃�YM, st
BRST = 𝔤⊗ (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩)

double copy
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝔎𝔦𝔫st ⊗𝜏 (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩) = �̃�=0, st

BRST , (1.16)

where �̃�=0, st
BRST fully determines the double copy theory. The space of fields in this theory is determined by the tensor product of graded

vector spaces, which is an extension of the tensor product (1.2) that includes ghosts, anti-ghosts, Nakanishi–Lautrup fields and the
further auxiliary fields arising in the strictification. Since it is constructed from the higher products, the (gauge-fixed) BV differential
QYM
BV also factorises and double copies into the (gauge-fixed) BV differential Q=0

BV .
We note that one can also replace kinematics with colour to produce the cubic biadjoint scalar theory, sometimes referred to as the

zeroth copy,

�̃�YM, st
BRST = 𝔤⊗ (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩)

zeroth copy
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝔤⊗ �̄�⊗𝔖𝔠𝔞𝔩 = �̃�biadj

BRST . (1.17)

In this case, the homotopy algebraic discussion becomes straightforward.
To summarise, the homotopy algebraic structure underlying the double copy is the factorisation of the L∞-algebra 𝔏 of a field

theory as

𝔏 := 𝔙⊗ �̄�⊗𝔖𝔠𝔞𝔩 , (1.18)

where 𝔙 and �̄� are two (graded) vector spaces, with the most prominent examples being

𝔙 �̄�

Biadjoint scalar field theory 𝔤 �̄�

Yang–Mills theory 𝔤 𝔎𝔦𝔫

 = 0 supergravity 𝔎𝔦𝔫 𝔎𝔦𝔫

If the factorisation is suitable, whichmeans that it is compatible with colour–kinematics duality, then the double copy is amapping10

between L∞-algebras of classical field theories obtained from substitutions of the factors 𝔙 and �̄�. The advantage of this homotopy
double copy is that it is fully off-shell and goes beyond on-shell amplitudes. Furthermore, it suggests a lift to homotopy algebraic
structures in string field theory.

10 This is not a morphism of L∞-algebras, which would imply a map between elements of the L∞-algebras. A simple analogy is the mapping of vector
spaces from V to V ⊗W for some fixed vector spaceW.
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Let us also list a few secondary results which we obtained collecting the necessary tools for our homotopy algebraic discussion of
the double copy.

(i) We demonstrate in Section 6.2 that the familiar colour-stripping of Yang–Mills scattering amplitudes corresponds to a factorisa-
tion of the L∞-algebra of Yang–Mills theory into a colour or gauge Lie algebra factor and a kinematical C∞-algebra. This factori-
sation extends to the level of actions.

(ii) A mathematical argument that we were not able to find in the literature is that the rather evident tensor product between certain
strict homotopy algebras guarantees the existence of a tensor product between the corresponding general homotopy algebras by
homotopy transfer via the homological perturbation lemma. The full argument is given in Section 6.1.

(iii) Finally, we show in Appendix A.3 that in the homotopy algebraic picture, finite gauge transformations can be regarded as curved
morphisms of L∞-algebra.

1.4. Outlook

In this work, we focus on the case of Yang–Mills theory and = 0 supergravity. However, when making the replacement

𝔤⊗ (𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩) ←→ ̄𝔎𝔦𝔫⊗𝜏 (𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩) (1.19)

there is no reason to restrict to ( ̄𝔎𝔦𝔫, 𝜏) ≅ (𝔎𝔦𝔫, 𝜏). We could have taken ( ̄𝔎𝔦𝔫, 𝜏) from any BV Lagrangian field theory admitting a
factorisation ̄𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩 and enjoying a generalised notion of tree-level colour–kinematics duality. For example, taking the ( ̄𝔎𝔦𝔫, 𝜏)
of = 4 super Yang–Mills theory, ̄𝔎𝔦𝔫⊗𝜏 (𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩) would be the L∞-algebra of pure = 4 supergravity. In this example, both
theories have vanilla colour–kinematics duality, but this also need not be the case. For instance, the flavour–kinematics duality of the
non-linear sigma model is an example of (rather trivially) generalised colour–kinematics duality. One can even consider theories that
have no ‘colour’ factor at all, such as Maxwell theory. This is not a vacuous statement. For example, the trivial factorisation of Maxwell,
𝔏Max = 𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩, can be enhanced by introducing graded antisymmetric higher products in 𝔖𝔠𝔞𝔩 that satisfy kinematic Jacobi
identities. Since 𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩 is a C∞-algebra, these higher products do not contribute to the Maxwell action, but if we then tensor
with a colour Lie algebra 𝔤 we recover BRST colour–kinematics-dual Yang–Mills theory.
With these ingredients, there are numerous immediate generalisations. We only require

(i) tree-level colour–kinematics duality — there is growing zoology of such theories;
(ii) an underlying L∞-algebra — this includes all BV quantisable Lagrangian field theories and so is very general;
(iii) that the L∞-algebra factorises in an appropriate manner — this is essentially the requirement that the gauge and space–time

symmetries do not mix.

The last condition restricts the apparent vast generality a bit. There are examples, such as the non-Abelian Dirac–Born–Infeld theory,
where colour structure constants arise whose compatibility with a factorisation is not apparent. In such cases further work is required,
before proceeding directly on the homotopy double copy. Up to this issue, ourmachinery is powerful enough to derive all order validity
of the double copy from the validity at the tree level. Let us summarise here some of the possibilities, indicating the outstanding
questions that must be addressed to realise this claim.
Supergravity: The first obvious generalisation is the inclusion of supersymmetry. For irreducible super Yang–Mills multiplets,

colour–kinematics duality for gluons ensures colour–kinematics duality for the entire multiplet. This can be shown using a super-
symmetricWard identity argument, entirely analogous to the BRSTWard identity argument for BRST colour–kinematics duality given
in Section 8.1. The factorisation requirement is obviously satisfied, so in principle, there is no obstruction. For gauge theory factors
of = 1 supersymmetric Yang–Mills theory and = 0 Yang–Mills theory, which yields = 1 supergravity minimally coupled to a
single chiral multiplet, it is particularly straightforward, since there is a convenient superfield formalism as described in [91].
It is more subtle and interesting when both factors are supersymmetric and there is a Ramond–Ramond sector. Since the gaugi-

nos have no linear gauge (BRST) transformation, their product must be identified with field strengths that are to be regarded as the
fundamental fields. The intuition from string theory is clear — the Ramond–Ramond sector couples to the string world-sheet only
through the field strengths and never the bare potentials. Indeed, the type II supergravity Lagrangians can both be written without
any bare Ramond–Ramond potentials and the Lagrangian double copy in the Ramond–Ramond sector does indeed generate a La-
grangian that is formulated purely in terms of fundamental field strengths. Of course, it is perturbatively equivalent to the familiar
formulation in term of field strengths of potentials. Interestingly, this is automatically achieved via Sen’s mechanism for writing La-
grangians for self-dual field strengths[220]11, but without necessarily imposing self-duality. We shall spell out the details in forthcoming
work.
With these basic ingredients accounted for, the door is then open to the plethora of double-copy constructible theories, such as

(almost, cf. [59]) all ≥ 2 ungauged supergravity theories, (super) Einstein–Yang–Mills–scalar theories[49] and gauged supergravity

11 See also [221] where it is shown that this mechanism arises very directly from a, again, homotopy algebraic perspective.

Fortschr. Phys. 2021, 69, 2100075 2100075 (10 of 100) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

(with Poincaré background).[60] Each comes with interesting features that must still be addressed in the BRST Lagrangian double
copy formalism, e.g. spontaneous symmetry breaking, but none that present an obvious obstruction.
Abelian Dirac–Born–Infeld Theory: The Abelian Dirac–Born–Infeld (DBI) scattering amplitudes have been double copy

constructed.[159,165,222] They follow from the product of the non-linear sigma model and (super) Yang–Mills amplitudes. Given that
we already have both the BRST manifestly colour–kinematics-dual formulations of the non-linear sigma model, Yang–Mills theory
and their L∞-algebras, we can immediately apply the homotopy double copy to obtain the perturbative DBI BRST Lagrangian by
replacing the colour factor of Yang–Mills with the kinematics of the non-linear sigma model.
Conformal Gravity: More ambitiously, one can approach conformal gravity by including higher-dimensional operators in the Yang–

Mills theories.[57,223] Again, if colour–kinematics duality holds to all points, then it may be possible to turn the homotopy double copy
handle, although the higher dimensional operators will have to be treated carefully.
Closed String Theory: Given the KLT origins of the double copy, it is natural to seek an ‘open ⊗ open = closed’ stringy extension.

Moreover, both open and closed string field theory are built on homotopy algebras,[172,196] and so the homotopy double copy is a natural
framework. Bosonic open string field theory comes strictified out of the box,[196,224] so in this sense it may seem to be ready to be double
copied. However, one must still pick a partition of the moduli space consistent with colour–kinematics duality so the double copy is
not a priori automatic. All choices will be quasi-isomorphic, but there seems to be no reason to suppose that every partition of the
moduli space gives rise to a strictification compatible with colour–kinematics duality. In this case, one would have a situation similar
to Yang–Mills theory, where only certain strictifications are compatible with colour–kinematics duality. Alternatively, it could be that
all quasi-isomorphic choices can be double copied and only on taking the field theory limit is this structure broken. Ambitiously, one
could consider the more general (or other) formulations of the open/closed string duality.

1.5. Reading Guide

As stated before, it is our intention to be highly self-contained in our presentation, in order tomake the homotopy algebraic perspective
on the double copy accessible for readers unfamiliar with either homotopy algebras or the double copy (or both!). This reading guide
may provide some further help.
For readers unfamiliar with the double copy, good stating points are Section 2, with a concise review of the basics, and Section 3,

which spells out the details in the case of the related but much simpler double copy of the amplitudes of the non-linear sigma model
to those for the special galileon. The explicit details for the factorisation of homotopy algebras involved in the gauge–gravity double
copy are then presented in Section 7 at the level of free field theories and Section 9 at the level of the full actions. The latter section
also contains the proof that translates the double copy of amplitudes from tree to full quantum (i.e. loop) level.
Readers unfamiliar with the BV formalism and the BV formulation of standard field theories will benefit from the general discussion

in Section 4 as well as the concrete examples presented in Section 5. Some quantum field theoretic preliminaries that are crucial to
extending the double copy of amplitudes to loop level are reviewed or developed in Section 8.
For readers unfamiliar with homotopy algebras, we have collected the basic definitions and results in Appendix A. The link to field

theories is gently introduced in Section 3.3, using the example of the non-linear sigma model. The general picture and the link to the
BV formalism are then developed in Section 4; the correspondence between actions and L∞-algebras is explained in Section 4.2, while
the link between scattering amplitudes and L∞-algebras is presented in Section 4.3. Concrete examples of L∞-algebras for a number
of field theories relevant in the gauge–gravity double copy are then given in Section 5.

2. Double Copy Basics

2.1. Scattering Amplitude Generalities

We start with a brief review of gluon scattering amplitudes to set some notation and to be self-contained.
Gluon Scattering Amplitudes: Consider Yang–Mills theory with a semi-simple compact matrix Lie algebra 𝔤 as gauge algebra. Be-

cause the Lie bracket in 𝔤 describes naturally a cubic interaction vertex [−,−] : 𝔤 × 𝔤 → 𝔤, the possibility of relating colour to kinematics
relies on writing the amplitude in terms of trivalent diagrams only,

𝒜n,L = (−i)n−3+3Lgn−2+2L
∑
i
∫

L∏
l=1

ddpl
(2𝜋)dSi

𝖼i𝗇i
di
. (2.1)

Here, 𝒜n,L is the n-point L-loop gluon scattering amplitude, and g the Yang–Mills coupling constant. The sum is over all n-point L-
loop diagrams, labelled i, with only trivalent vertices (not the Feynman diagrams of the original theory). The colour numerator or colour
factor 𝖼i associated to a diagram i is composed of gauge algebra structure constants and can be read off directly from the trivalent
diagram. The kinematic numerator or kinematic factor 𝗇i associated to diagram i is a polynomial of Lorentz-invariant contractions of
polarisation vectors and momenta. The denominator di associated to a diagram i is the product of the Feynman–’t Hooft propagators,
i.e. the product of the squared momenta of all internal lines of the diagram i. Finally, Si ∈ ℕ is the symmetry factor associated to a
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diagram i, defined in the same way as for Feynman diagrams, accounting for any over-counting due to the diagram symmetries. At
the tree level, i.e. for L = 0, (2.1) simplifies to

𝒜n,0 = (−i)n−3gn−2
(2n−5)!!∑
i=1

𝖼i𝗇i
di

, (2.2)

since there are (2n − 5)!! trivalent tree diagrams at n points.
This trivalent form exists because the four-point contact terms can always be ‘blown-up’ and absorbed into corresponding three-

point diagrams:

−→ s + t + u (2.3)

Four-Point Tree-Level Gluon Scattering Amplitude from Trivalent Diagrams: Consider the simplest example of the four-point tree-level
scattering amplitude,

A4,0 =

1 4

2 3

s +

1 4

2 3

t +

1 4

2 3

u +

1 4

2 3

. (2.4)

Explicitly, with all momenta incoming,

1 4

2 3

s = −ig2 f abe fecdns
s

=: −ig2 csns
s
,

1 4

2 3

t = −ig2 f aed febcnt
t

=: −ig2 ctnt
t
,

1 4

2 3

u = −ig2 f aec fedbnu
u

=: −ig2 cunu
u

,

1 4

2 3

= −ig2
(
csn

(4)
s −ctn(4)

t −cun(4)
u

)
.

(2.5a)
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Here, we have made use of the standard Mandelstam variables s := (p1 + p2)
2, t := (p1 + p4)

2, and u := (p1 + p3)
2 in the trivalent s-, t-,

and u-channel diagrams, respectively. Furthermore, upon setting pij := pi − pj where i, j,… = 1,… , 4 label the different gluons, the
kinematic numerators are given by

𝗇s := 4
[
(𝜀1 ⋅ p2)𝜀2 − (𝜀2 ⋅ p1)𝜀1 +

1
2
(𝜀1 ⋅ 𝜀2)p12

]
⋅
[
(𝜀3 ⋅ p4)𝜀4 − (𝜀4 ⋅ p3)𝜀3 +

1
2
(𝜀3 ⋅ 𝜀4)p34

]
,

𝗇t := −4
[
(𝜀1 ⋅ p4)𝜀4 − (𝜀4 ⋅ p1)𝜀1 +

1
2
(𝜀1 ⋅ 𝜀4)p14

]
⋅
[
(𝜀2 ⋅ p3)𝜀3 − (𝜀3 ⋅ p3)𝜀3 +

1
2
(𝜀2 ⋅ 𝜀3)p23

]
,

𝗇u := 4
[
(𝜀2 ⋅ p4)𝜀4 − (𝜀4 ⋅ p4)𝜀4 +

1
2
(𝜀2 ⋅ 𝜀4)p24

]
⋅
[
(𝜀1 ⋅ p3)𝜀3 − (𝜀3 ⋅ p1)𝜀1 +

1
2
(𝜀1 ⋅ 𝜀3)p13

]
,

(2.5b)

where 𝜀i is the polarisation vector of the i-th gluon and x ⋅ y := 𝜂𝜇𝜈x𝜇x𝜈 . We also have suggestively labelled the kinematic numerators
appearing in the four-point contact term in (2.5a) by 𝗇(4)s , 𝗇

(4)
t , and 𝗇

(4)
u . They are given by

𝗇
(4)
s := (𝜀1 ⋅ 𝜀3)(𝜀2 ⋅ 𝜀4) − (𝜀1 ⋅ 𝜀4)(𝜀2 ⋅ 𝜀3) ,

𝗇
(4)
t := −(𝜀1 ⋅ 𝜀2)(𝜀3 ⋅ 𝜀4) + (𝜀1 ⋅ 𝜀3)(𝜀2 ⋅ 𝜀4) ,

𝗇
(4)
u := −(𝜀1 ⋅ 𝜀4)(𝜀2 ⋅ 𝜀3) + (𝜀1 ⋅ 𝜀2)(𝜀4 ⋅ 𝜀3) .

(2.5c)

Upon summing up (2.5a), the four-point tree-level scattering amplitude is a sum over the three trivalent diagrams,

𝒜4,0 = −ig2
(
𝖼s𝗇

′
s

s
+

𝖼t𝗇
′
t

t
+

𝖼u𝗇
′
u

u

)
(2.6a)

with

𝗇′s := 𝗇s + s𝗇(4)s , 𝗇′t := 𝗇t − t𝗇(4)t , 𝗇′u := 𝗇u − u𝗇(4)u . (2.6b)

Note that any n-point L-loop diagram with a four-point contact term is accompanied by three diagrams that are identical except that
the four-point contact term is replaced by the s-, t-, and u-channel trivalent diagrams, and the above argument can be applied. Of
course, this can be realised at the Lagrangian level by introducing an auxiliary field strictifying the action to be cubic.[6]

Remark 2.1. We may introduce the colour-stripped vertex F̃𝜇𝜈𝜌 in momentum space, intentionally written as ‘structure constants’
analogous to fabc,

F̃μ1μ2μ3 (p1, p2, p3) :=

p1

p3

p2 := pμ3
12 η

μ1μ2+pμ1
23 η

μ2μ3+pμ2
31 η

μ3μ1 , (2.7)

so that

𝗇s = 𝜀
𝜇1
1 𝜀

𝜇2
2 F̃𝜇1𝜇2𝜌F̃

𝜌
𝜇3𝜇4
𝜀
𝜇3
3 𝜀

𝜇4
4 , 𝗇t = 𝜀

𝜇1
1 𝜀

𝜇4
4 F̃𝜇1𝜌𝜇4 F̃

𝜌
𝜇2𝜇3
𝜀
𝜇2
2 𝜀

𝜇3
3 , 𝗇u = 𝜀

𝜇1
1 𝜀

𝜇3
3 F̃𝜇1𝜌𝜇3 F̃

𝜌
𝜇4𝜇2
𝜀
𝜇2
2 𝜀

𝜇4
4 . (2.8)

This observation will become important in Section 2.3.

Generalised Gauge Transformations: We note that the three colour numerators satisfy the Jacobi identity,12

𝖼s − 𝖼t − 𝖼u = 3f ea[bfe
cd] = 0 , (2.9)

so that a shift of the kinematic numerators by an arbitrary function 𝛼,

𝗇′s → 𝗇′s − s𝛼 , 𝗇′t → 𝗇′t + t𝛼 , 𝗇′u → 𝗇′u + u𝛼 , (2.10)

leaves the amplitude (2.6a) invariant. These shifts, corresponding to an additional freedom in the choice of the kinematic numerators,
were referred to as generalised gauge transformations in [4]. Of course, this applies to any triple of trivalent diagrams (i, j, k) that only

12 Here, square brackets indicate anti-symmetrisation of the enclosed indices.
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differ in a common four-point subdiagram with colour numerators satisfying a Jacobi identity of the form 𝖼i + 𝖼j + 𝖼k = 0, where the
generalised gauge transformation acting on the corresponding kinematic numerators is given by

𝗇i → 𝗇i + si𝛼 , 𝗇j → 𝗇j + sj𝛼 , 𝗇k → 𝗇k + sk𝛼 , (2.11)

and si, sj, and sk are the Mandelstam variables of the common four-point subdiagram in which the three diagrams differ.

2.2. Colour–Kinematics Duality

Bern–Carrasco–Johansson Duality: The Bern–Carrasco–Johansson (BCJ) colour–kinematics duality conjecture now states the fol-
lowing.

Conjecture 2.2 (Bern–Carrasco–Johansson,[4,5]). There exists a choice of kinematic numerators of the trivalent diagrams entering the
scattering amplitude𝒜n,L such that

(i) whenever a triple of trivalent diagrams (i, j, k) has colour numerators obeying

𝖼i + 𝖼j + 𝖼k = 0 (2.12a)

due to the Jacobi identity, then the corresponding kinematic numerators obey precisely the same identity

𝗇i + 𝗇j + 𝗇k = 0 ; (2.12b)

(ii) if in any individual diagram, 𝖼i → −𝖼i under the interchange of two legs, then 𝗇i → −𝗇i at the same time.

Three- and Four-Point Tree-Level Gluon Scattering Amplitudes: Evidently, the tree-level three-point scattering amplitude (allowing
complex momenta), which consists of a single diagram, trivially satisfies the duality since under interchange of any two edges 𝖼 =
f abc → −𝖼, since f abc is totally anti-symmetric, and the same is true for 𝗇 = 𝜀𝜇11 𝜀

𝜇2
2 𝜀

𝜇3
3 F𝜇1𝜇2𝜇3 , since F𝜇1𝜇2𝜇3 is totally anti-symmetric.

The tree-level four-point scattering amplitude was known to satisfy colour–kinematics-duality before the notion of this duality
had been articulated.[225,226] Indeed, using momentum conservation

∑
i pi = 0 and transversality 𝜀i ⋅ pi = 0, (2.5b), (2.5c), and (2.6b)

immediately imply that the kinematic numerators satisfy

𝗇′s − 𝗇′t − 𝗇′u = 0 . (2.13)

This agrees with the colour Jacobi identity 𝖼s − 𝖼t − 𝖼u = 0. Note that this would have failed without the additional contributions from
the four-point contact term (2.5c). At higher points, one would also need the on-shell conditions p2i = 0.
The fact that the kinematic identity holds without any intervention besides blowing up the four-point contact term is due to the

special kinematics of the four-point amplitude. At higher points, not all possible choices of 𝗇i will satisfy the required kinematic
identities. Already at five points it is non-trivial,[4] although there is a particularly nice representation of the colour–kinematics-dual
amplitude in this case.[227]

General Tree-Level Gluon Scattering Amplitudes: Thinking of the (2n − 5)!! colour 𝖼i and kinematic numerators 𝗇i as column vectors,
denoted by c and n, we can trivially rewrite the n-point tree amplitude as

𝒜n,0 = c𝖳Dn with Dij :=
𝛿ij

dj
. (2.14)

The number of linearly independent (under the Jacobi identities) colour numerators 𝖼i is (n − 2)!, which, using the multi-peripheral
colour decomposition of [228], is seen to be the same as the number of linearly independent partial colour-stripped scattering ampli-
tudesAi′

n := An,0(12𝜎i′ (34⋯ n)) under the Kleiss–Kuijf relations,[229] where {𝜎i′}
n−2
i′=1 = Sn−2 andAn,0(1⋯ n) is the colour-ordered n-gluon

tree amplitude.
Thus, we can choose a subset consisting of (n − 2)! linearly independent colour numerators, also called primaries, and put them

into a (n − 2)!-component column vector cm. The rest are generated by the
∑⌊ 1

2
(n−2)⌋

k=1
1
22k
Cn−2
2k C2k

k (n − 2)! linearly independent Jacobi
identities,

c = Jcm , (2.15)
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where J is a (2n − 5)!! × (n − 2)! matrix encoding these relations. For example, at four points, in the conventions of (2.5a), we can
choose 𝖼t, 𝖼u as our primary colour numerators, and then

J =
⎛⎜⎜⎝
1 1
1 0
0 1

⎞⎟⎟⎠ . (2.16)

In this form, colour–kinematics duality requires the existence of kinematic numerators satisfying

n = Jnm . (2.17)

We also have the (n − 2)! ostensibly linearly independent (prior to applying the BCJ relations) n-point partial amplitudes Ai′ := Ai′
n

which may be written as

A = Pn , (2.18)

where P is an (n − 2)! × (2n − 5)!! matrix of propagators with signs determined by the permutations defining the components of A
relative to the colour order of the corresponding graphs.
If (2.16) can be realised then

A = PJnm . (2.19)

Note that, while this relation looks as if it immediately identifies the colour–kinematics duality respecting n in terms of the partial
scattering amplitudes, PJ is necessarily singular.
However, the required relations are purely algebraic, and we can solve for (n − 3)! elements of nm in terms of (n − 3)! partial

amplitudes and the remaining (n − 2)! − (n − 3)! = (n − 3)!(n − 3) elements of nm. On substituting this solution back into (2.18), we
encounter a surprise: the dependence of the remaining (n − 3)!(n − 3) partial amplitudes on nm drops out entirely, andwe are left with a
new set of relations amongst the (n − 2)! partial scattering amplitudes. These are known as theBCJ relations andwere introduced in [4],
where they were shown to hold explicitly up to eight points. Assuming the colour–kinematics-duality, the (n − 2)! partial amplitudes
are in fact an overcomplete basis, which is reduced to (n − 3)! linearly independent partial amplitudes by the implied BCJ relations.
Conversely, given the BCJ relations it is possible to explicitly construct a representation of the total amplitude such that colour–

kinematics duality holds.[25,230] The n-point BCJ relations were shown to hold in [7, 8] by considering the 𝛼′ → 0 limit of string
theory monodromy relations, confirming the colour–kinematics duality conjecture at the tree level. The BCJ relations may also
be deduced from pure spinor cohomology.[231] There are a number of powerful stringy perspectives on the BCJ relations, see
for example,[27,151,232,233] including 𝛼′ deformations respecting colour–kinematics duality.[234] A purely field theoretic derivation
was given in [235] using only Britto–Cachazo–Feng–Witten recursion.[236] They were also established in  = 4 super Yang–Mills
theory,[237] which contains the Yang–Mills case, using the Roiban–Spradlin–Volovich–Witten connected formalism. Recently, it has
been shown,[29] via a residue theorem, that the tree-amplitudes written in terms of intersection numbers[238,239] automatically satisfy
the colour–kinematics duality.
Colour–Kinematics Duality for Loops: Our discussion so far has been restricted to the tree level. The statement of the duality for

loops is the same as for trees, up to someminor subtleties. In particular, the kinematic numerators are functions of the loopmomenta.
Moreover, the kinematic Jacobi-type identities are functional identities at the loop level. Hence, one cannot straightforwardly solve for
the kinematic numerators via a pseudo-inverse as in the tree-level case.
The four-point one-loop example in = 4 supersymmetric Yang–Mills theory is particularly simple, due to the simple structure of

one-loop amplitudes.[240,241] See for example [20,21,23]. For Yang–Mills theory at one and two loops, see [242]. For detailed examples
at three loops, see for example [5, 243]. These simple cases make it clear that colour–kinematics duality can work at the loop level.
However, the proof of colour–kinematics duality at the tree level given in [25, 230] relied on the Kawai–Lewellen–Tye relations and
therefore does not extend to loop level. At the time of writing there is no proof that colour–kinematics duality will hold to all loops,
despite an impressive number of highly non-trivial concrete examples.[5,31–37,39,41,56,63–66,242,244–246]

2.3. Double Copy

Graviton Scattering Amplitudes: Expanding the Einstein–Hilbert action perturbatively around the Minkowski background g𝜇𝜈 =
𝜂𝜇𝜈 + 𝜅h𝜇𝜈 , we can construct graviton scattering amplitudes as pioneered by DeWitt.[247–249] The Feynman diagrams for gravitons
include n-point vertices for all n, and schematically we have

SEH = − 1
𝜅2 ∫ ddx

√
−g R ∼ ∫ ddx

∞∑
n=0
𝜅n𝜕𝜕hn+2 , (2.20)
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where 2𝜅2 = 16𝜋G(d)
N is Einstein’s gravitational constant.13 However, just as for the four-point vertex in Yang–Mills theory, these can

all be absorbed into the kinematic numerators of the purely trivalent diagrams. For example, consider a purely trivalent diagram i,

contributing Ni

di
, whereNi is the kinematic numerator, to the amplitude integrand, and another diagram i(4), contributing

Ni(4)

di(4)
, which is

identical except that one trivalent four-point sub-diagram with propagator s has been contracted to a four-point vertex. Then, sdi(4) = di
and so,

Ni

di
+
Ni(4)

di(4)
=

Ni + sNi(4)

di
=

N′
i

di
. (2.21)

This argument is not affected by the inclusion of the Kalb–Ramond and dilaton sectors. Consequently, the = 0 supergravity scat-
tering amplitudes structurally resemble closely the gluon scattering amplitudes (2.1),

ℋn,L = (−i)n−3+3L
(
𝜅

2

)n−2+2L ∑
i
∫

L∏
l=1

ddpl
(2𝜋)dSi

Ni

di
. (2.22)

Double Copy: What is less immediately apparent is that the BCJ double copy prescription implies that, given colour–kinematics
duality, the = 0 kinematic numerators, for factorisable external states, can always be written as a product:Ni = niñi. More precisely,
let us state the BCJ double copy prescription for Yang–Mills theory[5,6]: given any two n-point L-loop gluon scattering amplitudes,

𝒜n,L = (−i)n−3+3Lgn−2+2L
∑
i
∫

L∏
l=1

ddpl
(2𝜋)dSi

𝖼i𝗇i
di

,

𝒜n,L = (−i)n−3+3Lgn−2+2L
∑
i
∫

L∏
l=1

ddpl
(2𝜋)dSi

𝖼i�̃�i
di

,

(2.23)

at least one of which respects colour–kinematics duality14, let us assume it is 𝒜n,L, we may ‘double copy’ by replacing the colour
numerators by kinematic numerators which respect colour–kinematics duality, while sending g → 𝜅

2
, to generate a new scattering

amplitude,

ℋn,L = (−i)n−3+3L
(
𝜅

2

)n−2+2L ∑
i
∫

L∏
l=1

ddpl
(2𝜋)dSi

𝗇i�̃�i
di

, (2.24)

which is guaranteed to be a bona-fide scattering amplitude of  = 0 supergravity. This remarkable fact was conjectured in [4, 5]
and shown to be true in [6]. Note that this is an all-loop-order statement: if colour–kinematics duality holds to all loop orders, then
 = 0 supergravity is the double copy of Yang–Mills theory to all orders. The open question, in this context, is whether or not colour–
kinematics duality holds to arbitrary loop order.
We have discussed only pure Yang–Mills theory and  = 0 supergravity. However, as mentioned in Section 1.4, there is an ever-

growing zoo of colour–kinematics duality respecting and double copy constructible theories. There are also various counterexamples,
the most obvious being Yang–Mills theory coupled to adjoint fermions in a non-supersymmetric way.[47] Such a coupling is incom-
patible with the assumption of colour–kinematics duality, which implies that the fermion couplings obey a Fierz identity that ensures
supersymmetry. The latter is also evident from the double copy perspective: the product of gluon and fermion states yields gravitino
states, which must couple supersymmetrically.

2.4. Manifestly Colour–Kinematics-Dual Action

The decomposition of scattering amplitudes into diagrams with trivalent vertices raises the question if there is an action principle for
which these diagrams are the genuine Feynman diagrams. The homotopy algebraic perspective which we adopt in the rest of the paper
yields the general statement that for any BV quantisable field theory there is a physically equivalent action with only trivalent vertices,
cf. Section 8.3. We call the latter theory a strictification of the former, because the homotopy algebras underlying a field theory with
trivalent vertices is called strict15. An example of a strictification of four-dimensional Yang–Mills theory is the first-order formulation
with an additional self-dual two-form.[250] In the case of the double copy, however, manifest colour–kinematics duality requires a
different strictification, which we review below.

13 See Section 5.4 for more details on the perturbative analysis of the Einstein–Hilbert action.
14 The 𝖼i should not be explicitly evaluated under the integral (i.e. internal indices should not be summed when the corresponding momentum is

undetermined) in case they accidentally vanish before being replaced by the loop-momenta dependent kinematic numerators.
15 Mathematicians would also use the terms rectification and rectified.
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Reorganisation of General Tree-Level Scattering Amplitudes: For each tree Γ containing a higher-than-trivalent vertex with n external
vertices, consider its contribution 𝒜Γ to a total scattering amplitude . We split 𝒜Γ into a sum over trivalent trees with the same
number of external vertices,

𝒜Γ =
∑

Γ′∈Tree3,n

𝒜(Γ)Γ′ , (2.25)

where Tree3,n is the set of trivalent trees with n external vertices. The value of each summand is to be determined later by the colour–
kinematics condition. Doing this for every tree involving a vertex which is higher than trivalent (the case where Γ is already trivalent
is trivial), we have reorganised the tree-level amplitudes of our theory into a sum over trivalent diagrams:∑
Γ∈Treen

𝒜Γ =
∑

Γ′∈Tree3,n

𝒜′
Γ′ , (2.26)

where

𝒜′
Γ′ =

∑
Γ∈Treen

𝒜(Γ)Γ′ . (2.27)

We require that our reorganisation be local: the way each n-ary vertex is resolved into a trivalent tree subdiagram is independent of
the rest of the diagram. It then suffices to specify, for each n-ary vertex with n ≥ 4, how to split it into a sum over trivalent trees. That
is, for the tree diagram Tn with n external legs and one internal n-ary vertex, i.e. the n-point contact contribution with a single n-ary
vertex, we specify its decomposition

𝒜Tn
=

∑
Γ′∈Tree3,n

𝒜′(Tn)Γ′ =
∑

Γ′∈Tree3,n

N(Γ′)
D(Γ′)

, (2.28)

where we have chosen a particular ansatz in order to satisfy the colour–kinematics identities:

(i) D(Γ′) is a differential16 operator of degree 2(n − 3) which is the product of the inverse propagators□ corresponding to the n − 3
internal edges in Γ′, i.e. the kinematic denominator. In particular, D = □−1 for n = 2 and D = 1 for n = 3.

(ii) N(Γ′) is a differential operator, corresponding in momentum space to a polynomial of the external momenta p1,… , pn and the
polarisation vectors 𝜀1,… , 𝜀n.

Because only vertices of degree at most n contribute to the n-point amplitude, we can solve for these decompositions recursively.
Concretely, supposing that one knows the decomposition for all vertices of degrees at most n, then one simply writes an equation in
asmany unknowns as there are for all possible ways to decompose the (n + 1)-ary vertex into trees, and solves for the colour–kinematics
duality equations (a system of linear equations) at n + 1 points. The initial case of the iteration is n = 2, where the decomposition of
trivalent vertices is trivial, and one must verify that the colour–kinematics identities hold for tree-level three-point functions.
A priori, at each level of the iteration, i.e. for any given n, there may be infinitely many solutions or no solutions; tree-level colour–

kinematics duality of the amplitudes of a field theory then amounts to the assertion that the latter is never the case.
Colour–Kinematics-Dual Yang–Mills Action: We now specialise to the case of Yang–Mills theory with the physical field being the

gauge field. For simplicity, we shall work in Feynman gauge.17 The Yang–Mills action only contains terms up to quartic order in
the field, but this does not mean that we cannot split the vanishing quintic and higher-order terms into sums that are attributed to
different trivalent trees; indeed, such a procedure is necessary to fulfil the colour–kinematics identities. For Yang–Mills theory, we can
be more precise about the ansatz:

𝒜Tn
=

∑
Γ′∈Tree3,n

𝒜′(Tn)Γ′ =
∑

Γ′∈Tree3,n

𝖼(Γ′)𝗇(Γ′)
D(Γ′)

, (2.29)

where the denominator D(Γ′) is as before, but the numerator has been split into the colour numerator 𝖼(Γ′) and the kinematic nu-
merator 𝗇(Γ′). More explicitly,

(i) 𝖼(Γ) is a group theory factor, corresponding to contractions of n − 2 copies of the colour group structure constants corresponding
to the vertices of the trivalent diagram Γ′.

16 In fact, pseudo-differential for n = 2.
17 For a general linear Lorentz-covariant gauge, the kinematic numerator 𝗇 will instead be a rational function containing terms such as p𝜇p𝜈

p2
.
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(ii) 𝗇(Γ′) is a differential operator of degree n − 2, corresponding to the kinematic numerator; equivalently, in momentum space, a
polynomial expression of the external momenta and polarisation vectors, whose degree is homogeneously n − 2 in terms of the
momenta and k in terms of the polarisation vectors.

The exact form of this splitting was computed in [80], with the first few terms contained in.[6] In the former paper, the authors
present their result in terms of a (non-local) action with the Lagrangian

ℒYM = ℒYM
2 +ℒYM

3 +⋯ , (2.30)

in which the n-th order term is

ℒYM
n =

∑
Γ∈Tree3,n

O𝜇1⋯𝜇nn,Γ

tr
{
[A𝜇𝜎(1) , A𝜇𝜎(2) ] [… [A𝜇𝜎(3) , A𝜇𝜎(4) ]… , A𝜇𝜎(n) ]

}
□jn,Γ,1

⋯□jn,Γ,n−3

, (2.31)

where the permutation 𝜎 is determined by the tree-level diagram Γ andwhereO𝜇1⋯𝜇nn,Γ is a sum of polynomials in the inverseMinkowski
metric 𝜂𝜇𝜈 and n − 2 partial differential operators 𝜕𝜇 acting on one of the n occurrences of the field A in the numerator.
Note that the expressions for the splitting of the higher-arity vertices are simply substituted into the ordinary Yang–Mills action,

even though the resulting expression is simply algebraically equal to the original Yang–Mills action (in particular, the higher-order
vertices vanish due to colour Jacobi identities), giving an impression reminiscent of the ‘ghosts of departed quantities’ of Newtonian
calculus.[251] However, there is nothing mysterious about this action; it simply expresses how higher-order vertices, most of which are
zero, are split apart and distributed into trivalent trees.
The order-by-order calculation of the splitting of the higher-degree Feynman vertices is, in principle, a straightforward exercise, and

there is nothing specific to Yang–Mills theory (apart from perhaps the ansatz of the numerator), provided that the tree-level colour–
kinematics identities in fact hold. In particular, one can readily compute such a splitting for gravity, except that there the ansatz is of
a different form,

ℋTn
=

∑
Γ′∈Tree3,n

ℋ′(Tn)Γ′ =
∑

Γ′∈Tree3,n

𝗇(Γ′)2

D(Γ′)
, (2.32)

where the colour numerator is replaced by another copy of the kinematic numerator.
In dealing with scattering amplitudes, we can freely use the on-shell condition p2i = 0 and the transversality condition 𝜀i ⋅ pi = 0 for

the external momenta pi and polarisation vectors 𝜀i when performing the abovemanipulations. Thus, the action is colour–kinematics-
dual only on shell.

3. Non-Linear Sigma Model and Special Galileons

Before delving into the details of the double copy of Yang–Mills theory to = 0 supergravity, we first consider the simpler example
of the double copy of the non-linear sigma model on a Lie group to the special galileon.[28,54,89,222,252] This example is considerably
simpler because we can ignore the technicalities due to gauge symmetry and Becchi–Rouet–Stora–Tyutin (BRST) quantisation.
In this simpler example, the non-linear sigma model enjoys a flavour–kinematics duality, the analogue of colour–kinematics dual-

ity in Yang–Mills theory. The roles of these two dualities differ slightly: whereas in Yang–Mills theory the colour–kinematics duality
ensures the existence of a BRST operator in the double copy, the flavour–kinematics duality in the non-linear sigma model ensures
(amongst other things) avoidance of the Ostrogradsky instability. This instability generically arises for Lagrangians involving deriva-
tives of higher order than two, in which the Hamiltonian is unbounded from below, cf. e.g. [253].

3.1. Review of the Essentials

Let us first recall some of the background material.
Non-Linear Sigma Model: Consider d-dimensional Minkowski space 𝕄d := ℝ1,d−1 with metric (𝜂𝜇𝜈) = diag(−1, 1,… , 1) with

𝜇, 𝜈,… = 0, 1,… , d − 1 and local coordinates x𝜇 together with a semi-simple compact matrix Lie group 𝖦. To define the non-linear
sigma model action, we are interested in maps g : 𝕄d → 𝖦, or rather their flat current

j𝜇 := g−1𝜕𝜇g , (3.1)

which takes values in the Lie algebra 𝔤 of 𝖦. We take 𝚎a as a basis of 𝔤 with a, b,… = 1, 2,… , dim(𝔤), [𝚎a, 𝚎b] = fab
c𝚎c with [−,−] the

Lie bracket on 𝔤, and ⟨𝚎a, 𝚎b⟩ := −tr(𝚎a𝚎b) = 𝛿ab with ‘tr’ the matrix trace. The action without a potential term is then given by

SNLSM := 1
2 ∫ ddx tr{j𝜇 j

𝜇} = − 1
2 ∫ ddx (g−1𝜕𝜇g)a(g

−1𝜕𝜇g)a , (3.2)
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and this special case is also called the principal chiral model.
Upon setting18 g := e𝜙 and ad𝜙(−) := [𝜙,−] for 𝜙 : 𝕄d → 𝔤, and using the formula

j𝜇 = e−𝜙𝜕𝜇e
𝜙 = 1 − e−ad𝜙

ad𝜙
(𝜕𝜇𝜙) =

∞∑
n=0

(−1)n

(n + 1)!
adn
𝜙
(𝜕𝜇𝜙) , (3.3)

which follows from the Baker–Campbell–Hausdorff formula, we may rewrite (3.2) as

SNLSM = 1
2 ∫ ddx

∞∑
n=0

(−1)n

((n + 1)!)2
tr
{
𝜕𝜇𝜙 ad

2n
𝜙
(𝜕𝜇𝜙)

}
. (3.4)

Because of the symmetry 𝜙 → −𝜙, corresponding to the symmetry g → g−1 of (3.2), there are only Feynman vertices of even degree,
each of which contains exactly two derivatives.
Galileons: As mentioned above, a generic Lagrangian involving derivatives of higher order than two runs into the Ostrogradsky

instability. We can avoid this if we carefully select an ansatz such that even though the action contains higher-derivative terms, the
corresponding equations of motion are at most of second order in the derivatives. For a scalar field theory, the most general such
ansatz is that of the galileon,[255–259] see also [260] for a review.
The galileon theory is a theory of a scalar field 𝜙 which is invariant under the Galilean-type symmetry

𝜙(x) → 𝜙(x) + c + b𝜇x
𝜇 , (3.5)

where c is a constant and b𝜇 is a constant vector on 𝕄d. In d space–time dimensions, there are d + 1 possible terms that satisfy the
Galilean-type symmetry. Specifically, the general action is of the form[259]

SGal := ∫ ddx
d+1∑
n=1
𝛼nℒ

Gal
n with ℒGal

n := 𝜙𝜀𝜇1⋯𝜇d𝜀𝜈1⋯𝜈d

(
n−1∏
i=1
𝜕𝜇i𝜕𝜈i𝜙

)(
d∏
i=n
𝜂𝜇i𝜈i

)
, (3.6)

where 𝜀𝜇1⋯𝜇d is the usual Levi–Civita symbol. This action is parametrised by the d + 1 coefficients 𝛼i, among which 𝛼1, corresponding
to the tadpoleℒGal

1 ∝ 𝜙, should be set to zero, and 𝛼2, corresponding to the kinetic termℒGal
2 ∝ 𝜙□𝜙 where□ := 𝜕𝜇𝜕𝜇 , should be

canonically normalised. Thus, one obtains a (d − 1)-dimensional moduli space of possible galileon theories in d space–time dimen-
sions.
There is a special point in this moduli space called the special galileon,[159,261,262]

𝛼2n := 1
2n

(
d

2n − 1

)
1

M2n−2 and 𝛼2n+1 := 0 , (3.7)

where M is a mass scale. At this point, the scattering amplitudes become extremal in a specific sense. In particular, all amplitudes
with an odd number of external particles vanish, which is not the case for the generic galileon theory.[159] Operationally, it may be
defined as the galileon theory obtained by double-copying the scattering amplitudes of the non-linear sigma model.

3.2. Flavour–Kinematics Duality and Double Copy

We will transform the non-linear sigma model action (3.4) into that of the special galileon via the following steps:

(i) Put the non-linear sigma model action into a manifestly flavour–kinematics-dual form.
(ii) Introduce infinitelymany auxiliary fields to render the action cubic (i.e. strictify) in amanner compatible with flavour–kinematics

duality.
(iii) We square the coefficients of the cubic action to obtain a raw double-copied action.
(iv) Upon integrating out the infinite tower of auxiliary fields of the double copy and a suitable field redefinition, we are guaranteed

to recover the special galileon action.

Unlike the case of Yang–Mills theory, we will not need a detailed argument to ensure the existence of a BRST operator.

18 We use here the exponential parametrisation g = e𝜙. There are other possible parametrisations used in this context in the literature, such as the Cay-
ley parametrisation (see e.g. [254]). Our treatment below, however, does not depend on the choice of parametrisation as long as this parametrisation
is defined by an equivariant map 𝔤 → 𝖦, where both 𝔤 and 𝖦 are equipped with adjoint actions.
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Manifestly Flavour–Kinematics-Dual Action: As explained in Section 2.4, once it is known that flavour–kinematics duality (and
hence double copy) holds at the tree level, it is automatic that one can write down a manifestly flavour–kinematics-dual form of the
action.
In particular, we may organise the infinitely many terms or the LagrangianℒNLSM :=

∑∞
n=0ℒ

NLSM
2n of the non-linear sigma model

Lagrangian (3.4) into a manifestly flavour–kinematics-dual form as

ℒNLSM
2n =

∑
Γ∈Tree3,2n

O2n,Γ
tr{[𝜙,𝜙] [… [𝜙,𝜙]… ,𝜙]}

□j2n,Γ,1
⋯□j2n,Γ,2n−3

, (3.8)

and this expression needs to be read as follows. Firstly,O2n,Γ is a sum of polynomials in the inverseMinkowskimetric 𝜂𝜇𝜈 and 2(2n − 2)
partial differential operators 𝜕𝜇 acting on one of the 2n occurrences of the field 𝜙 in the numerator (and rendering the commutators
non-trivial). Secondly, the subscripts on the inverse wave operators similarly indicate which product of fields19 they act on. Finally, the
sum ranges over trivalent trees Γ with 2n external legs, in which the flavour contraction is determined by the topology of the tree Γ.
In particular, for n = 1,

ℒNLSM
2 = 1

2
tr{𝜙□𝜙} (3.9)

is the canonical kinetic term.
The Lagrangian (3.8) is the analogue of the manifestly colour–kinematics-dual Lagrangian (2.31) for Yang–Mills theory. The former

perhaps seems less strange than the latter, because unlike Yang–Mills theory, the non-linear sigma model already has an infinite
number of terms to begin with. The method of construction of the manifestly dual action, however, is exactly the same in both cases.
Strictification: The flavour–kinematics-dual action (3.8) has two defects: it is neither local nor cubic20, and thus does not produce

exclusively cubic Feynman vertices. We can remedy both defects by introducing an infinite tower of auxiliary fields. We note that to
a fixed order in perturbation theory (with a bounded number of external legs and loops), the number of auxiliary fields that enter is
always finite, just as in ordinary Yang–Mills theory, cf. Observation 8.10 below.
In the case of the non-linear sigmamodel, we require two scalar auxiliary fields C1 and C2, both in the adjoint representation, at the

quartic order; quintic and higher orders will each require multiple auxiliary fields, all of which are Lorentz tensors, but with varying
numbers of Lorentz indices, and take values in the adjoint representation. The strictified action is of the form

SNLSM, st = ∫ ddx tr
{

1
2
𝜙□𝜙 + C1

𝜇
□C2,𝜇 + 𝛼C1

𝜇
[𝜙, 𝜕𝜇𝜙] + 𝛽(□C2,𝜇)[𝜙, 𝜕𝜇𝜙] +⋯

}
, (3.10)

where the dimensionful coefficients 𝛼 and 𝛽 are tuned so as to give the correct four-point amplitude and tomanifest flavour–kinematics
duality. Notice that the strictification is not arbitrary, but mostly determined by the form of the manifestly flavour–kinematics-dual
form of the action (3.8).
Double Copy: The next step is to engineer an action which reproduces the double copy of the flavour–kinematics-dual amplitudes

on the nose, and it is not hard to see that this consists essentially of the following:

(i) We take the tensor square of the field content (𝜙, C1, C2,…), so as to obtain an infinite quadrant of fields,

�̃� := 𝜙⊗ 𝜙 C̃1
L,𝜇 := C1

𝜇
⊗ 𝜙 C̃2

L,𝜇 := C2
𝜇
⊗ 𝜙 ⋯

C̃1
R,𝜇 := 𝜙⊗ C1

𝜇
C̃11
LR,𝜇𝜈 := C1

𝜇
⊗ C1

𝜈
C̃12
LR,𝜇𝜈 := C1

𝜇
⊗ C2

𝜈
⋯

C̃2
R,𝜇 := 𝜙⊗ C2

𝜇
C̃21
LR,𝜇𝜈 := C2

𝜇
⊗ C1

𝜈
C̃22
LR,𝜇𝜈 := C2

𝜇
⊗ C2

𝜈
⋯

⋮ ⋮ ⋮ ⋱

(3.11)

all of which except for 𝜙⊗ 𝜙 are regarded as auxiliary.
(ii) The kinematical terms are given by (off-diagonal) wave operators.
(iii) The interaction vertices are simply the products of two of the interaction vertices of the non-linear sigma model.

The double-copied action is then

S̃DC := ∫ ddx
{(

1
2
�̃�□ �̃� + 1

2
C̃1
L𝜇□ C̃2,𝜇

L + 1
2
C̃1
R,𝜇□ C̃2,𝜇

R + 1
2
C̃11
LR𝜇𝜈 □ C̃22,𝜇𝜈

LR +⋯
)
+ Λ

d
2
−3
(
𝛼2C̃11

LR,𝜇𝜈(𝜕
𝜇𝜕𝜈�̃�)�̃� + 𝛼2C̃11,𝜇𝜈

LR (𝜕𝜇�̃�)𝜕𝜈�̃�

+ 𝛼2(𝜕𝜈C̃
1,𝜇
L )(𝜕𝜇C̃

1,𝜈
R )�̃� + 𝛼2(𝜕𝜈C̃

1,𝜇
L )(𝜕𝜇�̃�)C̃

1,𝜈
R + 𝛼2C̃1,𝜇

L (𝜕𝜇𝜕𝜈�̃�)C̃
1,𝜈
R + 𝛼2C̃1,𝜇

L (𝜕𝜇C̃
1,𝜈
R )𝜕𝜈�̃� +⋯

)}
, (3.12)

19 Corresponding to an internal propagator in the Feynman diagrams.
20 Or strict, in homotopy algebraic language; cf. Appendix A.4.
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where in the interests of brevity we have only shown the terms corresponding to the double copy of 𝜙 and C1. Note that we have
introduced a new mass scale Λ in the double copy, in the same way that the Planck scale enters during the double copy of Yang–Mills
theory to Einstein gravity.
The six interaction terms shown above, corresponding to the strictification of a quartic galileon interaction, illustrate the six possible

ways of double copying the flavour-stripped interaction vertex C1
𝜇
𝜕𝜇𝜙𝜙 namely, schematically,

⎛⎜⎜⎜⎝
C1 𝜕𝜙 𝜙

⊗

C1 𝜕𝜙 𝜙

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
C1 𝜕𝜙 𝜙

⊗

C1 𝜙 𝜕𝜙

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
C1 𝜕𝜙 𝜙

⊗

𝜕𝜙 C1 𝜙

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
C1 𝜕𝜙 𝜙

⊗

𝜕𝜙 𝜙 C1

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
C1 𝜕𝜙 𝜙

⊗

𝜙 𝜕𝜙 C1

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
C1 𝜕𝜙 𝜙

⊗

𝜙 C1 𝜕𝜙

⎞⎟⎟⎟⎠ . (3.13)

By construction, the action (3.12) reproduces the double copy of the amplitudes of the non-linear sigma model and its tree-level
amplitudes coincide with those of the special galileon.
Physical Equivalence: To compare against the usual action of the special galileon SsGal, we can either integrate out the auxiliaries of

S̃DC or rewrite SsGal in manifestly flavour–kinematics-dual cubic terms, introducing a tower of auxiliary fields. We will give arguments
in both cases; the former involves a small suspension of disbelief, the latter does not have this gap, but is more indirect.
In the first version of the argument, we straightforwardly integrate out all auxiliary fields, i.e. all fields except for �̃�. One may worry

that the result is non-local. However, since the tree amplitudes are all local, the resulting terms will have to conspire to hide this
non-locality. Let us assume, and this is the slight gap in the argument, that this does not happen. That is, we obtain a local action S̃DC2
of a single scalar field �̃� whose tree amplitudes agree with those of the special galileon.
The two actions S̃DC2 and SsGal certainly agree at the quadratic and the cubic levels (for which there are no vertices). They can differ

at the quartic level, but only up to terms that are not visible in the four-point tree-level amplitude, because the tree-level amplitudes
agree. That is, the difference has to be of the form

∫ ddx tr
{
Z□ �̃� + (�̃�5)}, (3.14)

where Z is some local cubic Lie algebra-valued functional of �̃�. In this case, we can perform a field redefinition of either side of the
form

�̃� → �̃� + 𝜃Z (3.15)

with the coefficient 𝜃 tuned such that S̃DC2 [�̃� + 𝜃Z] agrees up to the quartic level with the action of the special galileon.
We can then iterate this argument at the quintic, sextic, etc. orders. The sceptical readermay still worry about whether this sequence

of field redefinitions converges, but this is irrelevant from the perspective of perturbative quantum field theory, since to any desired
order in perturbation theory, only finitely many interaction vertices contribute.
Note that for the computation of n-loop amplitudes at certain loop orders, the degree of the appearing vertices is bounded from

above, and we can conclude that from the perspective of perturbative quantum field theory, the two actions agree up to a local field
redefinition.
Notice that we started with an action with infinitely many terms which, after a suitable field redefinition, reduces to only finitely

many terms. This is reminiscent of how the infinitely many terms of perturbative gravity reduce to a single term of the Einstein–
Hilbert action. Furthermore, a Galilean-type symmetry has appeared that avoids the Ostrogradsky instability. Presumably, if one had
started from a generic theory of adjoint scalars without flavour–kinematics duality, or if one started with a strictification of the non-
linear sigma model that did not manifest flavour–kinematics duality, then our construction would have yielded a galileon-like theory
that, nevertheless, would not avoid the Ostrogradsky instability. Themiracle of the Galilean-type symmetry is opaque in our formalism
(unlike the BRST symmetry in the gauged case), but it nevertheless occurs.
Upon path-integral quantisation, such field redefinitions produce a Jacobian in the form of local operators, which can be cancelled

by local counterterms. Hence, the double copied action and the action of the special Galilean define equivalent perturbative quantum
theories up to local counterterms.
We now give the alternative, gap-free but less direct argument. To ensure locality throughout, instead of integrating out aux-

iliary fields from S̃DC, we will introduce auxiliaries into SsGal. In the strictified action (3.10), the auxiliary fields can be formally
put on external legs, with well defined, local tree-level scattering amplitudes. The latter are particular collinear limits of �̃�-only
amplitudes, i.e. tree-level scattering amplitudes whose external legs are exclusively copies of the field �̃�. Similarly, the action of
the special galileon can be put into a manifestly flavour–kinematics-dual form, by which we mean the kinematic numerators fac-
torise into kinematic Jacobi identity respecting pieces. This form of the action can then be strictified introducing auxiliary fields.
In doing so, we must take care to introduce the special galileon auxiliary fields in a manner compatible with that of (3.10):
namely, the special galileon auxiliaries’ equations of motion are the double copies of the non-linear sigma model auxiliaries. Then
tree-level flavour–kinematics duality implies that the double copy relation holds not only between 𝜙-only amplitudes of SNLSM
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and �̃�-only amplitudes of SsGal, but also between SNLSM amplitudes with external auxiliaries and SsGal amplitudes with external
auxiliaries.
Thus, by construction, all tree-level amplitudes agree between S̃DC and SsGal, including those with auxiliaries on external legs; both

are local, cubic actions. Now, the field-redefinition argument above applies to this pair of actions as follows. If S̃DC and SsGal differ,
then the difference must be of the form

S̃DC[�̃�] − SsGal[�̃�] =
∑
i

Zi[�̃�]□ �̃�i (3.16)

for some local functionals Zi[�̃�], where �̃�i stands for an arbitrary field, physical or auxiliary. Upon a field redefinition in S̃DC of the
form

�̃�i → �̃�i + 𝜃iZi[�̃�] , (3.17)

(no summation implied) we can tune the coefficients 𝜃i so that S̃DC and SsGal coincide at the cubic level. Of course, this comes at
the cost of potentially introducing quartic terms into S̃DC. But the argument continues to work nevertheless: since the quartic terms
possibly present in S̃DC are not visible at four-point tree amplitudes, they must be proportional to□ �̃�i, which in turn can be absorbed
by a field redefinition, possibly producing quintic terms in S̃DC. Another field redefinition pushes the quintic terms to sextic ones, the
sextic ones to septic ones, and so on ad infinitum.
Again, the convergence of the field redefinitions is not of interest to us: to any desired order in perturbation theory, we only need

finitely many interaction vertices. Thus, the loop amplitudes of S̃DC and SsGal agree to any desired order in perturbation theory, up to
local counterterms; they define equivalent perturbative quantum theories up to local counterterms.
Relation to Prior Work: Let us briefly point out how our approach differs from the related prior work of Cheung–Shen.[89] Inspired

by a particular dimensional reduction of Yang–Mills theory in 2d + 1 space–time dimensions,[263] the non-linear sigma model is here
effectively embedded as a subsector into a theory of two vector-like fields and a scalar. The action of this larger theory is already
in flavour–kinematics duality manifesting form. The special galileon then appears as a particular subsector of the square of this
theory.
The way that Cheung–Shen construct the double copy is similar to ours, except that their action is already strictified with a finite

number of fields. We have seen that if we drop this restriction and allow ourselves an infinite tower of auxiliary fields, then it is not
necessary to add any new degrees of freedom (except auxiliary fields), and the double copy becomes exactly the special galileon upon
integrating out the auxiliary fields.

3.3. Formulation in Terms of Homotopy Algebras

The previous construction can be elegantly formulated using the language of homotopy algebras21, and this reformulation serves
again as a simpler example of our perspective on the gauge-gravity double copy.
L∞-Algebra of The Strictified Non-Linear Sigma Model: Feynman diagrams are constructed using n-point vertices that, with some

bias, can be regarded as taking n − 1 input fields and combining them into a new field. They also involve propagators, which are the
inverses of differential operators mapping a single input field into a new field. Both of these structures can be regarded as ‘higher
products’

𝜇1 : 𝔏1 → 𝔏1 and 𝜇2 : 𝔏1 × 𝔏1 → 𝔏1 (3.18)

of an L∞-algebra 𝔏 with underlying graded vector space 𝔏i =
⨁

i∈ℤ 𝔏i. Here, 𝔏1 is the vector space of all fields and 𝔏2 is a second copy
of 𝔏1 shifted by one in degree and identified with the space of BV anti-fields. This is the space in which the ‘right-hand side’ of the
equations of motion takes values. Usually one has further nontrivial vector subspaces 𝔏i with i < 1 describing gauge symmetries and
𝔏i with i > 2 describing Noether symmetries; we will come to this later when discussing Yang–Mills theory.
In the case of the strictified non-linear sigma model, we have no gauge symmetry, merely chiral fields and exclusively trivalent

vertices. Therefore

𝔏NLSM, st := 𝔏NLSM, st
1 ⊕ 𝔏NLSM, st

2 , (3.19)

21 Relevant definitions and results on homotopy algebras are collected in Sections 4.2, Appendix A, but we shall not need them yet in this section,
which is a gentle motivation of some of these definitions.
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where 𝔏NLSM, st
1 is the space of all possible field configurations (including the auxiliary fields), 𝔏NLSM, st

2 ≅ 𝔏NLSM, st
1 , and we have only

two non-vanishing maps

𝜇NLSM, st
1 : 𝔏NLSM, st

1 → 𝔏NLSM, st
2 ,

𝜇NLSM, st
2 : 𝔏NLSM, st

1 × 𝔏NLSM, st
1 → 𝔏NLSM, st

2 .

(3.20)

For example,

𝜇NLSM, st
1 (𝜙) = □𝜙 ∈ 𝔏NLSM, st

2,𝜙+ , 𝜇NLSM, st
2 (𝜙,𝜙) = □(𝜙𝜕𝜇𝜙)

⏟⏞⏞⏟⏞⏞⏟
∈𝔏NLSM, st

2,C1+

+⋯ , (3.21)

where 𝔏NLSM, st
2,𝜙+ and 𝔏NLSM, st

2,C1+ are the subspaces of 𝔏NLSM, st
2 in which the anti-fields 𝜙+ and C1+ take their values. We note that 𝜇NLSM, st

2 is
graded anti-symmetric (i.e. symmetric when forgetting about the degree of the fields), and we have the usual polarisation identity

𝜇NLSM, st
2 (𝜙1,𝜙2) = 1

2

(
𝜇NLSM, st
2 (𝜙1 + 𝜙2,𝜙1 + 𝜙2) − 𝜇

NLSM, st
2 (𝜙1,𝜙1) − 𝜇

NLSM, st
2 (𝜙2,𝜙2)

)
. (3.22)

We also have an inner product ⟨−,−⟩ on 𝔏NLSM, st of degree −3, which pairs elements in 𝔏NLSM, st
1 with elements in 𝔏NLSM, st

2 . The action
of the non-linear sigma model is then given by the homotopy Maurer–Cartan action for 𝔏NLSM, st,

SNLSM, st = 1
2
⟨a,𝜇NLSM, st

1 (a)⟩ + 1
3!
⟨a,𝜇NLSM, st

2 (a, a)⟩ , (3.23)

where a is a generic element in 𝔏NLSM, st
1 .

Factorisation: Since every field (including the auxiliary fields) carries an adjoint representation of the flavour symmetry, we can
flavour-strip the fields in the theory in a similar way that one can colour-strip the fields in the case of Yang–Mills theory. In homotopy
algebraic language, this corresponds to a factorisation

𝔏NLSM, st = 𝔤⊗ ℭNLSM, st = 𝔤⊗ ℭNLSM, st
1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=𝔏NLSM, st

1

⊕ 𝔤⊗ ℭNLSM, st
2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=𝔏NLSM, st

2

, (3.24)

whereℭNLSM, st
1 ≅ ℭNLSM, st

2 can be interpreted as the field space of a theory of an uncharged scalar field, together with a tower of auxiliary
fields. Importantly, also the two maps 𝜇NLSM, st

1 and 𝜇NLSM, st
2 factorise,

𝜇NLSM, st
1 = 𝗂𝖽⊗𝗆NLSM, st

1 and 𝜇NLSM, st
2 = [−,−]⊗𝗆NLSM, st

2 . (3.25)

Because the map 𝗆NLSM, st
2 is now graded symmetric (i.e. anti-symmetric after forgetting the fields’ degrees),(

ℭNLSM, st,𝗆NLSM, st
1 ,𝗆NLSM, st

2

)
(3.26)

is not an L∞-algebra but a C∞-algebra.
22

In the double copy of Yang–Mills theory, there is a kinematical factor that is treated on equal footing and interchanged with the
colour factor. We therefore should strip off this factor as well. In the non-linear sigma model, this corresponds to factorising the fields
into a single scalar field times the vector space of the Lorentz tensors on𝕄d that the auxiliary fields form.
The graded vector space underlying ℭNLSM, st factorises as

ℭNLSM, st = 𝔎𝔦𝔫⊗𝔖𝔠𝔞𝔩 = 𝔎𝔦𝔫⊗𝔖𝔠𝔞𝔩1
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=𝔏scal1

⊕ 𝔎𝔦𝔫⊗𝔖𝔠𝔞𝔩2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=𝔏scal2

, (3.27)

where𝔖𝔠𝔞𝔩1 ≅ 𝔖𝔠𝔞𝔩2 is simply the space of a single scalar (anti)field, while

𝔎𝔦𝔫 := ℝ
⏟⏟⏟

𝜙

⊕ 𝕄d

⏟⏟⏟
C1

⊕ 𝕄d

⏟⏟⏟
C2

⊕⋯ (3.28)

22 Recall that the tensor product of a Lie algebra and a commutative algebra is a Lie algebra.We have just encountered an example of the corresponding
homotopy algebraic generalisation.
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The higher product 𝗆NLSM, st
1 factorises trivially as

𝗆NLSM, st
1 = 𝗂𝖽⊗𝗆NLSM, st

1 , (3.29)

but the factorisation of 𝗆NLSM, st
2 is harder. Notice that this higher product does two things:

(i) It implements the differential operator that appears as the kinematic numerator in the flavour–kinematics-dual form of the
amplitude.

(ii) It multiplies the two fields pointwise, implementing locality.

We can disentangle the two functions by means of the twisted tensor product, whose precise definition will be given later in Section 6.3;
it suffices to say that it is custom-made to implement precisely the above separation. In terms of this twisted tensor product, we can
factorise

𝗆NLSM, st
2 = 𝗆𝔎𝔦𝔫

2 ⊗𝜏 𝜇
𝔖𝔠𝔞𝔩
2 , (3.30)

where

𝜇𝔖𝔠𝔞𝔩
2 : (𝜙1,𝜙2) → 𝜙1𝜙2 (3.31)

is simply the pointwise product of two scalar fields, and the twist datum 𝜏 encodes the differential operators that appear as numerators
in flavour–kinematics duality. We further note that 𝜇𝔖𝔠𝔞𝔩

2 is symmetric in the fields (i.e. graded-anti-symmetric in the elements of
𝔖𝔠𝔞𝔩) such that (𝔖𝔠𝔞𝔩,𝜇𝔖𝔠𝔞𝔩

1 ,𝜇𝔖𝔠𝔞𝔩
2 ) forms an L∞-algebra.

Double Copy: Altogether, we have factorised the L∞-algebra of (the manifestly flavour–kinematics-dual formulation of) the non-
linear sigma model as

𝔏NLSM, st = 𝔤⊗ 𝔏scal = 𝔤⊗ (𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩) . (3.32)

In terms of this factorisation, the double copy prescription is straightforward to phrase. The field space and the action of the double-
copied form of the special galileon is given by the L∞-algebra

𝔏sGal
1 = 𝔎𝔦𝔫⊗𝜏 (𝔎𝔦𝔫⊗𝜏 𝔖𝔠𝔞𝔩) , (3.33)

where the double appearance of the twist datum 𝜏 reflects the fact that the differential operators appearing in the numerator of the
flavour–kinematics-dual representation have been squared.
The validity of the factorisation (3.33) is not hard to see, in particular once one understands the link between higher products of

L∞-algebras and tree-level scattering amplitudes of the encoded field theories that we shall explain later in detail.

4. Field Theories, Batalin–Vilkovisky Complexes, and Homotopy Algebras

In the following, we summarise how perturbative quantum field theory is naturally formulated in the language of homotopy algebras.
The bridge between field theories and homotopy algebras is provided by the Batalin–Vilkovisky (BV) formalism.[167,171] Our discussion
follows the treatment in [178, 179]; see also [211] for a pedagogical summary and [203] for a detailed discussion of Feynman diagrams.
Basic definitions and results on homotopy algebras and homotopyMaurer–Cartan theory are collected in appendix A for convenience.
We start with the Becchi–Rouet–Stora–Tyutin (BRST) formalism for the archetypal example of Yang–Mills theory. This will also prepare
our discussion in Section 5.

4.1. Motivation

Yang–Mills Action: As before, we consider d-dimensional Minkowski space𝕄d := ℝ1,d−1 with metric (𝜂𝜇𝜈) = diag(−1, 1,… , 1) with
𝜇, 𝜈,… = 0, 1,… , d − 1 and local coordinates x𝜇 . Let 𝔤 be a semi-simple compact matrix Lie algebra with basis 𝚎a with a, b,… =
1, 2,… , dim(𝔤), [𝚎a, 𝚎b] = fab

c𝚎c with [−,−] the Lie bracket on 𝔤, and ⟨𝚎a, 𝚎b⟩ := −tr(𝚎a𝚎b) = 𝛿ab with ‘tr’ the matrix trace.
The action for Yang–Mills theory in R𝜉 -gauge for some real constant 𝜉 in the BRST formalism reads as

SYMBRST := ∫ ddx
{
− 1

4
Fa𝜇𝜈F

a𝜇𝜈 − c̄a𝜕
𝜇(∇𝜇c)a +

𝜉

2
bab

a + ba𝜕
𝜇Aa

𝜇

}
(4.1a)

with

Fa
𝜇𝜈

:= 𝜕𝜇A
a
𝜈
− 𝜕𝜈Aa

𝜇
+ fbc

agAb
𝜇
Ac
𝜈
and (∇𝜇c)a := 𝜕𝜇c

a + gfbc
aAb

𝜇
cc , (4.1b)
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Table 1. Ghost numbers of the fields in Yang–Mills theory.

field ΦI ca Aa
𝜇 ba c̄a

ghost number |ΦI|gh 1 0 0 −1

where g is the Yang–Mills coupling constant, Aa
𝜇
are the components of the 𝔤-valued one-form gauge potential on 𝕄d, and ca, ba,

and c̄a are the components of 𝔤-valued functions corresponding to the ghost, the Nakanishi–Lautrup field, and the anti-ghost field,
respectively.

ℤ-Graded Vector Spaces: We note that the fields in the action (4.1a) are graded by their ghost number as detailed in Table 1. Therefore,
we should view them as coordinate functions on a ℤ-graded vector space 𝔙 =

⨁
k∈ℤ 𝔙k. Elements of 𝔙k are said to be homogeneous of

degree k, and we shall use the notation |𝓁|𝔙 to denote the degree of a homogeneous element 𝓁 ∈ 𝔙.
The tensor product of two ℤ-graded vector spaces 𝔙 and𝔚 is defined as

𝔙⊗𝔚 =
⨁
k∈ℤ

(𝔙⊗𝔚)k with (𝔙⊗𝔚)k :=
⨁
i+j=k

𝔙i ⊗𝔚j, (4.2)

and the degree in 𝔙⊗𝔚 is thus the sum of the degrees in 𝔙 and𝔚.
We shall denote the dual of a ℤ-graded vector space 𝔙 by 𝔙∗,23 and we have

𝔙∗ =
⨁
k∈ℤ

(𝔙∗)k with (𝔙∗)k := (𝔙−k)
∗ . (4.3)

In particular, elements in 𝔙k have the opposite degree of elements in (𝔙k)
∗.

Given a ℤ-graded vector space 𝔙, we can introduce the degree-shifted ℤ-graded vector space 𝔙[l] for l ∈ ℤ by

𝔙[l] =
⨁
k∈ℤ

(𝔙[l])k with (𝔙[l])k := 𝔙k+l . (4.4)

For an ordinary vector space 𝔙 ≡ 𝔙0, for instance, 𝔙[1] consists of elements of degree −1 since only (𝔙[1])−1 = 𝔙0 is non-trivial.
Note that (𝔙⊗𝔚)[l] = 𝔙[l]⊗𝔚 = 𝔙⊗𝔚[l] and (𝔙[l])∗ = 𝔙∗[−l] for all l ∈ ℤ. For convenience, we introduce the notion of a shift
isomorphism

𝜎 : 𝔙 → 𝔙[1] (4.5)

which lowers the degree of every element of 𝔙, that is, 𝜎 : 𝔙k → (𝔙[1])k−1.
We note that the action (4.1a) is built of polynomial functions and their derivatives. By the algebra of polynomial functions on a

ℤ-graded vector space 𝔙, we mean the ℤ-graded symmetric tensor algebra 𝒞∞(𝔙) :=
⨀∙ 𝔙∗. Basis elements of 𝔙∗ can be regarded

as the coordinate functions on 𝔙. Explicitly, such a function looks like

𝖿 = f + 𝜉𝛼 f𝛼 +
1
2
𝜉𝛼𝜉𝛽 f𝛼𝛽 +⋯ ∈ 𝒞∞(𝔙) , (4.6)

where 𝜉𝛼 are basis elements of𝔙∗ and f, f𝛼 , f𝛼𝛽 ,… are constants. We have 𝜉𝛼𝜉𝛽 = (−1)|𝜉𝛼 |𝔙∗ |𝜉𝛽 |𝔙∗ 𝜉𝛽𝜉𝛼 . Note that if𝔙 is a vector space of
some suitably smooth functions or, more generally, sections of some vector bundle, then the dual𝔙∗, being the space of distributions,
contains not only the ordinary dual coordinate functions but also all of their derivatives.
BRST Operator in Yang–Mills Theory: The reason for introducing ghosts in the first place is the gauge symmetry of Yang–Mills

theory, which in the BRST and BV formalisms is captured in a dual formulation as a differential on a differential graded commutative
algebra that is called the Chevalley–Eilenberg algebra. More specifically, this is the algebra of polynomial functions, and the differential
is a nilquadratic vector fieldQ : 𝒞∞(𝔙) → 𝒞∞(𝔙) of degree one,Q2 = 0, known as the homological vector field. Aℤ-graded vector space
with such a homological vector field is called a Q-vector space.
The prime example of aQ-vector space is that of an ordinary vector space 𝔤 with basis 𝚎a for a, b,… = 1,… , dim(𝔤), regarded as the

ℤ-graded vector space 𝔤[1]. On 𝔤[1], we have coordinates 𝜉a only in degree one and thus, the most general vector field Q : 𝒞∞(𝔤[1]) →
𝒞∞(𝔤[1]) of degree one is of the form

Q := 1
2
𝜉b𝜉cfcb

a 𝜕

𝜕𝜉a
⇒ Q𝜉a = 1

2
𝜉b𝜉cfcb

a (4.7)

23 We will not discuss the analytical subtleties of this construction in the infinite-dimensional case, except to note that the dual spaces will be degree-
wise topological duals.
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for some constants fab
c = −fba

c. The condition Q2 = 0 is equivalent to the Jacobi identity for the fab
c so that Q induces a Lie bracket

[𝚎a, 𝚎b] = fab
c𝚎c on 𝔤. The differential graded algebra (𝒞∞(𝔤[1]), Q) is the Chevalley–Eilenberg algebra of the Lie algebra (𝔤, [−,−]) to

which we alluded above. In order to translate between Q and [−,−], it is useful to define the contracted coordinate functions24

𝖺 := 𝜉a ⊗ 𝚎a ∈ (𝔤[1])∗ ⊗ 𝔤 (4.8)

of degree one in (𝔤[1])∗ ⊗ 𝔤. Consequently,

Q𝖺 := (Q𝜉a)⊗ 𝚎a

= 1
2
𝜉b𝜉cfcb

a ⊗ 𝚎a

= − 1
2
𝜉b𝜉c ⊗ fbc

a𝚎a

= − 1
2
𝜉b𝜉c ⊗ [𝚎b, 𝚎c]

=: − 1
2
[𝜉b ⊗ 𝚎b, 𝜉c ⊗ 𝚎c]

= − 1
2
[𝖺, 𝖺] .

(4.9)

More general vector fields arise in the Chevalley–Eilenberg algebras of L∞-algebras and L∞-algebroids, cf. e.g. [178] for further
details. In the case of Yang–Mills theory, the homological vector field QYM

BRST describing the gauge symmetry acts according to

ca
QYM
BRST
→ − 1

2
gfbc

acbcc , c̄a
QYM
BRST
→ ba , Aa

𝜇

QYM
BRST
→ (∇𝜇c)a , ba

QYM
BRST
→ 0 . (4.10)

These transformations are known as the BRST transformations and QYM
BRST as the BRST operator. One readily verifies that (QYM

BRST)
2 = 0,

that is, QBRST is a differential. In addition, the action (4.1a) is QYM
BRST-closed, that is, Q

YM
BRSTS

YM
BRST = 0, which ensures gauge choice

independence and unitarity of the physical S-matrix.
We shall denote the minimal field space25 for gauge-fixed Yang–Mills theory by 𝔏YM

BRST, but the ghost number is the degree of
coordinate functions on 𝔏YM

BRST[1]. Explicitly,

𝔏YM
BRST = 𝔏YM

BRST, 0 ⊕ 𝔏YM
BRST, 1 ⊕ 𝔏YM

BRST, 2 , 𝔏YM
BRST, 0 := 𝒞∞(𝕄d)⊗ 𝔤 , 𝔏YM

BRST, 1 := (Ω1(𝕄d)⊕𝒞∞(𝕄d))⊗ 𝔤 , 𝔏YM
BRST, 2 := 𝒞∞(𝕄d)⊗ 𝔤

(4.11)

and c, A, b, and c̄ are coordinate functions on 𝔏YM
BRST, 0[1] = (𝔏YM

BRST[1])−1, 𝔏YM
BRST, 1[1] = (𝔏YM

BRST[1])0, 𝔏YM
BRST, 1[1] = (𝔏YM

BRST[1])0, and
𝔏YM
BRST, 2[1] = (𝔏YM

BRST[1])1 and thus of degrees 1, 0, 0, and −1, respectively. Moreover, the action (4.1a) is a polynomial function
SYMBRST ∈ 𝒞∞(𝔏YM

BRST[1]) on 𝔏YM
BRST[1] of total ghost number zero, |SYMBRST|𝒞∞(𝔏YMBRST[1])

= 0. In the following, we shall write | − |gh as a short-
hand for both | − |(𝔏YMBRST[1])∗ and | − |𝒞∞(𝔏YMBRST[1])

.
The Q-vector space (𝔏YM

BRST[1], Q
YM
BRST) describes the Lie algebra of gauge transformations as well as its action on the various fields,

which together form an action Lie algebroid. This becomes clear when comparing (4.10) to (4.9); the latter is the evident generalisation,
e.g. to the corresponding formulas for a differential graded Lie algebra.
We note that gauge-invariant objects areQYM

BRST-closed and that gauge-trivial objects areQ
YM
BRST-exact. Therefore, physical observables

are in the cohomology ofQBRST. The pair of fields (b, c̄) is known as a trivial pair, asQ
YM
BRST links the two fields by an identity map. They

vanish in the QYM
BRST-cohomology and thus are not observable.

As in (4.8), it will turn out useful to define the contracted coordinates

𝖺 := ∫ ddx
{
ca(x)⊗ (𝚎a ⊗ 𝚜x) + Aa

𝜇
(x)⊗ (𝚎a ⊗ 𝚟𝜇 ⊗ 𝚜x) + ba(x)⊗ (𝚎a ⊗ 𝚜x) + c̄a(x)⊗ (𝚎a ⊗ 𝚜x)

}
, (4.12a)

24 These are often used in the string field theory literature, albeit shifted such that 𝖺 is of degree zero.
25 This graded vector space is, in fact, the space of sections of a graded vector bundle, and fields and their derivatives are sections of the corresponding

jet bundle; but these details would not enlighten our discussion any further so we suppress them.
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where 𝚎a, 𝚟𝜇 , and 𝚜x are basis vectors on 𝔤, T∗
x𝕄

d, and 𝒞∞(𝕄d), respectively (and thus, we have an identification 𝚟𝜇 =̂ dx𝜇). It should
be noted that 𝖺 is an element of (𝔏YM

BRST[1])
∗ ⊗ 𝔏YM

BRST of degree one, and it can be regarded as a superfield which contains all the fields
of different ghost numbers. The component fields can be recovered by projecting onto the respective ghost numbers. In the following,
we will write symbolically

𝖺 = ΦI ⊗ 𝚎I (4.12b)

for DeWitt indices I, J,…, which contain Lorentz and gauge indices as well as space–time position. A contraction of DeWitt indices
involves sums over all discrete indices and evident integrals over the continuous ones.

4.2. Batalin–Vilkovisky Formalism and L∞-Algebras

The above example of Yang–Mills theory has demonstrated how ℤ-graded vector spaces and homological vector fields enter into
the description of a gauge field theory in the BRST formalism. In particular, gauge-invariant observables were contained in the
cohomology of QBRST. To fully characterise classical observables, however, we also need to impose the equations of motion. This
is the purpose of the more general Batalin–Vilkovisky (BV) formalism. As a byproduct, the BV formalism can cater for open
gauge symmetries which are gauge symmetries for which QBRST is a differential only on-shell. The BV operator QBV, which gen-
eralises the BRST operator QBRST, encodes the Chevalley–Eilenberg description of a cyclic L∞-algebra (i.e. an L∞-algebra with a
notion of inner product). The gauge-fixed form of this cyclic L∞-algebra will be crucial for our formulation of the double copy of
amplitudes.
BV Operator: Let 𝔏BRST[1] be a ℤ-graded vector space of fields of a general field theory. Then we have also a correspondence

between the fields and the coordinate functions on this space. In order to encode the field equations for all the fields in the action of
an operator QBV, we ‘double’ this vector space such that we have for each field ΦI of ghost number |ΦI|gh an anti-field Φ+

I of ghost
number |Φ+

I |gh := −1 − |ΦI|gh so that
QBVΦ+

I := (−1)|ΦI |gh 𝛿SBRST
𝛿ΦI

+⋯ . (4.13)

Here, the ellipsis denotes terms at least linear in the anti-fields. Formally, this doubling amounts to considering the cotangent space

𝔏BV[1] := T∗[−1](𝔏BRST[1]) ⇔ 𝔏BV := T∗[−3]𝔏BRST , (4.14)

which yields a canonical symplectic form

𝜔 := 𝛿Φ+
I ∧ 𝛿ΦI (4.15)

of ghost number −1. This symplectic form 𝜔, in turn, induces a Poisson bracket, also known as the anti-bracket. It reads explicitly as26

{F,G} = (−1)|ΦI |gh(|F|gh+1) 𝛿F
𝛿ΦI

𝛿G
𝛿Φ+

I

− (−1)(|ΦI |gh+1)(|F|gh+1) 𝛿F
𝛿Φ+

I

𝛿G
𝛿ΦI

, (4.16)

and it is of ghost number one so that {F,G} = −(−1)(|F|gh+1)(|G|gh+1){G, F}.
The classical Batalin–Vilkovisky action is now a function SBV ∈ 𝒞∞(𝔏BV[1]) of ghost number zero, which obeys the classical master

equation

{SBV, SBV} = 0 , (4.17a)

which extends the original action S0 of the field theory (without ghosts or trivial pairs)
27

SBV|Φ+
I =0

= S0 , (4.17b)

26 The signs arise as follows. Hamiltonian vector fields VF are given by VF ⨼ 𝜔 = 𝛿F for some function F. The Poisson bracket is then given by
{F,G} := VF ⨼ VG ⨼ 𝜔 = VF(G) from which the signs follow using the explicit form (4.15) of 𝜔. The signs are often absorbed using left- and right-
derivatives; however, for clarity we shall keep them explicitly.

27 Here, |Φ+
I =0

is the restriction to the subspace of BV field space where all anti-fields are zero.
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and whose Hamiltonian vector field extends the BRST differential,

(QBVΦI)|Φ+
J =0

= QBRSTΦI (4.17c)

with

QBV := {SBV,−} . (4.18)

We note that Q2
BV = 0 and (4.17a) are equivalent.

The last two conditions fix the terms of SBV which are constant and linear in the anti-fields to read as

SBV = S0 + (−1)|ΦI |ghΦ+
I QBRSTΦI +⋯ . (4.19)

General theorems now state that for each action and compatible BRST operator, there is a corresponding BV action and a BV operator,
cf. [264].
In a general theory, we will usually have a physical field a of ghost number zero as well as ghosts c0 together with higher ghosts

c−k of each ghost number −k + 1 as coordinate functions on 𝔏BV[1]. Higher ghosts are non-trivial only in theories with higher gauge
invariance. All fields come with the corresponding anti-fields a+, c+0 , and c

+
−k. To accommodate gauge fixing, we will have to expand

the field space further by trivial pairs and corresponding anti-fields, as already encountered in the previous section.
The equations of motion generate an ideal ℐ in 𝒞∞(𝔏BRST[1]), and the functions on the solutions space are the quotient

𝒞∞(𝔏BRST[1])∕ℐ. Because of (4.18),

QBVΦ+
I = (−1)|ΦI |gh 𝛿SBV

𝛿ΦI
, (4.20)

and the gauge-invariant functions on the solutions space are described by the QBV-cohomology.
L∞-Algebras: Following (4.12), we define again a superfield

𝖺 := 𝖺I ⊗ 𝚎I = ΦI ⊗ 𝚎I + Φ+
I ⊗ 𝚎I (4.21)

of degree one in (𝔏BV[1])
∗ ⊗ 𝔏BV, where I runs over all fields, ghosts, ghosts for ghosts and the corresponding anti-fields, as well as

space–time and Lie algebra indices. As in (4.9), we may extend the action of QBV to elements in (𝔏BV[1])
∗ ⊗ 𝔏BV by left action and

write

QBV𝖺 = {SBV, 𝖺} = −𝖿 (𝖺) with 𝖿 (𝖺) =:
∑
i≥1

1
i!
𝜇′
i (𝖺,… , 𝖺) . (4.22a)

The 𝜇′
i now encode i-ary graded anti-symmetric linear maps 𝜇i : 𝔏BV ×⋯ × 𝔏BV → 𝔏BV, which can be extracted by the formulas

𝜇′
1(𝖺) := (−1)|𝖺I |gh𝖺I ⊗ 𝜇1(𝚎I) ,

𝜇′
i (𝖺,… , 𝖺) := (−1)i

∑i
j=1 |𝖺Ij |gh+∑i

j=2 |𝖺Ij |gh ∑j−1
k=1 |𝚎Ik |𝔏BV 𝖺I1 ⋯ 𝖺Ii ⊗ 𝜇i(𝚎I1 ,… , 𝚎Ii ) ,

(4.22b)

see [178] for a much more detailed exposition.28 The condition Q2
BV = 0 then amounts to the homotopy Jacobi identities∑

i1+i2=i

∑
𝜎∈Sh(i1;i)

(−1)i2𝜒(𝜎;𝓁1,… ,𝓁i)𝜇i2+1(𝜇i1 (𝓁𝜎(1),… ,𝓁𝜎(i1)),𝓁𝜎(i1+1),… ,𝓁𝜎(i)) = 0 (4.23a)

for all 𝓁1,… ,𝓁i ∈ 𝔏BV. The sum is over all (i1; i) unshuffles 𝜎 which consist of permutations 𝜎 of {1,… , i} so that the first i1 and the
last i − i1 images of 𝜎 are ordered. Moreover, 𝜒(𝜎;𝓁1,… ,𝓁i) is the Koszul sign given by

𝓁1 ∧… ∧ 𝓁i = 𝜒(𝜎;𝓁1,… ,𝓁i)𝓁𝜎(1) ∧… ∧ 𝓁𝜎(i) . (4.23b)

28 Note that the 𝜇′
i
define, in fact, an L∞-structure on 𝒞∞(𝔏BV[1])⊗ 𝔏BV.
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The pair (𝔏BV,𝜇i) with products 𝜇i subject to (4.23) is called an L∞-algebra, cf. Appendix A.3. In our present setting, 𝔏BV is, in fact,
a cyclic L∞-algebra because of the presence of the symplectic form 𝜔. Specifically, if we consider the shift isomorphism (4.5), then 𝜔

induces the (indefinite) inner product29

⟨𝓁1,𝓁2⟩ := (−1)|𝓁1|𝔏BV𝜔(𝜎(𝓁1), 𝜎(𝓁2)) (4.24a)

of degree −3 in 𝔏BV and of ghost number zero. It is cyclic in the sense that

⟨𝓁1,𝜇i(𝓁2,… ,𝓁i+1)⟩ = (−1)i+i(|𝓁1|𝔏BV+|𝓁i+1|𝔏BV )+|𝓁i+1|𝔏BV ∑i
j=1 |𝓁j|𝔏BV ⟨𝓁i+1,𝜇i(𝓁1,… ,𝓁i)⟩ , (4.24b)

which is a consequence of the vanishing of the Lie derivative of 𝜔 along QBV. This is equivalent to saying that the higher products 𝜇i,
with the first i − 1 arguments fixed, act as graded derivations on ⟨−,−⟩.
Correspondence Between Actions and L∞-Algebras: Every cyclic L∞-algebra (𝔏BV,𝜇i) comes with a homotopy Maurer–Cartan action,

cf. appendix A. In particular, the functional

ShMC :=
∑
i≥1

1
(i + 1)!

⟨a,𝜇i(a,… , a)⟩ (4.25)

for a ∈ 𝔏BV,1 reproduces the action for the physical fields. Using the superfield 𝖺 defined in (4.21), we can write down a more general
homotopy Maurer–Cartan action

SshMC :=
∑
i≥1

1
(i + 1)!

⟨𝖺,𝜇′
i (𝖺,… , 𝖺)⟩′ , (4.26a)

where we define

⟨f I1 ⊗ 𝚎I , f
J
2 ⊗ 𝚎J⟩′ := (−1)|f I1 |gh+|f J2 |gh+|𝚎I |𝔏BV |f J2 |gh f I1 f J2 ⟨𝚎I , 𝚎J⟩ (4.26b)

for f I1,2 ∈ 𝒞∞(𝔏BV[1]). This superfield version of the homotopy Maurer–Cartan action is, in fact, the full BV action SBV. Put differ-
ently, (4.26a) satisfies the quantum master Equation (4.35) if and only if the 𝜇i in 𝜇

′
i via (4.22b) satisfy the homotopy Jacobi identi-

ties (4.23). We shall refer to the action (4.26a) as the superfield homotopy Maurer–Cartan action of the L∞-algebra (𝔏BV,𝜇i).
In summary, the BV formalism provides an equivalence between classical field theories and cyclic L∞-algebras, where the BV

operator plays the role of the Chevalley–Eilenberg differential of the L∞-algebra. Clearly, the BV action corresponding to an L∞-algebra
𝔏BV is physically only interesting if its degree-one part is non-trivial. To read off the L∞-algebra from a particular action functional, we
note that using (4.26b) we have

⟨𝖺,𝜇′
i (𝖺,… , 𝖺)⟩′ = ⟨𝖺Ii+1 ⊗ 𝚎Ii+1 ,𝜇

′
i (𝖺

I1 ⊗ 𝚎I1 ,… , 𝖺Ii ⊗ 𝚎Ii )⟩′ = 𝜁 (I1,… , Ii) 𝖺
Ii+1𝖺I1 ⋯ 𝖺Ii⟨𝚎Ii+1 ,𝜇i(𝚎I1 ,… , 𝚎Ii )⟩ (4.27a)

with the sign 𝜁 (I1,… , Ii) given by

𝜁 (I1,… , Ii) := (−1)
∑i

k=1 |𝖺Ik |gh(i+k+∑i
j=k |𝖺Ij |gh) . (4.27b)

More explicitly,

⟨𝖺,𝜇′
1(𝖺)⟩′ = (−1)|𝖺I1 |gh 𝖺I2𝖺I1⟨𝚎I2 ,𝜇1(𝚎I1 )⟩ ,⟨𝖺,𝜇′

2(𝖺, 𝖺)⟩′ = (−1)(|𝖺I1 |gh+1)|𝖺I2 |gh 𝖺I3𝖺I1𝖺I2⟨𝚎I3 ,𝜇2(𝚎I1 , 𝚎I2 )⟩ , (4.28)

and we shall make use of these formulas later.

Remark 4.1. The exchange of the coordinate functions on field space with the actual fields can easily lead to confusion. Let us therefore
summarise the situation once more. Actual fields (usually sections of a bundle or connections and their generalisations) are elements
of a graded vector space 𝔏BV. The L∞-algebra structure is defined on the vector space 𝔏BV. The symbols appearing in an action S
are, technically speaking, not fields but coordinate functions on the grade-shifted field space 𝔏BV[1], the same way that in differential
geometry one writes the metric in terms of the symbols x𝜇 , which are not points in space–time but rather real-valued coordinate
functions defined on space–time. Once we evaluate the action for particular fields, the coordinate functions are replaced by their
values. Similarly, the BV operator, the anti-bracket etc. all act on or take as arguments polynomial functions on 𝔏BV[1], which are

29 We will, in the bulk of our paper, deviate from this sign convention in order to simplify the signs arising in our double copy formalism.
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given by polynomial expressions in the coordinate functions as well as their derivatives, which are also contained in (𝔏BV[1])
∗. To

simplify notation, the coordinate function for a field (e.g. in an action) will be denoted by the same symbol as the field (element of the
L∞-algebra), as commonly done in quantum field theory.

Remark 4.2. The integral defining the action S of a classical field theory is mathematically usually not well defined. At a classical level,
this does not matter because we are never interested in the value of S itself, and we can treat all integrals as formal expressions. For
definiteness, mathematicians often drop the action and work with the Lagrangian instead. This can easily be done in the L∞-algebra
picture, working with graded modules over the ring of functions instead of graded vector spaces.
At quantum level, however, the value of S for particular field configurations does play a role, and one needs to carefully restrict the

field space such that all integrals are indeed well-defined, cf. [210]. One suitable restriction offers itself for the perturbative treatment.
We split the field space into interacting fields, 𝔉int, which can simply be identified with Schwartz functions on Minkowski space
𝒮(𝕄d), and free fields 𝔉free, which can be identified with solutions to the free equations of motion (i.e. fields in the kernel of 𝜇1),
which are Schwartz type for any fixed time-slice of Minkowski space,

𝔉 := 𝔉int ⊕𝔉free with 𝔉int := 𝒮(𝕄d) and 𝔉free := ker𝒮(𝜇1) . (4.29)

The elements of ker𝒮(𝜇1) are, of course, the states that label the asymptotic on-shell states in perturbation theory. On the other hand,
the fields in 𝒮(𝕄d) are the propagating degrees of freedom found on internal lines in Feynman diagrams. The decomposition (4.29)
is very much in the spirit of the homological perturbation lemma, which can be used to construct the scattering amplitudes, as we
shall discuss below.
We note that the wave operator is invertible on 𝒮(𝕄d) and the inverse is indeed the propagator 𝗁, as we shall discuss in more detail

below. This allows us to define the operators
√
□ and 1√

□
on 𝒮(𝕄d), which we continue to all of 𝔉 by mapping elements of ker𝒮(𝜇1)

to zero. This fact will play an important role later.

Gauge Fixing: The next step in the BV formalism is the implementation of gauge fixing. This is achieved by a canonical transfor-
mation

SgfBV
[
ΦI, Φ̃+

I

]
:= SBV

[
ΦI,Φ+

I + 𝛿Ψ
𝛿ΦI

]
(4.30)

which is mediated by a choice of gauge-fixing fermion, the generating functional for the canonical transformation, which is a function
Ψ ∈ 𝒞∞(𝔏BV[1]) of ghost number −1. The action (4.30) is then gauge-fixed if its Hessian is invertible. This requires a careful choice
ofΨ: the trivial choiceΨ = 0 leads back to the original action. When the classical BV action is only linear in the anti-fields, as is e.g. the
case for Yang–Mills theory and all the field theories we are dealing with, we may set the anti-fields in SgfBV to zero after gauge-fixing,
without loss of generality since the BV operator reduces to a BRST operator.
Note that to construct the gauge-fixing fermion Ψ of ghost number −1, we will have to introduce additional fields of negative ghost

number together with their anti-fields, such as e.g. the anti-ghost c̄ and the Nakanishi–Lautrup field b in the case of Yang–Mills theory.
If we do not change the QBV-cohomology, these new fields do not affect the observables. This can trivially be achieved if QBV maps
one field to another,

c̄
QBV
→ b , b

QBV
→ 0 , c̄+

QBV
→ 0 , b+

QBV
→ −c̄+ , (4.31)

cf. (4.10). We shall encounter a number of more involved examples in Section 5.
Quantum Master Equation and Quantum L∞-Algebras: Besides the canonical symplectic form (4.15), we also have a canonical

second-order differential operator on 𝒞∞(𝔏BV[1]), called the Batalin–Vilkovisky Laplacian, and defined as

ΔF := (−1)|ΦI |gh+|F|gh 𝛿2F
𝛿Φ+

I 𝛿ΦI
(4.32)

for F ∈ 𝒞∞(𝔏BV[1]).
The BV Laplacian plays a key role in the path integral quantisation of a theory. In particular, the gauge fixing (4.30) is implemented

at the path-integral level as

ZΨ := ∫𝔏BV
𝜇(ΦI,Φ+

I ) 𝛿
(
Φ+

I − 𝛿Ψ
𝛿ΦI

)
e

i
ℏ
SℏqBV[Φ

I ,Φ+
I ] , (4.33)

where 𝜇 is a measure that is compatible with the symplectic form 𝜔, 𝛿 is a functional delta distribution, ℏ is a formal parameter, and
SℏqBV ∈ 𝒞∞(𝔏BV[1]) is a functional of ghost number zero with

SℏqBV|ℏ=0 = SBV . (4.34)

Fortschr. Phys. 2021, 69, 2100075 2100075 (30 of 100) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

For ZΨ to be independent of the choice of gauge-fixing fermion Ψ, SℏqBV must satisfy the quantum master equation[167]30

Δe
i
ℏ
SℏqBV = 0 ⇐⇒ {SℏqBV, S

ℏ
qBV} − 2iℏΔSℏqBV = 0 . (4.35)

Consequently, we obtain as generalisation of (4.18) the quantum BRST-BV operator

QqBV := {SℏqBV,−} − 2iℏΔ , (4.36)

and the quantum master Equation (4.35) is equivalent to Q2
qBV = 0. Note that contrary to the classical version, the quantum ver-

sion (4.36) is no longer a derivation. Solutions SℏqBV to (4.35) are called quantum Batalin–Vilkovisky actions. We may now solve (4.35)
order by order in ℏ generalising the products 𝜇′

i in (4.26a) to products 𝜇
′
i,L for L = 0, 1, 2,… to reflect the ℏ-dependence with 𝜇′

i,L=0 = 𝜇
′
i

and 𝜇′
i,L=−1 := 0. Consequently, we consider the ansatz

SqshMC :=
∑
i≥1
L≥0

ℏL

(i + 1)!
⟨𝖺,𝜇′

i,L(𝖺,… , 𝖺)⟩′ (4.37)

for the superfield (4.21). The action (4.37) satisfies the quantum master Equation (4.35) if and only if the 𝜇i,L satisfy the quantum
homotopy Jacobi identities[172,200,201]∑
i1+i2=i
L1+L2=L

∑
𝜎∈Sh(i1;i)

(−1)i2𝜒(𝜎;𝓁1,… ,𝓁i)𝜇i2+1,L2 (𝜇i1 ,L1 (𝓁𝜎(1),… ,𝓁𝜎(i1)),𝓁𝜎(i1+1),… ,𝓁𝜎(i)) − i𝜇i+2,L−1(𝚎I , 𝚎I ,𝓁1,… ,𝓁i) = 0 (4.38)

for 𝓁1,… ,𝓁i ∈ 𝔏BV, where the 𝜇i,L are as in (4.22b) via the 𝜇
′
i,L. Here 𝚎

I := 𝚎J𝜔JI , where 𝜔IJ is the inverse of the symplectic form (4.15)

when written as 𝜔 = 1
2
𝛿𝖺I ∧ 𝜔IJ𝛿𝖺

J . Furthermore, (4.22a) generalises to

QqBV𝖺 = −
∑
i≥1
L≥0

ℏL

i!
𝜇′
i,L(𝖺,… , 𝖺) . (4.39)

The tuple (𝔏BV,𝜇i,L,𝜔) with the products 𝜇i,L subject to (4.38) is called a quantum or loop L∞-algebra. In the classical limit ℏ → 0, the
higher products 𝜇i,L for L > 0 become trivial, and we recover a cyclic L∞-algebra. Note that for scalar field theory, Yang–Mills theory,
and also Chern–Simons theory, the classical BV action also satisfies the quantummaster equation and hence, in those cases, we may
set SℏqBV = SBV, in which case 𝜇i,L = 0 for L > 0.

4.3. Scattering Amplitudes and L∞-Algebras

Above, we saw that actions of field theories are encoded in cyclic L∞-algebras. The same holds for tree-level scattering amplitudes and
loop-level scattering amplitudes are encoded in quantum L∞-algebras, as we shall explain in this section.
Equivalence of Field Theories: Classically, two physical theories are equivalent, if they have an isomorphic space of observables.31

Translated to the BV formalism, this implies that classically equivalent physical theories have isomorphic QBV-cohomology. Dually,
this implies that two physical theories are classically equivalent, if they have quasi-isomorphic L∞-algebras, which is alsomathematically
the natural notion of equivalence for L∞-algebras; see appendix A for more details.
Given two L∞-algebras (𝔏BV,𝜇i) and (�̃�BV, �̃�i) constructed from a BV action, amorphism 𝜙 : 𝔏BV → �̃�BV of L∞-algebras is a collection

of i-linear totally graded anti-symmetric maps 𝜙i : 𝔏BV ×⋯ × 𝔏BV → �̃�BV of degree 1 − i subject to the conditions (A.27). We note
that the homotopy Jacobi identities (4.23) imply that 𝜇1 and �̃�1 are differentials. Therefore, we may consider their cohomologies
H∙
𝜇1
(𝔏BV) :=

⨁
k∈ℤ H

k
𝜇1
(𝔏BV) andH

∙
�̃�1
(�̃�BV) :=

⨁
k∈ℤ H

k
�̃�1
(�̃�BV).We also note that the identity (A.27) implies that𝜙1 is a cochainmap, that

is, �̃�1◦𝜙1 = 𝜙1◦𝜇1 and thus descends to amapH∙
𝜇1
(𝔏BV) → H∙

�̃�1
(�̃�BV) on the cohomologies. Quasi-isomorphisms are thosemorphisms

for which 𝜙1 induces an isomorphism on cohomology.

30 Specifically, one requires ZΨ+𝛿Ψ = ZΨ for an infinitesimal deformation 𝛿Ψ of Ψ; the space of gauge-fixing fermions Ψ (whose Hessians may not
be invertible) is contractible, so ZΨ is globally independent of Ψ.

31 This is weaker than the statement that tree-level scattering amplitudes coincide. To define asymptotic in- and out-states in the same Hilbert space,
one needs the additional data of the symplectic form 𝜔. Two classical theories have the same tree-level scattering amplitudes if they are related by
a quasi-isomorphisms compatible with the cyclic structures. Again, see [178] for some more details.
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Under quasi-isomorphisms, the physical theory remains unchanged as is explained in appendix A, see also [178, 179, 196, 197, 211].
In particular, the BV actions SBV and S̃BV for 𝔏BV and �̃�BV are related as S̃BV = 𝜙∗SBV, where we used the pullback 𝜙

∗ : 𝒞∞(�̃�BV[1]) →
𝒞∞(𝔏BV[1]) dual to the morphism 𝜙. Consequently, quasi-isomorphisms constitute the correct notion of equivalence32.
Because the QBV-cohomologies in ghost numbers different from zero (i.e. dual to L∞-degree one) are not measurable, one may

wonder if the notion of a full quasi-isomorphism is not too restrictive. For perturbation theory, agreement in H1
𝜇1
(𝔏BV) is certainly

sufficient, and this can often be extended to an agreement in further cohomologies, cf. e.g. ([265], Appendix C). Moreover, some fields
in L∞-degree zero, such as e.g. anti-fields of anti-ghosts and Nakanishi–Lautrup fields, are often unphysical, and arise only as internal
fields in loop diagrams. Therefore their contributions to H1

𝜇1
(𝔏BV) can also be disregarded when identifying physical observables. At

a technical level, one can restrict these fields such that the kernel of the differential operator describing their linearised equations of
motion vanishes, cf. Remark 4.2.
Tree-Level Scattering Amplitudes: There is an L∞-structure 𝜇

◦
i with vanishing differential 𝜇

◦
1 on the cohomology 𝔏◦

BV := H∙
𝜇1
(𝔏BV)

of an L∞-algebra (𝔏BV,𝜇i) such that 𝔏◦
BV and 𝔏BV are quasi-isomorphic. This L∞-algebra 𝔏◦

BV is called the minimal model of 𝔏BV,
cf. appendix A. The minimal model corresponds to a field theory equivalent to the original field theory, but without any propagating
degrees of freedom. Its higher products therefore have to be the tree-level scattering amplitudes.[172,178,210,215]

The relation between 𝔏BV and 𝔏◦
BV can be understood as follows. We start from the underlying cochain complexes and the following

diagram:

(LBV,μ1) (L◦
BV,0) .h

p

e (4.40a)

Here, 𝗉 is the obvious projection onto the cohomology, and 𝖾 is a choice of embedding (involving choices, e.g. a choice of gauge for
gauge theories). The quasi-isomorphism also gives rise to a contracting homotopy 𝗁, which is a linear map of degree −1. The maps 𝖾
and 𝗁 can be chosen such that

𝗂𝖽 = 𝜇1 ◦ 𝗁 + 𝗁 ◦𝜇1 + 𝖾 ◦ 𝗉 ,
𝗉 ◦ 𝖾 = 𝗂𝖽 ,

𝗉 ◦ 𝗁 = 𝗁 ◦ 𝖾 = 𝗁 ◦ 𝗁 = 0 ,
𝗉 ◦𝜇1 = 𝜇1 ◦ 𝖾 = 0 .

(4.40b)

Mathematically, this is an abstractHodge–Kodaira decomposition. The map 𝗁 in L∞-degree two turns out to be the (Feynman–’t Hooft)
propagator of the physical theory in question,[266–268] see also [269] and references therein.
We directly extend the diagram (4.40a) to the Chevalley–Eilenberg picture, where we have

(C∞(LBV[1]),QBV,0) (C∞(L◦
BV[1]),0)

H0
E0

P0

id = P0 ◦E0 +QBV,0 ◦H0 +H0 ◦QBV,0 ,

E0 ◦P0 = id ,

E0 ◦H0 = H0 ◦P0 = H0 ◦H0 = 0 ,

E0 ◦QBV,0 = QBV,0 ◦P0 = 0 ,

(4.41a)

where QBV,0 is the linear part of QBV, which encodes the differential 𝜇1. The maps 𝖤0, 𝖯0, and 𝖧0 are defined by the ‘tensor trick’
[208]

as

𝖥0 =
∑
i≥1

1
i!
(𝖥0)

i for 𝖥0 ∈ {𝖤0, 𝖯0,𝖧0} (4.41b)

with

(𝖤0)
i := (𝖾∗)⊙i , (𝖯0)

i := (𝗉∗)⊙i , (𝖧0)
i :=

∑
k+l=i−1

1⊙k ⊙ 𝗁∗ ⊙ (𝗉∗ ◦ 𝖾∗)⊙l . (4.41c)

We can now regard the non-linear part

𝛿 := QBV −QBV,0 (4.42)

32 Here, we are a bit cavalier about the inclusion of the cyclic structure; again, see [178] for some more details.
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of QBV as a perturbation and use the homological perturbation lemma,[208,209] which asserts that there is a contracting homotopy

(C∞(LBV[1]),QBV) (C∞(L◦
BV[1]),Q◦

BV)H E

P

id = P◦E+QBV ◦H+H◦QBV ,

E◦P = id ,

E◦H = H◦P = H◦H = 0,

E◦QBV = Q◦
BV ◦E , QBV ◦P = P◦Q◦

BV

(4.43a)

in the deformed setting. In particular,

𝖤 = 𝖤0 ◦ (𝗂𝖽 + 𝛿 ◦𝖧0)
−1 , 𝖧 = 𝖧0 ◦ (𝗂𝖽 + 𝛿 ◦𝖧0)

−1 ,

𝖯 = 𝖯0 − 𝖧 ◦ 𝛿 ◦ 𝖯0 , Q◦
BV = 𝖤 ◦ 𝛿 ◦ 𝖯0 ,

(4.43b)

and Q◦
BV is the Chevalley–Eilenberg differential encoding the higher products of the minimal model and thus its tree-level scattering

amplitudes. Note that here, the inverse operators are to be seen as geometric series.33 The formula for Q◦
BV is then recursive, which

has interesting consequences.[202,210]

Translated to the dual picture, the homological perturbation lemma yields the following formulas for the quasi-isomorphism 𝜙 :
(𝔏BV,𝜇i) → (𝔏◦

BV,𝜇
◦
i )
[196]:

𝜙1(𝓁
◦
1 ) := 𝖾(𝓁◦

1 ) ,

𝜙2(𝓁
◦
1 ,𝓁

◦
2 ) := −(𝗁 ◦𝜇2)(𝜙1(𝓁◦

1 ),𝜙1(𝓁
◦
2 )) ,

⋮

𝜙i(𝓁
◦
1 ,… ,𝓁◦

i ) := −
i∑

j=2

1
j!

∑
k1+⋯+kj=i

∑
𝜎∈Sh(k1 ,…,kj−1;i)

𝜒(𝜎;𝓁◦
1 ,… ,𝓁◦

i )𝜁 (𝜎;𝓁
◦
1 ,… ,𝓁◦

i )

× (𝗁 ◦𝜇j)
(
𝜙k1

(
𝓁◦
𝜎(1),… ,𝓁◦

𝜎(k1)

)
,… ,𝜙kj

(
𝓁◦
𝜎(k1+⋯+kj−1+1)

,… ,𝓁◦
𝜎(i)

))
,

(4.44a)

and the products 𝜇◦
i : 𝔏

◦
BV ×⋯ × 𝔏◦

BV → 𝔏◦
BV are constructed recursively as

𝜇◦
1 (𝓁

◦
1 ) := 0 ,

𝜇◦
2 (𝓁

◦
1 ,𝓁

◦
2 ) := (𝗉◦𝜇2)(𝜙1(𝓁

◦
1 ),𝜙1(𝓁

◦
2 )) ,

⋮

𝜇◦
i (𝓁

◦
1 ,… ,𝓁◦

i ) :=
i∑

j=2

1
j!

∑
k1+⋯+kj=i

∑
𝜎∈Sh(k1 ,…,kj−1;i)

𝜒(𝜎;𝓁◦
1 ,… ,𝓁◦

i )𝜁 (𝜎;𝓁
◦
1 ,… ,𝓁◦

i )

× (𝗉 ◦𝜇j)
(
𝜙k1

(
𝓁◦
𝜎(1),… ,𝓁◦

𝜎(k1)

)
,… ,𝜙kj

(
𝓁◦
𝜎(k1+⋯+kj−1+1)

,… ,𝓁◦
𝜎(i)

))
,

(4.44b)

where 𝓁◦
1 ,… ,𝓁◦

i ∈ 𝔏◦
BV. Here, 𝜒 and 𝜁 are again the Koszul sign (4.23b) and the sign factor (A.31b), respectively.

Using the higher products of the minimal model, n-point tree-level scattering amplitudes of the free fields a◦1,… , a◦n ∈ H1
𝜇1
(𝔏BV)

are then computed using formula[210] (see also [196, 197] for the case of string field theory)

𝒜n,0(a
◦
1,… , a◦n) = i⟨a◦1,𝜇◦

n−1(a
◦
2,… , a◦n)⟩ . (4.45)

33 Because we are interested in perturbation theory, we do not have to concern ourselves with convergence issues.
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Furthermore, in [210] it was shown that the recursion relations (4.44a) encode the famous Berends–Giele recursion relations[270] for
gluon scattering in Yang–Mills theory. For a related discussion of the S-matrix in the language of L∞-algebras, see also [212] as well
as[215,216] for an interpretation of tree-level on-shell recursion relations in terms of L∞-algebras.
Loop-Level Scattering Amplitudes: In order to extend the above discussion to recursion relations for loop-level amplitudes, we

follow.[201,202,211] Recall that in the transition from the classical to the quantummaster equation, the classical BV operator is deformed
in powers of ℏ according to

QBV := {SBV,−} → QqBV := {SℏqBV,−} − 2iℏΔ with SℏqBV = SBV + (ℏ) . (4.46)

Consequently, the perturbation

𝛿 := QqBV −QqBV,0 = QqBV −QBV,0 (4.47)

between the full and linearised part of QqBV is now also deformed in powers of ℏ. Starting again from the diagram (4.41a), we use the
homological perturbation lemma to obtain a contracting homotopy

(C∞(LBV[1]),QqBV) (C∞(L◦
BV[1]),Q◦

qBV)H E

P

id = P◦E+QqBV ◦H+H◦QqBV ,

E◦P = id ,

E◦H = H◦P = H◦H = 0 ,

E◦QqBV = Q◦
qBV ◦E , QqBV ◦P = P◦Q◦

qBV ,

(4.48a)

where

𝖤 = 𝖤0 ◦ (𝗂𝖽 + 𝛿 ◦𝖧0)
−1 , 𝖧 = 𝖧0 ◦ (𝗂𝖽 + 𝛿 ◦𝖧0)

−1 ,

𝖯 = 𝖯0 − 𝖧 ◦ 𝛿 ◦ 𝖯0 , Q◦
qBV = 𝖤 ◦ 𝛿 ◦ 𝖯0 .

(4.48b)

Note that because 𝛿 contains the second order differential operator Δ, none of the maps will be algebra morphisms in general; this is
just a consequence of the fact that Q◦

qBV defines a loop homotopy algebra.
Importantly, the differential Q◦ can be written as[201,271]

Q◦
qBV = {Wℏ

qBV,−}
◦ − 2iℏΔ◦ , (4.49)

where {−,−}◦ and Δ◦ are the anti-bracket and the BV Laplacian on 𝒞∞(𝔏◦
BV[1]), respectively, andW

ℏ
qBV is of the form (4.37) but with

𝜇◦
1,L=0 = 0. Altogether, we obtain (𝔏◦

BV[1], Q
◦
qBV) which corresponds to a quantum L∞-structure on H∙

𝜇1,L=0
(𝔏BV) with a differential that

vanishes to zeroth order in ℏ.
The quantum BV actionWℏ

qBV is the action that encodes all scattering amplitudes to arbitrary loop order in perturbation theory.34

In particular, for theories for which the classical BV action also satisfies the quantum master equation, which includes scalar field
theory, Yang–Mills theory, and Chern–Simons theory, L coincides with the loop expansion order and hence, the products 𝜇◦

n−1,L are
the L-loop integrands for the n-point scattering amplitude. Consequently, (4.45) generalises to

𝒜n,L(a
◦
1,… , a◦n) = i ⟨a◦1,𝜇◦

n−1,L(a
◦
2,… , a◦n)⟩ . (4.50)

To construct the 𝜇i,L, we note that (4.48) immediately implies

𝖤 = 𝖤0 − 𝖤 ◦ 𝛿 ◦𝖧0 (4.51)

which is a recursion relation for 𝖤. Hence, we can iterate this equation to obtain 𝖤 recursively and substitute the result into Q◦
qBV =

𝖤◦𝛿◦𝖯0 from (4.48) with 𝖯0 given in (4.41c). We conclude, in analogy with (4.39), that

Q◦
qBV𝖺

◦ = −
∑
i≥1
L≥0

ℏL

i!
𝜇′◦
i,L(𝖺

◦,… , 𝖺◦) , (4.52)

34 One should not confuse the quantum BV action with the one-particle-irreducible effective action or the Wilsonian effective action, even though it
has the form of ℏ-corrections to the classical action.
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from which the 𝜇′◦
i,L and thus the 𝜇

◦
i,L can be read off. We refer to [202, 211] for full details. It is not difficult to see that for ℏ→ 0, the

recursion relation (4.51) coincides with the recursion relation (4.44a) and (4.52) with that for the products (4.44b) for the minimal
model at the tree level.

5. Examples of Homotopy Algebras of Field Theories

In the following, we review the actions, the BV complexes and the dual L∞-algebra structures of the field theories relevant to our
homotopy algebraic treatment of the double copy. We note that none of the theories we discuss in this section requires the BV
formalism for quantisation. As explained before, however, it doesmake the link to homotopy algebras evident and clarifies the freedom
we have in choosing gauges, an important aspect in our later discussion.

5.1. Biadjoint Scalar Field Theory

We start with the simplest relevant field theory, namely biadjoint scalar field theory with cubic interaction. This theory appeared in
the scattering amplitudes and double copy literature in various incarnations.[38,49,50,83,89,111,112,114,115,155,159,272–276]

In particular, let 𝔤 and �̄� be two semi-simple compact matrix Lie algebras. For (𝔤⊗ �̄�)-valued functions on Minkowski space𝕄d, we
define a symmetric bracket and an inner product by linearly extending

[𝚎1 ⊗ �̄�1, 𝚎2 ⊗ �̄�2]𝔤⊗�̄� := [𝚎1, 𝚎2]𝔤 ⊗ [�̄�1, �̄�2]�̄� ,

⟨𝚎1 ⊗ �̄�1, 𝚎2 ⊗ �̄�2⟩𝔤⊗�̄� := tr𝔤(𝚎1𝚎2) tr�̄�(�̄�1�̄�2)
(5.1)

for all 𝚎1,2 ∈ 𝔤 and �̄�1,2 ∈ �̄�.
BV Action and BV Operator: The BV action for biadjoint scalar field theory then reads as

Sbiadj := ∫ ddx
{

1
2
⟨𝜑,□𝜑⟩𝔤⊗�̄� −

𝜆

3!
⟨𝜑, [𝜑,𝜑]𝔤⊗�̄�⟩𝔤⊗�̄�

}
, (5.2)

where 𝜆 is a coupling constant, □ := 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 , and 𝜑 is a scalar field taking values in 𝔤⊗ �̄�. We write 𝜑 ∈ (𝔤⊗ �̄�)⊗𝔉 where 𝔉 is a
suitable function space discussed shortly. Introducing basis vectors 𝚎a and �̄�ā on 𝔤 and �̄�, respectively, we can rewrite this action in
component form

Sbiadj = ∫ ddx
{

1
2
𝜑aā □𝜑

aā − 𝜆

3!
fabcfāb̄c̄𝜑

aā𝜑bb̄𝜑cc̄
}
, (5.3a)

where

tr𝔤(𝚎a𝚎b) = −𝛿ab , tr�̄�(�̄�ā�̄�b̄) = −𝛿āb̄ , fabc := −tr𝔤(𝚎a[𝚎b, 𝚎c]𝔤) , fāb̄c̄ := −tr�̄�(�̄�ā[�̄�b̄, �̄�c̄]�̄�) . (5.3b)

Besides the field 𝜑, we also have the anti-field 𝜑+ and the BV operator (4.18) acts according to

𝜑aā QBV
→ 0 and 𝜑+aā QBV

→ □𝜑aā − 𝜆

2
fbc

afb̄c̄
ā𝜑bb̄𝜑cc̄ . (5.4)

L∞-Algebra: The BV operator (5.4) is the Chevalley–Eilenberg differential of an L∞-algebra 𝔏
biadj
BV which has the underlying cochain

complex35

∗
ϕaā

(g⊗ ḡ)⊗F︸ ︷︷ ︸
L
biadj
BV,1

ϕ+aā
(g⊗ ḡ)⊗F︸ ︷︷ ︸

L
biadj
BV,2

∗�

(5.5)

with cyclic inner product

⟨𝜑,𝜑+⟩ := ∫ ddx𝜑aā𝜑+
aā , (5.6)

35 Here, ‘*’ denotes the trivial vector space.
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Table 2. The full set of BV fields for Yang–Mills theory on𝕄d with gauge Lie algebra 𝔤, including their ghost numbers, their L∞-degrees, and their mass
dimensions. The mass dimension of the coupling constant g is 2 − d

2
.

Fields Anti-fields

Role | − |gh | − |𝔏 dim | − |gh | − |𝔏 dim

ca ghost field 1 0 d
2
− 2 c+a −2 3 d

2
+ 2

Aa
𝜇 physical field 0 1 d

2
− 1 A+a

𝜇 −1 2 d
2
+ 1

ba Nakanishi–Lautrup field 0 1 d
2

b+a −1 2 d
2

c̄a anti-ghost field −1 2 d
2

c̄+a 0 1 d
2

and the only non-trivial higher product is

(𝜑aā,𝜑bb̄)
𝜇2
→ −𝜆fbc

afb̄c̄
ā𝜑bb̄𝜑cc̄ . (5.7)

At this point it is important to recall Remark 4.1 and that we always use the same symbol for a coordinate function on field space and
the corresponding elements of field space.
The field space 𝔉 can roughly be thought of as the smooth functions of Minkowski space 𝒞∞(𝕄d). More precisely, however, the

field space is the direct sum of interacting fields and solutions to the (colour-stripped) equations of motion, cf. Remark 4.2.

5.2. Yang–Mills Theory

A key player in the double copy is Yang–Mills theory on d-dimensional Minkowski space 𝕄d with a semi-simple compact matrix Lie
algebra 𝔤 as gauge algebra. The gauge potential Aa

𝜇
is a one-form on𝕄d taking values in 𝔤. Let ∇ be the connection with respect to A.

Infinitesimal gauge transformations act according to

Aa
𝜇
→ Ãa

𝜇
:= Aa

𝜇
+ (∇𝜇c)a for all c ∈ 𝒞∞(𝕄d)⊗ 𝔤 . (5.8)

BV Action and BV Operator: The list of all the fields required in the BV formulation of Yang–Mills theory together with their
properties is found in Table 2, and the BV action is[167]

SYMBV := ∫ ddx
{
− 1

4
Fa𝜇𝜈F

a𝜇𝜈 + A+
a𝜇(∇

𝜇c)a + g

2
fbc

ac+a c
bcc − bac̄+a

}
. (5.9)

As in Section 4.1, all the fields are rescaled such that the Yang–Mills coupling constant g appears in all interaction vertices. Conse-
quently, the BV operator (4.18) acts as

ca
QBV
→ − g

2
fbc

acbcc , c+a
QBV
→ −(∇𝜇A+

𝜇
)a − gfbc

acbc+c ,

Aa
𝜇

QBV
→ (∇𝜇c)a , A+a

𝜇

QBV
→ (∇𝜈F𝜈𝜇)a − gfbc

aA+b
𝜇
cc ,

ba
QBV
→ 0 , b+a

QBV
→ −c̄+a ,

c̄a
QBV
→ ba , c̄+a

QBV
→ 0 .

(5.10)
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L∞-Algebra: The BV operator (5.10) is the Chevalley–Eilenberg differential of an L∞-algebra which we shall denote by 𝔏YM
BV . This

L∞-algebra has the underlying complex36

Aa
μ

Ω1(Md)⊗g

A+a
μ

Ω1(Md)⊗g

ba

C∞(Md)⊗g
b+a

C∞(Md)⊗g

ca

C∞(Md)⊗g

︸ ︷︷ ︸
=:LYM

BV,0

c̄+a

C∞(Md)⊗g

︸ ︷︷ ︸
=:LYM

BV,1

c̄a

C∞(Md)⊗g

︸ ︷︷ ︸
=:LYM

BV,2

c+a

C∞(Md)⊗g

︸ ︷︷ ︸
=:LYM

BV,3

−(∂ν∂μ−δμν �)

−∂μ

id

−∂μ

−id

(5.11a)

We shall label the subspaces 𝔏YM
BV, i to which the various fields belong by the corresponding subscripts, that is,

𝔏YM
BV, 0 = 𝔏YM

BV, 0, c , 𝔏YM
BV, 1 =

⨁
𝜙∈ (A, b, c̄+)

𝔏YM
BV, 1,𝜙 ,

𝔏YM
BV, 2 =

⨁
𝜙∈ (A+ , b+ , c̄)

𝔏YM
BV, 2,𝜙 , 𝔏YM

BV, 3 = 𝔏YM
3, c+ ,

(5.11b)

and the non-trivial actions of the differential 𝜇1 in 𝔏YM
BV, i are

ca
𝜇1
→ −𝜕𝜇ca ∈ 𝔏YM

BV, 1, A ,

⎛⎜⎜⎜⎝
Aa
𝜇

ba

c̄+a

⎞⎟⎟⎟⎠
𝜇1
→

⎛⎜⎜⎜⎝
−(𝜕𝜇𝜕𝜈 − 𝛿𝜈𝜇□)Aa

𝜈

−c̄+a

ba

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (A+ , b+ , c̄)

𝔏YM
BV, 2,𝜙 ,

A+a
𝜇

𝜇1
→ −𝜕𝜇A+a

𝜇
∈ 𝔏YM

BV, 3, c+ .

(5.11c)

The non-vanishing higher products are

(ca, cb)
𝜇2
→ gfbc

acbcc ∈ 𝔏YM
BV, 0, c ,

(Aa
𝜇
, cb)

𝜇2
→ −gfbc

aAb
𝜇
cc ∈ 𝔏YM

BV, 1, A ,

(A+a
𝜇
, cb)

𝜇2
→ −gfbc

aA+b
𝜇
cc ∈ 𝔏YM

BV, 2, A+ ,

(Aa
𝜇
, Ab

𝜈
)
𝜇2
→ 2gfbc

a
(
𝜕𝜈(Ab

𝜈
Ac
𝜇
) + 2Ab𝜈𝜕[𝜈A

c
𝜇]

)
∈ 𝔏YM

BV, 2, A+ ,

(ca, c+b)
𝜇2
→ gfbc

acbc+c ∈ 𝔏YM
BV, 3, c+ ,

(Aa
𝜇
, A+b

𝜈
)
𝜇2
→ −gfbc

aAb
𝜇
A+c𝜇 ∈ 𝔏YM

BV, 3, c+ ,

(Aa
𝜇
, Ab

𝜈
, Ac

𝜅
)
𝜇3
→ 3!g2A𝜈cAd

𝜈
Ae
𝜇
fed

bfbc
a ∈ 𝔏YM

BV, 2, A+ ,

(5.11d)

and the general expressions follow from polarisation. One can check that (𝔏YM
BV ,𝜇i) forms an L∞-algebra, and with the inner

products

⟨A,A+⟩ := ∫ ddx Aa
𝜇
A+𝜇
a , ⟨b, b+⟩ := ∫ ddx bab+a , ⟨c, c+⟩ := ∫ ddx cac+a , ⟨c̄, c̄+⟩ := −∫ ddx c̄ac̄+a , (5.12)

36 This complex has been rediscovered several times in the literature. For early references, see [186, 188]; more detailed historical references are found
in [178].
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it becomes a cyclic L∞-algebra. Note that the superfield homotopy Maurer–Cartan action (4.26a) reduces to the BV action (5.9) when
using these higher products and inner products together with (4.27).
Gauge Fixing: We have discussed the general gauge-fixing procedure in the BV formalism in Section 4.1. Here, to implement

R𝜉 -gauge for some real parameter 𝜉, we choose the gauge-fixing fermion

Ψ := −∫ ddx c̄a
(
𝜕𝜇Aa

𝜇
+ 𝜉

2
ba
)
. (5.13)

Following (4.30) and (4.33), the Lagrangian of the resulting gauge-fixed BV action is

SYM, gf
BV = ∫ ddx

{
− 1

4
Fa𝜇𝜈F

a𝜇𝜈 − c̄a𝜕
𝜇(∇𝜇c)a +

𝜉

2
bab

a + ba𝜕
𝜇Aa

𝜇
+ A+

a𝜇(∇𝜇c)
a + g

2
fbc

ac+a c
bcc − bac̄+a

}
, (5.14)

and after putting to zero the anti-fields, we obtain

SYMBRST = ∫ ddx
{
− 1

4
Fa𝜇𝜈F

a𝜇𝜈 − c̄a𝜕
𝜇(∇𝜇c)a +

𝜉

2
bab

a + ba𝜕
𝜇Aa

𝜇

}
. (5.15)

This is precisely the action appearing in (4.1a).

5.3. Free Kalb–Ramond Two-Form

The next theory which we would like to discuss is that of a free two-form gauge potential B ∈ Ω2(𝕄d). It has a three-form curvature
given by

H𝜇𝜈𝜅 := 𝜕𝜇B𝜈𝜅 + 𝜕𝜈B𝜅𝜇 + 𝜕𝜅B𝜇𝜈 ∈ Ω3(𝕄d) (5.16)

and transforms under the infinitesimal gauge transformations as

B𝜇𝜈 → B̃𝜇𝜈 := B𝜇𝜈 + 𝜕𝜇Λ𝜈 − 𝜕𝜈Λ𝜇 , (5.17)

where Λ ∈ Ω1(𝕄d) is the one-form gauge parameter. Note that the gauge parameters themselves transform under a higher gauge
symmetry,

Λ𝜇 → Λ̃𝜇 := Λ𝜇 + 𝜕𝜇𝜆 , (5.18)

where 𝜆 ∈ 𝒞∞(𝕄d) is the (scalar) higher gauge parameter.
BV Action and BV Operator: The full set of fields required for gauge fixing in the BV formalism is given by what is known as the

Batalin–Vilkovisky triangle,[168] see also [178] for a recent review in the notation used here. The complete list of BV fields is given in
Table 3. Following the discussion of [168], the BV action reads as

SKRBV := ∫ ddx
{
− 1

12
H𝜇𝜈𝜅H

𝜇𝜈𝜅 + 2B+
𝜇𝜈
𝜕𝜇Λ𝜈 − Λ+

𝜇
𝜕𝜇𝜆 − Λ̄+

𝜇
𝛼𝜇 + �̄�+�̄� + 𝜀+𝛾

}
, (5.19)
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Table 3. The full set of BV fields for the free Kalb–Ramond field, including their ghost numbers, their L∞-degrees, and their mass dimension. Besides the
physical field, the ghost field, and ghost–for–ghost field, we also introduced trivial pairs (𝛼, Λ̄), (𝛾 , 𝜀), and (�̄� , �̄�) together with their anti-fields.

Fields Anti-fields

Role | − |gh | − |𝔏 dim | − |gh | − |𝔏 dim

𝜆 ghost–for–ghost field 2 −1 d
2
− 3 𝜆+ −3 4 d

2
+ 3

Λ𝜇 ghost field 1 0 d
2
− 2 Λ+

𝜇 −2 3 d
2
+ 2

𝛾 trivial pair partner of 𝜀 1 0 d
2
− 1 𝛾+ −2 3 d

2
+ 1

B𝜇𝜈 physical field 0 1 d
2
− 1 B+

𝜇𝜈 −1 2 d
2
+ 1

𝛼𝜇 Nakanishi–Lautrup field 0 1 d
2

𝛼+𝜇 −1 2 d
2

𝜀 trivial pair partner of 𝛾 0 1 d
2
− 1 𝜀+ −1 2 d

2
+ 1

Λ̄𝜇 anti-ghost field −1 2 d
2

Λ̄+
𝜇 0 1 d

2

�̄� trivial pair partner of �̄� −1 2 d
2
+ 1 �̄�+ 0 1 d

2
− 1

�̄� trivial pair partner of �̄� −2 3 d
2
+ 1 �̄�+ 1 0 d

2
− 1

where the factor of two has been introduced for later convenience. Consequently, the BV operator acts (4.18) as

𝜆
QBV
→ 0 , 𝜆+

QBV
→ 𝜕𝜇Λ+

𝜇
,

Λ𝜇
QBV
→ 𝜕𝜇𝜆 , Λ+

𝜇

QBV
→ −2𝜕𝜈B+

𝜈𝜇
,

𝛾
QBV
→ 0 , 𝛾+

QBV
→ 𝜀+ ,

B𝜇𝜈
QBV
→ 𝜕𝜇Λ𝜈 − 𝜕𝜈Λ𝜇 , B+

𝜇𝜈

QBV
→ 1

2
𝜕𝜅H𝜅𝜇𝜈 ,

𝛼𝜇
QBV
→ 0 , 𝛼+

𝜇

QBV
→ Λ̄+

𝜇
,

𝜀
QBV
→ 𝛾 , 𝜀+

QBV
→ 0 ,

Λ̄𝜇
QBV
→ 𝛼𝜇 , Λ̄+

𝜇

QBV
→ 0 ,

�̄�
QBV
→ 0 , �̄�+

QBV
→ �̄�+ ,

�̄�
QBV
→ �̄� , �̄�+

QBV
→ 0 .

(5.20)

L∞-Algebra: The BV operator (5.20) is the Chevalley–Eilenberg differential of an L∞-algebra𝔏KR
BV, which has the underlying complex

λ

C∞(Md)

Λμ

Ω1(Md)

Bμν
Ω2(Md)

B+
μν

Ω2(Md)

Λ+
μ

Ω1(Md)
λ+

C∞(Md)

Λ̄+
μ

Ω1(Md)

Λ̄μ

Ω1(Md)

αμ

Ω1(Md)

α+μ
Ω1(Md)

γ

C∞(Md)
ε

C∞(Md)
ε+

C∞(Md)
γ +

C∞(Md)

︸ ︷︷ ︸
=:LKR

−1

λ̄+

C∞(Md)
︸ ︷︷ ︸
=:LKR

BV,0

γ̄ +

C∞(Md)
︸ ︷︷ ︸
=:LKR

BV,1

γ̄

C∞(Md)
︸ ︷︷ ︸
=:LKR

BV,2

λ̄

C∞(Md)
︸ ︷︷ ︸
=:LKR

BV,3

︸ ︷︷ ︸
=:LKR

BV,4

−∂μ 2∂[ν μ1 2∂ν −∂μ

id

−id

id −id

id −id

(5.21a)
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with

𝔏KR
BV,−1 = 𝔏KR

BV,−1, 𝜆 , 𝔏KR
BV, 0 =

⨁
𝜙∈ (Λ ,𝛾 ,�̄�+)

𝔏KR
BV, 0,𝜙 ,

𝔏KR
BV, 1 =

⨁
𝜙∈ (B, Λ̄+ , 𝛼, 𝜀, �̄�+)

𝔏KR
BV, 1,𝜙 , 𝔏KR

BV, 2 =
⨁

𝜙∈ (B+ , Λ̄, 𝛼+ , 𝜀+ , �̄�)

𝔏KR
BV, 2,𝜙 ,

𝔏KR
BV, 3 =

⨁
𝜙∈ (Λ+ , 𝛾+ , �̄�)

𝔏KR
BV, 3,𝜙 , 𝔏KR

BV, 4 = 𝔏KR
BV, 4, 𝜆+ ,

(5.21b)

and the non-vanishing action of the differential 𝜇1 given by

𝜆
𝜇1
→ −𝜕𝜇𝜆 ∈ 𝔏KR

BV, 0,Λ ,

⎛⎜⎜⎜⎝
Λ𝜇
𝛾

�̄�+

⎞⎟⎟⎟⎠
𝜇1
→

⎛⎜⎜⎜⎝
−2𝜕[𝜇Λ𝜈]
𝛾

�̄�+

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (B, 𝜀, �̄�+)

𝔏KR
BV, 1,𝜙 ,

⎛⎜⎜⎜⎝
B𝜇𝜈
Λ̄+
𝜇

𝛼𝜇

⎞⎟⎟⎟⎠
𝜇1
→

⎛⎜⎜⎜⎝
1
2
𝜕𝜅H𝜅𝜇𝜈

𝛼𝜇

−Λ̄+
𝜇

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (B+ , Λ̄, 𝛼+)

𝔏KR
BV, 2,𝜙 ,

⎛⎜⎜⎜⎝
B+
𝜇𝜈

𝜀+

�̄�

⎞⎟⎟⎟⎠
𝜇1
→

⎛⎜⎜⎜⎝
2𝜕𝜈B+

𝜇𝜈

−𝜀+

−�̄�

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (Λ+ , 𝛾+ , �̄�)

𝔏KR
BV, 3,𝜙 ,

Λ+
𝜇

𝜇1
→ −𝜕𝜇Λ+

𝜇
∈ 𝔏KR

BV, 4, 𝜆+ ,

(5.21c)

There are no higher products because the theory is free. The L∞-algebra 𝔏KR
BV becomes cyclic upon introducing

⟨𝜆, 𝜆+⟩ := −∫ ddx 𝜆𝜆+ , ⟨�̄�, �̄�+⟩ := −∫ ddx �̄��̄�+ ,

⟨Λ,Λ+⟩ := ∫ ddxΛ𝜇Λ+
𝜇
, ⟨Λ̄, Λ̄+⟩ := −∫ ddx Λ̄𝜇Λ̄+

𝜇
,

⟨B, B+⟩ := ∫ ddx B𝜇𝜈B+
𝜇𝜈
,

⟨𝛼, 𝛼+⟩ := ∫ ddx 𝛼𝜇𝛼+
𝜇
, ⟨𝜀, 𝜀+⟩ := ∫ ddx 𝜀𝜀+ ,

⟨𝛾 , 𝛾+⟩ := ∫ ddx 𝛾𝛾+ , ⟨�̄� , �̄�+⟩ := −∫ ddx �̄� �̄�+ .

(5.22)

Again, the superfield homotopy Maurer–Cartan action (4.26a) of 𝔏KR
BV with higher products (4.27) is the BV action (5.19).

Gauge Fixing: Recall the general gauge-fixing procedure in the BV formalism fromSection 4.1. Themost general Lorentz covariant
linear gauge choices are implemented by the gauge-fixing fermion

Ψ := −∫ ddx
{
Λ̄𝜈

(
𝜕𝜇B𝜇𝜈 +

𝜁1
2
𝛼𝜈

)
− �̄�

(
𝜕𝜇Λ𝜇 + 𝜁2𝛾

)
+ 𝜀

(
𝜕𝜇Λ̄𝜇 + 𝜁3�̄�

)}
(5.23)

for some real parameters 𝜁1,2,3. The resulting gauge-fixed action (after putting to zero the anti-fields) is

SKRBRST = ∫ ddx
{

1
4
B𝜇𝜈 □B𝜇𝜈 + 1

2
(𝜕𝜇B𝜇𝜈)(𝜕𝜅B

𝜅𝜈) − Λ̄𝜇□Λ𝜇 − (𝜕𝜇Λ̄𝜇)(𝜕𝜈Λ𝜈) − �̄�□ 𝜆 +
𝜁1
2
𝛼𝜇𝛼

𝜇 + 𝛼𝜈𝜕𝜇B𝜇𝜈

+𝜀𝜕𝜇𝛼𝜇 − (𝜁2 + 𝜁3) �̄�𝛾 + 𝛾𝜕𝜇Λ̄𝜇 − �̄�𝜕𝜇Λ𝜇
}
. (5.24)

Fortschr. Phys. 2021, 69, 2100075 2100075 (40 of 100) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

Table 4. The full set of BV fields for Einstein–Hilbert gravity, including their ghost numbers, their L∞-degrees, and their mass dimensions. The mass
dimension of the coupling constant 𝜅 is 1 − d

2
. Note that all fields are tensors and all anti-fields are tensor densities.

Fields Anti-fields

Role | − |gh | − |𝔏 dim | − |gh | − |𝔏 dim

𝜒𝜇 ghost field 1 0 −1 𝜒+
𝜇 −2 3 d + 1

g𝜇𝜈 physical field 0 1 0 g+𝜇𝜈 −1 2 d

𝜚𝜇 Nakanishi–Lautrup field 0 1 d
2

𝜚+𝜇 −1 2 d
2

�̄�𝜇 anti-ghost field −1 2 d
2

�̄�+
𝜇 0 1 d

2

5.4. Einstein–Hilbert Gravity

The fourth relevant theory is Einstein–Hilbert gravity on a d-dimensional Lorentzian manifold Md with metric g ∈ Γ(Md,⊙2T∗Md).
Let ∇ be the Levi–Civita connection for g. Recall that infinitesimal gauge transformations of the metric are parametrised by a vector
field 𝜒 and act as

g𝜇𝜈 → g̃𝜇𝜈 := g𝜇𝜈 + (𝜒g)𝜇𝜈 , (5.25)

where 𝜒 denotes the Lie derivative along 𝜒 .
BV Action and BV Operator: The list of all the fields required in the BV formulation of Einstein–Hilbert gravity together with their

properties is found in Table 4 and the BV action (cf. e.g. [277] or[278] for the gauge-fixed version) is

SEHBV := ∫ ddx
{
− 1
𝜅2

√
−g R + g+𝜇𝜈(𝜒g)𝜇𝜈 + 1

2
𝜒+
𝜇
(𝜒𝜒)𝜇 − 𝜚𝜇�̄�+

𝜇

}
, (5.26)

where R denotes the Ricci scalar and 2𝜅2 = 16𝜋G(d)
N Einstein’s gravitational constant. Consequently, the BV operator (4.18) acts as

𝜒𝜇
QBV
→ − 1

2
(𝜒𝜒)𝜇 , 𝜒+

𝜇

QBV
→ −2∇𝜈g+

𝜈𝜇
+ (𝜒𝜒+)𝜇 ,

g𝜇𝜈
QBV
→ (𝜒g)𝜇𝜈 , g+𝜇𝜈

QBV
→ − 1

𝜅2

√
−g

(
R𝜇𝜈 − 1

2
g𝜇𝜈R

)
+ (𝜒g+)𝜇𝜈 ,

𝜚𝜇
QBV
→ 0 , 𝜚+

𝜇

QBV
→ −�̄�𝜇 ,

�̄�𝜇
QBV
→ 𝜚𝜇 , �̄�+

𝜇

QBV
→ 0 ,

(5.27)

where R𝜇𝜈 is the Ricci tensor.
Perturbation Theory: Let us now restrict to a Lorentzian manifoldMd for which the metric can be seen as a fluctuation h𝜇𝜈 about

the Minkowski metric 𝜂𝜇𝜈 on𝕄d, that is,

g𝜇𝜈 =: 𝜂𝜇𝜈 + 𝜅h𝜇𝜈 . (5.28a)

For future reference, we note that

g𝜇𝜈 = 𝜂𝜇𝜈 − 𝜅h𝜇𝜈 + 𝜅2h𝜇𝜌h𝜌𝜈 − 𝜅3h𝜇𝜌h𝜌𝜎h𝜎𝜈 + (𝜅4) , (5.28b)

where h𝜇
𝜈 := 𝜂𝜈𝜆h𝜇𝜆 and h𝜇𝜈 := 𝜂𝜇𝜅𝜂𝜈𝜆h𝜅𝜆. Likewise,

√
−g = 1 + 1

2
𝜅h̊ + 𝜅2

(
1
8
h̊2 − 1

4
h𝜇
𝜈h𝜈

𝜇
)
+ 𝜅3

(
1
48
h̊3 − 1

8
h̊h𝜇

𝜈h𝜈
𝜇 + 1

6
h𝜇
𝜈h𝜈

𝜌h𝜌
𝜇
)
+ (𝜅4) , (5.28c)

where h̊ := 𝜂𝜇𝜈h𝜇𝜈 .
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Table 5. The full set of BV fields for perturbative Einstein–Hilbert gravity, including their ghost numbers, their L∞-degrees, and their mass dimension.
All the fields are regarded as tensors on Minkowski space.

Fields Anti-fields

Role | − |gh | − |𝔏 dim | − |gh | − |𝔏 dim

X𝜇 ghost field 1 0 d
2
− 2 X+

𝜇 −2 3 d
2
+ 2

𝛽 trivial pair partner of 𝛿 1 0 d
2
− 1 𝛽+ −2 3 d

2
+ 1

h𝜇𝜈 physical field 0 1 d
2
− 1 h+𝜇𝜈 −1 2 d

2
+ 1

𝜛𝜇 Nakanishi–Lautrup field 0 1 d
2

𝜛+
𝜇 −1 2 d

2

𝜋 trivial pair partner of 𝛽 0 1 d
2
+ 1 𝜋+ −1 2 d

2
− 1

𝛿 trivial pair partner of 𝛽 0 1 d
2
− 1 𝛿+ −1 2 d

2
+ 1

X̄𝜇 anti-ghost field −1 2 d
2

X̄+
𝜇 0 1 d

2

𝛽 trivial pair partner of 𝜋 −1 2 d
2
+ 1 𝛽+ 0 1 d

2
− 1

We also introduce the following rescaled anti-fields and unphysical fields:

h+𝜇𝜈 := 𝜅√
−g
g+𝜇𝜈 , X𝜇 := 1

𝜅
𝜒𝜇 , X+

𝜇
:= 𝜅√

−g
𝜒+
𝜇
, X̄𝜇 := �̄�𝜇 , X̄+

𝜇
:= 1√

−g
�̄�+
𝜇
, 𝜛𝜇 := 𝜚𝜇 , 𝜛+

𝜇
:= 1√

−g
𝜚+
𝜇
. (5.29)

In addition to these, we introduce two trivial pairs (𝛽, 𝛿) and (𝜋, 𝛽), together with the corresponding anti-fields. These do not modify
the physical observables; as we shall see later, however, they do arise rather naturally in the double copy and are crucial once the dilaton
enters. We also note that precisely these trivial pairs were also introduced in [279] in order to explain a unimodular gauge fixing in
the BV formalism. The full list of fields and their properties is given in Table 5.
The action itself can now be expanded in orders of 𝜅,

SeEHBV = ∫ ddx
√
−g

{
− 1
𝜅2
R + 2√

−g
g+𝜇𝜈∇𝜇𝜒𝜈 +

1
2
√
−g
𝜒+
𝜇
(𝜒𝜒)𝜇 − 1√

−g
𝜛𝜇�̄�+

𝜇
+ 𝛽𝛿+ + 𝜋𝛽+

}
= ∫ ddx

√
−g

{
− 1
𝜅2
R + 2h+𝜇𝜈∇𝜇X𝜈 +

𝜅

2
X+
𝜇
(XX)

𝜇 −𝜛𝜇�̄�+
𝜇
+ 𝛽𝛿+ + 𝜋𝛽+

}
=: ∫ ddx

∞∑
n=0
𝜅nℒeEH

n

(5.30)

with indices now raised and lowered with the Minkowski metric. The lowest-order Lagrangian ℒ0 is given by the Fierz–Pauli
Lagrangian plus the terms containing ghosts and other unphysical fields,

ℒeEH
0 = − 1

4
𝜕𝜇h𝜈𝜌𝜕𝜇h𝜈𝜌 +

1
2
𝜕𝜇h𝜈𝜌𝜕𝜈h𝜇𝜌 −

1
2
𝜕𝜇h̊𝜕𝜈h𝜇𝜈 +

1
4
𝜕𝜇h̊𝜕𝜇h̊ + 2h+𝜇𝜈𝜕𝜇X𝜈 −𝜛𝜇X̄+

𝜇
+ 𝛽𝛿+ + 𝜋𝛽+ , (5.31)

cf. e.g. [280]. To first order in 𝜅, we have

ℒeEH
1 = −h𝜇𝜈

{
1
2
𝜕𝜇h

𝜌𝜎𝜕𝜈h𝜌𝜎 −
1
4
𝜂𝜇𝜈𝜕𝜎h𝜏𝜌𝜕

𝜎h𝜏𝜌 + 𝜕𝜈 h̊
(
𝜕𝜌h𝜇

𝜌 − 1
2
𝜕𝜇h̊

)
+ 𝜕𝜈h𝜇𝜌𝜕𝜌h̊ − 𝜕𝜌h̊𝜕𝜌h𝜇𝜈 −

1
2
𝜂𝜇𝜈𝜕

𝜌h̊
(
𝜕𝜎h𝜌

𝜎 − 1
2
𝜕𝜌h̊

)
+ 𝜕𝜌h𝜇𝜈𝜕𝜎h𝜌𝜎

− 2𝜕𝜈h𝜌𝜎𝜕𝜎h𝜇𝜌 − 𝜕𝜌h𝜈𝜎𝜕𝜎h𝜇𝜌 + 𝜕𝜎h𝜈𝜌𝜕𝜎h𝜇𝜌 +
1
2
𝜂𝜇𝜈𝜕𝜌h𝜏𝜎𝜕

𝜎h𝜏𝜌
}
+ 2h+𝜇𝜈

{
h𝜈𝜆𝜕𝜇X

𝜆 + 1
2
(𝜕𝜇h𝜆𝜈 + 𝜕𝜆h𝜇𝜈 − 𝜕𝜈h𝜇𝜆)X𝜆

}
+ 1

2
X+
𝜇
(XX)

𝜇 + 1
2
h̊(−𝜛𝜇X̄+

𝜇
+ 𝛽𝛿+ + 𝜋𝛽+) . (5.32)
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L∞-Algebra: The full L∞-algebra 𝔏eEH
BV of Einstein–Hilbert gravity has the underlying complex

Xμ
Ω1(Md)

hμν
Ω2(Md)

h+μν
Ω2(Md)

X+
μ

Ω1(Md)

X̄+
μ

Ω1(Md)

X̄μ
Ω1(Md)

�μ

Ω1(Md)

�+
μ

Ω1(Md)

β̄+

C∞(Md)
β̄

C∞(Md)

π

C∞(Md)
π+

C∞(Md)

β

C∞(Md)
︸ ︷︷ ︸
=:LeEH

BV,0

δ

C∞(Md)
︸ ︷︷ ︸
=:LeEH

BV,1

δ+

C∞(Md)
︸ ︷︷ ︸
=:LeEH

BV,2

β+

C∞(Md)
︸ ︷︷ ︸
=:LeEH

BV,3

2∂(ν μ1 2∂ν

id

−id

−id

id

id −id

(5.33a)

with

𝔏eEH
BV, 0 = 𝔏eEH

BV, 0, X ⊕ 𝔏eEH
BV, 0, 𝛽 , 𝔏eEH

BV, 1 =
⨁

𝜙∈ (h, X̄+ ,𝜛, 𝛽+ ,𝜋, 𝛿)

𝔏eEH
BV, 1,𝜙 ,

𝔏eEH
BV, 2 =

⨁
𝜙∈ (h+ , X̄ ,𝜛+ , 𝛽,𝜋+ , 𝛿+)

𝔏eEH
BV, 2,𝜙 , 𝔏eEH

BV, 3 = 𝔏eEH
BV, 0, X+ ⊕ 𝔏eEH

BV, 0, 𝛽+ .
(5.33b)

The L∞-algebra 𝔏eEH
BV comes with non-trivial higher products of arbitrarily high order, with 𝜇i encoding the LagrangianℒeEH

BV, i−1. Below,
we merely list 𝜇1 and 𝜇2 to prepare our discussion of the double copy later on. The differentials are(
X𝜇
𝛽

)
𝜇1
→

(
−𝜕(𝜇X𝜈)
𝛽

)
∈

⨁
𝜙∈ (h, 𝛿)

𝔏eEH
BV, 1,𝜙 ,

⎛⎜⎜⎜⎜⎜⎜⎝

h𝜇𝜈
X̄+
𝜇

𝜛𝜇

𝛽+

𝜋

⎞⎟⎟⎟⎟⎟⎟⎠
𝜇1
→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

[
1
2
(𝛿𝜌
𝜇
𝛿𝜎
𝜈
− 𝜂𝜇𝜈𝜂𝜌𝜎)□−(𝛿𝜎

𝜈
𝜂𝜇𝜅 − 𝛿𝜎𝜅 𝜂𝜇𝜈)𝜕

𝜌𝜕𝜅
]
h𝜌𝜎

−𝜛𝜇

X̄+
𝜇

𝜋

−𝛽+

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈

⨁
𝜙∈ (h+ , X̄ ,𝜛+ , 𝛽,𝜋+)

𝔏eEH
BV, 2,𝜙 ,

(
h+
𝜇𝜈

𝛿+

)
𝜇1
→

(
−𝜕𝜈h𝜈𝜇
−𝛿+

)
∈

⨁
𝜙∈ (X+ , 𝛽+)

𝔏eEH
BV, 3,𝜙 ,

(5.33c)

and the cubic interactions are encoded in the binary products

(X1𝜇, X2𝜈)
𝜇2
→ (X1

X2)𝜇 ∈ 𝔏eEH
BV, 0, X ,

(X𝜇, X
+
𝜈
)
𝜇2
→ (𝜕𝜇X

𝜈)X+
𝜈
+ 𝜕𝜈(X 𝜈X+

𝜇
) ∈ 𝔏eEH

BV, 3, X+ ,
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(𝜛, X̄+
𝜇
)
𝜇2
→ 1

2
𝜛𝜌X̄+

𝜌
𝜂𝜇𝜈 ∈ 𝔏eEH

BV, 2, h+ ,

(h𝜇𝜈 ,𝜛)
𝜇2
→ − 1

2
h̊𝜛𝜇 ∈ 𝔏eEH

BV, 2, X̄
,

(h𝜇𝜈 , X̄
+
𝜌
)
𝜇2
→ 1

2
h̊X̄+

𝜇
∈ 𝔏eEH

BV, 2,𝜛+ ,

(𝛽, 𝛿+)
𝜇2
→ 1

2
𝛽𝛿+𝜂𝜇𝜈 ∈ 𝔏eEH

BV, 2, h+ ,

(h𝜇𝜈 , 𝛽)
𝜇2
→ 1

2
h̊𝛽 ∈ 𝔏eEH

1,𝛿 ,

(h𝜇𝜈 , 𝛿
+)

𝜇2
→ − 1

2
h̊𝛿+ ∈ 𝔏eEH

BV, 3, 𝛽+ ,

(𝜋, 𝛽+)
𝜇2
→ 1

2
𝜋𝛽+𝜂𝜇𝜈 ∈ 𝔏eEH

BV, 2, h+ , (h𝜇𝜈 ,𝜋)
𝜇2
→ − 1

2
h̊𝜋 ∈ 𝔏eEH

BV, 2, 𝛽
,

(h𝜇𝜈 , 𝛽
+)

𝜇2
→ 1

2
h̊𝛽+ ∈ 𝔏eEH

BV, 2,𝜋+ ,

(X𝜇, h𝜈𝜌)
𝜇2
→ −2h𝜈𝜅𝜕𝜇X𝜅 − (𝜕𝜇h𝜅𝜈 + 𝜕𝜅h𝜇𝜈 − 𝜕𝜈h𝜇𝜅 )X𝜅 ∈ 𝔏eEH

BV, 1, h ,

(h+
𝜇𝜈
, h𝜌𝜎)

𝜇2
→ −2𝜕𝜅 (h+𝜅𝜈h𝜈𝜇) + h+𝜅𝜈(𝜕𝜅h𝜇𝜈 + 𝜕𝜇h𝜅𝜈 − 𝜕𝜈h𝜅𝜇) ∈ 𝔏eEH

BV, 3, X+ ,

(h+
𝜇𝜈
, X𝜌)

𝜇2
→ −2h+

𝜅𝜇
𝜕𝜅X𝜈 + 𝜕𝜅 (h+𝜅𝜈X𝜇) + 𝜕𝜅 (h

+𝜇𝜈X𝜅 ) − 𝜕𝜅 (h+
𝜇𝜅
X𝜈) ∈ 𝔏eEH

BV, 2, h+ ,

(h1𝜇𝜈 , h2𝜌𝜎)
𝜇2
→ 3

{
1
2
𝜕𝜇h

𝜌𝜎
1 𝜕𝜈h2𝜌𝜎 −

1
4
𝜂𝜇𝜈𝜕𝜎h1𝜏𝜌𝜕

𝜎h𝜏𝜌2 + 𝜕𝜈 h̊1
(
𝜕𝜌h2𝜇

𝜌 − 1
2
𝜕𝜇h̊2

)
+ 𝜕𝜈h1𝜇𝜌𝜕𝜌h̊2 − 𝜕𝜌h̊1𝜕𝜌h2𝜇𝜈 −

1
2
𝜂𝜇𝜈𝜕

𝜌h̊1
(
𝜕𝜎h2𝜌

𝜎 − 1
2
𝜕𝜌h̊2

)
+𝜕𝜌h1𝜇𝜈𝜕𝜎h2𝜌𝜎 − 2𝜕𝜈h1𝜌𝜎𝜕

𝜎h2𝜇
𝜌 − 𝜕𝜌h1𝜈𝜎𝜕𝜎h2𝜇𝜌 + 𝜕𝜎h1𝜈𝜌𝜕𝜎h2𝜇𝜌 +

1
2
𝜂𝜇𝜈𝜕𝜌h1𝜏𝜎𝜕

𝜎h𝜏𝜌2
}
+ (1 ↔ 2) ∈ 𝔏eEH

BV, 2, h+ , (5.33d)

The cyclic structure is given by the following integrals:

⟨X, X+⟩ := ∫ ddx X𝜇X+
𝜇
, ⟨X̄ , X̄+⟩ := −∫ ddx X̄𝜇X̄+

𝜇
,

⟨𝛽, 𝛽+⟩ := ∫ ddx 𝛽𝛽+ , ⟨𝛽, 𝛽+⟩ := −∫ ddx 𝛽𝛽+ ,

⟨h, h+⟩ := ∫ ddx h𝜇𝜈h+
𝜇𝜈
, ⟨𝜛,𝜛+⟩ := ∫ ddx𝜛𝜇𝜛+

𝜇
,

⟨𝜋,𝜋+⟩ := ∫ ddx 𝜋𝜋+ , ⟨𝛿, 𝛿+⟩ := ∫ ddx 𝛿𝛿+ .

(5.34)

Gauge Fixing: Gauge fixing proceeds as usual in the BV formalism, but due to our two additional trivial pairs, we can now write
down a much more general gauge fixing fermion. We restrict ourselves to

Ψ0 := −∫ ddx

{
X̄ 𝜈

(
𝜁4𝜕

𝜇h𝜇𝜈 −
𝜁5
2
𝜛𝜈 + 𝜁6𝜕𝜈 h̊ − 𝜁7𝜕𝜈𝛿 + 𝜁8

𝜕𝜈𝜋

□

)
+ 𝛽

(
𝜁9h̊ − 𝜁10𝛿 + 𝜁11

𝜕𝜇𝜕𝜈h𝜇𝜈
□

)}
, (5.35)

and this is the freedom required for the discussion of the double copy. The resulting Lagrangian, to lowest order in 𝜅, reads as

ℒeEH, gf
0 = 1

4
h𝜇𝜈 □ h𝜇𝜈 +

1
2
(𝜕𝜇h𝜇𝜈)

2 + 1
2
h̊𝜕𝜇𝜕𝜈h𝜇𝜈 −

1
4
h̊□ h̊ + 𝜁4𝜛𝜈𝜕𝜇h𝜇𝜈 −

𝜁5
2
𝜛𝜇𝜛𝜇 + 𝜁6𝜛𝜇𝜕𝜇h̊ − 𝜁7𝜛𝜇𝜕𝜇𝛿 + 𝜁8𝜛𝜇

𝜕𝜇𝜋

□

− 𝜋𝜁9h̊ + 𝜁10𝜋𝛿 − 𝜁11𝜋
𝜕𝜇𝜕𝜈h𝜇𝜈

□
+ 𝜁4(𝜕𝜇X̄ 𝜈 + 𝜕𝜈X̄𝜇)𝜕𝜇X𝜈 + 𝜁6(𝜕𝜇X̄𝜇)(𝜕𝜈X 𝜈) − 𝜁9𝛽𝜕𝜇X𝜇

− 𝜁11
𝜕𝜇𝜕𝜈𝛽

□
𝜕𝜇X𝜈 + 𝜁7𝛽𝜕𝜈X̄ 𝜈 − 𝜁10𝛽𝛽 ,

(5.36)

after putting to zero the anti-fields.
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5.5. = 0 Supergravity

The actions for the free Kalb–Ramond field and Einstein–Hilbert gravity are combined and coupled to an additional scalar field 𝜑,
the dilaton, in  = 0 supergravity. This is the common, or universal, Neveu–Schwarz-Neveu–Schwarz sector of the 𝛼′ → 0 limit of
closed string theories, and the action reads as

S=0 := ∫ ddx
√
−g

{
− 1
𝜅2
R − 1

d−2
𝜕𝜇𝜑𝜕

𝜇𝜑 − 1
12
e−

4𝜅
d−2 𝜑H𝜇𝜈𝜅H

𝜇𝜈𝜅
}
. (5.37)

The solutions of the associated equations of motions give backgrounds (with vanishing cosmological constant) around which strings
can be quantised to lowest order in 𝛼′ and string coupling. They also ensure conformal invariance of the string is non-anomalous in
critical dimensions.
We note that the free part of = 0 supergravity is a sum of the free Kalb–Ramond two form, Einstein–Hilbert gravity and a free

scalar field. Therefore, the free parts of the BV formalism as well as the L∞-algebra description just add in a straightforward manner.
The interaction terms then consist of the interaction terms of Einstein–Hilbert gravity as presented in the previous section, as well as
additional terms of arbitrary order involving the dilaton and the Kalb–Ramond two-form. These are readily read off (5.37), but their
explicit form will not be of relevance to us.

6. Factorisation of Homotopy Algebras and Colour Ordering

A key point of our discussion of the double copy is the factorisation of the L∞-algebras of Yang–Mills theory and = 0 supergravity
into common factors. In this section, we discuss the basics of tensor products of homotopy algebras and introduce a twisted general-
isation that will prove to be the key to understanding the double copy from a homotopy algebraic perspective.

6.1. Tensor Products of Homotopy Algebras

Tensor Products of Strict Homotopy Algebras: Let 𝖠𝗌𝗌, 𝖢𝗈𝗆, and 𝖫𝗂𝖾 denote (the categories of) associative, commutative, and Lie
algebras, respectively. Schematically, we have tensor products of the form

⊗ : 𝖠𝗌𝗌 × 𝖠𝗌𝗌 → 𝖠𝗌𝗌 , ⊗ : 𝖢𝗈𝗆 × 𝖠𝗌𝗌 → 𝖠𝗌𝗌 , ⊗ : 𝖠𝗌𝗌 × 𝖢𝗈𝗆 → 𝖠𝗌𝗌 ,

⊗ : 𝖢𝗈𝗆 × 𝖢𝗈𝗆 → 𝖢𝗈𝗆 , ⊗ : 𝖢𝗈𝗆 × 𝖫𝗂𝖾 → 𝖫𝗂𝖾 , ⊗ : 𝖫𝗂𝖾 × 𝖢𝗈𝗆 → 𝖫𝗂𝖾 .
(6.1)

In particular, let 𝔄 and 𝔅 be two algebras from this list for which there is a tensor product. The vector space underlying the tensor
product algebra 𝔄⊗𝔅 is simply the ordinary tensor product of vector spaces and the product 𝗆𝔄⊗𝔅

2 is given by

𝗆𝔄⊗𝔅
2 (a1 ⊗ b1, a2 ⊗ b2) := 𝗆𝔄

2 (a1, a2)⊗𝗆𝔅
2 (b1, b2) (6.2)

for a1, a2 ∈ 𝔄 and b1, b2 ∈ 𝔅.
On the other hand, the tensor product of two cochain complexes (𝔄,𝗆𝔄

1 ) and (𝔅,𝗆𝔅
1 ) is defined as the tensor product of the

underlying (graded) vector spaces 𝔄 and 𝔅,

𝔄⊗𝔅 =
⨁
k∈ℤ

(𝔄⊗𝔅)k with (𝔄⊗𝔅)k :=
⨁
i+j=k

𝔄i ⊗𝔅j , (6.3a)

cf. (4.2). The differential 𝗆𝔄⊗𝔅
1 is defined as

𝗆𝔄⊗𝔅
1 (a⊗ b) := 𝗆𝔄

1 (a)⊗ b + (−1)|a|𝔄a⊗𝗆𝔅
1 (b) (6.3b)

for a ∈ 𝔄 and b ∈ 𝔅.
Strict A∞-, C∞-, and L∞-algebras are nothing but differential graded associative, commutative, and Lie algebras, respectively. For

such algebras 𝔄 and 𝔅, the above formulas combine to

𝗆𝔄⊗𝔅
1 (a1 ⊗ b1) := 𝗆𝔄

1 (a1)⊗ b1 + (−1)|a1|𝔄a1 ⊗𝗆𝔅
1 (b1) ,

𝗆𝔄⊗𝔅
2 (a1 ⊗ b1, a2 ⊗ b2) := (−1)|b1|𝔅|a2|𝔄𝗆𝔄

2 (a1, a2)⊗𝗆𝔅
2 (b1, b2)

(6.4)
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for a1, a2 ∈ 𝔄 and b1, b2 ∈ 𝔅. If, in addition, the two differential graded algebras carry cyclic inner products ⟨−,−⟩𝔄 and ⟨−,−⟩𝔅, then
the tensor product carries the cyclic inner product

⟨a1 ⊗ b1, a2 ⊗ b2⟩𝔄⊗𝔅 := (−1)|b1|𝔅|a2|𝔄+s(|a1|𝔄+|a2|𝔄)⟨a1, a2⟩𝔄 ⟨b1, b2⟩𝔅 (6.5)

for a1, a2 ∈ 𝔄 and b1, b2 ∈ 𝔅. Here, s := |⟨−,−⟩𝔅|𝔅 is the degree of the inner product on 𝔅.
Tensor Products of General Homotopy Algebras: There is a simple argument that extends the above tensor product of strict homotopy

algebras to general homotopy algebras, using not much more than the homological perturbation lemma. Let us therefore also briefly
consider this case, even though we will only make use of it in passing when discussing colour-stripping of Yang–Mills amplitudes.
An extension from the strict case to the general case can be performed as follows. Recall that the strictification theorem asserts that

every homotopy algebra is quasi-isomorphic to a strict homotopy algebra, see Appendix A.4 for details. Using this theorem, we first
strictify each of the factors 𝔄 and 𝔅 in the tensor product 𝔄⊗𝔅 we wish to define. We then compute the tensor product 𝔄st ⊗𝔅st

of the strictified factors. This is a homotopy algebra whose underlying cochain complex 𝖢𝗁(𝔄st ⊗𝔅st) is quasi-isomorphic to the
tensor product 𝖢𝗁(𝔄)⊗ 𝖢𝗁(𝔅) of the two differential complexes underlying the factors 𝔄 and 𝔅. We can then use the homologi-
cal perturbation lemma, most readily in the form used e.g. in [202] for the coalgebra formulation of homotopy algebras, to transfer
the full homotopy structure from 𝖢𝗁(𝔄st ⊗𝔅st) to 𝖢𝗁(𝔄)⊗ 𝖢𝗁(𝔅) along the quasi-isomorphism between the cochain complexes.
This yields a homotopy algebra structure on 𝖢𝗁(𝔄)⊗ 𝖢𝗁(𝔅) together with a quasi-isomorphism to the tensor product of the stricti-
fied factors. We stress that this transfer is not unique and depends on the choice of contracting homotopy (essentially, a choice of
gauge).
We stress that the fact that the tensor products (6.1) lift to corresponding tensor products of homotopy algebras is found in the

literature for special cases, see e.g. [281, 282] for the case of A∞-algebras, as well as [
[283], Appendix B] for the case of tensor products

of C∞-algebras with Lie algebras.
Tensor Products of Matrix and Lie Algebras with Homotopy Algebras: To capture the colour decomposition of amplitudes in Yang–

Mills theory, it suffices to consider the tensor product between homotopy algebras and matrix (Lie) algebras. In particular, given a
matrix algebra (or, more generally, an associative algebra) 𝔞 and an A∞-algebra (𝔄,𝗆i), then the tensor product 𝔞⊗𝔄 is equipped
with the higher products

𝗆𝔞⊗𝔄
i (𝚎1 ⊗ a1,… , 𝚎i ⊗ ai) := 𝚎1 ⋯ 𝚎i ⊗𝗆i(a1,… , ai) (6.6)

for all 𝚎1,… , 𝚎i ∈ 𝔞 and a1,… , ai ∈ 𝔄 and i ∈ ℕ+. Evidently, these formulas can also be applied to the tensor product between amatrix
algebra and a C∞-algebra, however, the result will, in general, be an A∞-algebra rather than a C∞-algebra as, for instance, the binary
product on the tensor product will not necessarily be graded commutative.
Next, we may consider the tensor product 𝔤⊗ ℭ between a Lie algebra (𝔤, [−,−]) and a C∞-algebra (ℭ,𝗆i). We obtain an L∞-algebra

(𝔏,𝜇i) with 𝔏 := 𝔤⊗ ℭ, however, the higher products 𝜇i are less straightforward than the ones in (6.6) for A∞-algebras. Nevertheless,
they can be computed iteratively, and we obtain for the lowest products37

𝜇1(𝚎1 ⊗ c1) := 𝚎1 ⊗𝗆1(c1) ,

𝜇2(𝚎1 ⊗ c1, 𝚎2 ⊗ c2) := [𝚎1, 𝚎2]⊗𝗆2(c1, c2) ,
(6.7a)

and

𝜇3(𝚎1 ⊗ c1, 𝚎2 ⊗ c2, 𝚎3 ⊗ c3) := [𝚎1, [𝚎2, 𝚎3]]⊗𝗆3(c1, c2, c3) − (−1)|c1|ℭ|c2|ℭ [𝚎1, [𝚎2, 𝚎3]]⊗𝗆3(c2, c1, c3)

+ (−1)|c1|ℭ|c2|ℭ [[𝚎1, 𝚎2], 𝚎3]⊗𝗆3(c2, c1, c3) ,

𝜇4(𝚎1 ⊗ c1, 𝚎2 ⊗ c2, 𝚎3 ⊗ c3, 𝚎4 ⊗ c4) := [𝚎1, [𝚎2, [𝚎3, 𝚎4]]]⊗𝗆4(c1, c2, c3, c4) − (−1)|c2|ℭ|c3|ℭ [𝚎1, [𝚎3, [𝚎2, 𝚎4]]]⊗𝗆4(c1, c3, c2, c4)

− (−1)|c1|ℭ|c2|ℭ [𝚎2, [𝚎1, [𝚎3, 𝚎4]]]⊗𝗆4(c2, c1, c3, c4)

+ (−1)|c1|ℭ(|c2|ℭ+|c3|ℭ)[[[𝚎1, 𝚎4], 𝚎3], 𝚎2]⊗𝗆4(c2, c3, c1, c4)

− (−1)(|c1|ℭ+|c2|ℭ)|c3|ℭ [[𝚎1, [𝚎2, 𝚎4]], 𝚎3]⊗𝗆4(c3, c1, c2, c4)

− (−1)|c1|ℭ(|c2|ℭ+|c3|ℭ)+|c2|ℭ|c3|ℭ [[[𝚎1, 𝚎4], 𝚎2], 𝚎3]⊗𝗆4(c3, c2, c1, c4)

⋮

(6.7b)

37 As detailed in (A.15), the graded anti-symmetrisation of anyA∞-algebra yields an L∞-algebra, and so the form of the higher products can be gleaned
from the graded anti-symmetrisation of (6.6).
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for all 𝚎1,… , 𝚎4 ∈ 𝔤 and c1,… , c4 ∈ ℭ. We list these formulas here as they are useful in colour-stripping in Yang–Mills theory, and we
have not been able to find them in the literature.

6.2. Colour-Stripping in Yang–Mills Theory

As an example of the above factorisations, let us discuss colour-stripping in Yang–Mills theory and show that this is nothing but a
factorisation of homotopy algebras. For concreteness, let us consider the gauge-fixed action (5.14) and the corresponding L∞-algebra
𝔏YM, gf
BV .
If the gauge Lie algebra 𝔤 is a matrix Lie algebra, then the L∞-algebra 𝔏

YM, gf
BV is the total anti-symmetrisation via (A.15) of a family

of A∞-algebras. One of these is special in that it is totally graded anti-symmetric[202] and thus is also a C∞-algebra.
More generally, we can factorise 𝔏YM, gf

BV into a gauge Lie algebra 𝔤 and a colour C∞-algebras ℭ
YM, gf
BV using formula (6.6),

𝔏YM, gf
BV = 𝔤⊗ ℭYM, gf

BV (6.8)

Explicitly, the C∞-algebra ℭ
YM, gf
BV has the underlying cochain complex

Aμ
Ω1(Md)

A+
μ

Ω1(Md)

b
C∞(Md)

b+

C∞(Md)

c
C∞(Md)
︸ ︷︷ ︸
=:C

YM,gf
BV,0

c̄+

C∞(Md)
︸ ︷︷ ︸
=:C

YM,gf
BV,1

c̄
C∞(Md)
︸ ︷︷ ︸
=:C

YM,gf
BV,2

c+

C∞(Md)
︸ ︷︷ ︸
=:C

YM,gf
BV,3

−(∂ν∂μ−δμν �)

−∂μ
−∂μ

ξ

∂μ
−∂μ

−� −�

(6.9a)

where we label subspaces again by the fields parametrising them

ℭYM, gf
BV, 0 = ℭYM, gf

BV, 0, c , ℭYM, gf
BV, 1 =

⨁
𝜙∈ (A, b, c̄+)

ℭYM, gf
BV, 1,𝜙 ,

ℭYM, gf
BV, 2 =

⨁
𝜙∈ (A+ , b+ , c̄)

ℭYM, gf
BV, 2,𝜙 , ℭYM, gf

BV, 3 = ℭYM, gf
BV, 3, c+ .

(6.9b)

The non-trivial actions of the differential 𝗆1 are

c
𝗆1
→

⎛⎜⎜⎜⎝
−𝜕𝜇c
0

−□ c

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (A, b, c̄+)

ℭYM, gf
BV, 1,𝜙 ,

⎛⎜⎜⎜⎝
A𝜇
b

c̄+

⎞⎟⎟⎟⎠
𝗆1
→

⎛⎜⎜⎜⎝
−(𝜕𝜇𝜕𝜈 − 𝛿𝜈𝜇□)A𝜈 − 𝜕𝜇b

𝜕𝜇A𝜇 + 𝜉b
0

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (A+ , b+ , c̄)

ℭYM, gf
BV, 2,𝜙 ,

⎛⎜⎜⎜⎝
A+
𝜇

b+

c̄

⎞⎟⎟⎟⎠
𝗆1
→ −𝜕𝜇(A+

𝜇
+ 𝜕𝜇 c̄) ∈ ℭYM, gf

BV, 3, c+ ,

(6.9c)
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the binary product 𝗆2 acts as

(c1, c2)
𝗆2
→ gc1c2 ∈ ℭYM, gf

BV, 0, c ,

⎛⎜⎜⎜⎝c,
⎛⎜⎜⎜⎝
A𝜇
b

c̄+

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

𝗆2
→ −g

⎛⎜⎜⎜⎝
cA𝜇
0

𝜕𝜇(cA𝜇)

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (A, b, c̄+)

ℭYM, gf
BV, 1,𝜙 ,

⎛⎜⎜⎜⎝c,
⎛⎜⎜⎜⎝
A+
𝜇

c̄

b+

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

𝗆2
→ g

⎛⎜⎜⎜⎝
c(A+

𝜇
+ 𝜕𝜇 c̄)
0

0

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (A+ , b+ , c̄)

ℭYM, gf
BV, 2,𝜙 ,

(c, c+)
𝗆2
→ gcc+ ∈ ℭYM, gf

BV, 3, c+ ,

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
A𝜇
b

c̄+

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
A+
𝜈

c̄

b+

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

𝗆2
→ −gA𝜇(A+

𝜇
+ 𝜕𝜇 c̄) ∈ ℭYM, gf

BV, 3, c+ ,

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
A1𝜇

b1
c̄+1

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
A2𝜈

b2
c̄+2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

𝗆2
→ 2g

⎛⎜⎜⎜⎝
𝜕𝜈(A1[𝜈A2𝜇]) + A𝜈1𝜕[𝜈A2𝜇] − 𝜕[𝜈A1𝜇]A

𝜈
2

0

0

⎞⎟⎟⎟⎠
∈

⨁
𝜙∈ (A+ , b+ , c̄)

ℭYM, gf
BV, 2,𝜙 ,

(6.9d)

and the ternary product 𝗆3 acts as

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
A1𝜇

b1
c̄+1

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
A2𝜈

b2
c̄+2

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
A3𝜅

b3
c̄+4

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

𝗆3
→ −2g2

⎛⎜⎜⎜⎝
A𝜈1A2[𝜇A3𝜈] − A1[𝜇A2𝜈]A

𝜈
3

0

0

⎞⎟⎟⎟⎠
∈

⨁
𝜙∈ (A+ ,b+ ,c̄)

ℭYM, gf
2,𝜙 .

(6.9e)

It is a straightforward exercise to check that these higher products do indeed satisfy the C∞-algebra relations (A.1) and (A.10).
The factorisation (6.8) descends to the minimal model 𝔏YM, gf ◦

BV ,

𝔏YM, gf ◦
BV = 𝔤⊗ ℭYM, gf ◦

BV , (6.10)

and the higher products in the C∞-algebra ℭYM, gf ◦ describe the colour-ordered tree-level scattering amplitudes. We set

𝒜n,0(1,… , n) =: i
∑

𝜎∈Sn∕ℤn

tr(𝚎a𝜎(1) ⋯ 𝚎a𝜎(n) )An,0(𝜎(1),… , 𝜎(n)) , (6.11)

and we have the formula

An,0(1,… , n) = ⟨n,𝗆◦
n−1(1,… , n − 1)⟩ , (6.12)

where the numbers 1,… , n represent the external free fields. The symmetry of the colour-stripped amplitude is reflected in the graded
anti-symmetry of the higher products 𝗆◦

i in the C∞-algebra ℭYM, gf ◦, because all fields are of degree one.

6.3. Twisted Tensor Products of Strict Homotopy Algebras

The factorisation of the L∞-algebras corresponding to the field theories involved in the double copy is a twisted factorisation, and we
define our notion of twisted tensor products in the following.
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Cochain Complexes: A graded vector space is a particular example of a cochain complex with trivial differential. In our situation,
we would like the vector space to act as an Abelian Lie algebra on the cochain complex. We therefore generalise the usual tensor
product as follows. Given a graded vector space 𝔙 together with a cochain complex (𝔄,𝗆), we define a twist datum 𝜏1 to be a linear
map

𝜏1 : 𝔙 → 𝔙⊗ 𝖤𝗇𝖽(𝔄) ,

v → 𝜏1(v) :=
∑
𝜋

𝜏𝜋,11 (v)⊗ 𝜏𝜋,21 (v) ,
(6.13)

where the index 𝜋 labels the summands in the twist element 𝜏1(v).
38 Given a twist datum 𝜏1, the twisted differential is defined by

𝗆
𝜏1
1 (v⊗ a) :=

∑
𝜋

(−1)|𝜏𝜋,11 (v)|𝔙 𝜏𝜋,11 (v)⊗𝗆1(𝜏
𝜋,2
1 (v)(a)) (6.15)

for v⊗ a ∈ 𝔙⊗𝔄. This somewhat cumbersome formula describes a rather simple procedure, and it will become fully transparent
in concrete examples. Evidently, there are constraints on admissible twist data. Firstly, 𝗆𝜏11 has to be a differential and satisfy

𝗆
𝜏1
1 ◦𝗆𝜏11 = 0 , (6.16)

and secondly, 𝗆𝜏11 has to be cyclic with respect to the inner product (6.5) on the tensor product 𝔙⊗𝔄. We note that as it stands, the
twisted tensor product is not necessarily compatible with quasi-isomorphisms because its cohomology is, in general, independent of
those of the underlying factors. This is not an issue for our constructions, but explains why the above twist is not readily found in the
mathematical literature.
As we shall see momentarily, one of the key roles of the twist is the construction of a complex of differential forms from a complex

of functions. The following toy example exemplifies what we have in mind.

Example 6.1. Consider the graded vector space 𝔙 and the cochain complex (𝔄,𝗆1) defined by

𝔙 := 𝕄d ⊕ℝ
⏟⏟⏟

=:𝔙0

and 𝔄 :=

⎛⎜⎜⎜⎜⎝
𝒞∞(𝕄d)
⏟⏞⏟⏞⏟

=:𝔄1

𝗂𝖽
←←←←←←←←←←←←→ 𝒞∞(𝕄d)

⏟⏞⏟⏞⏟
=:𝔄2

⎞⎟⎟⎟⎟⎠
. (6.17)

For a basis (𝚟𝜇 , 𝚗) of𝕄d ⊕ℝ, a choice of twist datum is given by

𝜏1(𝚟𝜇) := 0⊗ 0 and 𝜏1(𝚗) := 𝚟𝜇 ⊗ 𝜕

𝜕x𝜇
. (6.18)

The complex 𝔙⊗𝜏 𝔄 with the twisted differential 𝗆𝜏1 is then

V⊗τA =

⎛
⎜⎜⎜⎝

Ω1(Md) ∼= Md ⊗C∞(Md) Ω1(Md) = Md ⊗C∞(Md)

⊕ ⊕
C∞(Md) ∼= R⊗C∞(Md) C∞(Md) = R⊗C∞(Md)

d

⎞
⎟⎟⎟⎠ (6.19)

Hence, we obtain a description of the cochain complex (𝒞∞(𝕄d)⊕Ω1(𝕄d), d), albeit with some amount of redundancy.

Differential Graded Algebras: Twisted tensor products for unital algebras were discussed in various places in the literature, e.g.,
in [284]. We would like to twist the ordinary tensor product of differential graded algebras introduced in Section 6.1, by extending the
notion of twist datum from cochain complexes as follows. Given a graded vector space𝔙 and a differential graded algebra (𝔄,𝗆1,𝗆2),
a twist datum is a pair of maps, one linear and the other one bilinear,

𝜏1 : 𝔙 → 𝔙⊗ 𝖤𝗇𝖽(𝔄) ,

v → 𝜏1(v) :=
∑
𝜋

𝜏𝜋,11 (v)⊗ 𝜏𝜋,21 (v) ,
(6.20a)

38 In Sweedler notation, popular e.g. in the context of Hopf algebras, we would simply write

𝜏1(v) := 𝜏
(1)
1 (v)⊗ 𝜏(2)1 (v) . (6.14)
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and

𝜏2 : 𝔙⊗𝔙 → 𝔙⊗ 𝖤𝗇𝖽(𝔄)⊗ 𝖤𝗇𝖽(𝔄) ,

v1 ⊗ v2 → 𝜏2(v1, v2) :=
∑
𝜋

𝜏𝜋,12 (v1, v2)⊗ 𝜏
𝜋,2
2 (v1, v2)⊗ 𝜏

𝜋,3
2 (v1, v2) ,

(6.20b)

where we again label summands in the tensor product by 𝜋. The twisted tensor product has then higher maps

𝗆
𝜏1
1 (v⊗ a) :=

∑
𝜋

(−1)|𝜏𝜋,11 (v)|𝔙𝜏𝜋,11 (v)⊗𝗆1(𝜏
𝜋,2
1 (v)(a)) ,

𝗆
𝜏2
2 (v1 ⊗ a1, v2 ⊗ a2) := (−1)|v2|𝔙 |a1|𝔄 ∑

𝜋

𝜏𝜋,12 (v1, v2)⊗𝗆2(𝜏
𝜋,2
2 (v1, v2)(a1), 𝜏

𝜋,3
2 (v1, v2)(a2)) .

(6.21)

Note that in general, one may want to insert an additional sign (−1)|𝜏𝜋,32 (v1 ,v2)|𝔙 |a1|𝔄 into this equation; all our twist, however, satisfy|𝜏𝜋,32 (v1, v2)|𝔙 = 0.
Clearly, not every twist datum leads to a valid homotopy algebra, and just as in the case of cochain complexes, one has to check

that this works for a given twist by hand. We also note that the twist datum relevant for the double copy will be able to mix types of
homotopy algebras, that is, for 𝔄 an L∞-algebra, we obtain a C∞-algebra and for 𝔄 a C∞-algebra, we obtain again an L∞-algebra.
Altogether, our twisted tensor products are a way of factorising strict homotopy algebras in a unique fashion as necessary for the

double copy. However, it remains to be seen if our construction in its present form is mathematically interesting in a wider context.

7. Factorisation of Free Field Theories and Free Double Copy

In this section, we factorise the cochain complexes of the L∞-algebras of biadjoint scalar field theory, Yang–Mills theory, and  = 0
supergravity into common factors. This exposes the factorisation of field theories underlying the double copy at the linearised level.
Summary: Recall cochain the unary product 𝜇1 in any L∞-algebra is a differential. Consequently, any L∞-algebra (𝔏,𝜇i) naturally

comes with an underlying cochain complex

Ch(L) := ( · · · L0 L1 L2 L3 · · · )
.

μ1 μ1 μ1 μ1 μ1
(7.1)

In an L∞-algebra corresponding to a field theory, the cochain complex 𝖢𝗁(𝔏) is the L∞-algebra of the free theory with all coupling
constants put to zero. In each factorisation, we thus expose the field content as well as the free fields that parametrise the theory’s
scattering amplitudes.
We will obtain the following factorisations of cochain complexes isomorphic to the cochain complexes underlying the L∞-algebras

of biadjoint scalar field theory, Yang–Mills theory in R𝜉 -gauge, and gauge-fixed = 0 supergravity:

𝖢𝗁(𝔏biadj
BRST) = 𝖢𝗁(�̃�biadj

BRST) = 𝔤⊗ (�̄�⊗ 𝖢𝗁(𝔖𝔠𝔞𝔩)) ,

𝖢𝗁(𝔏YM
BRST) ≅ 𝖢𝗁(�̃�YM

BRST) = 𝔤⊗ (𝔎𝔦𝔫⊗𝜏1
𝖢𝗁(𝔖𝔠𝔞𝔩)) ,

𝖢𝗁(𝔏=0
BRST) ≅ 𝖢𝗁(�̃�=0

BRST) = 𝔎𝔦𝔫⊗𝜏1
(𝔎𝔦𝔫⊗𝜏1

𝖢𝗁(𝔖𝔠𝔞𝔩)) ,

(7.2)

where 𝔤 and �̄� are semi-simple compact matrix Lie algebras corresponding to the colour factors, 𝔎𝔦𝔫 is a graded vector space and
𝔖𝔠𝔞𝔩 is the L∞-algebra of a scalar field theory. We see that the cochain complex 𝖢𝗁(�̃�=0

BRST) is fully determined by the factorisation of
𝖢𝗁(�̃�YM

BRST), which is nothing but the double copy at the linearised level.
There are two points to note concerning the factorisations of all those field theories but that of biadjoint scalar field theory. Firstly,

these factorisations are most conveniently performed in particular field bases. We explain the required changes of basis, which are
canonical transformations on the relevant BV field spaces. Secondly, these factorisations are twisted factorisation of cochain complexes
of the type introduced in Section 6.3, with common twist datum 𝜏1, as indicated in (7.2).

7.1. Factorisation of The Cochain Complex of Biadjoint Scalar Field Theory

We start with biadjoint scalar field theory as introduced in Section 5.1. This case is particularly simple as its cochain complex𝖢𝗁(𝔏biadj
BRST)

factorises as an ordinary tensor product.
Factorisation of the Cochain Complex: We can factor out the colour Lie algebras 𝔤 and �̄� leaving us with the L∞-algebra 𝔖𝔠𝔞𝔩 of a

plain scalar theory,

𝖢𝗁(𝔏biadj
BRST) = 𝔤⊗ (�̄�⊗ 𝖢𝗁(𝔖𝔠𝔞𝔩)) , (7.3)
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Table 6. The basis vectors of𝔖𝔠𝔞𝔩 with their L∞-degrees, their ghost numbers, and their mass dimensions.

Fields Anti-fields

| − |gh | − |𝔏 dim | − |gh | − |𝔏 dim

𝚜x 0 1 d
2
− 1 𝚜+x −1 2 d

2
+ 1

Table 7. Factorisation of the BV fields in the theory of biadjoint scalars. Note that we suppressed the integrals over x and the tensor products for simplicity.

Fields Anti-fields

factorisation | − |gh | − |𝔏 dim factorisation | − |gh | − |𝔏 dim

𝜑 = 𝚎a�̄�ā𝚜x𝜑aā(x) 0 1 d
2
− 1 𝜑+ = 𝚎a�̄�ā𝚜+x 𝜑

+aā(x) −1 2 d
2
+ 1

where𝔖𝔠𝔞𝔩 is a homotopy algebra of cubic scalar field theory which we will fully identify later in (9.3). The natural cochain complex
is39

𝖢𝗁(𝔖𝔠𝔞𝔩) :=

⎛⎜⎜⎜⎜⎝
𝚜x

𝔉[−1]
⏟⏟⏟
𝔖𝔠𝔞𝔩1

□
←←←←←←←←←←←←←→

𝚜+x
𝔉[−2]
⏟⏟⏟
𝔖𝔠𝔞𝔩2

⎞⎟⎟⎟⎟⎠
, (7.4)

concentrated in degrees one and two, cf. [178, 210]. Here, 𝚜x and 𝚜+x are basis vectors for the function spaces 𝔉[−1] and 𝔉[−2] with 𝔉
given in (4.29). Their inner product reads as

⟨𝚜x1 , 𝚜+x2⟩ := 𝛿(d)(x1 − x2) . (7.5)

The L∞-degrees correspond to the evident ghost numbers and the differential induces mass dimensions, and both are summarised
in Table 6. The factorisation of the BV fields is listed in Table 7. The differential 𝜇1 : 𝔏

biadj
BRST, 1 → 𝔏biadj

BRST, 2 is given by (6.3b) for the
untwisted tensor product,

𝜇1(𝜑) = 𝜇1
(
𝚎a ⊗ �̄�ā ⊗ ∫ ddx 𝚜x𝜑aā(x)

)
= 𝚎a ⊗ �̄�ā ⊗ 𝜇𝔖𝔠𝔞𝔩

1

(
∫ ddx 𝚜x𝜑aā(x)

)
= □𝜑 , (7.6)

where 𝜇𝔖𝔠𝔞𝔩
1 is the product appearing in (7.4). Furthermore, the inner product is

⟨𝜑,𝜑+⟩ = tr𝔤(𝚎a𝚎b) tr�̄�(�̄�ā�̄�b̄)∫ ddx1 ∫ ddx2 ⟨𝚜x1 , 𝚜+x2⟩𝜑aā(x1)𝜑
+bb̄(x2)

= ∫ ddx𝜑aā(x)𝜑+
aā(x) .

(7.7)

In conclusion, we have thus verified the factorisation of the cochain complex (7.3).

7.2. Factorisation of The Cochain Complex of Yang–Mills Theory

The case of Yang–Mills theory is more involved than the previous one. We start with the gauge fixed BV action (5.15) and perform
a canonical transformation on BV field space, which then allows for a convenient factorisation of the resulting cochain complex
𝖢𝗁(�̃�YM

BRST). For the following discussion, recall the gauge-fixing procedure and the gauge-fixed action from Section 5.2.
Canonical Transformation: We note that the term 𝜕𝜇Aa

𝜇
will vanish for physical states due to the polarisation condition p ⋅ 𝜀 = 0

where p𝜇 is the momentum and 𝜀𝜇 is the polarisation vector for A
a
𝜇
. Off-shell, and at the level of the action, our gauge fixing terms

allow us to absorb quadratic terms in 𝜕𝜇Aa
𝜇
in a field redefinition40 of the Nakanishi–Lautrup field ba. We further rescale the field ba

39 See (4.4) for the notation 𝔉[k].
40 The redefinition of the anti-fields preserves the cyclic structure of the L∞-algebra; it is mostly irrelevant for our discussion.
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in order to homogenise its mass dimension with that of Aa
𝜇
, which will prove useful in our later discussion. Explicitly, we perform the

field redefinitions

c̃a := ca , c̃+a := c+a ,

Ãa
𝜇
:= Aa

𝜇
, Ã+a

𝜇
:= A+a

𝜇
+
1 −

√
1 − 𝜉
𝜉

𝜕𝜇b
+a ,

b̃a :=
√
𝜉

□

(
ba +

1 −
√
1 − 𝜉
𝜉

𝜕𝜇Aa
𝜇

)
, b̃+a :=

√
□
𝜉
b+a ,

̃̄ca := c̄a , ̃̄c+a := c̄+a .

(7.8)

Under these field redefinitions, the action (5.15)

SYMBRST = ∫ ddx
{

1
2
Aa𝜇□Aa𝜇 + 1

2
(𝜕𝜇Aa

𝜇
)2 − c̄a □ ca + 𝜉

2
bab

a + ba𝜕
𝜇Aa

𝜇

}
+ SYM, int

BRST , (7.9)

where SYM, int
BRST represents the interaction terms, turns into

S̃YMBRST := ∫ ddx
{

1
2
Ãa𝜇□ Ãa𝜇 − ̃̄ca □ c̃a + 1

2
b̃a □ b̃a + 𝜉 b̃a

√
□ 𝜕𝜇Ãa

𝜇

}
+ S̃YM, int

BRST , (7.10)

where we rewrote the gauge-fixing parameter as

𝜉 :=

√
1 − 𝜉
𝜉

. (7.11)

Note that at the level of the BV field space, the redefinitions (7.8) constitute a canonical transformation. For a more detailed analytical
discussion, including the precise meaning of the inverses of the□ operator, see Appendix B.
L∞-Algebra: The action (7.10) is now the superfield homotopyMaurer–Cartan action (4.26b) for an L∞-algebra �̃�YM

BRST. The complex
underlying �̃�YM

BRST is given as

Ãa
μ

Ω1(Md)⊗g

Ã+a
μ

Ω1(Md)⊗g

b̃a

C∞(Md)⊗g
b̃+a

C∞(Md)⊗g

c̃a

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM

BRST,0

˜̄c+a

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM

BRST,1

˜̄ca

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM

BRST,2

c̃+a

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM

BRST,3

�

−ξ̃	�∂μ

�

ξ̃
	
�∂μ

−� −�

(7.12a)

with

�̃�YM
BRST, 0 = �̃�YM

BRST, 0, c̃ , �̃�YM
BRST, 1 =

⨁
𝜙∈ (Ã, b̃, ̃̄c+)

�̃�YM
BRST, 1,𝜙 , �̃�YM

BRST, 2 =
⨁

𝜙∈ (Ã+ , b̃+ , ̃̄c)

�̃�YM
BRST, 1,𝜙 , �̃�YM

BRST, 3 = �̃�YM
BRST, 3, c̃+ . (7.12b)

The differential 𝜇1 acts on the various fields as follows

(c̃a)
𝜇1
→ −□ c̃a ∈ �̃�YM

BRST, 1, ̃̄c+
,(

Ãa
𝜇

b̃a

)
𝜇1
→

(
□ Ãa

𝜇
− 𝜉

√
□ 𝜕𝜇 b̃

a

□ b̃a + 𝜉
√
□ 𝜕𝜇Ãa

𝜇

)
∈

⨁
𝜙∈ (Ã+ , b̃+)

�̃�YM
BRST, 2,𝜙 ,

(̃̄ca)
𝜇1
→ −□ ̃̄ca ∈ �̃�YM

BRST, 3, c̃+

(7.12c)
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Table 8. The elements of 𝔎𝔦𝔫 with their L∞-degrees, their
ghost numbers, and their mass dimensions.

| − |gh | − |𝔏 dim

𝚐 1 −1 −1

𝚟𝜇 0 0 0

𝚗 0 0 0

𝚊 −1 1 1

with all other actions trivial. The non-vanishing images of the higher products 𝜇2 and 𝜇3 are

(Ãa
𝜇
, c̃b)

𝜇2
→ −gfbc

a𝜕𝜇(Ãb
𝜇
c̃c) ∈ �̃�YM

BRST, 1, ̃̄c+
,

(c̃a, ̃̄cb)
𝜇2
→ −gfbc

ac̃b𝜕𝜇 ̃̄c
c ∈ �̃�YM

BRST, 2, Ã+ ,

(Ãa
𝜇
, Ãb

𝜈
)
𝜇2
→ 3!gfbc

a𝜕𝜈(Ãb
𝜈
Ãc
𝜇
) ∈ �̃�YM

BRST, 2, Ã+ ,

(Ãa
𝜇
, ̃̄cb)

𝜇2
→ −gfbc

aÃb
𝜇
𝜕𝜇 ̃̄cc ∈ �̃�YM

BRST, 3, c̃+ ,

(Ãa
𝜇
, Ãb

𝜈
, Ãc

𝜅
)
𝜇3
→ −3!g2fbc

afde
bÃ𝜈cÃd

𝜈
Ãe
𝜇
∈ �̃�YM

BRST, 2, Ã+ ,

(7.12d)

and the general expressions follow from anti-symmetrisation and polarisation. We note that the formulas (4.27) are useful in the
derivation of the explicit form of these higher products.
By construction, (�̃�YM

BRST,𝜇i) forms an L∞-algebra, and with the inner products

⟨Ã, Ã+⟩ := ∫ ddx Ãa
𝜇
Ã+𝜇
a , ⟨b̃, b̃+⟩ := ∫ ddx b̃ab̃+a , ⟨c̃, c̃+⟩ := ∫ ddx c̃ac̃+a , ⟨̃̄c, ̃̄c+⟩ := −∫ ddx ̃̄ca ̃̄c+a , (7.13)

it is cyclic.
We stress that the Chevalley–Eilenberg differential of the L∞-algebra �̃�YM

BRST is not the usual gauge-fixed BV operator41

Q̃YM, gf
BV :=

{
S̃YM, gf
BV ,−

}|||Φ̃+
I =0

, (7.14)

where S̃YM, gf
BV is the gauge-fixed BV action that is obtained from (4.30) by the canonical transformation determined by the gauge fixing

fermion (5.13). Instead, we are merely using the general correspondence between Lagrangians and L∞-algebras as pointed out in
Section 4.2. This is reflected in the images of all higher products of (7.12a) lying in spaces parametrised by anti-fields.
Factorisation of The Cochain Complex: As explained in Section 6.2, we may factor out the gauge Lie algebra 𝔤, and we are left with

a C∞-algebra. This C∞-algebra can be further factorised into a twisted tensor product, extending Example 6.1, and we obtain

𝖢𝗁(�̃�YM
BRST) = 𝔤⊗ (𝔎𝔦𝔫⊗𝜏1

𝖢𝗁(𝔖𝔠𝔞𝔩)) . (7.15)

Here, 𝔤 is the colour Lie algebra, 𝖢𝗁(𝔖𝔠𝔞𝔩) is the cochain complex (7.4), and𝔎𝔦𝔫 is the graded vector space42

𝔎𝔦𝔫 :=
𝚐

ℝ[1]
⏟⏟⏟
=:𝔎𝔦𝔫−1

⊕

(
𝚟𝜇

𝕄d ⊕
𝚗
ℝ

)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=:𝔎𝔦𝔫0

⊕
𝚊

ℝ[−1]
⏟⏟⏟
=:𝔎𝔦𝔫1

, (7.16)

where the typewriter letters label basis elements of the corresponding vector spaces. The natural degree-zero inner product on 𝔎𝔦𝔫
is given by

⟨𝚐, 𝚊⟩ := −1 , ⟨𝚟𝜇, 𝚟𝜈⟩ := 𝜂𝜇𝜈 , ⟨𝚗, 𝚗⟩ := 1 . (7.17)

The elements of𝔎𝔦𝔫 also carry mass dimensions, which are listed in Table 8.

41 Here, |Φ̃+
I =0

is again the restriction to the subspace of the BV field space where all anti-fields are zero.
42 See (4.4) for the notation ℝ[k], etc.
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Table 9. Factorisation of the redefined BV fields for Yang–Mills theory from Table 2 after the field redefinitions (7.8). Here, 𝚎a denote the basis vectors of
𝔤. Likewise, 𝚐, 𝚗, 𝚟𝜇 , and 𝚊 denote the basis vectors of 𝔎𝔦𝔫 defined in (7.16). Furthermore, 𝚜x and 𝚜+x are the basis vectors of 𝔖𝔠𝔞𝔩 from Table 6. Note
that we suppressed the integrals over x and the tensor products for simplicity.

Fields Anti-fields

factorisation | − |gh | − |𝔏 dim factorisation | − |gh | − |𝔏 dim

c̃ = 𝚎a𝚐𝚜x c̃a(x) 1 0 d
2
− 2 c̃+ = 𝚎a𝚊𝚜+x c̃

+a(x) −2 3 d
2
+ 2

Ã = 𝚎a𝚟𝜇𝚜x Ãa
𝜇(x) 0 1 d

2
− 1 Ã+ = 𝚎a𝚟𝜇𝚜+x Ã

+a
𝜇 (x) −1 2 d

2
+ 1

b̃ = 𝚎a𝚗𝚜x b̃a(x) 0 1 d
2
− 1 b̃+ = 𝚎a𝚗𝚜+x b̃

+a(x) −1 2 d
2
+ 1

̃̄c = 𝚎a𝚊𝚜x ̃̄ca(x) −1 2 d
2

̃̄c+ = 𝚎a𝚐𝚜+x ̃̄c
+a(x) 0 1 d

2

We summarise the factorisation of individual Yang–Mills fields in Table 9. A few remarks about the structure of the factorisation
are in order. Whilst fields always have a factor of 𝗌x, anti-fields always have a factor of 𝗌

+
x . This guarantees that the inner product is

indeed that of the factorisation: (7.13) is reproduced correctly using the factorisations given in Table 9 and (7.17) complemented by
the inner product ⟨𝚎a, 𝚎b⟩ = −tr(𝚎a𝚎b) = 𝛿ab on 𝔤:

⟨c̃, c̃+⟩ = ⟨
𝚎a ⊗ 𝚐⊗ ∫ ddx1 𝚜x1 c̃

a(x1), 𝚎b ⊗ 𝚊⊗ ∫ ddx2 𝚜+x2 c̃
+b(x2)

⟩
= −⟨𝚎a, 𝚎b⟩ ⟨𝚐, 𝚊⟩∫ ddx1 ∫ ddx2 𝛿

(d)(x1 − x2)c̃
a(x1) c̃

+b(x2)

= ∫ ddx c̃a(x) c̃+a (x) ,

⟨Ã, Ã+⟩ = ⟨
𝚎a ⊗ 𝚟𝜇 ⊗ ∫ ddx1 𝚜x1 Ã

a
𝜇
(x1), 𝚎b ⊗ 𝚟𝜈 ⊗ ∫ ddx2 𝚜+x2 Ã

+b
𝜈
(x2)

⟩
= ⟨𝚎a, 𝚎b⟩ ⟨𝚟𝜇 , 𝚟𝜈⟩∫ ddx1 ∫ ddx2 𝛿

(d)(x1 − x2)Ã
a
𝜇
(x1) Ã

+b
𝜈
(x2)

= ∫ ddx Ãa
𝜇
(x) Ã+𝜇

a (x) , (7.18)

⟨b̃, b̃+⟩ = ⟨
𝚎a ⊗ 𝚗⊗ ∫ ddx1 𝚜x1 b̃

a(x1), 𝚎b ⊗ 𝚗⊗ ∫ ddx2 𝚜+x2 b̃
+b(x2)

⟩
= ⟨𝚎a, 𝚎b⟩ ⟨𝚗, 𝚗⟩∫ ddx1 ∫ ddx2 𝛿

(d)(x1 − x2)c̃
a(x1) c̃

+b(x2)

= ∫ ddx b̃a(x) b̃+a (x) ,

⟨̃̄c, ̃̄c+⟩ = ⟨
𝚎a ⊗ 𝚊⊗ ∫ ddx1 𝚜x1 ̃̄c

a(x1), 𝚎b ⊗ 𝚐⊗ ∫ ddx2 𝚜+x2
̃̄c+b(x2)

⟩
= −⟨𝚎a, 𝚎b⟩ ⟨𝚊, 𝚐⟩∫ ddx1 ∫ ddx2 𝛿

(d)(x1 − x2)̃̄c
a(x1)̃̄c

+b(x2)

= −∫ ddx ̃̄ca(x) ̃̄c+a (x) .

Note that the kinematic factor 𝔎𝔦𝔫 essentially arranges the fields in a quartet: the physical field has a ghost, a Nakanishi–Lautrup
field, and an anti-ghost. These patterns reoccur in the double copy.
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To extend this factorisation of graded vector spaces to a factorisation of cochain complexes, we introduce the twist datum 𝜏1 given by

𝜏1(𝚐) := 𝚐⊗ 𝗂𝖽 ,

𝜏1(𝚟𝜇) := 𝚟𝜇 ⊗ 𝗂𝖽 + 𝜉𝚗⊗ 1√
□
𝜕𝜇 ,

𝜏1(𝚗) := 𝚗⊗ 𝗂𝖽 − 𝜉𝚟𝜇 ⊗ 1√
□
𝜕𝜇 ,

𝜏1(𝚊) := 𝚊⊗ 𝗂𝖽 , (7.19)

and we shall use the convenient shorthand notation

𝜏1(𝚟𝜇, 𝚗)

(∫ ddx 𝚜xÃa
𝜇
(x)

∫ ddx 𝚜xb̃a(x)

)
= (𝚟𝜇 , 𝚗)⊗

⎛⎜⎜⎝
𝗂𝖽 − 𝜉√

□
𝜕𝜇

𝜉√
□
𝜕𝜇 𝗂𝖽

⎞⎟⎟⎠
(∫ ddx 𝚜xÃa

𝜇
(x)

∫ ddx 𝚜xb̃a(x)

)
. (7.20)

The twisted differentials on 𝔤⊗ (𝔎𝔦𝔫⊗𝜏1
𝔖𝔠𝔞𝔩) are now indeed those of (7.12c):

𝜇1(c̃) = 𝜇1

(
𝚎a ⊗ 𝚐⊗ ∫ ddx 𝚜xc̃a(x)

)
= −𝚎a ⊗ 𝚐⊗ 𝜇𝔖𝔠𝔞𝔩

1

(
∫ ddx 𝚜xc̃a(x)

)
= 𝚎a ⊗ 𝚐⊗ ∫ ddx 𝚜+x {−□ c̃a(x)} , (7.21a)

𝜇1

(
Ã
b̃

)
= 𝜇1

(
𝚎a ⊗ (𝚟𝜇 , 𝚗)⊗

(∫ ddx 𝚜xÃa
𝜇
(x)

∫ ddx 𝚜xb̃a(x)

))

= 𝚎a ⊗ (𝚟𝜇 , 𝚗)⊗ 𝜇𝔖𝔠𝔞𝔩
1

⎛⎜⎜⎝
⎛⎜⎜⎝

𝗂𝖽 − 𝜉√
□
𝜕𝜇

𝜉√
□
𝜕𝜇 𝗂𝖽

⎞⎟⎟⎠
(∫ ddx 𝚜xÃa

𝜇
(x)

∫ ddx 𝚜xb̃a(x)

)⎞⎟⎟⎠
= 𝚎a ⊗ (𝚟𝜇 , 𝚗)⊗

⎛⎜⎜⎝
∫ ddx 𝚜+x

{
□ Ãa

𝜇
(x) − 𝜉

√
□ 𝜕𝜇 b̃

a(x)
}

∫ ddx 𝚜+x
{
□ b̃a(x) + 𝜉

√
□ 𝜕𝜇Ãa

𝜇
(x)

}⎞⎟⎟⎠
= 𝚎a ⊗

⎛⎜⎜⎝
𝚟𝜇 ⊗ ∫ ddx 𝚜+x

{
□ Ãa

𝜇
(x) − 𝜉

√
□ 𝜕𝜇 b̃

a(x)
}

𝚗⊗ ∫ ddx 𝚜+x
{
□ b̃a(x) + 𝜉

√
□ 𝜕𝜇Ãa

𝜇
(x)

} ⎞⎟⎟⎠ , (7.21b)

𝜇1(̃̄c) = 𝜇1

(
𝚎a ⊗ 𝚊⊗ ∫ ddx 𝚜x ̃̄ca(x)

)
= −𝚎a ⊗ 𝚊⊗ 𝜇𝔖𝔠𝔞𝔩

1

(
∫ ddx 𝚜x ̃̄ca(x)

)
= 𝚎a ⊗ 𝚊⊗ ∫ ddx 𝚜+x

{
−□ ̃̄ca(x)

}
. (7.21c)

Altogether, we saw that the factorisation (7.15) is valid for twist datum 𝜏1.

7.3. Canonical Transformation for The Free Kalb–Ramond Two-Form

To keep our discussionmanageable, we shall discuss the canonical transformations for the free Kalb–Ramond two-form and Einstein–
Hilbert gravity separately. For the following discussion, recall the gauge-fixing procedure and the gauge-fixed action from Section 5.3.
Canonical Transformation: Analogously to the case of Yang–Mills theory, we can now perform a field redefinition in order to elim-

inate the quadratic terms that would vanish on-shell in Lorenz gauge due to contractions between momenta and polarisation tensors.
We also insert inverses of the wave operator to match the mass dimensions of fields of L∞-degree one. The field redefinitions are
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�̃� := 𝜆 , �̃�+ := 𝜆+ ,

Λ̃𝜇 := Λ𝜇 , Λ̃+
𝜇
:= Λ+

𝜇
+
1 −

√
1 − 𝜉
𝜉

𝜕𝜇𝛾
+ ,

�̃� :=
√
𝜉

□

(
𝛾 +

1 −
√
1 − 𝜉
𝜉

𝜕𝜇Λ𝜇

)
, �̃�+ :=

√
□
𝜉
𝛾+ ,

B̃𝜇𝜈 := B𝜇𝜈 , B̃+
𝜇𝜈

:= B+
𝜇𝜈

+
1 −

√
1 − 𝜉
𝜉

𝜕[𝜇𝛼
+
𝜈] ,

�̃�𝜇 :=
√
𝜉

□

(
𝛼𝜇 − 𝜕𝜇𝜀 − −1 − 𝜉

2□
𝜕𝜇𝜕

𝜈𝛼𝜈 +
1 −

√
1 − 𝜉
𝜉

𝜕𝜈B𝜈𝜇

)
, �̃�+

𝜇
:=

√
□
𝜉

(
𝛼+
𝜇
+ 1 − 𝜉

2□
𝜕𝜇𝜀

+
)
,

�̃� := 𝜀 + 1 − 𝜉
2□

𝜕𝜇𝛼𝜇 , �̃�+ := 1 + 𝜉
2
𝜀+ − 𝜕𝜇𝛼+

𝜇
,

̃̄Λ𝜇 := Λ̄𝜇 , ̃̄Λ+
𝜇
:= Λ̄+

𝜇
+
1 −

√
1 − 𝜉
𝜉

𝜕𝜇�̄�
+ ,

̃̄𝛾 :=
√
𝜉

□

(
�̄� +

1 −
√
1 − 𝜉
𝜉

𝜕𝜇Λ̄𝜇

)
, ̃̄𝛾+ :=

√
□
𝜉
�̄�+ ,

̃̄𝜆 := �̄� , ̃̄𝜆+ := �̄�+ ,

(7.22a)

with

𝜉 := 𝜉1 = 𝜉3 − 𝜉2 (7.22b)

from (5.23). These redefinitions constitute canonical transformations on the BV field space. Upon applying these transformations to
the action (5.24), we obtain

S̃KRBRST := ∫ ddx
{

1
4
B̃𝜇𝜈 □ B̃𝜇𝜈 − ̃̄Λ𝜇□ Λ̃𝜇 + 1

2
�̃�𝜇□ �̃�

𝜇 − 𝜉2

2
(𝜕𝜇�̃�𝜇)

2 + 1
2
�̃�□ �̃� − ̃̄𝜆□ �̃�

− ̃̄𝛾□ �̃� + 𝜉�̃�𝜈
√
□ 𝜕𝜇B̃𝜇𝜈 + 𝜉�̃�

√
□ 𝜕𝜇

̃̄Λ𝜇 − 𝜉 ̃̄𝛾
√
□ 𝜕𝜇Λ̃𝜇

}
, (7.23)

where we have again used the shorthand 𝜉 :=
√

1−𝜉
𝜉
, cf. (7.11).

L∞-Algebra: The action (7.23) is the superfield homotopy Maurer–Cartan action (4.26b) of an L∞-algebra, denoted by �̃�KR
BRST, that

is given by

ε̃

C∞(Md)
ε̃+

C∞(Md)

Λ̃μ

Ω1(Md)

˜̄Λ+
μ

Ω1(Md)

˜̄Λμ

Ω1(Md)

Λ̃+
μ

Ω1(Md)

γ̃

C∞(Md)

˜̄γ +

C∞(Md)

˜̄γ

C∞(Md)
γ̃ +

C∞(Md)

λ̃

C∞(Md)

˜̄λ+

C∞(Md)

B̃μν
Ω2(Md)

B̃+
μν

Ω2(Md)

˜̄λ

C∞(Md)
λ̃+

C∞(Md)

︸ ︷︷ ︸
=:L̃KR

BRST,−1

︸ ︷︷ ︸
=:L̃KR

BRST,0

α̃μ

Ω1(Md)
︸ ︷︷ ︸
=:L̃KR

BRST,1

α̃+μ
Ω1(Md)
︸ ︷︷ ︸
=:L̃KR

BRST,2

︸ ︷︷ ︸
=:L̃KR

BRST,3

︸ ︷︷ ︸
=:L̃KR

BRST,4

�

−�

−ξ̃	�∂μ

−�

−ξ̃	�∂μ

−�

ξ̃
	
�∂μ

−�

ξ̃
	
�∂μ

� �

−ξ̃	�∂ν

�

�

ξ̃2∂ν∂
μ

ξ̃
	
�∂[ν

(7.24a)
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with

�̃�KR
BRST,−1 = �̃�KR

BRST,−1, �̃� , �̃�KR
BRST, 0 =

⨁
𝜙∈ (Λ̃, �̃� , ̃̄𝜆+)

�̃�KR
BRST, 0,𝜙 ,

�̃�KR
BRST, 1 =

⨁
𝜙∈ (�̃�, ̃̄Λ+ , ̃̄𝛾+ , B̃, �̃�)

�̃�KR
BRST, 1,𝜙 , �̃�KR

BRST, 2 =
⨁

𝜙∈ (�̃�+ , ̃̄Λ, ̃̄𝛾 , B̃+ , �̃�+)

�̃�KR
BRST, 2,𝜙 ,

�̃�KR
BRST, 3 =

⨁
𝜙∈ (Λ̃+ , �̃�+ , ̃̄𝜆)

�̃�KR
BRST, 3,𝜙 , �̃�KR

BRST, 4 = �̃�YM
BRST, 4, �̃�+

,

(7.24b)

and the non-vanishing differential

(�̃�)
𝜇1
→ □ �̃� ∈ �̃�KR

BRST, 0, ̃̄𝜆+
,(

Λ̃𝜇
�̃�

)
𝜇1
→ −

(
□ Λ̃𝜇 − 𝜉

√
□ 𝜕𝜇�̃�

□ �̃� + 𝜉
√
□ 𝜕𝜇Λ̃𝜇

)
∈

⨁
𝜙∈ ( ̃̄Λ+ , ̃̄𝛾+)

�̃�KR
BRST, 1,𝜙 ,

(
B̃𝜇𝜈
�̃�𝜇

)
𝜇1
→

(
□ B̃𝜇𝜈 − 2𝜉

√
□ 𝜕[𝜇�̃�𝜈]

□ �̃�𝜇 + 𝜉
√
□ 𝜕𝜈B̃𝜈𝜇 + 𝜉2𝜕𝜇𝜕𝜈�̃�𝜈

)
∈

⨁
𝜙∈ (B̃+ , �̃�+)

�̃�KR
BRST, 2,𝜙 ,

(
̃̄Λ𝜇
̃̄𝛾

)
𝜇1
→ −

(
□ ̃̄Λ𝜇 − 𝜉

√
□ 𝜕𝜇 ̃̄𝛾

□ ̃̄𝛾 + 𝜉
√
□ 𝜕𝜇 ̃̄Λ𝜇

)
∈

⨁
𝜙∈ (Λ̃+ , �̃�+)

�̃�KR
BRST, 3,𝜙 ,

( ̃̄𝜆)
𝜇1
→ □ ̃̄𝜆 ∈ �̃�KR

BRST, 4, �̃�+
. (7.24c)

There are no additional higher products because the theory is free. The expressions

⟨�̃�, �̃�+⟩ := −∫ ddx �̃��̃�+ , ⟨ ̃̄𝜆, ̃̄𝜆+⟩ := −∫ ddx ̃̄𝜆 ̃̄𝜆+ ,

⟨Λ̃, Λ̃+⟩ := ∫ ddx Λ̃𝜇Λ̃+
𝜇
, ⟨ ̃̄Λ, ̃̄Λ+⟩ := −∫ ddx ̃̄Λ𝜇 ̃̄Λ+

𝜇
,

⟨B̃, B̃+⟩ := 1
2 ∫ ddx B̃𝜇𝜈B̃+

𝜇𝜈
,

⟨�̃�, �̃�+⟩ := ∫ ddx �̃�𝜇�̃�+
𝜇
, ⟨�̃�, �̃�+⟩ := ∫ ddx �̃��̃�+ ,

⟨�̃� , �̃�+⟩ := ∫ ddx �̃� �̃�+ , ⟨ ̃̄𝛾 , ̃̄𝛾+⟩ := −∫ ddx ̃̄𝛾 ̃̄𝛾+

(7.25)

define a cyclic inner product on (�̃�YM
BRST,𝜇1).

7.4. Canonical Transformation for Einstein–Hilbert Gravity with Dilaton

The case of Einstein–Hilbert gravity with dilaton is nowmore involved that of the free Kalb–Ramondfield. For the following discussion,
recall the gauge-fixing procedure and the gauge-fixed action from Section 5.4.
Canonical Transformations: We start from the Lagrangian (5.36) but add a scalar kinetic term for the dilaton 𝜑,

ℒeEHD, gf
0 := ℒeEH, gf

0 + 1
2
𝜑□𝜑 . (7.26)
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We perform a field redefinition analogous to the case of Yang–Mills theory and the Kalb–Ramond field, absorbing various terms
that vanish on-shell, as well as the trace of h𝜇𝜈 in 𝛿 and ensuring that all fields come with the right propagators. For the fields of
non-vanishing ghost number, the transformation reads as

X̃𝜇 := X𝜇 , X̃+
𝜇
:= X+

𝜇
,

𝛽 := 1√
□
𝛽 , 𝛽+ :=

√
□ 𝛽+ ,

̃̄X𝜇 := X̄𝜇 ,
̃̄X+
𝜇
:= X̄+

𝜇
−
1 −

√
1 − 𝜉√
𝜉

𝜕𝜇𝛽
+ ,

̃̄𝛽 := 1√
□

(
𝛽 −

1 −
√
1 − 𝜉√
𝜉

𝜕𝜇X̄𝜇

)
, ̃̄𝛽+ :=

√
□ 𝛽+ ,

(7.27a)

where we worked in the special gauge

𝜁4 = 1 , 𝜁5 =
1 −

√
1 − 𝜉√
𝜉

, 𝜁6 = − 1
2
, 𝜁7 = −

4(𝜉 + 2
√
1 − 𝜉𝜉 −

√
1 − 𝜉 − 1)√

𝜉(4𝜉 − 3)
,

𝜁8 = 1

4(3 − 4𝜉)2
√
𝜉

{
50

(
1 +

√
1 − 𝜉

)
− 𝜉

[
5
(
34 + 29

√
1 − 𝜉

)
+ 8𝜉

(
−23 − 15

√
1 − 𝜉 + 2

(
4 +

√
1 − 𝜉

)
𝜉
)]}

,

𝜁9 = 0 , 𝜁10 = 1

2𝜉 +
√
1 − 𝜉 − 1

, 𝜁11 = 0

(7.27b)

from (5.35). The expressions for 𝜁7 and 𝜁8 make it apparent that the field redefinitions we would like to perform here are much more
involved than in the case of the Kalb–Ramond field.43 Because the resulting expressions for the fields of ghost number zero are too
involved and not very illuminating, we restrict ourselves to the case 𝜉 = 1 corresponding to Feynman gauge in Yang–Mills theory.
Here, we have the inverse field transformations

h𝜇𝜈 = h̃𝜇𝜈 −
𝜕𝜇

□

(
𝜕𝜅 h̃𝜅𝜈 −

1
2
𝜕𝜈
̊̃h
)
−
𝜕𝜈
□

(
𝜕𝜅 h̃𝜅𝜇 −

1
2
𝜕𝜇
̊̃h
)
− 1√

□

(
𝜕𝜇�̃�𝜈 + 𝜕𝜈�̃�𝜇

)
,

𝜛𝜇 = −𝜕𝜇𝛿 − 𝜕𝜈 h̃𝜇𝜈 −
√
□ �̃�𝜇 ,

𝜋 = −2□ 𝛿 +□ �̃� − 𝜕𝜇𝜕𝜈 h̃𝜇𝜈 ,

𝛿 = 𝛿

2
+ �̃�
4
+
̊̃h
8
+ 𝜕𝜇

4□

(
𝜕𝜈 h̃𝜇𝜈 −

1
2
𝜕𝜇
̊̃h
)
,

𝜑 =
̊̃h

2
√
2
− 𝜕𝜇√

2□

(
𝜕𝜈 h̃𝜇𝜈 −

1
2
𝜕𝜇
̊̃h
)

(7.27c)

with readily computed antifield transformations. Jumping ahead of our story a bit, we note that the field redefinition for 𝜑 agrees
precisely with the expectation of how the dilaton should be extracted from the double copied metric perturbation h̃𝜇𝜈 .
For general 𝜉, the total Lagrangian, to lowest order in 𝜅, reads as

ℒ̃eEHD
BRST, 0 = 1

4
h̃𝜇𝜈 □ h̃𝜇𝜈 + 1

2
�̃�𝜇□ �̃�

𝜇 + 1
2
𝜉2(𝜕𝜇�̃�𝜇)

2 + 𝜉�̃�𝜈
√
□𝜕𝜇h̃𝜇𝜈 −

1
2
𝛿□ 𝛿 + 1

4
�̃�□ �̃� + 𝜉�̃�

√
□𝜕𝜇�̃�

𝜇 + 1
2
𝜉2�̃�𝜕𝜇𝜕𝜈 h̃

𝜇𝜈

− ̃̄X𝜇□ X̃𝜇 − ̃̄𝛽□ 𝛽 + 𝜉𝛽
√
□𝜕𝜇

̃̄X𝜇 − 𝜉 ̃̄𝛽
√
□𝜕𝜇X̃

𝜇 .

(7.28)

This is the quadratic part of the Lagrangian of the superfield homotopy Maurer–Cartan action (4.26b) for an L∞-algebra �̃�eEHD
BRST . The

latter has underlying complex

43 We suspect that there is a simpler field redefinition in a simpler gauge which we have not been able to identify yet.
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ϕ̃

C∞(Md)
ϕ̃+

C∞(Md)

δ̃

C∞(Md)
δ̃+

C∞(Md)

X̃μ

Ω1(Md)

˜̄X+μ

Ω1(Md)

˜̄Xμ

Ω1(Md)
X̃+μ

Ω1(Md)

β̃

C∞(Md)

˜̄β+

C∞(Md)

˜̄β

C∞(Md)
β̃+

C∞(Md)

h̃μν
Ω2(Md)

h̃+μν
Ω2(Md)

�̃μ

Ω1(Md)
�̃+μ

Ω1(Md)

︸ ︷︷ ︸
=:L̃eEHD

BRST,0

π̃

C∞(Md)
︸ ︷︷ ︸
=:L̃eEHD

BRST,1

π̃+

C∞(Md)
︸ ︷︷ ︸
=:L̃eEHD

BRST,2

︸ ︷︷ ︸
=:L̃eEHD

BRST,3

0

�

−� −�

−� −�

�

�−ξ̃2∂μ∂
ν

�

(7.29a)

with

�̃�eEHD
BRST, 0 =

⨁
𝜙∈ (𝛽, X̃)

�̃�eEHD
BRST, 0,𝜙 , �̃�eEHD

BRST, 1 =
⨁

𝜙∈ (𝛿, ̃̄X+ , ̃̄𝛽+ , h̃, �̃�, �̃�)

�̃�eEHD
BRST, 1,𝜙 ,

�̃�eEHD
BRST, 3 =

⨁
𝜙∈ (𝛽+ , X̃+)

�̃�eEHD
BRST, 3,𝜙 , �̃�eEHD

BRST, 2 =
⨁

𝜙∈ (𝛿+ , ̃̄X, ̃̄𝛽, h̃+ , �̃�+ , �̃�+)

�̃�eEHD
BRST, 2,𝜙 ,

(7.29b)

and the lowest non-vanishing products(
X̃𝜇
𝛽

)
𝜇1
→ −

(
□ X̃𝜇 − 𝜉

√
□𝜕𝜇𝛽

□ 𝛽 + 𝜉
√
□𝜕𝜇X̃

𝜇

)
∈

⨁
𝜙∈ ( ̃̄X+ , ̃̄𝛽+)

�̃�eEHD
BRST, 1,𝜙 ,

⎛⎜⎜⎜⎝
h̃𝜇𝜈
�̃�𝜇

�̃�

⎞⎟⎟⎟⎠
𝜇1
→

⎛⎜⎜⎜⎝
□ h̃𝜇𝜈 − 2𝜉

√
□𝜕𝜇�̃�𝜈 + 𝜉2𝜕𝜇𝜕𝜈�̃�

□ �̃�𝜇 + 𝜉
√
□𝜕𝜇h̃𝜇𝜈 − 𝜉

√
□𝜕𝜇�̃� − 𝜉2𝜕𝜇𝜕𝜈�̃�𝜈

□ �̃�𝜇(x) + 2𝜉
√
□𝜕𝜇�̃�𝜇(x) + 𝜉2𝜕𝜇𝜕𝜈 h̃𝜇𝜈

⎞⎟⎟⎟⎠ ∈
⨁

𝜙∈ (h̃+ , �̃�+ , �̃�+)

�̃�eEHD
BRST, 2,𝜙 ,

( ̃̄X𝜇
̃̄𝛽

)
𝜇1
→ −

(
□ ̃̄X𝜇 − 𝜉

√
□𝜕𝜇

̃̄𝛽

□ ̃̄𝛽 + 𝜉
√
□𝜕𝜇

̃̄X𝜇

)
∈

⨁
𝜙∈ (X̃+ , 𝛽+)

�̃�eEHD
BRST, 3,𝜙 .

(7.29c)

The �̃�eEHD
BRST algebra is endowed with the following cyclic structure:

⟨X̃ , X̃+⟩ := ∫ ddx X̃𝜇X̃+
𝜇
, ⟨ ̃̄X, ̃̄X+⟩ := −∫ ddx ̃̄X𝜇 ̃̄X+

𝜇
,

⟨𝛽, 𝛽+⟩ := ∫ ddx 𝛽𝛽+ , ⟨ ̃̄𝛽, ̃̄𝛽+⟩ := −∫ ddx ̃̄𝛽 ̃̄𝛽+ ,

⟨h̃, h̃+⟩ := 1
2 ∫ ddx h̃𝜇𝜈 h̃+

𝜇𝜈
,

⟨�̃�, �̃�+⟩ := ∫ ddx �̃�𝜇�̃�+
𝜇
,

⟨�̃�, �̃�+⟩ := 1
2 ∫ ddx �̃��̃�+ , ⟨𝛿, 𝛿+⟩ := −∫ ddx 𝛿𝛿+ .

(7.30)
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Table 10. Factorisation of the redefined BV fields for  = 0 supergravity. Just as in the case of Yang–Mills theory, all fields have a factor of 𝚜x , while all
anti-fields have a factor of 𝚜+x . Here, we again suppressed the integrals over x, and we used the notation [𝚡, 𝚢] := 𝚡⊗ 𝚢 − (−1)|𝚡| |𝚢|𝚢⊗ 𝚡 and (𝚡, 𝚢) :=
𝚡⊗ 𝚢 + (−1)|𝚡| |𝚢|𝚢⊗ 𝚡 for 𝚡, 𝚢 ∈ 𝔎𝔦𝔫.

Fields Anti-fields

factorisation | − |gh | − |𝔏 dim factorisation | − |𝔏 dim

�̃� = −[𝚐, 𝚐]𝚜x
1
2
�̃�(x) 2 −1 d

2
− 3 �̃�+ = −[𝚊, 𝚊]𝚜+x

1
2
�̃�+(x) 4 d

2
+ 3

Λ̃ = [𝚐, 𝚟𝜇 ]𝚜x
1√
2
Λ̃𝜇(x) 1 0 d

2
− 2 Λ̃+ = [𝚊, 𝚟𝜇 ]𝚜+x

1√
2
Λ̃+
𝜇 3 d

2
+ 2

�̃� = [𝚐, 𝚗]𝚜x
1√
2
�̃�(x) 1 0 d

2
− 2 �̃�+ = [𝚊, 𝚗]𝚜+x

1√
2
�̃�+(x) 3 d

2
+ 2

B̃ = [𝚟𝜇 , 𝚟𝜈 ]𝚜x
1

2
√
2
B̃𝜇𝜈(x) 0 1 d

2
− 1 B̃+ = [𝚟𝜇 , 𝚟𝜈 ]𝚜+x

1

2
√
2
B̃+
𝜇𝜈(x) 2 d

2
+ 1

�̃� = [𝚗, 𝚟𝜇 ]𝚜x
1√
2
�̃�𝜇(x) 0 1 d

2
− 1 �̃�+ = [𝚗, 𝚟𝜇 ]𝚜+x

1√
2
�̃�+𝜇 (x) 2 d

2
+ 1

�̃� = −[𝚐, 𝚊]𝚜x
1√
2
�̃�(x) 0 1 d

2
− 1 �̃�+ = −[𝚐, 𝚊]𝚜+x

1√
2
�̃�+(x) 2 d

2
+ 1

̃̄Λ = [𝚊, 𝚟𝜇 ]𝚜x
1√
2
̃̄Λ𝜇(x) −1 2 d

2
̃̄Λ+ = [𝚐, 𝚟𝜇 ]𝚜+x

1√
2
̃̄Λ+
𝜇 (x) 1 d

2

̃̄𝛾 = [𝚊, 𝚗]𝚜x
1√
2
̃̄𝛾(x) −1 2 d

2
̃̄𝛾+ = [𝚐, 𝚗]𝚜+x

1√
2
̃̄𝛾+(x) 1 d

2

̃̄𝜆 = −[𝚊, 𝚊]𝚜x
1
2
̃̄𝜆(x) −2 3 d

2
+ 1 ̃̄𝜆+ = −[𝚐, 𝚐]𝚜+x

1
2
̃̄𝜆+(x) 0 d

2
− 1

X̃ = (𝚐, 𝚟𝜇)𝚜x
1√
2
X̃𝜇(x) 1 0 d

2
− 2 X̃+ = (𝚊, 𝚟𝜇)𝚜+x

1√
2
X̃+
𝜇 (x) 3 d

2
+ 2

𝛽 = (𝚐, 𝚗)𝚜x
1√
2
𝛽(x) 1 0 d

2
− 2 𝛽+ = (𝚊, 𝚗)𝚜+x

1√
2
𝛽+(x) 3 d

2
+ 2

h̃ = (𝚟𝜇 , 𝚟𝜈)𝚜x
1

2
√
2
h̃𝜇𝜈(x) 0 1 d

2
− 1 h̃+ = (𝚟𝜇 , 𝚟𝜈)𝚜+x

1

2
√
2
h̃+𝜇𝜈(x) 2 d

2
+ 1

�̃� = −(𝚗, 𝚟𝜇)𝚜x
1√
2
�̃�𝜇(x) 0 1 d

2
− 1 �̃�+ = −(𝚗, 𝚟𝜇)𝚜+x

1√
2
�̃�+
𝜇 (x) 2 d

2
+ 1

�̃� = (𝚗, 𝚗)𝚜x
1

2
√
2
�̃�(x) 0 1 d

2
− 1 �̃�+ = (𝚗, 𝚗)𝚜+x

1

2
√
2
�̃�+(x) 2 d

2
+ 1

𝛿 = −(𝚐, 𝚊)𝚜x
1√
2
𝛿(x) 0 1 d

2
− 1 𝛿+ = −(𝚐, 𝚊)𝚜+x

1√
2
𝛿+(x) 2 d

2
+ 1

̃̄X = (𝚊, 𝚟𝜇)𝚜x
1√
2
̃̄X𝜇(x) −1 2 d

2
̃̄X+ = (𝚐, 𝚟𝜇)𝚜+x

1√
2
̃̄X𝜇(x) 1 d

2

̃̄𝛽 = (𝚊, 𝚗)𝚜x
1√
2
̃̄𝛽(x) −1 2 d

2
̃̄𝛽+ = (𝚐, 𝚗)𝚜+x

1√
2
̃̄𝛽+(x) 1 d

2

7.5. Factorisation of The Cochain Complex of = 0 Supergravity

The factorisation of the cochain complex of the L∞-algebra for Yang–Mills theory now fixes completely the factorisation of the cochain
complex of the L∞-algebra of = 0 supergravity. In view of (7.15), it thus merely remains to verify that

𝖢𝗁(�̃�=0
BRST) = 𝔎𝔦𝔫⊗𝜏1

(𝔎𝔦𝔫⊗𝜏1
𝖢𝗁(𝔖𝔠𝔞𝔩)) (7.31)

at the level of cochain complexes, where 𝔎𝔦𝔫 is given in (7.16) and 𝖢𝗁(𝔖𝔠𝔞𝔩) in (7.4). Furthermore, the twist in the outer tensor
product of (7.31) will only affect 𝖢𝗁(𝔖𝔠𝔞𝔩) and commute with the other factor of𝔎𝔦𝔫. Let us stress that we could have allowed for two
different twist parameters for each of the tensor products. This, however, would make our discussion unnecessarily involved.
Factorisation of Fields: It is not surprising that the identification works at the level of graded vector spaces for the physical fields.

This is merely the statement that a rank-two (covariant) tensor decomposes into its symmetric part and its anti-symmetric part. The
symmetric part splits further into the trace, which can be identified with the dilaton, and the remaining components, which describe
gravitational modes. More interesting is the sector of unphysical fields, and the complete factorisation of all fields is given in Table 10.
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The elements of𝔎𝔦𝔫 form a quartet, which is reflected in the well-known quartet of fields in the gauge-fixed Yang–Mills action:

n

vμ

g a

−→

ba

Aaμ

ca c̄a

(7.32)

Each field in𝖢𝗁(�̃�=0
BRST) thus lives in the tensor product of two such quartets. This tensor product further splits into (graded) symmetric,

anti-symmetric, and trace parts, which belong to the two-form B𝜇𝜈 , the graviton modes h𝜇𝜈 , and the dilaton 𝜑. Because the product of
two ghosts 𝚐�̃� is automatically anti-symmetric, only the B-field has a ghost for ghost 𝜆. On the graviton/dilaton side, we do not have
the higher gauge transformations, but contrary to Yang–Mills theory, the ghost is a vector. We can summarise the relations between
the fields in the following two diagrams:

αμ

γ Bμν γ̄

Λμ Λ̄μ

λ ε λ̄

π

�μ

β hμν β̄

Xμ X̄μ

δ

(7.33)

where upper, lower left, and lower right arrows point to fields where a vector factor 𝚟𝜇 has been replaced by a factor 𝚗, 𝚐, and 𝚊,
respectively. The L∞-degrees of the fields are the same in each column, increasing from left to right by one.
Factorisation as Cyclic Complex: From Table 10, it is clear that the tensor product (7.31) is indeed correct at the level of graded

vector spaces. The inner product structure on the anti-symmetric part is given by

⟨�̃�, �̃�+⟩ =
⟨
−𝚐⊗ 𝚐⊗ ∫ ddx1 𝚜x1 �̃�(x1),−𝚊⊗ 𝚊⊗ ∫ ddx2 𝚜+x2 �̃�

+(x2)
⟩

= −⟨𝚐, 𝚊⟩⟨𝚐, 𝚊⟩∫ ddx1 ∫ ddx2 𝛿
(d)(x1 − x2)�̃�(x1)�̃�

+(x2)

= −∫ ddx �̃�(x)�̃�+(x) ,

(7.34a)

Similarly,

⟨Λ̃, Λ̃+⟩ = ∫ ddx Λ̃𝜇(x)Λ̃+
𝜇
(x) , ⟨ ̃̄Λ, ̃̄Λ+⟩ = −∫ ddx ̃̄Λ𝜇(x) ̃̄Λ+

𝜇
(x) ,

⟨�̃� , �̃�+⟩ = ∫ ddx �̃�(x)�̃�+(x) , ⟨ ̃̄𝛾 , ̃̄𝛾+⟩ = −∫ ddx ̃̄𝛾(x) ̃̄𝛾+(x) ,

⟨B̃, B̃+⟩ = 1
2 ∫ ddx B̃𝜇𝜈(x)B̃+

𝜇𝜈
(x) , ⟨�̃�, �̃�+⟩ = ∫ ddx �̃�(x)�̃�+(x) ,

⟨�̃�, �̃�+⟩ = ∫ ddx �̃�𝜇(x)�̃�+
𝜇
(x) , ⟨ ̃̄𝜆, ̃̄𝜆+⟩ = −∫ ddx ̃̄𝜆(x) ̃̄𝜆+(x) .

(7.34b)
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On the symmetric part, we have analogously

⟨X̃ , X̃+⟩ = ∫ ddx X̃𝜇(x)X̃+
𝜇
(x) , ⟨�̃�, �̃�+⟩ = 1

2 ∫ ddx �̃�(x)�̃�+(x) ,

⟨𝛽, 𝛽+⟩ = ∫ ddx 𝛽(x)𝛽+(x) , ⟨𝛿, 𝛿+⟩ = −∫ ddx 𝛿(x)𝛿+(x) ,

⟨h̃, h̃+⟩ = 1
2 ∫ ddx h̃𝜇𝜈(x)h̃+

𝜇𝜈
(x) , ⟨ ̃̄X, ̃̄X+⟩ = −∫ ddx ̃̄X𝜇(x) ̃̄X+

𝜇
(x) ,

⟨�̃�, �̃�+⟩ = ∫ ddx �̃�𝜇(x)�̃�+
𝜇
(x) , ⟨ ̃̄𝛽, ̃̄𝛽+⟩ = −∫ ddx ̃̄𝛽(x) ̃̄𝛽+(x) .

(7.34c)

Next, we compute the action of the differential 𝜇1, which is completely fixed by the tensor product𝔎𝔦𝔫⊗𝜏1
(𝔎𝔦𝔫⊗𝜏1

𝔖𝔠𝔞𝔩), cf. def-
inition (6.15). We have, for example,

𝜇1(�̃�) = 𝜇1

(
−[𝚐, 𝚐]⊗ 1

2 ∫ ddx 𝚜x�̃�(x)
)

= −[𝚐, 𝚐]⊗ 1
2
𝜇1

(
∫ ddx 𝚜x�̃�(x)

)
= □ �̃� ,

𝜇1

(
Λ̃
�̃�

)
= 𝜇1

(
([𝚐, 𝚟𝜇 ], [𝚐, 𝚗])⊗

(∫ ddx 𝚜x
1√
2
Λ̃𝜇(x)

∫ ddx 𝚜x
1√
2
�̃�(x)

))

= −([𝚐, 𝚟𝜇 ], [𝚐, 𝚗])⊗ 𝜇1

((
𝗂𝖽 −𝜉□ − 1

2 𝜕𝜇
𝜉□ − 1

2 𝜕𝜇 𝗂𝖽

)(∫ ddx 𝚜x
1√
2
Λ̃𝜇(x)

∫ ddx 𝚜x
1√
2
�̃�(x)

))

= −([𝚐, 𝚟𝜇 ], [𝚐, 𝚗])⊗
⎛⎜⎜⎝
∫ ddx 𝚜+x

1√
2
{□ Λ̃𝜇(x) − 𝜉

√
□𝜕𝜇�̃�(x)}

∫ ddx 𝚜+x
1√
2
{□ �̃�(x) + 𝜉

√
□𝜕𝜇Λ̃𝜇(x)}

⎞⎟⎟⎠ ,
𝜇1

(
B̃

�̃�

)
= 𝜇1

(
([𝚟𝜇 , 𝚟𝜈 ], [𝚗, 𝚟𝜇 ])⊗

(∫ ddx 𝚜x
1

2
√
2
B̃𝜇𝜈(x)

∫ ddx 𝚜x
1√
2
�̃�𝜇(x)

))

= ([𝚟𝜇, 𝚟𝜈 ], [𝚗, 𝚟𝜇 ])⊗
⎛⎜⎜⎝

∫ ddx 𝚜+x
1√
2
{ 1
2
□ B̃𝜇𝜈(x) − 𝜉

√
□𝜕𝜇�̃�𝜈(x)}

∫ ddx 𝚜+x
1√
2
{□ �̃�𝜇(x) + 𝜉

√
□𝜕𝜈B̃𝜈𝜇(x) + 𝜉2𝜕𝜇𝜕𝜈�̃�𝜈(x)}

⎞⎟⎟⎠ ,

𝜇1

⎛⎜⎜⎜⎝
h̃

�̃�

�̃�

⎞⎟⎟⎟⎠ = 𝜇1

⎛⎜⎜⎜⎜⎝
((𝚟𝜇 , 𝚟𝜈), (𝚗, 𝚟𝜇), (𝚗, 𝚗))⊗

⎛⎜⎜⎜⎜⎝
∫ ddx 𝚜x

1

2
√
2
h̃𝜇𝜈(x)

∫ ddx 𝚜x
(
− 1√

2
�̃�𝜇(x)

)
∫ ddx 𝚜x

1

2
√
2
�̃�𝜇(x)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

= ((𝚟𝜇, 𝚟𝜈), (𝚗, 𝚟𝜇), (𝚗, 𝚗))⊗M

(7.35a)

with

M :=

⎛⎜⎜⎜⎜⎝
∫ ddx 𝚜+x {

1

2
√
2
□ h̃𝜇𝜈(x) −

1√
2
𝜉
√
□𝜕𝜇�̃�𝜈(x) +

1

2
√
2
𝜉2𝜕𝜇𝜕𝜈�̃�(x)}

∫ ddx 𝚜+x {−
1√
2
□ �̃�𝜇(x) −

1√
2
𝜉
√
□𝜕𝜇h̃𝜇𝜈(x) +

1√
2
𝜉
√
□𝜕𝜇�̃�(x) +

1√
2
𝜉2𝜕𝜇𝜕

𝜈�̃�𝜈(x)}

∫ ddx 𝚜+x {
1

2
√
2
□ �̃�𝜇(x) +

1√
2
𝜉
√
□𝜕𝜇�̃�𝜇(x) +

1

2
√
2
𝜉2𝜕𝜇𝜕𝜈 h̃𝜇𝜈}

⎞⎟⎟⎟⎟⎠
. (7.35b)
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Furthermore, we have

𝜇1

(
̃̄Λ
̃̄𝛾

)
= −([𝚊, 𝚟𝜇 ], [𝚊, 𝚗])⊗

⎛⎜⎜⎝
∫ ddx 𝚜+x

1√
2
{□ ̃̄Λ𝜇(x) − 𝜉

√
□𝜕𝜇 ̃̄𝛾(x)}

∫ ddx 𝚜+x
1√
2
{□ ̃̄𝛾(x) + 𝜉

√
□𝜕𝜇

̃̄Λ𝜇(x)}

⎞⎟⎟⎠ ,

𝜇1(�̃�) = □ �̃� ,

𝜇1(
̃̄𝜆) = □ ̃̄𝜆 ,

𝜇1

(
X̃

𝛽

)
= −((𝚐, 𝚟𝜇), (𝚐, 𝚗))⊗

⎛⎜⎜⎝
∫ ddx 𝚜+x

1√
2
{□ X̃𝜇(x) − 𝜉

√
□𝜕𝜇𝛽(x)}

∫ ddx 𝚜+x
1√
2
{□ 𝛽(x) + 𝜉

√
□𝜕𝜇X̃

𝜇(x)}

⎞⎟⎟⎠ ,

𝜇1

( ̃̄X
̃̄𝛽

)
= −([𝚊, 𝚟𝜇 ], [𝚊, 𝚗])⊗

⎛⎜⎜⎝
∫ ddx 𝚜+x

1√
2
{□ ̃̄X𝜇(x) − 𝜉

√
□𝜕𝜇

̃̄𝛽(x)}

∫ ddx 𝚜+x
1√
2
{□ ̃̄𝛽(x) + 𝜉

√
□𝜕𝜇

̃̄X𝜇(x)}

⎞⎟⎟⎠ ,

𝜇1(𝛿) = □ 𝛿 .

(7.35c)

The resulting superfield homotopy Maurer–Cartan action (4.26a) for the superfield 𝖺 = �̃� + Λ̃ +⋯ + B̃ + h̃ is

S̃DC0 := ∫ ddx
{

1
4
B̃𝜇𝜈 □ B̃𝜇𝜈 − ̃̄Λ𝜇□ Λ̃𝜇 + 1

2
�̃�𝜇□ �̃�

𝜇 − 𝜉2

2
(𝜕𝜇�̃�𝜇)

2 + 1
2
�̃�□ �̃� − ̃̄𝜆□ �̃�

− ̃̄𝛾□ �̃� + 𝜉�̃�𝜈
√
□𝜕𝜇B̃𝜇𝜈 + 𝜉�̃�

√
□𝜕𝜇

̃̄Λ𝜇 − 𝜉 ̃̄𝛾
√
□𝜕𝜇Λ̃𝜇 +

1
4
h̃𝜇𝜈 □ h̃𝜇𝜈 − ̃̄X𝜇□ X̃𝜇 + 1

2
�̃�𝜇□ �̃�

𝜇 + 𝜉2

2
(𝜕𝜇�̃�𝜇)

2

− 1
2
𝛿□ 𝛿 + 1

4
�̃�□ �̃� − ̃̄𝛽□ 𝛽 + 𝜉�̃�𝜈

√
□𝜕𝜇h̃𝜇𝜈 + 𝜉�̃�

√
□𝜕𝜇�̃�

𝜇 + 1
2
𝜉2�̃�𝜕𝜇𝜕𝜈 h̃

𝜇𝜈 + 𝜉𝛽
√
□𝜕𝜇

̃̄X𝜇 − 𝜉 ̃̄𝛽
√
□𝜕𝜇X̃

𝜇
}
.

(7.36)

This action is precisely the sum of the transformed Kalb–Ramond action (7.23) and of the transformed zeroth-order gravity action
augmented by a dilaton kinetic term (7.28). Consequently, we see that our double copy prescription, arising from the factorisation of
the L∞-algebras of Yang–Mills theory and = 0 supergravity into three factors, works at the level of cochain complexes.

8. Quantum Field Theoretic Preliminaries

Having completed the discussion at the free, linear level, we are almost ready to turn to the factorisation in the full, interacting picture,
which is, perhaps not surprisingly, very involved, cf. [9].
Firstly, as explained in Section 2, the double copy of amplitudes is based on a reformulation of the underlying Feynman diagrams

in terms of diagrams with exclusively trivalent vertices. At the level of the action, this means that we need to strictify the field theory,
i.e. to replace it by a physically equivalent one with exclusively cubic interaction terms. In this section, we will be relatively explicit, at
least to lowest orders in the amplitude legs and coupling constants.
Secondly, it is clear that the double copy of the factorisation of interacting Yang–Mills theory will be some form of strictified = 0

supergravity. We will not work out detailed expressions for this action butmerely show that the produced action is quantum equivalent
to = 0 supergravity.
To this end, we shall need a number of quantum field theoretic observations alreadymade in [9]. This section contains both a review

and a much more detailed explanation of these observations than [9].
In the following, we shall always clearly distinguish between scattering amplitudes𝒜(⋯) and correlation functions ⟨⋯⟩. Correlation

functions contain operators that create and annihilate arbitrary fields without any constraints. Scattering amplitudes, on the other
hand, are labelled by external fields, which usually are physical fields with on-shell momenta and physical polarisations. For our
arguments, it is convenient to lift the restriction to physical polarisations and work with the BRST-extended Hilbert space of external
fields which, in the case of Yang–Mills theory, includes gluons of arbitrary polarisations as well as the ghosts and anti-ghosts as
explained next.

8.1. BRST-Extended Hilbert Space and Ward Identities

The tree-level scattering amplitudes of Yang–Mills theory are parametrised by degree one elements of the minimal model of the L∞-
algebra (7.12). These are the physical, on-shell states. A convenient set of coordinates for these are the gluon’s momentum p𝜇 as well
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as a discrete label indicating the gluon’s helicity. More conveniently, we can replace the discrete labels by a linearly independent set
of polarisation vectors 𝜀𝜇 that satisfy

(𝜀𝜇) =

(
0

𝜀

)
, p⃗ ⋅ 𝜀 = 0 , and |𝜀 | = 1 . (8.1)

BRST-Extended Hilbert Space: We can extend this conventional Hilbert space of external fields to the full BRST field space ℌYM
BRST

as done, e.g., in [285]. We thus have two additional, unphysical polarisations of the gluon, called forward and backward and denoted
by A↑ a

𝜇
and A↓ a

𝜇
, respectively. We can be a bit more explicit for general gluons with light-like momenta. Here, the polarisation vector

𝜀↑
𝜇
is proportional to the momentum p𝜇 and the backwards polarisation vector 𝜀

↓
𝜇
is obtained by reversing the spatial part,

(𝜀↑
𝜇
) = 1√

2|p⃗ |
(
p0
p⃗

)
and (𝜀↓

𝜇
) = 1√

2|p⃗ |
(
p0
−p⃗

)
, (8.2a)

so that

𝜀↑ ⋅ 𝜀↑ = 0 , 𝜀↓ ⋅ 𝜀↓ = 0 , and 𝜀↑ ⋅ 𝜀↓ = −1 . (8.2b)

We also have ghost and anti-ghost states. All scattering amplitudes we shall consider will be built from the Hilbert space ℌYM
BRST.

We note that the S-matrix of the physical Hilbert space ℌYM
phys is then the restriction of the S-matrix for the BRST extended Hilbert

space ℌYM
BRST. Although there are scattering amplitudes producing unphysical particles in ℌYM

BRST from physical gluons in ℌYM
phys, this

is consistent, because the restricted S-matrix is unitary. This is a consequence of the full S-matrix on ℌYM
BRST being unitary and BRST

symmetry, cf. [[286], Section 16.4].
Evidently, ℌYM

BRST carries an action of the linearisation of the BRST operator, denoted by Q lin
BRST, cf. again [285] or the discussion in

[[286], Section 16.4]. Note that after gauge-fixing, the full BRST transformations are given by the restriction of the BV transforma-
tions (5.10) since the gauge-fixing fermion is assumed to be independent of the anti-fields. We have

ca
QYM
BRST
→ − 1

2
gfbc

acbcc , c̄a
QYM
BRST
→ ba ,

Aa
𝜇

QYM
BRST
→ (∇𝜇c)a , ba

QYM
BRST
→ 0 ,

(8.3)

and (QYM
BRST)

2 = 0 off-shell. In momentum space, it is then easy to see that the transversely-polarised or physical gluon states A⟂ a
𝜇

are

singlets under the action of the linearised BRST operator, QYM, lin
BRST A⟂ a

𝜇
= 0. The remaining four states arrange into two doublets,

A↑ a
𝜇

QYM, lin
BRST
→ 𝜕𝜇c

a and c̄a
QYM, lin
BRST
→ ba = 1

𝜉
𝜕𝜇A↓ a

𝜇
. (8.4)

Connected Correlation Functions: In our later analysis of the double copy, we shall compare correlation functions at the tree level.
Recall that the partition function Z and the free energyW := log(Z) are the generating functionals for the correlation functions and
the connected correlation functions, respectively. Evidently, this implies that the connected correlation functions can be written as
linear combinations of products of correlation functions. This simplifies our analysis as we can restrict ourselves to the contributions
of connected Feynman diagrams to correlation functions.

Observation 8.1. The set of connected correlation functions is BRST-invariant because the connected correlation functions can be
written as linear combinations of products of correlation functions.

Ward Identities for Scattering Amplitudes: In order to translate colour–kinematics duality for scattering amplitudes from gluons
to ghosts, we shall use supersymmetric on-shell Ward identities, cf. [20, 21], and we focus on the supersymmetry generated by the
linearised BRST operator QYM, lin

BRST acting on the BRST-extended Hilbert spaceℌYM
BRST, whose elements label our scattering amplitudes.

The free vacuum is certainly invariant under the action of QYM, lin
BRST , cf. again [285] or [[286], Section 16.4]. We therefore have the

on-shell Ward identity

0 = ⟨0|[QYM, lin
BRST ,𝒪1⋯𝒪n]|0⟩ . (8.5)
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In order to use this Ward identity to link scattering amplitudes with k ghost–anti-ghost pairs to amplitudes with k + 1 such pairs,
we consider the special case

𝒪1⋯𝒪n = A↑c̄(cc̄)kA⟂
1 ⋯A⟂

n−2k−2 , (8.6)

where the gluon A↑ a
𝜇

is forward polarised while all other gluons have physical polarisation. In this special case, the on-shell Ward
identity (8.5) becomes

⟨0|(cc̄)k+1A⟂
1 ⋯A⟂

n−2k−2|0⟩ ∼ ⟨0|A↑(cc̄)kbA⟂
1 ⋯A⟂

n−2k−2|0⟩. (8.7)

Observation 8.2. Any amplitude with k + 1 ghost–anti-ghost pairs and all gluons transversely polarised is given by a sum of amplitudes
with k ghost pairs.

The simplest non-trivial concrete example to illustrate Observation 8.2 is the case n = 4, k = 0 in Yang–Mills theory (the three-point
scattering amplitudes vanish). We may then identify

⟨0|Â↑ a(p1)b̂
b(p2)Â

⟂ c
1 (p3)Â

⟂ d
2 (p4)|0⟩ = p02𝒜AAAA

(
𝜀↑(p1), p1, a; 𝜀

↓(p2), p2, b; 𝜀
⟂
1 (p3), p3, c; 𝜀

⟂
2 (p4), p4, d

)
(8.8a)

and

⟨0|ĉa(p1)̂̄cb(p2)Â⟂ c
1 (p3)Â

⟂ d
2 (p4)|0⟩ = p01𝒜cc̄AA

(
p1, a; p2, b; 𝜀

⟂
1 (p3), p3, c; 𝜀

⟂
2 (p4), p4, d

)
, (8.8b)

where 𝒜AAAA and 𝒜cc̄AA denote the four-gluon and two-ghost–two-gluon scattering amplitudes, respectively, with external particles
labelled by polarisation vectors, momenta, and colour indices. The hat indicates the Fourier transform. A standard Feynman diagram
computation then shows that

p02𝒜AAAA =
f adefe

bc√
2

{
(𝜀2 ⋅ 𝜀4)

[
(p1 ⋅ 𝜀3) + 2(p2 ⋅ 𝜀3)

]
− (𝜀3 ⋅ 𝜀4)

[
(p1 ⋅ 𝜀2) + 2(p3 ⋅ 𝜀2)

]
−

p02(p2 ⋅ 𝜀3)(p1 ⋅ 𝜀4)√
2
(
(p1 ⋅ p2) + (p1 ⋅ p3)

) − (𝜀2 ⋅ 𝜀3)(p1 ⋅ 𝜀4)

− 2(𝜀2 ⋅ 𝜀3)(p2 ⋅ 𝜀4) −
√
2p02(𝜀3 ⋅ 𝜀4)

}
+
f abefe

cd√
2

{
−

p02√
2(p1 ⋅ p2)

[
2(p1 ⋅ 𝜀4)(p2 ⋅ 𝜀3) − 2(p1 ⋅ 𝜀3)(p2 ⋅ 𝜀4)

]
−

p02√
2(p1 ⋅ p2)

[
(p1 ⋅ p2) − 2(p1 ⋅ p3)

]
(𝜀3 ⋅ 𝜀4) − (𝜀2 ⋅ 𝜀3)

[
(p1 ⋅ 𝜀4) + 2(p2 ⋅ 𝜀4)

]
+ (𝜀2 ⋅ 𝜀4)

[
(p1 ⋅ 𝜀3) + 2(p2 ⋅ 𝜀3)

]
− (𝜀3 ⋅ 𝜀4)

[
(p1 ⋅ 𝜀2) + 2(p3 ⋅ 𝜀2)

]}
+
f acefe

bd√
2

{p02(p1 ⋅ 𝜀3)(p2 ⋅ 𝜀4)√
2(p1 ⋅ p3)

+ (𝜀2 ⋅ 𝜀3)
[
(p1 ⋅ 𝜀4) + 2(p2 ⋅ 𝜀4)

]
− (𝜀2 ⋅ 𝜀4)

[
(p1 ⋅ 𝜀3) + 2(p2 ⋅ 𝜀3)

]
+ (𝜀3 ⋅ 𝜀4)

(
(p1 ⋅ 𝜀2) + 2(p3 ⋅ 𝜀2)

]
+
√
2p02(𝜀3 ⋅ 𝜀4)

}

(8.9a)

and

p01𝒜cc̄AA = f acefe
bd

p02(p1 ⋅ 𝜀3)(p2 ⋅ 𝜀4)

2(p1 ⋅ p3)
+ f abefe

cd
p02

(p1 ⋅ p2)

{
(p1 ⋅ 𝜀3)(p2 ⋅ 𝜀4) − (p1 ⋅ 𝜀4)(p2 ⋅ 𝜀3)

+
[
1
2
(p1 ⋅ p2) + (p1 ⋅ p3)

]
(𝜀3 ⋅ 𝜀4)

}
− f adefe

bc
p02(p1 ⋅ 𝜀4)(p2 ⋅ 𝜀3)

2
[
(p1 ⋅ p2) + (p1 ⋅ p3)

] . (8.9b)

The sum of both terms vanishes,

p02𝒜AAAA + p01𝒜cc̄AA = 0 , (8.10)

upon using momentum conservation, transversality of the physically polarised gluons, the explicit form of the on-shell polarisation
vectors (8.2), and the Jacobi identity. That is, the s-, t-, and u-channels are not related separately. This is not very surprising: as indicated
in Section 2.1, the four-point gluon vertex can be distributed in different ways to the various channels and each distribution would
imply a different relation between the channels of the two amplitudes. If we ensured colour–kinematics duality for the four-point
vertex, however, then the relation between the two amplitudes would hold for each individual channel.
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Whenwe come to discussing the double copy theory, we will be able to ensure BRST invariance of the action only on-shell. However,
from the construction of correlators fromFeynman diagrams it is clear that the action ofQYM, lin

BRST on the on-shell BRST-extendedHilbert
space will still be preserved, and we again have (8.5) with the corresponding link between scattering amplitudes with different number
of ghost–anti-ghost pairs:

Observation 8.3. Suppose that QYM
BRSTS

YM
BRST = 0 and (QYM

BRST)
2 = 0 only on-shell. Then, we still have an identification of scattering am-

plitudes with k + 1 ghost–anti-ghost pairs and all gluons transversely polarised and a sum of amplitudes with k ghost–anti-ghost
pairs.

Off-Shell Ward Identities: BRST invariance of the action, being a global symmetry, induces an off-shell Ward identity for correlation
functions,

⟨(𝜕𝜇 j𝜇(x))𝒪1(x1)⋯𝒪n(xn)⟩ =
n∑
i=1

∓𝛿(d)(x − xi)

⟨
(QBRST𝒪i(xi))

∏
j≠i

𝒪j(xj)

⟩
, (8.11)

where j𝜇 is the BRST current and the sign is the Koszul sign arising from permuting operators of non-vanishing ghost number. Note
that in general,QYM

BRST is the renormalised BRST operator of the full quantum theory, cf. [[287], Chapter 17.2]. As we will always discuss
tree-level correlators, however, we can restrict ourselves to the classical BRST operator with action (8.3). We note that the left-hand
side of (8.11) vanishes after integration over x and the Ward identity simplifies to

0 =
n∑
i=1

±

⟨
(QYM

BRST𝒪i(xi))
∏
j≠i

𝒪j(xj)

⟩
. (8.12)

When applying Ward identities to correlation functions, we can use Observation 8.1 to restrict the correlation functions to purely
connected correlators, i.e. the contribution arising from connected Feynman diagrams. Moreover, we can restrict the correlation
functions to a particular order in the coupling constant g. This implies that for operators linear in the fields we can truncate the action
of the BRST operator QYM

BRST to the Abelian action.
As a short explicit example, let us consider (8.12) for the special case n = 3 with

�̂�1 = Âa↑
𝜇
(p1) , �̂�2 = ̂̄cb(p2) , �̂�3 = Âc↑

𝜇
(p3) , (8.13)

and we switched to momentum space for simplicity. We obtain the identity

𝖯↑
𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3)

(⟨Âa↑
𝜇′
(p1)b̂

b(p2)Â
c↑
𝜈′
(p3)⟩ + ⟨p1𝜇′ ĉa(p1)̂̄cb(p2)Âc↑

𝜈′
(p3)⟩ − ⟨Âa↑

𝜇′
(p1)̂̄c

b(p2)p3 𝜈′ ĉ
c(p3)⟩) = 0 , (8.14)

where 𝖯↑
𝜇
𝜇′ (p) is the projector onto (off-shell) forward polarised gluons. Explicitly,

𝖯↑
𝜇
𝜈(p) := p𝜇

(p ⋅ p̃)
(p ⋅ p̃)2 − (p ⋅ p)2

[
p̃𝜈 −

(p ⋅ p)
(p ⋅ p̃)

p𝜈
]
,

𝖯↓
𝜇
𝜈(p) := p̃𝜇

(p ⋅ p̃)
(p ⋅ p̃)2 − (p ⋅ p)2

[
p𝜈 −

(p ⋅ p)
(p ⋅ p̃)

p̃𝜈
]
,

(8.15)

where p̃𝜇 is p𝜇 with spatial components reverted.
The relevant vertices are clearly the cubic gluon vertex to which b̂b(p2) is linked by a propagator, as well as the ghost–anti-ghost–gluon

vertex. At the tree-level, we thus obtain

𝖯↑
𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3) ⟨Âa↑

𝜇′
(p1)b̂

b(p2)Â
c↑
𝜈′
(p3)⟩ = f abc𝖯↑

𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3)

[
p2𝜇′p1𝜈′ − p3𝜇′p2𝜈′ + 𝜂𝜇′𝜈′ (p3 − p1) ⋅ (𝖯

↓(p2) ⋅ p2)
]
,

𝖯↑
𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3) ⟨p1𝜇′ ĉa(p1)̂̄cb(p2)Âc↑

𝜈′
(p3)⟩ = f abc𝖯↑

𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3)p1𝜇′p2𝜈′ ,

𝖯↑
𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3) ⟨Âa↑

𝜇′
(p1)̂̄c

b(p2)p3 𝜈′ ĉ
c(p3)⟩ = f cba𝖯↑

𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3)p3𝜈′p2𝜇′ . (8.16)

The sum of these three terms is

f abc𝖯↑
𝜇
𝜇′ (p1)𝖯

↑
𝜈
𝜈′ (p3)𝜂𝜇′𝜈′

[
(p3 − p1) ⋅ (𝖯

↓(p2) ⋅ p2)
]
, (8.17)

which vanishes after inserting the explicit expressions (8.15).
We conclude with the following observation.

Observation 8.4. We have Ward identities between tree-level correlation functions.
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8.2. Quantum Equivalence, Correlation Functions, and Field Redefinitions

Let us now leave the special case of Yang–Mills theory for a moment and reconsider notions of equivalence between field theories in
general. As discussed in Section 4.3, two field theories are classically equivalent if they are quasi-isomorphic and thus have a common
minimal model. In the same section, it was explained how the minimal model of a field theory is constructed using the homological
perturbation lemma.
Perturbative Quantum Equivalence: For the full quantum equivalence at the perturbative level, we have the following evident state-

ment.

Observation 8.5. Two field theories are perturbatively quantum equivalent if all correlators built from polynomials of fields and their
derivatives agree to any finite order in coupling constant and loop level. Since correlators can be glued together from tree-level corre-
lators (up to regularisation issues), it suffices if the tree level correlators agree.

We stress that we are only interested in the integrands of scattering amplitudes, which allows us to ignore all issues related to
regularisation.
To provide a link between the double-copied action and the action of  = 0 supergravity, we will need to perform a sequence of

field redefinitions. The field content of the theories will be the same from the outset, and we choose to work with the same path
integral measure in both cases. We are therefore interested in field redefinitions that leave the path integral measure invariant.
There are large classes of such field redefinitions. The most evident such class of field redefinitions is

𝜙 → �̃� := 𝜙 + f (𝜙′
1,… ,𝜙′

n) , (8.18)

where f is a polynomial function of a set of fields {𝜙′
1,… ,𝜙′

n} and their derivatives with 𝜙 ∉ {𝜙′
1,… ,𝜙′

n}. Under such a field redefini-
tion, the path integral measure remains unchanged; this becomes evident when imagining the finite-dimensional analogue of volume
forms and a coordinate shifted by a function of different coordinates.
More subtle is the fact that field redefinitions of the form

𝜙 → �̃� := 𝜙 + (𝜙2) , (8.19)

where (𝜙2) denotes local polynomial functions in arbitrary fields and their derivatives which are at least of quadratic order in 𝜙 can
also be considered as leaving the path integral measure invariant.
Invariance of the S-matrix under (8.19) without derivatives is captured by the Chisholm–Kamefuchi–O’Raifeartaigh–Salam equiv-

alence theorem.[288,289] A proof using the BV formalism of perturbative quantum equivalence for local field redefinitions of the
form (8.19) allowing for derivatives was given in [290]. This is sufficient for our purposes as we are only concerned with the integrands
of scattering amplitudes. Note, however, the well-known need to choose the counter-terms consistently, as emphasised in [290]. With
this in mind, the simplest approach is to use dimensional regularisation, since (8.19) produces a Jacobian which is then regulated to
unity, see [291, 292] as well as [[293], Sections 18.2.3–4].
We sum up the above discussion as follows.

Observation 8.6. A shift of a field by products of fields and their derivatives which do not involve the field itself does not change the path
integral measure. Local field redefinitions that are trivial at linear order are quantum mechanically safe as they produce a Jacobian
that can be regulated to unity in dimensional regularisation.

Nakanishi–Lautrup Field Shifts and Changes of Gauge: Besides field redefinitions, we also adjust our choice of gauge to link equiv-
alent field theories. In particular, we can shift the usual choice (5.13) for R𝜉 -gauge to

Ψ → Ψ + Ξ with Ξ := ∫ ddx c̄aYa . (8.20)

Here, Ya is of ghost number zero, and we limit ourselves to terms Ya that are independent of the Nakanishi–Lautrup field. The
shift (8.20) leads to a shift of the gauge-fixed Lagrangian (5.15) given by

ℒYM
BRST → ℒYM

BRST +
𝛿Ξ
𝛿Aa

𝜇

(∇𝜇c)a +
g
2
fbc

a 𝛿Ξ
𝛿ca

cbcc − ba 𝛿Ξ
𝛿c̄a

. (8.21)

Evidently, this new Lagrangian is quantum-equivalent to the one with Ya = 0, as we merely chose to work in a different gauge.
Subsequently, we may perform the shift

ba → ba + Za (8.22)
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in the Nakanishi–Lautrup field with Za polynomials in the fields and their derivatives. The combination of this shift and (8.20) results
in

ℒYM
BRST → ℒYM

BRST +
𝛿Ξ
𝛿Aa

𝜇

(∇𝜇c)a +
g
2
fbc

a 𝛿Ξ
𝛿ca

cbcc + 𝜉
2
ZaZ

a + Za(𝜉b
a + 𝜕𝜇Aa

𝜇
) − (ba + Za) 𝛿Ξ

𝛿c̄a
. (8.23)

We shall assume that Za is independent of the Nakanishi–Lautrup field as this will yield a quantum-equivalent Lagrangian by Ob-
servation 8.6. We shall also assume that Za depends at least quadratically on the other fields and their derivatives to preserve the
linearised BRST action on the BRST-extended Hilbert space introduced in Section 8.1.
Interaction Terms Linear in the Nakanishi–Lautrup Fields: Let us now consider the following special case: suppose that we are in

R𝜉 -gauge and that our Lagrangian contains a term Za𝜕
𝜇Aa

𝜇
with Za independent of the Nakanishi–Lautrup field and at least quadratic

in the fields and their derivatives. On the physical Hilbert space with transversely polarised gluons, such expressions vanish. Off-shell,
we can still remove such terms by the shifts (8.22). Given the need to shift by Za, we can then iteratively construct a Ya which cancels
any new terms linear in ba, as is clear from (8.23). Explicitly, we solve the equation

0 = 𝜉Za −
𝛿Ξ
𝛿c̄a

= 𝜉Za − Ya + c̄b
𝜕Yb

𝜕c̄a
+⋯ , (8.24)

where the ellipsis denotes terms containing partial derivatives with respect to derivatives of the anti-ghost field c̄b. Clearly, for consis-
tency, Ya needs to be at least quadratic in the fields and their derivatives because Za is. We are left with the terms

− 𝜉
2
ZaZ

a + 𝛿Ξ
𝛿Aa

𝜇

(∇𝜇c)a +
g
2
fbc

a 𝛿Ξ
𝛿ca

cbcc , (8.25)

which are either at least quartic in the fields or at least cubic in the fields, containing ghost fields. The ability to remove any terms
of the form Za(𝜕

𝜇A𝜇)
a through local shifts of the Nakanishi–Lautrup field, absorbing them into ba, and a compensating gauge choice

is the ‘off-shell’ Lagrangian analogue of being able to impose that the on-shell external gluons in an amplitude are transverse. We
summarise as follows.

Observation 8.7. Interaction terms in the Lagrangian of degree n ≥ 3 of the form Za(𝜕
𝜇A𝜇)

a with Za independent of the Nakanishi–
Lautrup field can be removed in R𝜉 -gauge by shifting the Nakanishi–Lautrup field according to (8.22). This creates the additional
terms (8.25), which do not modify the scattering amplitudes by Observation 8.6 and, in addition, contribute only to interaction vertices
of degree n with more ghost–anti-ghost pairs or to interaction vertices of degree greater than n.

We also note that a shift of the gauge-fixing fermion by itself (8.20) allows us to absorb physical terms proportional to the Nakanishi–
Lautrup field without further affecting the physical sector.

Observation 8.8. Terms in the action that are proportional to the Nakanishi–Lautrup field can be absorbed by choosing a suitable term
Ya. This leaves the physical sector invariant but it may modify the ghost sector. Because Nakanishi–Lautrup fields appear via trivial
pairs in the BV action, this extends to general gauge theories, e.g. with several Nakanishi–Lautrup fields and ghosts–for–ghosts.

Actions Related by Field Redefinitions: Let us return to a general setting. Suppose that we are given two classical field theories which
are specified by local actions S and S̃, as power series in the fields and their derivatives, whose corresponding L∞-algebras have the
same minimal model, the same field content and the same kinetic parts.
Consider the cubic interaction terms ℒ3 and ℒ̃3 in S and S̃. Since the three-point amplitudes agree, these interaction terms can

differ at most in terms that vanish on external fields. Therefore, these terms have to be proportional to either the on-shell equation
for an external field or to a field with unphysical polarisation which is not contained in the external fields. Both types of terms can be
cancelled by a local field redefinitionwhich shifts the discrepancy into the quartic and higher interaction terms. Such field redefinitions
constitute quasi-isomorphisms of L∞-algebras and leave the tree-level scattering amplitudes unmodified. We are left with two theories
with the same tree-level scattering amplitudes and with the same interaction terms to cubic order.
The discrepancy between the total quartic terms of both field theories after the above field redefinition is again invisible at the level

of external fields, because the tree-level scattering amplitudes still agree. We then compensate again by further field redefinitions,
shifting the discrepancy into quintic and higher interaction terms. In this way, we can remove the differences between the Lagrangians
order by order in the interaction vertices, field-redefining the difference away to higher order interaction vertices. Since we are merely
interested in perturbation theory, agreements to arbitrary finite orders are completely sufficient.
Altogether, we can conclude that for the purpose of perturbative quantumfield theory, we can regard the actions S and S̃ to be related

by local field redefinitions. In certain cases it is even possible to give closed all order expression for (part of) the field redefinitions,
providing a formal non-perturbative equivalence.

Observation 8.9. If two field theories have the same tree-level scattering amplitudes, then the minimal models of the corresponding
L∞-algebras coincide, cf. [178, 210]. If also the associated actions are local and given by power series of the fields and their derivatives,
and have the same field content and kinetic parts, then they are related by local (invertible) field redefinitions.
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The explicit example of Yang–Mills theory may be instructive. Consider the action (7.10) of Yang–Mills theory in R𝜉 -gauge with the
field redefinitions (7.8) implemented as in Section 7.2 and consider an action S̃ with the same fields, the same kinematic parts and
identical tree-level scattering amplitudes. The discrepancies in the interaction vertices at each order are proportional to (at least) one
of the terms

Ã↑ a
𝜇

,
√
□ b̃a + 𝜉𝜕𝜇Ãa

𝜇
, □ Ãa

𝜇
, □ c̃a , □ ̃̄ca , and □ b̃a . (8.26)

Given the BRST invariance, we can always exclude terms proportional to Ã↑ a
𝜇
, as these can be absorbed by residual gauge transforma-

tions. Terms proportional to
√
□b̃a + 𝜉𝜕𝜇Ãa

𝜇
can be absorbed by a field redefinition of the Nakanishi–Lautrup field due to Observa-

tion 8.7. All remaining differences are sums of terms proportional to□ Ãa
𝜇
,□ c̃a,□ ̃̄ca, or□ b̃a, and they can be absorbed by iterative

field redefinitions, starting with the three-point amplitudes. There is an evident field redefinition of the relevant field, quadratic in
the fields and their derivatives, such that the kinetic term of redefined Yang–Mills theory produces the difference in kinetic terms.
Since such a field redefinition is a quasi-isomorphism of the corresponding L∞-algebras, it preserves the minimal model and thus the
tree-level amplitudes. Moreover, such a field redefinition is clearly local.

8.3. Strictification of Yang–Mills Theory

Generalities: An important structure theorem for homotopy algebras is the strictification theorem, cf. Section A.4. In particular,
it implies that any L∞-algebra is quasi-isomorphic to a strict L∞-algebra, i.e. an L∞-algebra with 𝜇i = 0 for i ≥ 3, better known as a
differential graded Lie algebra.
From a field theory perspective, this implies that any classical field theory is equivalent to a classical field theory with interaction

terms which are all cubic in the fields. Generically, a strictifying quasi-isomorphismmay produce non-local terms, but there is always
a systematic choice of strictification that is entirely local. This is quite evident for the interactions of scalar fields, since we can ‘blow
up’ n-ary vertices to cubic graphs with edges corresponding to propagating auxiliary fields, cf. e.g. the discussions in [178, 210].
As a simple example of a strictification, consider the first-order formalism of Yang–Mills theory on four-dimensional Euclidean

space ℝ4,[250] in which an additional self-dual two form B+ ∈ Ω2
+(ℝ

4)⊗ 𝔤 in the adjoint representation of the gauge Lie algebra is
added to the field content,

SYM1 := ∫ d4x
{

1
2
𝜀𝜇𝜈𝜅𝜆Fa𝜇𝜈B

a
+𝜅𝜆 +

1
4
𝜀𝜇𝜈𝜅𝜆B+a𝜇𝜈B

a
+𝜅𝜆

}
. (8.27)

The L∞-algebra corresponding to the full BV complex of this theory is indeed strict; see [178, 193] for a quasi-isomorphism between
this L∞-algebra and that of the ordinary, second-order formulation of Yang–Mills theory.
Note, however, that the full strictification of gauge theories including ghosts is a bit more involved: the equations of motion of

the introduced auxiliary fields would be at least quadratic in other fields, and if these transform in the adjoint representation or as
connections, the gauge transformations of auxiliary fields are at least cubic in fields and ghosts, leading to quartic or higher terms
in the BV action. The strictification theorem still guarantees the existence of an equivalent formulation as a field theory with cubic
interaction vertices, but we may have to extend our field space not merely by adding fields, but by switching e.g. to its loop space. This
is due to the fact that cubic gauge transformations in an L∞-algebra are encoded in a 𝜇3, which in turn corresponds to a particular
three-cocycle. The latter can be transgressed to a two-cocycle over loop space, which merely corresponds to a Lie algebra extension
and thus, is turned into a higher product 𝜇2. For fully gauge-fixed actions, however, this problem never arises.
We also note that the factorisation in the double copy is most easily performed in a specific strictification44, which is not the first

order formulation (8.27). Its precise form is discussed in the following.
Colour–Kinematics-Dual form and Cubic Diagrams: Recall from Section 2.2 that the tree-level Yang–Mills amplitudes can be rear-

ranged in colour–kinematics-dual form, which is by now a well-established fact.[7,8,25,26,28,29,235,294,295]

Observation 8.10. The tree amplitudes of Yang–Mills theory can be written in colour–kinematics-dual form.

Explicitly, one can construct a Lagrangian whose Feynman diagrams generate colour–kinematics-dual tree-level amplitudes of
physical (transverse) gluons in Yang–Mills theory, making colour–kinematics duality manifest at the Lagrangian level. This is achieved
by adding non-local interaction terms (An), for all n > 5, to the action that vanish identically due to the colour Jacobi identity. The
necessary terms were first constructed in [6] up to six points. The algorithm of Tolotti–Weinzierl[80] is a prescription of how to find
the necessary terms to arbitrary order.
Since the new terms are identically zero, they obviously leave the theory and amplitudes invariant, but nonetheless change the indi-

vidual kinematic numerators to realise colour–kinematics duality. Moreover, the new terms can be rendered cubic and local through
the introduction of auxiliary fields,[9] as demonstrated explicitly at five points in [6]. Roughly speaking, one starts from Yang–Mills

44 It is actually a family of strictifications.
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theory and strictifies the already present quartic interaction vertex by inserting an auxiliary field, redistributing the contributions to
ensure colour–kinematics duality for four-point amplitudes. The colour–kinematics duality of the five-point amplitudes then requires
a new interaction term (A5) which vanishes due to the Jacobi identity. This vertex is then strictified by inserting further auxiliary
fields, etc. The overall action is thus trivially equivalent to Yang–Mills theory. We note that the form of the strictification is encoded in
the action produced by the Tolotti–Weinzierl algorithm.We shall be completely explicit below, but let us first summarise the situation.

Observation 8.11. Given tree-level physical gluon amplitudes in colour–kinematics-dual form, there is a corresponding purely cubic
Lagrangian whose Feynman diagrams (summed over identical topologies) produce kinematic numerators satisfying the kinematic
Jacobi identities.

To illustrate the strictification, let us consider the four- and five-point contributions, which were already computed in [6]:

ℒ(4) ∼ tr
{
[A𝜇 , A𝜈 ][A

𝜇 , A𝜈 ]
}

= −𝜂𝜇𝜈𝜂𝜅𝜌𝜂𝜆𝜎 𝜕12
𝜇
𝜕34
𝜈

tr
{
[A𝜅 , A𝜆][A𝜌, A𝜎 ]

}
□12

,

ℒ(5) ∼ tr
{
[A𝜈 , A𝜌] 1

□

([
[𝜕𝜇A𝜈 , A𝜌],

□
□
A𝜇

]
+
[
[A𝜌, A

𝜇 ],
□
□
𝜕𝜇A𝜈

]
+
[
[A𝜇 , 𝜕𝜇A𝜈 ],

□
□
A𝜌

])}
.

(8.28)

We immediately note that ℒ(5) vanishes by the colour Jacobi identity. Its presence, however, is required for the kinematic Jacobi
identity to hold after factorisation.
As explained in Section 2.4, these terms reflect a ‘blow up’ of n-point interaction vertices into trees with trivalent vertices and all

symmetries taken into account:

n= 4 :

1 3

2 4

,

1 2

3 4

,

1 2

4 3

,

n= 5 :

1 3 4

2 5

,

1 4 3

2 5

, . . .

(8.29)

Here, an internal wavy line comes with a propagator in Feynman gauge 1
□
, while a dashed line corresponds to the identity operator

□
□
.
The general Lagrangian at n-th order is then of the form

ℒ(n) = fM1⋯Mk
EM1
1 D1(E

M2
2 D2(E

M3
3 D3 ⋯)) , (8.30)

where Di stands for either
1
□
or □

□
and the Mis are Lorentz multi-indices. Note that all the Eis are polynomials of degree one or two

in the fields. In the tree picture, the wave operators in the denominator correspond precisely to the edges in the trees.
Strictification: To strictify the non-local action, we now iteratively insert auxiliary fields GM

n,Γ,i and Ḡ
n,Γ,i
M for each operator Di. If we

are dealing with an operator of the form □
□
, we first use partial integration

EM1
1 □1 E

M2
2

□1
= −

(𝜕𝜇E
M1
1 )(𝜕𝜇EM2

2 )

□1
, (8.31)

where EM
i is an arbitrary expression in the fields, derivatives, and auxiliary fields. We then use the fact that the Lagrangians

EM
1
1
□
E2M (8.32a)

and

−GM
n,Γ,i □ Ḡn,Γ,i

M +GM
n,Γ,iE

2
M + EM

1 Ḡ
n,Γ,i
M (8.32b)
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are physically equivalent after integrating out the auxiliary fields GM
n,Γ,i and Ḡn,Γ,i

M . We iterate this process until all the inverse wave
operators have been replaced in this manner.
We note that in each iteration, EM

1 and E2M are both polynomials of degree at least two in the fields. Introducing the auxiliary
fields reduces the polynomial degree at least by one, and in the end, the action has indeed only cubic interaction terms and thus is a
strictification of the original action. We also note that two auxiliary fields can be combined into one if they have identical equations of
motion.
Homotopy Algebraic Perspective: The strictification 𝔏YM, st

BRST of the L∞-algebra 𝔏YM
BRST or, equivalently, of the colour–kinematics-dual

action is nothing but a quasi-isomorphism (see Appendix A.3)

𝜙 : 𝔏YM
BRST → 𝔏YM, st

BRST , (8.33)

and the map 𝜙 is given by

Ast +
∑
n,Γ,i

Gn,Γ,i = 𝜙1(A) +
1
2
𝜙2(A,A) +⋯ =

∑
k≥1

1
k!
𝜙k(A,… , A) , (8.34)

where Ast is the gauge potential in 𝔏YM, st,

Ast = 𝜙1(A) , (8.35)

and the higher maps are such that Gn,Γ,i are given by their equations of motion, fully reduced to expressions in the original gauge
potential A.
Let us work out the details for the example of the fourth- and fifth-order terms (8.28). The explicit form of the corresponding

strictified Lagrangian is already found in [6],

ℒYM, st := 1
2
tr
{
A𝜇□A𝜇

}
+ℒYM, st

4 +ℒYM, st
5 , (8.36a)

with

ℒYM, st
4 := tr

{
− 1

2
G𝜇𝜈𝜅4,Γ,1 □G4,Γ,1

𝜇𝜈𝜅
− g(𝜕𝜇A𝜈 +

1√
2
𝜕𝜅G4,Γ,1

𝜅𝜇𝜈
)[A𝜇 , A𝜈 ]

}
,

ℒYM, st
5 := tr

{
G𝜇𝜈5,Γ,1 □ Ḡ5,Γ,1

𝜇𝜈
+G𝜇𝜈𝜅5,Γ,2 □ Ḡ5,Γ,2

𝜇𝜈𝜅
+G𝜇𝜈𝜅𝜆5,Γ,3 □ Ḡ5,Γ,3

𝜇𝜈𝜅𝜆
+ gG𝜇𝜈5,Γ,1[A𝜇 , A𝜈 ] + g𝜕𝜇G

𝜇𝜈𝜅
5,Γ,2[A𝜈 , A𝜅 ]

− g

2
𝜕𝜇G

𝜇𝜈𝜅𝜆
5,Γ,3 [𝜕[𝜈A𝜅], A𝜆] + gḠ𝜇𝜈5,Γ,1

(
1
2
[𝜕𝜅Ḡ5,Γ,2

𝜅𝜆𝜇
, 𝜕𝜆A𝜈 ] + [𝜕𝜅Ḡ5,Γ,3

𝜅𝜆𝜈[𝜇 , A
𝜆]
)}

.

(8.36b)

Consequently, the resulting quasi-isomorphism reads as

𝜙1(A) +
1
2
𝜙2(A,A) +

1
3!
𝜙3(A,A, A) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

As
𝜇

G4,Γ,1
𝜇𝜈𝜅

G5,Γ,1
𝜇𝜈

Ḡ5,Γ,1
𝜇𝜈

G𝜇𝜈𝜅5,Γ,2

Ḡ5,Γ,2
𝜇𝜈𝜅

G𝜇𝜈𝜅𝜆5,Γ,3

Ḡ5,Γ,3
𝜇𝜈𝜅𝜆

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A𝜇
g

2□
𝜕𝜇 [A𝜈 , A𝜅 ]

− g2

2□

(
[[A𝜆, A𝜇 ], 𝜕

𝜆A𝜈 ] − [[𝜕[𝜆A𝜈], A𝜇 ], A
𝜆]
)

− g

□
[A𝜇 , A𝜈 ]

− g2

2□
𝜕𝜇

[
𝜕𝜈A𝜆,

1
□
[A𝜅 , A𝜆]

]
g

□
𝜕𝜇 [A𝜈 , A𝜅 ]

− g2

□
𝜕𝜇

[
A𝜈 , 1

□
[A𝜆, A𝜅 ]

]
− g

2□
𝜕𝜇 [𝜕[𝜈A𝜅], A𝜆]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.37)

Note that the decomposition into the images of the maps 𝜙i corresponds to the decomposition of the image into monomials of power
i in the fields.
Tree-Level Double Copy: As reviewed in Section 2.3, the double copy of the kinematic numerators in the scattering amplitudes of

the strictified Yang–Mills theory produces the tree-level scattering amplitudes of = 0 supergravity.[4–6]

Observation 8.12. Double copying the Yang–Mills tree-level scattering amplitudes of physical gluons in colour–kinematics-dual form
yields the physical tree-level scattering amplitudes of = 0 supergravity.
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Compatibility with Quantisation: It is clear that quantisation does not commute with quasi-isomorphisms: classically equivalent
field theories can have very different quantum field theories. A simple example making this evident is the L∞-algebra of Yang–Mills
theory 𝔏YM

BRST and one of its quasi-isomorphic minimal models 𝔏YM ◦
BRST. The vector space of 𝔏

YM ◦
BRST is simply the free fields labelling

external states in Yang–Mills scattering amplitudes, together with some irrelevant cohomological remnants in the ghosts, Nakanishi–
Lautrup fields, and anti-ghosts. The tree-level scattering amplitudes of 𝔏YM

BRST are given by the higher products of 𝔏
YM ◦
BRST. They are also

the tree-level scattering amplitudes of 𝔏YM ◦
BRST since there are no propagating degrees of freedom left. Clearly, however, there are loop-

level scattering amplitudes in Yang–Mills theory which 𝔏YM
BRST can describe but which are absent in 𝔏YM ◦

BRST. Thus, the quantum theories
described by the quasi-isomorphic L∞-algebras 𝔏YM

BRST and 𝔏YM ◦
BRST differ.

Certainly, there are quasi-isomorphisms which are compatible with quantisation. In particular, any quasi-isomorphism that corre-
sponds to integrating out fields which appear at most quadratically in the action are of this type: we can simply complete the square
in the path integral and perform the Gaußian integral. This amounts to replacing each auxiliary field by the equation of motion.
This is precisely the case in the above strictification of Yang–Mills theory, and the original formulation is quantum equivalent to

its strictification. This is also clear at the level of Feynman diagrams: as the kinematic terms are all of the form −GM
n,Γ,i □ Ḡn,Γ,i

M , each
auxiliary field propagates into precisely one other auxiliary field. Moreover, each auxiliary field G appears in precisely one type of
vertex and then only as one leg. That is, once a propagator ends in one of the auxiliary fields, the continuation of the diagram at this
end is unique until all the remaining open legs are non-auxiliaries. There are no loops consisting of purely auxiliary fields. All loops
containing at least one gluon propagator are simply contracted to gluon loops. It is thus clear that the degrees of freedom running
around loops in the strictified theory are the same as those running around loops in ordinary Yang–Mills theory.

8.4. Colour–Kinematics Duality for Unphysical States

The action and factorisationwe have presented so far are the complete data to double copy tree-level gauge theory scattering amplitudes
to gravity scattering amplitudes. For the full double copy at the loop level, however, we need to work a bit harder, as explained in our
previous paper.[9]

So far, colour–kinematics duality is only ensured for all on-shell gluon states with physical polarisation. Our goal will be to double
copy arbitrary tree-level correlators, which can have unphysical polarisations of gluons as well as ghost states on external legs. We
therefore need to ensure that colour–kinematics duality holds more generally. In order to establish the off-shell double copy it is
sufficient to guarantee colour–kinematics duality for on-shell states in the BRST-extended Hilbert space from section 8.1.
Unphysical States: Colour–kinematics duality is not affected by forward-polarised gluons, as these can be absorbed by residual

gauge transformations. Furthermore, colour–kinematics duality for backward-polarised gluons can be achieved by adding new terms
to the action, which are physically irrelevant since they are introduced only through the gauge-fixing fermion. Colour–kinematics dual-
ity for ghosts is then achieved by transferring colour–kinematics duality for longitudinal gluons to the ghost sector by Observation 8.2
via the BRST Ward identities. We now explain the procedure in detail.
We perform the corrections order by order in the degree n of the vertices and for each degree order by order in the number k

of ghost–anti-ghost pairs. The first vertex to consider is n = 4, and we start at k = 0. Colour–kinematics duality for four on-shell
gluons in the BRST-extended Hilbert space can only be violated by terms proportional to 𝜉ba + 𝜕𝜇Aa

𝜇
, and we can introduce a vertex

compensating these violations in the Lagrangian.
A short calculation shows that the vertex correcting the violation of colour–kinematics duality for longitudinal gluons at four points

is given by

g2(𝜕𝜌Ab
𝜌
)Ac𝜇 1

□

[
(𝜕𝜈Ad

𝜇
)Ae
𝜈

]
fed

afacb . (8.38)

Unlike the vertices added to make colour–kinematics duality manifest for transverse gluons, which are identically zero, the above
is non-vanishing. It cannot be simply added to the Yang–Mills Lagrangian without changing the amplitudes. However, since it is
proportional to 𝜕𝜌A𝜌 (as had to be the case, since its contribution to the kinematic numerators must vanish for transverse gluons) we
can employ Observations 8.7 and 8.8. Using Observation 8.7 we shift

ba → ba + Za , with Za := g2Ac𝜇 1
□

[
(𝜕𝜈Ad

𝜇
)Ae
𝜈
)
]
fed

bfbc
a , (8.39)

which introduces (8.38) while leaving the amplitudes invariant. It also has the unimportant, but inconvenient with respect to the
double copy, effect of adding 𝜉baZ

a. Using Observation 8.8 this term can be eliminated by shifting the gauge-fixing function by

Ya := −𝜉Za , (8.40)
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which produces

ℒYM, comp
n=4, k=0 = −𝜉QBRST(c̄

aZa)

= −𝜉bbZb + g2c̄b QBRST

(
Ac𝜇 1

□

[
(𝜕𝜈Ad

𝜇
)Ae
𝜈

])
fed

afacb ,
(8.41)

The first term cancels the 𝜉baZ
a term generated by (8.39), while the second term generates higher-point ghost interactions that will

be dealt with at the next iterative step with n = 4, k = 1. The total correction to the Lagrangian is then

ℒYM, corr
n=4, k=0 = g2

{
(𝜕𝜌Ab

𝜌
)Ac𝜇 1

□

[
(𝜕𝜈Ad

𝜇
)Ae
𝜈

]
+ c̄b QBRST

(
Ac𝜇 1

□

[
(𝜕𝜈Ad

𝜇
)Ae
𝜈

])}
fed

afacb . (8.42)

where the first term enforces colour–kinematics duality for longitudinal gluons and the second ensures BRST invariance. We note
that the terms in ℒYM, corr

n=4, k=0 come with a canonical strictification given by the colour structure. This strictification then yields colour–
kinematics-dual four-point gluon scattering amplitudes.
The next case to consider is n = 4, k = 1. We now use Observation 8.2 to relate the four-gluon scattering amplitude to this scattering

amplitude, and, correspondingly, the four-gluon tree-level scattering amplitude to the two gluon, one ghost-anti-ghost pair tree-level
scattering amplitude. We obtain colour–kinematics duality for scattering amplitudes consisting of a ghost–anti-ghost pair as well as
two physically polarised gluons. Generalising the latter to two arbitrary gluons in the BRST-extended Hilbert space, we expect colour–
kinematics duality violating terms proportional to 𝜉ba + 𝜕𝜇Aa

𝜇
. It turns out that these terms happen to vanish and there is nothing left

to do. Note that if these terms had not vanished, we would have compensated for them again by inserting physically irrelevant terms
to the action in a BRST-invariant fashion.
Observation 8.2 now immediately implies that the scattering amplitudes for n = 4, k = 2 are colour–kinematics-dual, because those

for n = 4, k = 1 are.
So far, we constructed a strict Lagrangian for Yang–Mills theory with the same tree-level scattering amplitudes for the BRST-

extended Hilbert space as ordinary Yang–Mills theory, but with a manifestly colour–kinematics-dual factorisation of the four-point
scattering amplitudes.
We now turn to n = 5, k = 0 and iterate our procedure in the evident fashion:

Step 1) Identify the colour–kinematics duality violating terms. They are necessarily proportional to 𝜉ba + 𝜕𝜇Aa
𝜇
.

Step 2) Compensate by inserting a corresponding non-local vertex. Complete the compensating term to a BRST-invariant one, which
may be deduced directly via the gauge-fixing fermion.

Step 3) The colour structure of the vertices induces a canonical strictification, implement this strictification.
Step 4) Use Observation 8.2 to transfer colour–kinematics duality to tree-level scattering amplitudes with onemore ghost–anti-ghost

pair, but all other gluons physically polarised.
Step 5) Continue with Step 1), if there is room for backward-polarised gluons. Otherwise turn to the next higher n-point scattering

amplitudes.

The outcome of this construction is a strictified BRST action for Yang–Mills theory which is perturbatively quantum equivalent to
ordinary Yang–Mills theory and whose scattering amplitudes come canonically factorised in colour–kinematics-dual form.
We note that this action comes with a BRST operator which is cubic in the fields of the BRST-extended Hilbert space, but of higher

order in its action on the auxiliary fields introduced in the strictification.

9. Double Copy from Factorisation of Homotopy Algebras

We now turn to the factorisation of the full, interacting theories. In this case, the double copy procedure is implied by the factorisations

�̃�YM, st
BRST = 𝔤⊗ (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩) and �̃�=0, st

BRST = 𝔎𝔦𝔫st ⊗𝜏 (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩) , (9.1)

which now hold at the level of strict homotopy algebras. In order to establish these factorisations, we use the definition of twisted
tensor products of differential graded algebras we presented in (6.21).

9.1. Biadjoint Scalar Field Theory

Let us start with a brief consideration of the factorisation of biadjoint scalar field theory, cf. Section 5.1. This theory does not require
any twists, and we lift the factorisation of cochain complexes (7.3) to the factorisation

𝔏biadj
BRST = 𝔤⊗ (�̄�⊗𝔖𝔠𝔞𝔩) (9.2)
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into (strict) L∞-algebras. In general, a tensor product between a Lie algebra and an L∞-algebra is not well-defined; in particular, it is
not a homotopy version of any of the products in the list (6.1). However, for nilpotent L∞-algebras, i.e. L∞-algebras with 𝜇i◦𝜇j = 0,
the product exists and yields a C∞-algebra. The latter is then further tensored by a Lie algebra in the canonical way as explained in
Section 6.1, leading to an L∞-algebra.
L∞-Algebra𝔖𝔠𝔞𝔩: Explicitly, the L∞-algebra𝔖𝔠𝔞𝔩 is built from the cochain complex (7.4),

𝔖𝔠𝔞𝔩 :=

(
𝚜x

𝔉[−1]
□
←←←←←←←←←←←←←→

𝚜+x
𝔉[−2]

)
, (9.3a)

and the only non-vanishing higher product beyond the differential 𝜇𝔖𝔠𝔞𝔩
1 is

𝜇𝔖𝔠𝔞𝔩
2

(
∫ ddx1 𝚜x1𝜑1(x1),∫ ddx2 𝚜x2𝜑2(x2)

)
:= 𝜆∫ ddx 𝚜+x𝜑1(x)𝜑2(x) . (9.3b)

Evidently,𝔖𝔠𝔞𝔩 is nilpotent.
Factorisation: Following the prescription for the untwisted tensor product of strict homotopy algebras from Section 6.1, we obtain

the binary product

𝜇2(𝚎a ⊗ �̄�ā ⊗ 𝚜x1 , 𝚎b ⊗ �̄�b̄ ⊗ 𝚜x2 ) = [𝚎a, 𝚎b]⊗ [�̄�ā, �̄�b̄]⊗ 𝜆𝛿(d)(x1 − x2)𝚜+x1 , (9.4)

which, together with the differential

𝜇1(𝚎a ⊗ �̄�ā ⊗ 𝚜x1 ) = 𝚎a ⊗ �̄�ā ⊗□ 𝚜+x1 , (9.5)

and the cyclic structure

⟨𝜑,𝜑+⟩ = ∫ ddx𝜑aā(x)𝜑+
aā(x) , (9.6)

forms the cyclic L∞-algebra 𝔏
biadj
BRST. The homotopy Maurer–Cartan action of this L∞-algebra is then the action (5.2) of biadjoint scalar

field theory,

Sbiadj = 1
2
⟨𝜑,𝜇1(𝜑)⟩ + 1

3!
⟨𝜑,𝜇2(𝜑,𝜑)⟩ = ∫ ddx

{
1
2
𝜑aā □𝜑

aā − 𝜆

3!
fabcfāb̄c̄𝜑

aā𝜑bb̄𝜑cc̄
}
, (9.7)

which verifies (9.2).

9.2. Strictified Yang–Mills Theory

General Considerations: The strictification of Yang–Mills theory formulated in section 8.3 is now readily extended to a BV action,
which can then be gauge fixed and converted into a strict L∞-algebra �̃�

YM, st
BRST .

The full strictification of Yang–Mills theory involves an infinite number of additional auxiliary fields and corresponding interaction
terms in the Lagrangian. Thus, our discussion cannot be fully explicit and has to remain somewhat conceptual, but as before, we
shall give explicit lowest order terms to exemplify our discussion. Recall, however, that for computing n-point correlation function at
the tree-level, only a finite number of auxiliary fields and interaction terms are necessary. Moreover, for computing n-point scattering
amplitudes up to 𝓁 loops, only a finite number of correlators is necessary. Therefore, we can always truncate the Yang–Mills action to
finitely many auxiliary fields to perform our computations.
We note that gauge fixing of Yang–Mills theory is fully equivalent to gauge fixing of the strictified theory. Moreover, the additional

interaction vertices that arise from the BV formalism are all cubic, except for the terms involving anti-fields of the auxiliary fields; the
latter, however, will not contribute.
The last point implies that the L∞-algebra �̃�

YM, st
BRST for the strictified and gauge-fixed form of Yang–Mills theory contains the cochain

complex of the L∞-algebra �̃�YM
BRST which we have computed in section 5.2. This cochain complex is enlarged by the kinematic terms

for all the auxiliary fields. We then have additional binary products encoding the cubic interactions.
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L∞-Algebra of Yang–Mills Theory: For concreteness, we consider the strictification up to quartic terms, as explained in section 8.3.
By the arguments given there, however, it is clear that our discussion trivially generalises to strictifications up to an arbitrary order.
The Lagrangian, including the strictification of the colour–kinematics duality producing terms (8.41), reads as

ℒYM, st
BRST, 4 = 1

2
Ãa𝜇□ Ã𝜇a − ̃̄ca □ c̃a + 1

2
b̃a □ b̃a + 𝜉 b̃a

√
□ 𝜕𝜇Ã

𝜇a − gfabc ̃̄c
a𝜕𝜇(Ãb

𝜇
c̃c)

− 1
2
G̃𝜇𝜈𝜅a □ G̃a

𝜇𝜈𝜅
+ gfabc

(
𝜕𝜇Ã

a
𝜈
+ 1√

2
𝜕𝜅G̃a

𝜅𝜇𝜈

)
Ã𝜇bÃ𝜈c

− K̃𝜇1a □
̃̄K1a
𝜇

− K̃𝜇2a □
̃̄K2a
𝜇

− gfabc
{
K̃a𝜇
1 (𝜕𝜈Ãb

𝜇
)Ãc
𝜈
+ [(𝜕𝜅Ãa

𝜅
)Ãb𝜇 + ̃̄ca𝜕𝜇 c̃b] ̃̄K1c

𝜇

}
+ gfabc

{
K̃a𝜇
2

[
(𝜕𝜈𝜕𝜇 c̃

b)Ãc
𝜈
+ (𝜕𝜈Ãb

𝜇
)𝜕𝜈 c̃

c
]
+ ̃̄caÃb𝜇 ̃̄K2c

𝜇

}
,

(9.8)

where Ka𝜇
i and K̄ai

𝜇
are auxiliary 𝔤-valued one-forms, strictifying ℒYM, comp

BRST, n=4, k=0, and we used the shorthand G̃a
𝜇𝜈𝜅

:= G̃4,𝛾 ,1,a
𝜇𝜈𝜅

. Note that
Ka𝜇
1 and K̄a1

𝜇
are of ghost number zero, while Ka𝜇

2 and K̄a2
𝜇
carry ghost numbers −1 and +1, respectively. The L∞-algebra �̃�YM, st

BRST to
quartic order has underlying cochain complex

(K̃aμ
1 , ˜̄K1a

μ )

R2 ⊗Ω1(Md)⊗g

(K̃+aμ
1 , ˜̄K1+a

μ )

R2 ⊗Ω1(Md)⊗g

G̃a
μνκ

⊗3Ω1(Md)⊗g

G̃+a
μνκ

⊗3Ω1(Md)⊗g

Ãa
μ

Ω1(Md)⊗g

Ã+a
μ

Ω1(Md)⊗g

b̃a

C∞(Md)⊗g
b̃+a

C∞(Md)⊗g

˜̄K2a
μ

Ω1(Md)⊗g

K̃+aμ
2

Ω1(Md)⊗g

K̃aμ
2

Ω1(Md)⊗g

˜̄K2+a
μ

Ω1(Md)⊗g

c̃a

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM,st

BRST,0

˜̄c+a

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM,st

BRST,1

˜̄ca

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM,st

BRST,2

c̃+a

C∞(Md)⊗g

︸ ︷︷ ︸
=:L̃YM,st

BRST,3

�

�

�

ξ̃
	
�∂μ

�

−ξ̃	�∂μ

−� −�

−� −�

(9.9a)

Besides the differentials in (9.9a), we also have the following higher products

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

K̃a𝜇
1

̃̄K1a
𝜇

G̃a
𝜇𝜈𝜅

Ãa
𝜇

b̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(
̃̄K2a
𝜇

c̃a

)⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝜇2
→ gfbc

a

(
(𝜕𝜈Ãb

𝜇
)𝜕𝜈 c̃

c − Ãb
𝜈
𝜕𝜈𝜕𝜇 c̃

c

−𝜕𝜇(Ãb
𝜇
c̃c) + ̃̄Kb

1𝜇(𝜕
𝜇 c̃c) + Ãb𝜇 ̃̄K2c

𝜇

)

∈
⨁

𝜙∈ (K̃+
2 ,
̃̄c+)

�̃�YM, st
BRST, 1,𝜙 ,

(9.9b)
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((
̃̄K2a
𝜇

c̃a

)
,

(
K̃a𝜇
2

̃̄ca

))
𝜇2
→ gfbc

a

(
(𝜕𝜇 c̃b)̃̄cc

− ̃̄K2b
𝜇
̃̄cc + (𝜕𝜇𝜕𝜈 c̃

b)K̃c𝜈
2 + 𝜕𝜈(𝜕𝜈 c̃bK̃c

2𝜇) − c̃b𝜕𝜇 ̃̄c
c

)

∈
⨁

𝜙∈ ( ̃̄K+
1 , Ã

+)

�̃�YM, st
BRST, 1,𝜙 ,

(9.9c)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

K̃a𝜇
1

̃̄K1a
𝜇

G̃a
𝜇𝜈𝜅

Ãa
𝜇

b̃a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

K̃a𝜇
1

̃̄K1a
𝜇

G̃a
𝜇𝜈𝜅

Ãa
𝜇

b̃a

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝜇2
→ gfbc

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2(𝜕𝜈Ãb
𝜇
)Ãc
𝜈

2𝜕𝜅Ãb
𝜅
Ãc𝜇√

2𝜕𝜇(Ã
b
𝜈
Ãc
𝜅
)

RÃ+

bc𝜇

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈

⨁
𝜙∈ (K̃+

1 ,
̃̄K1+ , G̃+ , Ã+ ,b̃+)

�̃�YM, st
BRST, 2,𝜙 ,

RÃ+

bc𝜇 := −3!𝜕𝜈(Ãb
𝜈
Ãc
𝜇
) −

√
8Ã𝜈b𝜕𝜅G̃c

𝜅𝜈𝜇
− 4K̃b𝜈

1 𝜕𝜇Ã
c
𝜈
−

− 4(𝜕𝜅Ãb
𝜅
) ̃̄K1c
𝜇
,

(9.9d)

and

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

K̃a𝜇
1

̃̄K1a
𝜇

G̃a
𝜇𝜈𝜅

Ãa
𝜇

b̃a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(
K̃2a
𝜇

̃̄ca

)⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝜇2
→ gfbc

a

(
Ãb
𝜇
̃̄cc

−Ãb
𝜇
𝜕𝜇 ̃̄cc + 𝜕𝜇( ̃̄K1b

𝜇
̃̄cc) + 𝜕𝜈𝜕𝜇(Ãb

𝜈
K̃c𝜇
2 )

)

∈
⨁

𝜙∈ ( ̃̄K2+ , c̃+)

�̃�YM, st
BRST, 1,𝜙 ,

(9.9e)

and the cyclic structure is given by

⟨Ã, Ã+⟩ := ∫ ddx Ãa
𝜇
Ã+𝜇
a , ⟨b̃, b̃+⟩ := ∫ ddx b̃ab̃+a ,

⟨c̃, c̃+⟩ := ∫ ddx c̃ac̃+a , ⟨̃̄c, ̃̄c+⟩ := −∫ ddx ̃̄ca ̃̄c+a ,

⟨K̃1, K̃
+
1 ⟩ := −∫ ddx K̃a𝜇

1 K̃+
1a𝜇 , ⟨ ̃̄K1, ̃̄K1+⟩ := −∫ ddx ̃̄K1a

𝜇
̃̄K1+𝜇
a ,

⟨K̃2, K̃
+
2 ⟩ := −∫ ddx K̃a𝜇

2 K̃+
2a𝜇 , ⟨ ̃̄K2, ̃̄K2+⟩ := ∫ ddx ̃̄K2a

𝜇
̃̄K2+𝜇
a ,

⟨G̃, G̃+⟩ := −∫ ddx G̃a
𝜇𝜈𝜅

G̃+𝜇𝜈𝜅
a .

(9.9f )

Factorisation and Twist Datum: We factorise this L∞-algebra as

�̃�YM, st
BRST = 𝔤⊗ (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩) , (9.10)
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where 𝔤 is the usual colour Lie algebra,𝔎𝔦𝔫st the graded vector space

𝔎𝔦𝔫st :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�̄�𝜇2
𝕄d

⊕
𝚐

ℝ[1]
⏟⏟⏟
=:𝔎𝔦𝔫st−1

⊕

𝚝1𝜇 , �̄�
𝜇
1

𝕄d ⊕𝕄d

⊕
𝚝𝜇𝜈𝜅0

𝕄d ⊗ (𝕄d ∧𝕄d)

⊕
𝚟𝜇

𝕄d

⊕

ℝ
𝚗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=:𝔎𝔦𝔫st0

⊕

𝚝2𝜇
𝕄d

⊕
𝚊

ℝ[−1]
⏟⏟⏟
=:𝔎𝔦𝔫st1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9.11)

and𝔖𝔠𝔞𝔩 the L∞-algebra defined in (9.3). This L∞-algebra is cyclic with the inner products given by (7.17) together with

⟨𝚝1
𝜇
, �̄�𝜈1⟩ := −𝛿𝜈

𝜇
, ⟨�̄�𝜈1, 𝚝1𝜇⟩ := −𝛿𝜈

𝜇
, ⟨𝚝2

𝜇
, �̄�𝜈2⟩ := 𝛿𝜈

𝜇
, ⟨�̄�𝜈2, 𝚝2𝜇⟩ := 𝛿𝜈

𝜇
, ⟨𝚝𝜇𝜈𝜅0 , 𝚝𝜆𝜌𝜎0 ⟩ := − 1

2
𝜂𝜇𝜆(𝜂𝜈𝜌𝜂𝜅𝜎 − 𝜂𝜈𝜎𝜂𝜅𝜌) . (9.12)

The twist datum 𝜏, see (6.20) for the general definition, in the factorisation (9.10) is then given by the maps

𝜏1(𝚐) := 𝚐⊗ 𝗂𝖽 ,

𝜏1(𝚝i𝜇) := 𝚝i
𝜇
⊗ 𝗂𝖽 , 𝜏1(�̄�

𝜇

i ) := �̄�𝜇i ⊗ 𝗂𝖽 ,

𝜏1(𝚝
𝜇𝜈𝜅
0 ) := 𝚝𝜇𝜈𝜅0 ⊗ 𝗂𝖽 ,

𝜏1(𝚟𝜇) := 𝚟𝜇 ⊗ 𝗂𝖽 + 𝜉𝚗⊗□ − 1
2 𝜕𝜇 ,

𝜏1(𝚗) := 𝚗⊗ 𝗂𝖽 − 𝜉𝚟𝜇 ⊗□ − 1
2 𝜕𝜇 ,

𝜏1(𝚊) := 𝚊⊗ 𝗂𝖽 (9.13a)

and

𝜏2(𝚐, 𝚟𝜇) := −𝚐⊗ (𝗂𝖽⊗ 𝜕𝜇 + 𝜕𝜇 ⊗ 𝗂𝖽) + 𝚝𝜇2 ⊗ (𝜕𝜈 ⊗ 𝜕𝜈 − 𝜕𝜇𝜕𝜈 ⊗ 𝗂𝖽) ,

𝜏2(𝚟𝜇 , 𝚐) := 𝚐⊗ (𝗂𝖽⊗ 𝜕𝜇 + 𝜕𝜇 ⊗ 𝗂𝖽) − 𝚝𝜇2 ⊗ (𝜕𝜈 ⊗ 𝜕𝜈 − 𝗂𝖽⊗ 𝜕𝜇𝜕𝜈) ,

𝜏2(𝚐, �̄�1𝜇) := 𝚐⊗ 𝜕𝜇 ⊗ 𝗂𝖽 ,

𝜏2(�̄�1𝜇 , 𝚐) := −𝚐⊗ 𝗂𝖽⊗ 𝜕𝜇 ,

𝜏2(�̄�
𝜇
2 , 𝚟

𝜈) := 𝜂𝜇𝜈𝚐⊗ 𝗂𝖽⊗ 𝗂𝖽 ,

𝜏2(𝚟𝜇 , �̄�𝜈2) := −𝜂𝜇𝜈𝚐⊗ 𝗂𝖽⊗ 𝗂𝖽 ,

𝜏2(𝚐, 𝚊) := 𝚟𝜇 ⊗ 𝗂𝖽⊗ 𝜕𝜇 − �̄�𝜇1 ⊗ 𝜕𝜇 ⊗ 𝗂𝖽 ,

𝜏2(𝚊, 𝚐) := −𝚟𝜇 ⊗ 𝜕𝜇 ⊗ 𝗂𝖽 + �̄�𝜇1 ⊗ 𝗂𝖽⊗ 𝜕𝜇 ,

𝜏2(�̄�
𝜇
2 , 𝚊) := 𝚟𝜇 ⊗ 𝗂𝖽⊗ 𝗂𝖽 ,

𝜏2(𝚊, �̄�
𝜇
2 ) := −𝚟𝜇 ⊗ 𝗂𝖽⊗ 𝗂𝖽 ,

𝜏2(𝚐, 𝚝
𝜇
2 ) := −𝚟𝜈 ⊗ 𝜕𝜈𝜕𝜇 ⊗ 𝗂𝖽 − 𝚟𝜇 ⊗□⊗𝗂𝖽 − 𝚟𝜇 ⊗ 𝜕𝜈 ⊗ 𝜕𝜈 ,

𝜏2(𝚝
𝜇
2 , 𝚐) := 𝚟𝜈 ⊗ 𝗂𝖽⊗ 𝜕𝜈𝜕

𝜇 + 𝚟𝜇 ⊗ 𝗂𝖽⊗□+𝚟𝜇 ⊗ 𝜕𝜈 ⊗ 𝜕𝜈 ,

𝜏2(𝚟𝜇 , 𝚊) := −�̄�2
𝜇
⊗ 𝗂𝖽⊗ 𝗂𝖽 + 𝚊⊗ 𝗂𝖽⊗ 𝜕𝜇 ,

𝜏2(𝚊, 𝚟𝜇) := �̄�2
𝜇
⊗ 𝗂𝖽⊗ 𝗂𝖽 − 𝚊⊗ 𝜕𝜇 ⊗ 𝗂𝖽 ,

𝜏2(�̄�
𝜇
1 , 𝚊) := −𝚊⊗ (𝜕𝜇 ⊗ 𝗂𝖽 + 𝗂𝖽⊗ 𝜕𝜇) , (9.13b)
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𝜏2(𝚊, �̄�
𝜇
1 ) := +𝚊⊗ (𝜕𝜇 ⊗ 𝗂𝖽 + 𝗂𝖽⊗ 𝜕𝜇) ,

𝜏2(𝚟𝜇 , 𝚝𝜈2) := −𝚊⊗ (𝜕𝜇𝜕𝜈 ⊗ 𝗂𝖽 + 𝜕𝜇 ⊗ 𝜕𝜈 + 𝜕𝜈 ⊗ 𝜕𝜇 + 𝗂𝖽⊗ 𝜕𝜇𝜕𝜈) ,

𝜏2(𝚝
𝜇
2 , 𝚟

𝜈) := 𝚊⊗ (𝜕𝜇𝜕𝜈 ⊗ 𝗂𝖽 + 𝜕𝜇 ⊗ 𝜕𝜈 + 𝜕𝜈 ⊗ 𝜕𝜇 + 𝗂𝖽⊗ 𝜕𝜇𝜕𝜈) ,

𝜏2(𝚟𝜇 , 𝚟𝜈) := 𝚝𝜇1 ⊗ 𝜕
𝜈 ⊗ 𝗂𝖽 − 𝚝𝜈1 ⊗ 𝗂𝖽⊗ 𝜕𝜇 + �̄�𝜈1 ⊗ 𝜕

𝜇 ⊗ 𝗂𝖽 − �̄�𝜇1 ⊗ 𝗂𝖽⊗ 𝜕𝜈

−3
[
𝚟𝜈 ⊗ (𝜕𝜇 ⊗ 𝗂𝖽 + 𝗂𝖽⊗ 𝜕𝜇) − 𝚟𝜇 ⊗ (𝜕𝜈 ⊗ 𝗂𝖽 + 𝗂𝖽⊗ 𝜕𝜈)

]
+
√
2
(
𝚝𝜅𝜇𝜈0 ⊗ 𝜕𝜅 ⊗ 𝗂𝖽 + 𝚝𝜅𝜇𝜈0 ⊗ 𝗂𝖽⊗ 𝜕𝜅

)
,

𝜏2(𝚟𝜇, 𝚝𝜈𝜅𝜆0 ) := −
√
2
2

(
𝜂𝜇𝜅𝚟𝜆 ⊗ 𝗂𝖽⊗ 𝜕𝜈 − 𝜂𝜇𝜆𝚟𝜅 ⊗ 𝗂𝖽⊗ 𝜕𝜈

)
,

𝜏2(𝚝𝜈𝜅𝜆0 , 𝚟𝜇) :=
√
2
2

(
𝜂𝜇𝜅𝚟𝜆 ⊗ 𝜕𝜈 ⊗ 𝗂𝖽 − 𝜂𝜇𝜆𝚟𝜅 ⊗ 𝜕𝜈 ⊗ 𝗂𝖽

)
,

𝜏2(𝚝
𝜇
1 , 𝚟

𝜈) := −2𝜂𝜇𝜈𝚟𝜅 ⊗ 𝗂𝖽⊗ 𝜕𝜅 ,

𝜏2(𝚟𝜈 , 𝚝
𝜇
1 ) := 2𝜂𝜇𝜈𝚟𝜅 ⊗ 𝜕𝜅 ⊗ 𝗂𝖽 ,

𝜏2(𝚟𝜈 , �̄�
𝜇
1 ) := −2𝚟𝜇 ⊗ 𝜕𝜈 ⊗ 𝗂𝖽 ,

𝜏2(�̄�
𝜇
1 , 𝚟

𝜈) := 2𝚟𝜇 ⊗ 𝗂𝖽⊗ 𝜕𝜈 .

We note that the twisted tensor product 𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩 is a (strict) C∞-algebra, which becomes an L∞-algebra after the tensor
product with the colour Lie algebra 𝔤; see section 6.1 for details.

9.3. BRST Lagrangian Double Copy

A key to showing that our double copy prescription based on factorisations of the L∞-algebras of gauge-fixed BRST Lagrangians is
that not only the action but also the BRST operator double copies. This fact guarantees that the double copy creates the appropriate
gauge-fixing sectors which is crucial in considering the double copy at the loop level. In the following, we give a general discussion
of what we called the BRST Lagrangian double copy in [9].
Strictification of BRST-Invariant Actions: As discussed in Section 8.3, any field theory can be strictified to a classically equivalent

field theory with purely cubic interaction terms, and this equivalence extends to the quantum level. Consider a general strictified field
theory

S = 1
2
ΦI𝗀IJΦJ + 1

3!
ΦI𝖿IJKΦJΦK , (9.14)

where 𝗀IJ and 𝖿IJK are some structure constants. As in Section 4.1, I, J,… are DeWitt indices that include labels for the field species,
the gauge and Lorentz representations, as well as the space–time position.
Let us now consider a theory which is invariant under a gauge symmetry. We extend the action of this theory to its BV form by

including ghosts, anti-ghosts, and the Nakanishi–Lautrup field, as done in Section 5. We then strictify the full BV action to an action
with cubic interaction vertices. Restricting to gauge-fixing fermions which are quadratic in the fields45 guarantees that the action
remains cubic after gauge fixing. The resulting BRST operator QBRST, given by (4.17c), is then automatically at most quadratic in the
fields, and we can write

ΦI QBRST
→ 𝖰I

JΦ
J + 1

2
𝖰I
JKΦ

JΦK (9.15)

for some structure constants 𝖰I
J and 𝖰I

JK .
Factorisation of Structure Constants: As indicated previously, the key to the double copy is the factorisation of the field space 𝔏

into

𝔏 := 𝔙⊗ �̄�⊗𝒞∞(𝕄d) , (9.16)

45 This is the case for all explicit gauge-fixing fermions used in this paper.
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Table 11. Factorisation of the fields in the L∞-algebra corresponding to the Lagrangian ℒYM, st
BRST, 4. Note that we suppressed the integrals over x and the

tensor products for simplicity.

Fields Anti-fields

factorisation | − |gh | − |𝔏 dim factorisation | − |gh | − |𝔏 dim

c̃ = 𝚎a𝚐𝚜x c̃a(x) 1 0 d
2
− 2 c̃+ = 𝚎a𝚊𝚜+x c̃

+a(x) −2 3 d
2
+ 2

Ã = 𝚎a𝚟𝜇𝚜x Ãa
𝜇(x) 0 1 d

2
− 1 Ã+ = 𝚎a𝚟𝜇𝚜+x Ã

+a
𝜇 (x) −1 2 d

2
+ 1

b̃ = 𝚎a𝚗𝚜x b̃a(x) 0 1 d
2
− 1 b̃+ = 𝚎a𝚗𝚜+x b̃

+a(x) −1 2 d
2
+ 1

̃̄c = 𝚎a𝚊𝚜x ̃̄ca(x) −1 2 d
2

̃̄c+ = 𝚎a𝚐𝚜+x ̃̄c
+a(x) 0 1 d

2

K̃1 = 𝚎a𝚝1𝜇𝚜x K̃
𝜇
1 (x) 0 1 d

2
− 1 K̃+

1 = 𝚎a𝚝1𝜇𝚜
+
x K̃

+a𝜇
1 (x) −1 2 d

2
− 1

̃̄K1 = 𝚎a�̄�
𝜇
1𝚜x

̃̄K1a
𝜇 (x) 0 1 d

2
− 1 ̃̄K1+ = 𝚎a�̄�

𝜇
1𝚜

+
x
̃̄K1+a
𝜇 (x) −1 2 d

2
− 1

K̃2 = 𝚎a𝚝2𝜇𝚜x K̃
𝜇
2 (x) −1 2 d

2
− 1 K̃+

2 = 𝚎a𝚝2𝜇𝚜
+
x K̃

+a𝜇
2 (x) 0 1 d

2
− 1

̃̄K2 = 𝚎a�̄�
𝜇
2𝚜x

̃̄K2a
𝜇 (x) 1 0 d

2
− 1 ̃̄K2+ = 𝚎a�̄�

𝜇
2𝚜

+
x
̃̄K2+a
𝜇 (x) −2 3 d

2
− 1

G̃ = 𝚎a𝚝
𝜇𝜈𝜅
0 𝚜x G̃a

𝜇𝜈𝜅 (x) 0 1 d
2
− 1 G̃+ = 𝚎a𝚝

𝜇𝜈𝜅
0 𝚜+x G̃

+a
𝜇𝜈𝜅 (x) −1 2 d

2
− 1

Table 12. Factors appearing in the field space factorisa-
tion (9.16) with 𝔎𝔦𝔫 given in (7.16) and 𝔤 and �̄� the colour
Lie algebras.

𝔙 �̄�

Biadjoint scalar field theory 𝔤 �̄�

Yang–Mills theory 𝔤 𝔎𝔦𝔫

 = 0 supergravity 𝔎𝔦𝔫 𝔎𝔦𝔫

where 𝔙 and �̄� are two (graded) vector spaces. In our preceding discussion, we have encountered the three examples in Table 12.
Consequently, in our formulas, we shall split the multi indices into triples, that is, I = (𝛼, �̄�, x), and write (see e.g. (4.12b))

(𝔏[1])∗ ⊗ 𝔏 ∋ 𝖺 = ΦI ⊗ 𝚎I = ∫ ddxΦ𝛼�̄�(x)⊗ (𝚎𝛼 ⊗ �̄��̄� ⊗ 𝚜x) . (9.17)

We also demand that the structure constants 𝗀IJ and 𝖿IJK that appear in the action (9.14) as well as the structure constants 𝖰
I
J and 𝖰I

JK

that appear in the BRST operator (9.15) are local in the sense that they vanish unless all the space–time points in the multi-indices
agree.
We write

𝗀IJ =: 𝗀𝛼𝛽 �̄��̄�𝛽 □ , (9.18)

where 𝗀𝛼𝛽 and �̄��̄�𝛽 are differential operators, mapping 𝒞∞(𝕄d) to itself. In more detail, we have

𝗀IJΦJ ≡ ∫ ddy 𝗀(𝛼,�̄�,x);(𝛽,𝛽,y)Φ𝛽𝛽,y = ∫ ddy∫ ddz 𝗀𝛼𝛽 (x, y)�̄��̄�𝛽 (y, z)□Φ𝛽𝛽,z , (9.19a)

where the integral kernels are of the form

𝗀𝛼𝛽 (x, y) = 𝛿(d)(x − y)𝗀𝛼𝛽 (x) and �̄��̄�𝛽 (y, z) = 𝛿(d)(y − z)�̄��̄�𝛽 (y) (9.19b)

due to our assumption about locality, and we assume that g𝛼𝛽 (x) is invertible.
Analogously, we write

𝖿IJK = 𝖿(𝛼,�̄�,x);(𝛽,𝛽,y);(𝛾 ,�̄� ,z) =: 𝗉 𝖿𝛼𝛽𝛾 𝖿�̄�𝛽�̄� , (9.19c)
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where 𝖿𝛼𝛽𝛾 and 𝖿�̄�𝛽�̄� are bi-differential operators 𝒞
∞(𝕄d)⊗𝒞∞(𝕄d) → 𝒞∞(𝕄d)⊗𝒞∞(𝕄d) and

𝗉 : 𝒞∞(𝕄d)⊗𝒞∞(𝕄d) → 𝒞∞(𝕄d) (9.19d)

is the natural diagonal product of functions. For the integral kernels of 𝖿𝛼𝛽𝛾 and 𝖿�̄�𝛽�̄� we have again the locality condition

𝖿𝛼𝛽𝛾 (x1, x2; y1, y2) = 𝛿(d)(x1 − y1)𝛿
(d)(x2 − y2)𝖿𝛼𝛽𝛾 (y1, y2) ,

𝖿�̄�𝛽�̄� (x1, x2; y1, y2) = 𝛿(d)(x1 − y1)𝛿
(d)(x2 − y2)𝖿�̄�𝛽�̄� (y1, y2) .

(9.19e)

We note that there is some ambiguity in the definition (9.19c) due to the projection onto the diagonal involved in 𝗉, but this redundancy
never arises in any formula. To give a clearer picture of what the above construction is doing, we can expand the 𝖿𝛼𝛽𝛾 and the 𝖿�̄�𝛽�̄� further
in a basis of differential operators 𝜕M forM a Lorentz multiindex, and we have

(𝗉 𝖿𝛼𝛽𝛾 𝖿�̄�𝛽�̄� )(Φ⊗Φ) = 𝖿𝛼𝛽M1𝛾M2
𝖿�̄�𝛽N1 �̄�N2

(𝜕M1𝜕N1Φ𝛽𝛽 )(𝜕M2𝜕N2Φ𝛾�̄� ) . (9.20)

For convenience, we also introduce the operators 𝖿𝛼
𝛽𝛾
and 𝖿 �̄�

𝛽�̄�
by

𝗉 𝖿𝛼𝛽𝛾 =: 𝗀𝛼𝛿 𝗉 𝖿
𝛿
𝛽𝛾

and 𝗉 𝖿�̄�𝛽�̄� =: �̄��̄�𝛿 𝗉 𝖿
𝛿
𝛽�̄�
, (9.21)

which is possible due to the invertibility of 𝗀𝛼𝛽 and �̄��̄�𝛽 as well as the form of the integral kernels (9.19e) . Evidently, 𝖿𝛼
𝛽𝛾
and 𝖿 �̄�

𝛽�̄�
are

again bi-differential operators, just as 𝖿𝛼𝛽𝛾 and 𝖿�̄�𝛽�̄� .
With the factorisation restriction, the action (9.14) becomes

S = ∫ ddx
{1
2
Φ𝛼�̄�𝗀𝛼𝛽 �̄��̄�𝛽 □Φ𝛽𝛽 + 1

3!
Φ𝛼�̄�(𝗉 𝖿𝛼𝛽𝛾 𝖿�̄�𝛽�̄� )(Φ𝛽𝛽 ⊗Φ𝛾�̄� )

}
. (9.22)

For the BRST operator QBRST, the factorisation of indices and the linearity of QBRST imply the decomposition

QBRST =: qBRST + q̄BRST , (9.23)

where qBRST and q̄BRST are BRST operators acting in a non-trivial way on the factors 𝔙⊗𝒞∞(𝕄d) and �̄�⊗𝒞∞(𝕄d) in the factorisa-
tion (9.17), respectively. By this, we mean that the structure constants 𝖰I

J and 𝖰I
JK decompose as 𝖰I

J → (𝗊IJ, �̄�
I
J) and 𝖰I

JK → (𝗊IJK , �̄�
I
JK ).

More explicitly,

𝗊
(𝛼,�̄�,x)

(𝛽,𝛽,y)
= 𝛿(d)(x − y)𝗊𝛼

𝛽
(x)𝛿�̄�

𝛽
, 𝗊

(𝛼,�̄�,x)

(𝛽,𝛽,y);(𝛾 ,�̄� ,z)
= 𝛿(d)(x − y)𝛿(d)(x − z)𝗊𝛼

𝛽𝛾
(x)𝖿 �̄�

𝛽�̄�
(x) ,

�̄�
(𝛼,�̄�,x)

(𝛽,𝛽,y)
= 𝛿(d)(x − y)𝛿𝛼

𝛽
�̄��̄�
𝛽
(x) , �̄�

(𝛼,�̄�,x)

(𝛽,𝛽,y);(𝛾 ,�̄� ,z)
= 𝛿(d)(x − y)𝛿(d)(x − z)𝖿𝛼

𝛽𝛾
(x)�̄��̄�

𝛽�̄�
(x) ,

(9.24)

where 𝗊𝛼
𝛽
and �̄��̄�

𝛽
are differential operators and 𝗊𝛼

𝛽𝛾
and �̄��̄�

𝛽�̄�
are again bi-differential operators, just as 𝖿𝛼

𝛽𝛾
and 𝖿 �̄�

𝛽�̄�
, with locality again

restricting their integral kernels. Note that in this splitting, the association of terms of the form 𝛿(d)(x − y)𝛿𝛼
𝛽
𝛿�̄�
𝛽
and 𝛿(d)(x − y)𝛿(d)(x −

z)𝖿𝛼
𝛽𝛾
(y, z)𝖿 �̄�

𝛽�̄�
(y, z) is not unique; we assign half of each of these terms to (𝗊IJ, 𝗊

I
JK ) and half to (�̄�

I
J, �̄�

I
JK ).

Example: To make our rather abstract discussion more concrete, let us briefly consider the case of Yang–Mills theory (5.9). We
refrain from discussing the details of the strictification of the BV action, but it is clear that 𝔙 = 𝔤 and �̄� = 𝔎𝔦𝔫′ with 𝔎𝔦𝔫′ some
extension of 𝔎𝔦𝔫 allowing for auxiliary fields, similar to 𝔎𝔦𝔫st defined in (9.12). It is then also clear that 𝗀𝛼𝛽 and 𝖿𝛼

𝛽𝛾
are the Killing

form and the structure constants of the gauge Lie algebra 𝔤.
On𝔎𝔦𝔫′, the integral kernel for the differential operator �̄�𝜇𝜈 is given by

�̄�𝜇𝜈 = 𝜂𝜇𝜈 −
1
□
𝜕𝜇𝜕𝜈 . (9.25)

We note that 𝗊𝛼
𝛽
= 0 and �̄��̄�

𝛽
is only non-trivial for �̄� labelling the ghost and Nakanishi–Lautrup fields and 𝛽 labelling the gauge potential

and anti-ghost field, all colour-stripped. Working out all other structure constants is a straightforward but tedious process; since no
more insights would be obtained from it, we refrain from listing them here. We only note that for Yang–Mills theory, the ambiguity
in assigning terms to q and q̄ is absent.
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Double Copy: We nownote that the decomposition of the Lagrangianmatches precisely the decomposition of scattering amplitudes
in the discussion of colour–kinematics duality, cf. Section 2.1, which is the starting point for the double copy. We merely extended the
factorisation of the interaction vertices to a factorisation of the whole BRST structure.
In the usual double copy, we start from the factorisation for Yang–Mills theory and replace the colour factor by a kinematic factor.

More generally, however, we can certainly replace any one of the (graded) vector spaces 𝔙 and �̄� and the corresponding structure
constants with (graded) vector spaces and structure constants from other theories. This gives us a new action, which we shall denote by
S̃DCBRST. The corresponding BRST operator Q̃

DC
BRST is obtained by replacing one set of kinematic structure constants in the decomposition

of the BRST operator (9.22) with those from the new factor.
BRST Lagrangian Double Copy: In order to obtain a consistent and quantisable theory, we demand the new BRST structure to be

consistent. Specifically,

Q̃DC
BRSTS̃

DC
BRST = 0 and (Q̃DC

BRST)
2 = 0 . (9.26)

By construction, we have again a decomposition Q̃DC
BRST =: q̃DCBRST + ̃̄q

DC
BRST. The conditionQ

2
BRST = 0 implies q2BRST = 0, andwe decompose

the latter into linear, quadratic, and cubic terms in the fields,

q2BRSTΦ
⋯ =: q(2,0)1 + q(2,0)2 + q(2,0)3 , (9.27)

and analogously for q̄2BRST, (q̃
DC
BRST)

2, and ( ̃̄qDCBRST)
2, respectively. Schematically, the summands read as

q(2,0)1 = ⋯ 𝗊𝛼
𝛽
𝗊𝛽
𝛾
⋯ ,

q(2,0)2 = ⋯ (𝗊𝛼
𝛿
𝗊𝛿
𝛽𝛾
+ 𝗊𝛿

𝛽
𝗊𝛼
𝛿𝛾
± 𝗊𝛿

𝛾
𝗊𝛼
𝛽𝛿
)𝖿 �̄�
𝛽�̄�
⋯ ,

q(2,0)3 = ⋯ (𝗊𝜀
𝛽𝛾
𝗊𝛼
𝜀𝛿
𝖿 �̄�
𝛽�̄�
𝖿 �̄�
�̄�𝛿
± 𝗊𝜀

𝛽𝛾
𝗊𝛼
𝛿𝜀
𝖿 �̄�
𝛽�̄�
𝖿 �̄�
𝛿�̄�
)⋯ ,

(9.28a)

and

q̃(2,0)1 = ⋯ 𝗊𝛼
𝛽
𝗊𝛽
𝛾
⋯ ,

q̃(2,0)2 = ⋯ (𝗊𝛼
𝛿
𝗊𝛿
𝛽𝛾
+ 𝗊𝛿

𝛽
𝗊𝛼
𝛿𝛾
± 𝗊𝛿

𝛾
𝗊𝛼
𝛽𝛿
) ̃̄𝖿 �̄�
𝛽�̄�
⋯ ,

q̃(2,0)3 = ⋯ (𝗊𝜀
𝛽𝛾
𝗊𝛼
𝜀𝛿
̃̄𝖿 �̄�
𝛽�̄�
̃̄𝖿 �̄�
�̄�𝛿
± 𝗊𝜀

𝛽𝛾
𝗊𝛼
𝛿𝜀
̃̄𝖿 �̄�
𝛽�̄�
̃̄𝖿 �̄�
𝛿�̄�
)⋯ ,

(9.28b)

where 𝖿𝛼
𝛽𝛾
and ̃̄𝖿 �̄�

𝛽�̄�
denote the kinematic constants in S̃DCBRST. It is now clear that q̃(2,0)1 and q̃(2,0)2 vanish if q2BRST = 0 and thus, q(2,0)1 and q(2,0)2

vanish on arbitrary fields.
So far, our discussion was fairly general and nothing singled out colour–kinematics-dual theories from other theories. This changes

with the condition that q(2,0)3 = 0 must imply q̃(2,0)3 = 0. Vanishing of q(2,0)3 relies on a transfer of the symmetry properties of the open
indices of 𝖿 �̄�

𝛽�̄�
𝖿 �̄�
�̄�𝛿
and 𝖿 �̄�

𝛽�̄�
𝖿 �̄�
𝛿�̄�
via the contracting fields (in which the expression is totally symmetric) to 𝗊𝜀

𝛽𝛾
𝗊𝛼
𝜀𝛿
and 𝗊𝜀

𝛽𝛾
𝗊𝛼
𝛿𝜀
. It follows that if

the symmetry properties of the open indices in the terms quadratic in 𝖿 �̄�
𝛽�̄�
are the same as for the terms quadratic in ̃̄𝖿 �̄�

𝛽�̄�
then q̃(2,0)3 = 0.

The colour–kinematics duality provides such a condition.
The same argument shows that ( ̃̄qDCBRST)

2 = 0, and we can directly turn to the cross terms and split them again into linear, quadratic,
and cubic pieces,

(qBRSTq̄BRST + q̄BRSTqBRST)Φ⋯ =: q(1,1)1 + q(1,1)2 + q(1,1)3 , (9.29a)

and

(q̃DCBRST ̃̄q
DC
BRST + ̃̄q

DC
BRSTq̃

DC
BRST)Φ

⋯ =: q̃(1,1)1 + q̃(1,1)2 + q̃(1,1)3 . (9.29b)

We note that the conditions q(1,1)1 = 0 and q̃(1,1)1 = 0 are implied directly when q1 and q̄1 and q̃1 and ̃̄q1 anti-commute, respectively, which
is always the case in the theories we study. Moreover, we have, again schematically, the conditions

q(1,1)2 = ⋯ 𝗊𝛼
𝛽𝛾
(�̄��̄�
𝛿
𝖿 𝛿
𝛽�̄�
± �̄�𝛿

𝛽
𝖿 �̄�
𝛿�̄�
± �̄�𝛿

�̄�
𝖿 �̄�
𝛽𝛿
)⋯ +⋯ �̄��̄�

𝛽�̄�
(𝗊𝛼
𝛿
𝖿 𝛿
𝛽𝛾
± 𝗊𝛿

𝛽
𝖿𝛼
𝛿𝛾
± 𝗊𝛿

𝛾
𝖿𝛼
𝛽𝛿
)⋯ ,

q(1,1)3 = ⋯ (𝗊𝛼
𝜀𝛿
𝖿 �̄�
�̄�𝛿
𝖿 𝜀
𝛽𝛾
�̄��̄�
𝛽�̄�
± 𝗊𝛼

𝛽𝜀
𝖿 �̄�
𝛽�̄�
𝖿 𝜀
𝛾𝛿
�̄��̄�
�̄�𝛿
± 𝖿𝛼

𝜀𝛿
�̄��̄�
�̄�𝛿
𝗊𝜀
𝛽𝛾
𝖿 �̄�
𝛽�̄�
± 𝖿𝛼

𝛽𝜀
�̄��̄�
𝛽�̄�
𝗊𝜀
𝛾𝛿
𝖿 �̄�
�̄�𝛿
)⋯ .

(9.30)
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We see that q(1,1)2 = 0 splits into two separate conditions on the indices in𝔙 and �̄� and thus it implies q̃(1,1)2 = 0. The condition q̃(1,1)3 = 0
can, in principle, be non-trivial, but again colour–kinematics duality as well as the special form of the BRST operator in the theories
in which we are interested renders q̃(1,1)3 = 0 equivalent to q(1,1)3 = 0.
Finally, we have to check that Q̃DC

BRSTS̃
DC
BRST = 0, and we consider

qBRSTS =: s(1,0)2 + s(1,0)3 + s(1,0)4 , (9.31)

where s(1,0)2 , s(1,0)3 , and s(1,0)4 are quadratic, cubic, and quartic in the fields. Analogously, we have q̃DCBRSTS̃
DC
BRST =: s̃(1,0)2 + s̃(1,0)3 + s̃(1,0)4 , and the

discussion for q̄BRST and ̃̄q
DC
BRST is similar. Schematically, we compute

s(1,0)2 = ∫ ddx … (𝗊𝛾
𝛼
𝗀𝛾𝛽 �̄��̄�𝛽 □)… ,

s(1,0)3 = ∫ ddx … (𝗀𝛼𝛿□ 𝗊𝛿
𝛽𝛾
+ 𝖿𝛼𝛿𝛾𝗊

𝛿
𝛽
+ 𝖿𝛼𝛽𝛿𝗊

𝛿
𝛽
)𝖿�̄�𝛽�̄� … ,

s(1,0)4 = ∫ ddx … (𝖿𝛼𝜀𝛿𝗊
𝜀
𝛽𝛾
𝖿�̄��̄�𝛿𝖿

�̄�
𝛽�̄�
+ 𝖿𝛼𝛽𝜀𝗊

𝜀
𝛾𝛿
𝖿�̄�𝛽�̄�𝖿

�̄�
�̄�𝛿
)… ,

(9.32)

where we have assumed that qBRST commutes with the differential and bi-differential operators in the action, which is the case in all
our theories. We see that s(1,0)2 = 0 and s(1,0)3 = 0 imply s̃(1,0)2 = 0 and s̃(1,0)3 = 0, respectively. The relation s̃(1,0)4 = 0 can, in principle, lead
to additional conditions. In a theory with colour–kinematics duality, however, the contraction of the kinematic structure constants 𝖿 �̄�

𝛽�̄�

appears as in the Jacobi identity, and s(1,0)4 as well as s̃(1,0)4 vanish automatically.
Partial BRST Lagrangian Double Copy: There are few theories where we expect the BRST Lagrangian double copy to work perfectly.

The reason is that in most formulations, colour–kinematics duality will not hold. In Yang–Mills theory, for example, it is not known
if colour–kinematics duality can be made manifest for off-shell fields.46

Now if colour–kinematics duality fails to hold up to certain terms, say the ideal of functions of the fields vanishing on-shell as in
the case of Yang–Mills theory, then the equation Q̃DC

BRSTS̃
DC
BRST = 0 will also fail to hold up to the same ideal. Consequently, Q̃DC

BRSTS̃
DC
BRST

is a product of factors whose vanishing amounts to the equations of motion possibly multiplied by other fields and their derivatives.

9.4. BRST Lagrangian Double Copy of Yang–Mills Theory

Let us now make the abstract discussion above concrete by working out the example of the BRST Lagrangian double copy

�̃�DC
BRST := 𝔎𝔦𝔫st ⊗𝜏 (𝔎𝔦𝔫st ⊗𝜏 𝔖𝔠𝔞𝔩) , (9.33)

where𝔎𝔦𝔫st is given in (9.11) and𝔖𝔠𝔞𝔩 in (9.3), respectively.
Field Content: From the discussion in Section 7.5, we already know that the double-copied field content of the BRST-extended

Hilbert space of Yang–Mills theory agrees with the field content of the BRST-extended Hilbert space. We shall continue to use the
field labels introduced in Table 10.
In the interactive case of the full homotopy algebras, however, we have infinitely many additional auxiliary fields, arising from the

infinitely many additional auxiliary fields of strictified and colour–kinematics duality preserving Yang–Mills theory. In the previous
section, we made five of the auxiliary fields in Yang–Mills theory explicit,

K̃a𝜇
1 , ̃̄Ka𝜇

1 , Ga
𝜇𝜈𝜅

, K̃2a
𝜇
, ̃̄K2a

𝜇
, (9.34)

which correspond to the additional basis elements

𝗍1
𝜇
, �̄�𝜇1 , 𝗍𝜇𝜈𝜅0 , 𝗍2

𝜇
, �̄�𝜇2 (9.35)

46 Recall that we only extended colour–kinematics to the BRST-extended Hilbert space in Section 8.4, but with all fields still on-shell.
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in𝔎𝔦𝔫st. In the tensor product (9.33) this gives rise to 40 auxiliary fields involving one auxiliary kinetic factor and another 25 auxiliary
fields involving two auxiliary kinetic factors. Instead of giving these auxiliary fields individual labels, we shall collectively denote them
by 𝚔1Υ𝚔2 , where 𝚔1 and 𝚔2 denote the first and second kinematic factors. For example,

𝚐Υ𝚐 := 𝚐⊗ 𝚐⊗
(
∫ ddx 𝚜x𝜑𝚐𝚐(x)

)
= �̃� ,

𝚟Υ𝚟 := 𝚎a ⊗ 𝚟𝜇 ⊗ 𝚟𝜈 ⊗
(
∫ ddx 𝚜x𝜑𝚟𝚟

𝜇𝜈(x)
)

= h̃ + B̃ ,

𝚝1Υ𝚝0 := 𝚝1
𝜇
⊗ 𝚝𝜈𝜅𝜆0 ⊗

(
∫ ddx 𝚜x𝜑𝚝1𝚝0𝜇

𝜈𝜅𝜆
(x)

)
.

(9.36)

Higher Products: Next, we use the twist (9.13a) and (9.13b) to compute the higher products 𝜇1 and 𝜇2 between the elements of
�̃�DC
BRST. The formulas from Section 6.3 with all the appropriate signs included read as

𝜇1(𝚡1 ⊗ 𝚢1 ⊗𝜑1) := (−1)|𝜏 (1)1 (𝚡1)|+|𝜏 (1)1 (𝚢1)| 𝜏 (1)1 (𝚡1)⊗ 𝜏
(1)
1 (𝚢1)⊗

(
𝜏
(2)
1 (𝚡1)(𝜏

(2)
2 (𝚢1)(𝜑1))

)
,

𝜇2(𝚡1 ⊗ 𝚢1 ⊗𝜑1 , 𝚡2 ⊗ 𝚢2 ⊗𝜑2) := (−1)(|𝚢1|+|𝜑1|)|𝚡2|+|𝜑1| |𝚢2|
×𝜏 (1)2 (𝚡1, 𝚡2)⊗ 𝜏

(1)
2 (𝚢1, 𝚢2)⊗

(
𝜏
(2)
2 (𝚡1, 𝚡2)𝜑1(x)

)(
𝜏
(2)
2 (𝚢1, 𝚢2)𝜑2(x)

)
. (9.37)

Note that there are no additional signs because our 𝜏 (2)i are always even. While the computation is readily performed, listing the higher
products for all 81 fields is not particularly helpful.
Action: The factorisation (9.33) induces the following cyclic structure:

⟨𝚡1 ⊗ 𝚢1 ⊗𝜑1, 𝚡2 ⊗ 𝚢2 ⊗𝜑2⟩ := (−1)|𝚡2|𝔎𝔦𝔫(|𝚢1|𝔎𝔦𝔫+|𝜑1|𝔖𝔠𝔞𝔩)+|𝚢2|𝔎𝔦𝔫|𝜑1|𝔖𝔠𝔞𝔩⟨𝚡1, 𝚡2⟩ ⟨𝚢1, 𝚢2⟩ ⟨𝜑1,𝜑2⟩ . (9.38)

Together with the formulas for the super homotopy Maurer–Cartan action (4.28), we can compute the (gauge-fixed) BRST action
corresponding to the L∞-algebra �̃�DC

BRST. Again, listing all the terms would not provide much insight, but we stress that we obtain all
the expected terms, in particular the lowest terms of the Fierz–Pauli version of the  = 0 supergravity action as well as the evident
terms involving ghosts.
Double Copy of the BRST Operator: Let us now also consider the double copy of the BRST operator to a BRST operator Q̃DC

BRST. For
our purposes, the double copy of the linearised part without considering the auxiliary fields will be sufficient. We start from Yang–
Mills theory with the factors 𝔙 := 𝔤 and �̄� := 𝔎𝔦𝔫 in (9.16) and the usual BRST relations in terms of coordinate functions on �̃�YM

BRST,

Ãa
𝜇

QYM, lin
BRST
→ 𝛿ab𝜕𝜇 c̃

b , b̃a
QYM, lin
BRST
→ 𝛿ab

1 −
√
1 − 𝜉√
𝜉

√
□ c̃b ,

c̃a
QYM, lin
BRST
→ 0 , ̃̄ca

QYM, lin
BRST
→ 𝛿ab

(√
□
𝜉
b̃b −

1 −
√
1 − 𝜉
𝜉

𝜕𝜇Ãb
𝜇

)
.

(9.39)

We thus have 𝗊𝛼
𝛽
= 𝛿𝛼

𝛽
, and the non-vanishing components of �̄��̄�

𝛽
are given by

�̄��̄�
𝛽
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝜇 for �̄� = 𝚐∗ , 𝛽 = 𝚟∗
𝜇
,

1−
√
1−𝜉√
𝜉

√
□ for �̄� = 𝚐∗ , 𝛽 = 𝚗∗ ,√

□
𝜉

for �̄� = 𝚗∗ , 𝛽 = 𝚊∗ ,

− 1−
√
1−𝜉
𝜉

𝜕𝜇 for �̄� = 𝚟∗
𝜇
, 𝛽 = 𝚊∗ .

(9.40)
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After the double copy, we have 𝔙 := 𝔎𝔦𝔫 =: �̄� and, correspondingly, 𝗊𝛼
𝛽
= �̄�𝛼

𝛽
. The linearisation of the double-copied BRST operator

is then non-trivial on a field containing a factor of 𝚟𝜇 or 𝚊, and we have in the anti-symmetrised sector

�̃�
Q̃DC, lin
BRST
→ 0 ,

Λ̃𝜇
Q̃DC, lin
BRST
→ 𝜕𝜇�̃� ,

�̃�
Q̃DC, lin
BRST
→

1 −
√
1 − 𝜉√
𝜉

√
□ �̃� ,

B̃𝜇𝜈
Q̃DC, lin
BRST
→ 𝜕𝜇Λ̃𝜈 − 𝜕𝜈Λ̃𝜇 ,

�̃�𝜇
Q̃DC, lin
BRST
→

1 −
√
1 − 𝜉√
𝜉

√
□ Λ̃𝜇 − 𝜕𝜇�̃� ,

�̃�
Q̃DC, lin
BRST
→

√
□
𝜉
�̃� −

1 −
√
1 − 𝜉
𝜉

𝜕𝜇Λ̃𝜇 ,

̃̄Λ𝜇
Q̃DC, lin
BRST
→ 𝜕𝜇�̃� +

√
□
𝜉
�̃�𝜇 −

1 −
√
1 − 𝜉
𝜉

𝜕𝜈B̃𝜇𝜈 ,

̃̄𝛾
Q̃DC, lin
BRST
→

1 −
√
1 − 𝜉√
𝜉

√
□ �̃� +

1 −
√
1 − 𝜉
𝜉

𝜕𝜇�̃�𝜇 ,

̃̄𝜆
Q̃DC, lin
BRST
→

√
□
𝜉
̃̄𝛾 −

1 −
√
1 − 𝜉
𝜉

𝜕𝜇 ̃̄Λ𝜇 ,

(9.41a)

and in the symmetrised sector

X̃𝜇
Q̃DC, lin
BRST
→ 0 ,

𝛽
Q̃DC, lin
BRST
→ 0 ,

h̃𝜇𝜈
Q̃DC, lin
BRST
→ 𝜕𝜇X̃𝜈 + 𝜕𝜈X̃𝜇 ,

�̃�𝜇
Q̃DC, lin
BRST
→ −

1 −
√
1 − 𝜉√
𝜉

√
□ X̃𝜇 − 𝜕𝜇𝛽 ,

�̃�
Q̃DC, lin
BRST
→ 2

1 −
√
1 − 𝜉√
𝜉

√
□ 𝛽 ,

𝛿
Q̃DC, lin
BRST
→

√
□
𝜉
𝛽 −

1 −
√
1 − 𝜉
𝜉

𝜕𝜇X̃
𝜇 ,

̃̄X𝜇
Q̃DC, lin
BRST
→ −𝜕𝜇𝛿 −

√
□
𝜉
�̃�𝜇 −

1 −
√
1 − 𝜉
𝜉

𝜕𝜈 h̃
𝜈𝜇 ,

̃̄𝛽
Q̃DC, lin
BRST
→ −

1 −
√
1 − 𝜉√
𝜉

√
□ 𝛿 +

1 −
√
1 − 𝜉
𝜉

𝜕𝜇�̃�
𝜇 +

√
□
𝜉
�̃� . (9.41b)
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This BRST operator is related to the usual linearised BRST operator for = 0 supergravity, (5.20) and (5.27),

𝜆
Q=0, lin
BRST
→ 0 , 𝜑

Q=0, lin
BRST
→ 0 ,

Λ𝜇
Q=0, lin
BRST
→ 𝜕𝜇𝜆 , X𝜇

Q=0, lin
BRST
→ 0 ,

𝛾
Q=0, lin
BRST
→ 0 , 𝛽

Q=0, lin
BRST
→ 0 ,

B𝜇𝜈
Q=0, lin
BRST
→ 𝜕𝜇Λ𝜈 − 𝜕𝜈Λ𝜇 , h𝜇𝜈

Q=0, lin
BRST
→ 𝜕𝜇X𝜈 + 𝜕𝜈X𝜇 ,

𝛼𝜇
Q=0, lin
BRST
→ 0 , 𝜛𝜇

Q=0, lin
BRST
→ 0 ,

𝜀
Q=0, lin
BRST
→ 𝛾 , 𝛿

Q=0, lin
BRST
→ 𝛽 ,

Λ̄𝜇
Q=0, lin
BRST
→ 𝛼𝜇 , X̄𝜇

Q=0, lin
BRST
→ 𝜛𝜇 ,

�̄�
Q=0, lin
BRST
→ 0 , 𝛽

Q=0, lin
BRST
→ 𝜋 ,

�̄�
Q=0, lin
BRST
→ �̄� , 𝜋

Q=0, lin
BRST
→ 0

(9.41c)

by the field redefinitions (7.22) and (7.27), respectively.

9.5. Equivalence of The Double Copied Action and = 0 Supergravity

Let us complete the argument by showing that the double copied action S̃DCBRST we constructed in Section 9.4 is fully perturbatively
quantum equivalent to the suitably gauge fixed version of the BV action of = 0 supergravity, S=0

BRST, defined in Section 5.5. For this,
we have to show that up to a field redefinition, both theories have the same tree-level correlation functions. A crucial point in our
discussion will be the BRST Lagrangian double copy formalism developed in the previous section.
In the following, we shall speak of ‘auxiliary fields connected to a field𝜙’ by which wemean all auxiliary fields which appear together

with 𝜙 in Feynman diagrams containing only propagators of auxiliary fields. Put differently, an auxiliary field 𝜓 connected to a field 𝜙
can have an interaction vertex with 𝜙 or interact with an auxiliary field that propagates to an auxiliary field that non-trivially interacts
with 𝜙, etc.:

. . .

ψ φ

,

. . . . . .

ψ φ

,

. . . . . . . . .

ψ φ

, . . . , (9.42)

where a dashed line denotes an auxiliary field. We also use the terms physical and unphysical fields/interaction terms/scattering
amplitudes. The unphysical fields are all ghosts, anti-ghosts, and Nakanishi–Lautrup fields as well as auxiliary fields connected to
these. Physical fields are the remaining fields, consisting of the metric, the Kalb–Ramond field and the dilaton as well as a number
of auxiliary fields. Physical interaction vertices are those consisting exclusively of physical fields. Physical scattering amplitudes are
those with physical fields as external labels.
Physical Tree-Level Scattering Amplitudes: We first note that the auxiliary fields in the double copied action S̃DCBRST can be integrated

out, after which the field content and the kinematic terms in both actions fully agree, up to the field redefinitions we discussed in
Section 7. Implementing these field redefinitions on S=0

BRST, we obtain the action S=0
BRST, 0.

Moreover, the physical tree-level scattering amplitudes computed from the interaction vertices of the action S̃DCBRST are by design
precisely those arising in the usual double copy prescription for the construction of  = 0 supergravity tree amplitudes from a
factorisation of Yang–Mills amplitudes. The tree-level double copy has been demonstrated to hold, cf. Observation 8.12, and therefore
the physical tree-level scattering amplitudes of S̃DCBRST and S

=0
BRST, 0 agree.

If we put all unphysical fields to zero, the resulting theories S̃DCBRST, phys and S
=0
BRST, phys are classically equivalent by Observation 8.9.

In the homotopy algebraic picture, this corresponds to a restriction 𝔏=0
BRST, phys and �̃�DC

phys to two quasi-isomorphic L∞-subalgebras.
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In order to improve this restricted classical equivalence to a full perturbative quantum equivalence, we need to adjust and modify
the actions or, equivalently, the corresponding L∞-algebras. We shall do this now in a sequence of steps, expanding the discussion
in [9].
Auxiliary Fields of Ghost Number Zero: The reformulation of the tree-level scattering amplitudes of = 0 supergravity used in the

double copy defines a local strictification of the physical part of the action S=0
BRST to the action S

=0
BRST, 1 by promoting all cubic interaction

vertices to cubic interaction terms. This is fully analogous to the strictification implied by the manifestly colour–kinematics-dual form
of the Yang–Mills action explained in Section 8.3.
By construction, the actions S=0

BRST, 1 and S̃DCBRST, phys have the same field content, the same kinematical terms for the physical and
auxiliary fields and identical tree-level scattering amplitudes for the physical fields.
Let us now consider the tree-level scattering amplitudes which have auxiliary fields of ghost number zero on their external legs.

Such amplitudes are fully determined by the (iterated) collinear limits of physical tree-level scattering amplitudes. Because, again, the
physical tree-level scattering amplitudes of S=0

BRST, 1 and S̃
DC
BRST, phys agree, the tree-level scattering amplitudes with physical and auxiliary

fields of ghost number zero on external legs agree.
By Observation 8.9, we then have a local field redefinition of S=0

BRST, 1 to S
=0
BRST, 2 such that both actions agree after all fields except

for physical ones and auxiliary fields of ghost number zero are put to zero. If we integrated out all auxiliary fields in both actions, the
resulting actions would agree in their purely physical parts.
Nakanishi–Lautrup Fields: In the next step, we deal with the difference between S̃DCBRST and S=0

BRST, 2 proportional to any of the

Nakanishi–Lautrup fields ( ̃̄𝛽, �̃�𝜇 , �̃�, �̃� , �̃�𝜇 , ̃̄𝛾); we shall come to the ghost field 𝛽 later. After integrating out all auxiliary fields, this
difference can be compensated by Observation 8.8. That is, we can modify the gauge-fixing fermion and perform a field redefinition
of the Nakanishi–Lautrup fields such that this difference is removed.We note that neither of these two processes modifies the physical
parts of the action and both preserve quantum equivalence. We can thus replace all terms in S=0

BRST, 2 containing Nakanishi–Lautrup
fields by the terms in S̃DCBRST containing Nakanishi–Lautrup fields as well as auxiliary fields connected to Nakanishi–Lautrup fields. We
call the resulting action S=0

BRST, 3.
Recall that there is a ghost number −2 field �̄� which is paired with the Nakanishi–Lautrup-type field 𝛾 in the gauge fixing

fermion (5.23), allowing us to absorb any term proportional to 𝛾 in a different gauge choice. This is not the case for the corresponding
Nakanishi–Lautrup-type field in the gravity sector, 𝛽. Any discrepancy proportional to 𝛽 between S=0

BRST, 3 and S̃
DC
BRST (again, after inte-

grating out all the auxiliary fields) should instead be absorbed by shifting the gauge fixing fermion Ψ from (5.35) by a term 𝛿P, where
𝛽P is the discrepancy. This will generate the desired corrections. This will also lead to new ghost terms, which we will treat separately
in the next step.
Ghost Sector: Let us now examine the ghost interactions. We know that the action S=0

BRST, 3 comes with a BRST operators Q=0
BRST, 3

which satisfies

(Q=0
BRST, 3)

2 = 0 and Q=0
BRST, 3S

=0
BRST, 3 = 0 . (9.43)

From our discussion in the previous section, we know that the double-copied BRST operator Q̃DC
BRST satisfies

(Q̃DC
BRST)

2 ∈ ℐ and Q̃DC
BRSTS̃

DC
BRST ∈ ℐ , (9.44)

where ℐ is the ideal of polynomials in the fields and their derivatives which vanishes for on-shell fields. We also know from the
discussion around (9.41) that the linearisations of the BRST operators satisfy

Q̃DC, lin
BRST = Q=0, lin

BRST, 3 . (9.45)

After integrating out all auxiliary fields, these BRST operators link the physical tree-level scattering amplitudes to tree-level scattering
amplitudes containing ghosts by the on-shell Ward identities, cf. Observation 8.2.
At the level of the BRST operators Q̃DC, lin

BRST andQ=0, lin
BRST, 3 the situation is more involved, but we still end up with similar on-shell Ward

identities. The BRST doublets in the BRST-extended Hilbert space of Yang–Mills theory double copy to BRST doublets of auxiliary
and non-auxiliary fields.
Therefore, the tree-level scattering amplitudes for the BRST-extended Hilbert spaces of S=0

BRST, 3 and S̃
DC
BRST are fully determined via

on-shell Ward identities by the tree-level scattering amplitudes of the physical and auxiliary fields of ghost number zero. We conclude
that all these tree-level scattering amplitudes agree between both theories.
Full Quantum Equivalence: For full quantum equivalence, it remains to show that there is a local field redefinition that links the

action S=0
BRST, 3 to S̃

DC
BRST. Both actions fully agree in their kinematic terms and their interaction vertices that contain exclusively fields

of ghost number zero. Moreover, they have identical tree-level scattering amplitudes on their BRST-extended (i.e. full) Hilbert spaces.
By Observation 8.4, the tree-level ghost correlators are related to the correct tree-level correlators of the physical sector. Moreover, we
can invoke Observation 8.9 one final time in order to provide us with a field redefinition that shifts the discrepancies between both
actions to interaction vertices of arbitrarily high degree. While this field redefinition may generically be non-local, it becomes local if
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we leave in all auxiliary fields. This renders the actions fully quantum equivalent from the perspective of perturbative quantum field
theory.

Appendix A: Definitions and Conventions for Homotopy Algebras

The homotopy algebras that appear naturally in the context of field theories, namely A∞-, C∞-, and L∞-algebras are homotopy versions
of associative, commutative and Lie algebras. In particular, associativity and the Jacobi identity only hold up to coherent homotopies.47

In the following, we list relevant definitions and our conventions. Formore details on L∞-algebras and some of the calculations detailed
in this appendix, see e.g. [178, 179]; our conventions match the ones in these references. Other helpful references with original results
listed in this section are.[196,197,296] A unifying description of all the homotopy algebras and their cyclic structures listed below is given
by operads, but we refrain from introducing this additional layer of abstraction.

A.1. A∞-Algebras

A∞-Algebras: An A∞-algebra or strong homotopy associative algebra is a graded vector space 𝔄 =
⨁

i∈ℤ 𝔄i together with higher
products which are i-linear maps 𝗆i : 𝔄 ×⋯ ×𝔄 → 𝔄 of degree 2 − i that satisfy the homotopy associativity relation∑
i1+i2+i3=i

(−1)i1i2+i3𝗆i1+i3+1(𝗂𝖽
⊗i1 ⊗𝗆i2

⊗ 𝗂𝖽⊗i3 ) = 0 (A.1)

for all i ∈ ℕ+. The lowest identities read as

𝗆1(𝗆1(𝓁1)) = 0 ,

𝗆1(𝗆2(𝓁1,𝓁2)) = 𝗆2(𝗆1(𝓁1),𝓁2) + (−1)|𝓁1|𝔄𝗆2(𝓁1,𝗆1(𝓁2)) ,

𝗆1(𝗆3(𝓁1,𝓁2,𝓁3)) +𝗆3(𝗆1(𝓁1),𝓁2,𝓁3) + (−1)|𝓁1|𝔄𝗆3(𝓁1,𝗆1(𝓁2),𝓁3)

+ (−1)|𝓁1|𝔄+|𝓁2|𝔄𝗆3(𝓁1,𝓁2,𝗆1(𝓁3)) = 𝗆2(𝗆2(𝓁1,𝓁2),𝓁3) − 𝗆2(𝓁1,𝗆2(𝓁2,𝓁3)) ,

⋮

(A.2)

for all 𝓁1,… ,𝓁i ∈ 𝔄. We thus see that the unary product 𝗆1 is a differential and a derivation for the binary product 𝗆2. Furthermore,
the ternary product 𝗆3 captures the failure of the binary product 𝗆2 to be associative.
Cyclic A∞-Algebras: A cyclic A∞-algebra (𝔄, ⟨−,−⟩𝔄) is anA∞-algebra𝔄 equipped with a non-degenerate graded-symmetric bilinear

form ⟨−,−⟩𝔄 : 𝔄 ×𝔄 → ℝ such that

⟨𝓁1,𝗆i(𝓁2,… ,𝓁i+1)⟩𝔄 = (−1)i+i(|𝓁1|𝔄+|𝓁i+1|𝔄)+|𝓁i+1|𝔄 ∑i
j=1 |𝓁j|𝔄⟨𝓁i+1,𝗆i(𝓁1,… ,𝓁i)⟩𝔄 (A.3)

for all 𝓁i ∈ 𝔄. When it is clear from the context, we shall suppress the subscript 𝔄 on the inner products.
Homotopy Maurer–Cartan Theory: Each A∞-algebra comes with a homotopy Maurer–Cartan theory, where the gauge potential is an

element a ∈ 𝔄1 whose curvature f ∈ 𝔄2 is defined as

f := 𝗆1(a) +𝗆2(a, a) +⋯ =
∑
i≥1

𝗆i(a,… , a) (A.4)

and satisfies the Bianchi identity

∑
i≥0

i∑
j=0
(−1)i+j𝗆i+1(a,… , a

⏟⏟⏟
j

, f, a,… , a
⏟⏟⏟

i−j

) = 0 . (A.5)

If the homotopy Maurer–Cartan equation

f = 0 (A.6)

47 But graded commutativity (in the case of C∞-algebras) and graded anti-symmetry (in the case of L∞-algebras) are not relaxed.
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holds, we say that a is a homotopy Maurer–Cartan element. Provided 𝔄 is cyclic with pairing of degree −3, homotopy Maurer–Cartan
elements are the stationary points of the homotopy Maurer–Cartan action

ShMC[a] :=
∑
i≥1

1
i + 1

⟨a,𝗆i(a,… , a)⟩𝔄 . (A.7)

Infinitesimal gauge transformations are mediated by elements c0 ∈ 𝔄0 and are given by

𝛿c0a :=
∑
i≥0

i∑
j=0
(−1)i+j𝗆i+1(a,… , a

⏟⏟⏟
j

, c0, a,… , a
⏟⏟⏟

i−j

) . (A.8)

One may check that the action (A.7) is invariant under the transformations (A.8), and the curvature (A.4) transforms as

𝛿c0 f =
∑
i≥0

i∑
j=0

i−j∑
k=0

(−1)k𝗆i+2(a,… , a
⏟⏟⏟

j

, f, a,… , a
⏟⏟⏟

i−j

, c0, a,… , a
⏟⏟⏟
i−j−k

) . (A.9)

To verify these statements, one makes use of (A.1).

A.2. C∞-Algebras

Permutations, Shuffles, and Unshuffles: Let Sn be the permutation group of degree n ∈ ℕ+. We shall write for a permutation 𝜎 ∈ Sn

𝜎 :=
(

1 2 ⋯ n
𝜎(1) 𝜎(2) ⋯ 𝜎(n)

)
. (A.10)

A (p, q)-shuffle for p, q ∈ ℕ+ is a permutation 𝜎 ∈ Sp+q which satisfies the condition that if 1 ≤ 𝜎(i) < 𝜎(j) ≤ p or p + 1 ≤ 𝜎(i) < 𝜎(j) ≤
p + q then i < j. We denote the set of all (p, q)-shuffles in Sp+q by Sh(p; p + q). Consider, for instance, S3. We have the permutations

S3 =
{(

1 2 3
1 2 3

)
,
(
1 2 3
1 3 2

)
,
(
1 2 3
2 1 3

)
,
(
1 2 3
2 3 1

)
,
(
1 2 3
3 1 2

)
,
(
1 2 3
3 2 1

)}
. (A.11)

Then, the sets of (1,2)- and (2,1)-shuffles are given by

Sh(1; 3) =
{(

1 2 3
1 2 3

)
,
(
1 2 3
2 1 3

)
,
(
1 2 3
2 3 1

)}
,

Sh(2; 3) =
{(

1 2 3
1 2 3

)
,
(
1 2 3
1 3 2

)
,
(
1 2 3
3 1 2

)}
.

(A.12)

Likewise, a (p, q)-unshuffle for p, q ∈ ℕ+ is a permutation 𝜎 ∈ Sp+q which satisfies the condition that 𝜎(1) <⋯ < 𝜎(p) and 𝜎(p + 1) <

⋯ < 𝜎(p + q). We denote the set of all (p, q)-unshuffles in Sp+q by Sh(p; p + q). For instance, the sets of (1,2)- and (2,1)-unshuffles in S3
are given by

Sh(1; 3) =
{(

1 2 3
1 2 3

)
,
(
1 2 3
2 1 3

)
,
(
1 2 3
3 1 2

)}
,

Sh(2; 3) =
{(

1 2 3
1 2 3

)
,
(
1 2 3
1 3 2

)
,
(
1 2 3
2 3 1

)}
.

(A.13)

It follows from the above definitions, and it is evident from the explicit examples (A.12) and (A.13), that a permutation is a (p, q)-
shuffle if and only if its inverse is a (p, q)-unshuffle, and vice versa.
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C∞-Algebras: A C∞-algebra or strong homotopy commutative algebra is an A∞-algebra ℭ =
⨁

i∈ℤ ℭi where the higher products𝗆i, in
addition to (A.1), also satisfy the homotopy commutativity relations∑
𝜎∈Sh(i1;i)

𝜒(𝜎;𝓁1,…𝓁i)𝗆i(𝓁𝜎(1),… ,𝓁𝜎(i1),𝓁𝜎(i1+1),… ,𝓁𝜎(i)) = 0 (A.14)

for all 0 < i1 < i and for all 𝓁1,… ,𝓁i ∈ ℭ. Here, 𝜒(𝜎;𝓁1,… ,𝓁i) is the Koszul sign for total graded anti-symmetrisation defined by

𝓁1 ∧… ∧ 𝓁i = 𝜒(𝜎;𝓁1,… ,𝓁i)𝓁𝜎(1) ∧… ∧ 𝓁𝜎(i) . (A.15)

The lowest four homotopy commutativity relations are

𝗆2(𝓁1,𝓁2) − (−1)|𝓁1|ℭ |𝓁2|ℭ𝗆2(𝓁2,𝓁1) = 0 ,

𝗆3(𝓁1,𝓁2,𝓁3) − (−1)|𝓁2|ℭ |𝓁3|ℭ𝗆3(𝓁1,𝓁3,𝓁2) + (−1)(|𝓁1|ℭ+|𝓁2|ℭ)|𝓁3|ℭ𝗆3(𝓁3,𝓁1,𝓁2) = 0 ,

𝗆4(𝓁1,𝓁2,𝓁3,𝓁4) − (−1)|𝓁1|ℭ |𝓁2|ℭ𝗆4(𝓁2,𝓁1,𝓁3,𝓁4) + (−1)|𝓁1|ℭ(|𝓁2|ℭ+|𝓁3|ℭ)𝗆4(𝓁2,𝓁3,𝓁1,𝓁4)

−(−1)|𝓁1|ℭ(|𝓁2|ℭ+|𝓁3|ℭ+|𝓁4|ℭ)𝗆4(𝓁2,𝓁3,𝓁4,𝓁1) = 0 ,

𝗆4(𝓁1,𝓁2,𝓁3,𝓁4) − (−1)|𝓁2|ℭ |𝓁3|ℭ𝗆4(𝓁1,𝓁3,𝓁2,𝓁4) + (−1)|𝓁2|ℭ(|𝓁3|ℭ+|𝓁4|ℭ)𝗆4(𝓁1,𝓁3,𝓁4,𝓁2) + (−1)(|𝓁1|ℭ+|𝓁2|ℭ)|𝓁3|ℭ𝗆4(𝓁3,𝓁1,𝓁2,𝓁4)

−(−1)(|𝓁1|ℭ+|𝓁2|ℭ)|𝓁3|ℭ+|𝓁2|ℭ |𝓁4|ℭ𝗆4(𝓁3,𝓁1,𝓁4,𝓁2) + (−1)(|𝓁1|ℭ+|𝓁2|ℭ)|𝓁3|ℭ+(|𝓁1|ℭ+|𝓁2|ℭ)|𝓁4|ℭ𝗆4(𝓁3,𝓁4,𝓁1,𝓁2) = 0 ,

(A.16)

and we see that the product 𝗆2 is indeed graded commutative. Note that, a priori, there are two relations for 𝗆3 given by the (2,1)-
and (1,2)-shuffles. However, the (1,2)-shuffles for (𝓁1,𝓁2,𝓁3) are the same as the (2,1)-shuffles for (𝓁3,𝓁1,𝓁2). Since 𝓁1, 𝓁2, and 𝓁3 are
arbitrary elements of ℭ, the two relations thus reduce to one relation. Generally, the number of independent relations for 𝗆i is ⌊ i

2
⌋.

Cyclic C∞-Algebras: A cyclic C∞-algebra is a cyclic A∞-algebra satisfying the homotopy commutativity relations (A.14).

A.3. L∞-Algebras

L∞-Algebras: An L∞-algebra or strong homotopy Lie algebra is a graded vector space 𝔏 =
⨁

i∈ℤ 𝔏i together with higher productswhich
are graded anti-symmetric i-linear maps 𝜇i : 𝔏 ×⋯ × 𝔏 → 𝔏 of degree 2 − i that satisfy the homotopy Jacobi identities∑
i1+i2=i

∑
𝜎∈Sh(i1;i)

(−1)i2𝜒(𝜎;𝓁1,… ,𝓁i)𝜇i2+1(𝜇i1 (𝓁𝜎(1),… ,𝓁𝜎(i1)),𝓁𝜎(i1+1),… ,𝓁𝜎(i)) = 0 . (A.17)

for all 𝓁1,… ,𝓁i ∈ 𝔏 and i ∈ ℕ+; see Appendix A.2 for the definitions of the unshuffles Sh(i1; i) and of the Koszul sign 𝜒(𝜎;𝓁1,… ,𝓁i).
The lowest homotopy Jacobi identities, slightly rewritten, read as

𝜇1(𝜇1(𝓁1)) = 0 ,

𝜇1(𝜇2(𝓁1,𝓁2)) = 𝜇2(𝜇1(𝓁1),𝓁2) + (−1)|𝓁1|𝔏𝜇2(𝓁1,𝜇1(𝓁2)) ,
𝜇2(𝜇2(𝓁1,𝓁2),𝓁3) + (−1)|𝓁1|𝔏 |𝓁2|𝔏𝜇2(𝓁2,𝜇2(𝓁1,𝓁3)) − 𝜇2(𝓁1,𝜇2(𝓁2,𝓁3)) = 𝜇1(𝜇3(𝓁1,𝓁2,𝓁3)) + 𝜇3(𝜇1(𝓁1),𝓁2,𝓁3)

+(−1)|𝓁1|𝔏𝜇3(𝓁1,𝜇1(𝓁2),𝓁3) + (−1)|𝓁1|𝔏+|𝓁2|𝔏𝜇3(𝓁1,𝓁2,𝜇1(𝓁3)) ,
⋮

(A.18)

and we can interpret them as follows. The unary product 𝜇1 is a differential and a derivation with respect to the binary product 𝜇2. In
addition, the ternary product 𝜇3 captures the failure of the binary product 𝜇2 to satisfy the standard Jacobi identity.
We note that any A∞-algebra yields an L∞-algebra with higher products obtained from total anti-symmetrisation,

𝜇i(𝓁1,… ,𝓁i) =
∑
𝜎∈Si

𝜒(𝜎;𝓁1,… ,𝓁i)𝗆i(𝓁𝜎(1),… ,𝓁𝜎(i)) . (A.19)

In particular, the Lie algebra arising from the commutator on any matrix algebra is an L∞-algebra. Likewise, the anti-symmetrisation
of a C∞-algebra is an L∞-algebra with 𝜇i = 0 for i ≥ 2 due to the homotopy commutativity relations (A.10).
We call an L∞-algebra nilpotent, if all nested higher products vanish, i.e.

𝜇i(𝜇j(−,… ,−),… ,−) = 0 for all i, j ≥ 1 . (A.20)
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Cyclic L∞-Algebras: A cyclic L∞-algebra (𝔏, ⟨−,−⟩𝔏) is an L∞-algebra 𝔏 equipped with a non-degenerate graded-symmetric bilinear
form ⟨−,−⟩𝔏 : 𝔏 × 𝔏 → ℝ such that

⟨𝓁1,𝜇i(𝓁2,… ,𝓁i+1)⟩𝔏 = (−1)i+i(|𝓁1|𝔏+|𝓁i+1|𝔏)+|𝓁i+1|𝔏 ∑i
j=1 |𝓁j|𝔏⟨𝓁i+1,𝜇i(𝓁1,… ,𝓁i)⟩𝔏 (A.21)

for all 𝓁i ∈ 𝔏. As before, when it is clear from the context, we shall suppress the subscript 𝔏 on the inner products.
Homotopy Maurer–Cartan Theory: Similar to A∞-algebras, any L∞-algebra (𝔏,𝜇i) comes with its homotopy Maurer–Cartan theory.

In particular, a gauge potential is an element a ∈ 𝔏1, and its curvature is

f := 𝜇1(a) +
1
2
𝜇2(a, a) +⋯ =

∑
i≥1

1
i!
𝜇i(a,… , a) ∈ 𝔏2 . (A.22)

The Bianchi identity reads here as∑
i≥0

1
i!
𝜇i+1(a,… , a, f ) = 0 . (A.23)

Homotopy Maurer–Cartan elements, i.e. gauge potentials with vanishing curvature f = 0, are the stationary points of the homotopy
Maurer–Cartan action

ShMC[a] :=
∑
i≥1

1
(i + 1)!

⟨a,𝜇i(a,… , a)⟩𝔏 (A.24)

provided 𝔏 comes with a cyclic pairing ⟨−,−⟩𝔏 of degree −3. Similarly to (A.8), infinitesimal gauge transformations are of the form

𝛿c0a :=
∑
i≥0

1
i!
𝜇i+1(a,… , a, c0) (A.25)

and are parametrised by elements c0 ∈ 𝔏0. The action is invariant under such transformations, and the curvature behaves as

𝛿c0 f =
∑
i≥0

1
i!
𝜇i+2(a,… , a, f, c0) . (A.26)

To verify these statements, one makes use of (A.17).
Covariant Derivative: Given an L∞-algebra (𝔏,𝜇i), consider 𝜑 ∈ 𝔏k for some k ∈ ℤ and require that under infinitesimal gauge

transformations, 𝜑 transforms adjointly, that is,

𝛿c0𝜑 :=
∑
i≥0

1
i!
𝜇i+2(a,… , a,𝜑, c0) (A.27)

for c0 ∈ 𝔏0. We then define the covariant derivative ∇ : 𝔏k → 𝔏k+1 by

∇𝜑 := 𝜇1(𝜑) + 𝜇2(a,𝜑) +⋯ =
∑
i≥0

1
i!
𝜇i+1(a,… , a,𝜑) (A.28)

for a ∈ 𝔏1. Using (A.17), one can show that under infinitesimal gauge transformations (A.25) and (A.27), ∇𝜑 transforms as

𝛿c0 (∇𝜑) =
∑
i≥0

1
i!
𝜇i+2(a,… , a,∇𝜑, c0) +

∑
i≥0

1
i!
𝜇i+3(a,… , a, f,𝜑, c0) , (A.29)

where f is the curvature (A.18) of a. Thus, for homotopy Maurer–Cartan elements a, the covariant derivative transforms adjointly as
well.48 Using (A.17) again, we obtain in addition

∇2𝜑 =
∑
i≥0

1
i!
𝜇i+2(a,… , a, f,𝜑) . (A.30)

48 It will always transform adjointly when 𝜇i = 0 for all i > 2, that is, for differential graded Lie algebras also known as strict L∞-algebras, cf. Ap-
pendix A.4.
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Curved morphisms of L∞-Algebras: Morphisms between Lie algebras are maps preserving the Lie bracket. In the context of L∞-
algebras, this notion generalises and one obtains what is known as a curved morphism (of L∞-algebras). Specifically, a curvedmorphism

𝜙 : (𝔏,𝜇i) → (�̃�, �̃�i) between two L∞-algebras (𝔏,𝜇i) and (�̃�, �̃�i) is a collection of i-linear totally graded anti-symmetric maps 𝜙i : 𝔏 ×
⋯ × 𝔏 → �̃� of degree 1 − i such that∑
i1+i2=i

∑
𝜎∈Sh(i1;i)

(−1)i2𝜒(𝜎;𝓁1,… ,𝓁i)𝜙i2+1(𝜇i1 (𝓁𝜎(1),… ,𝓁𝜎(i1)),𝓁𝜎(i1+1),… ,𝓁𝜎(i))

=
∑
j≥1

1
j!

∑
k1+⋯+kj=i

∑
𝜎∈Sh(k1 ,…,kj−1;i)

𝜒(𝜎;𝓁1,… ,𝓁i)𝜁 (𝜎;𝓁1,… ,𝓁i)

× �̃�j
(
𝜙k1

(
𝓁𝜎(1),… ,𝓁𝜎(k1)

)
,… ,𝜙kj

(
𝓁𝜎(k1+⋯+kj−1+1),… ,𝓁𝜎(i)

))
(A.31a)

for i ∈ ℕ+ ∪ {0} with 𝜒(𝜎;𝓁1,… ,𝓁i) the Koszul sign (A.11) and 𝜁 (𝜎;𝓁1,… ,𝓁i) given by

𝜁 (𝜎;𝓁1,… ,𝓁i) := (−1)
∑

1≤m<n≤j kmkn+
∑j−1

m=1 km(j−m)+
∑j

m=2(1−km)
∑k1+⋯+km−1

k=1 |𝓁𝜎(k)|𝔏 . (A.31b)

Note that 𝜙0 : ℝ → �̃�1 is the constant map. Explicitly, the lowest expressions of (A.27) read as

0 =
∑
i≥1

1
i!
�̃�i(𝜙0,… ,𝜙0) ,

𝜙1(𝜇1(𝓁1)) = �̃�1(𝜙1(𝓁1)) +
∑
i≥1

1
i!
�̃�i+1(𝜙0,… ,𝜙0,𝜙1(𝓁1)) ,

𝜙1(𝜇2(𝓁1,𝓁2)) − 𝜙2(𝜇1(𝓁1),𝓁2) + (−1)|𝓁1|𝔏|𝓁2|𝔏𝜙2(𝜇1(𝓁2),𝓁1) = �̃�1(𝜙2(𝓁1,𝓁2)) + �̃�2(𝜙1(𝓁1),𝜙1(𝓁2))

+
∑
i≥1

1
i!
�̃�i+1(𝜙0,… ,𝜙0,𝜙2(𝓁1,𝓁2)) +

∑
i≥1

1
i!
�̃�i+2(𝜙0,… ,𝜙0,𝜙1(𝓁1),𝜙1(𝓁2)) ,

⋮

(A.32)

It is easily seen that this definition reduces to the standard definition of a Lie algebra morphism in the context of Lie algebras. Note
that a curved morphism is simply called an (uncurved) morphism (of L∞-algebras) whenever 𝜙0 = 0, and this notion of morphisms is
usually used in the literature when discussing L∞-algebras. As we will see below, we shall need the more general notion of curved
morphisms to reinterpret gauge transformations as morphisms of L∞-algebras.
Evidently, the first equation of (A.32) implies that 𝜙0 is necessarily a homotopy Maurer–Cartan element of �̃�. For such 𝜙0, we now

set

�̃�
𝜙0
i (𝓁1,… ,𝓁i) :=

∑
j≥0

1
j!
�̃�i+j(𝜙0,… ,𝜙0,𝓁1,… ,𝓁i) (A.33)

for all 𝓁1,… ,𝓁i ∈ �̃� and i ∈ ℕ+. By virtue of (A.30), we immediately have that �̃�𝜙01 = �̃�1 is a differential. In fact, one can show that
(�̃�, �̃�𝜙0i ) forms an L∞-algebra, that is, the �̃�

𝜙0
i satisfy the homotopy Jacobi identities (A.17) thus defining another L∞-structure on

�̃�. From (A.27) we may then conclude that any curved morphism between two L∞-algebras (𝔏,𝜇i) and (�̃�, �̃�i) can be viewed as an
uncurved morphism between (𝔏,𝜇i) and (�̃�, �̃�

𝜙0
i ).

Maurer–Cartan Elements and Curved Morphisms: Consider a ∈ 𝔏1 and let f ∈ 𝔏2 be its curvature (A.18). We define the image of a
gauge potential under a curved morphism 𝜙 : (𝔏,𝜇i) → (�̃�, �̃�i) as

ã := 𝜙0 + 𝜙1(a) +
1
2
𝜙2(a, a) +⋯ =

∑
i≥0

1
i!
𝜙i(a,… , a) ∈ �̃�1 . (A.34)

The curvature of ã is then

f̃ =
∑
i≥1

1
i!
�̃�i(ã,… , ã) =

∑
i≥0

1
i!
𝜙i+1(a,… , a, f ) ∈ �̃�2 , (A.35)

which one can verify using (A.17) and (A.27). Hence, homotopy Maurer–Cartan elements in 𝔏 are mapped to homotopy Maurer–
Cartan elements in �̃�.
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Let us extend the above observation to gauge orbits. Consider gauge transformations (A.25) a → a + 𝛿c0a and ã → ã + 𝛿c̃0 ã with the
image of the gauge parameter c0 ∈ 𝔏0 given by

c̃0 := 𝜙1(c0) + 𝜙2(a, c0) +⋯ =
∑
i≥0

1
i!
𝜙i+1(a,… , a, c0) ∈ �̃�0 . (A.36)

A short calculation involving (A.17) reveals that

𝛿c̃0 ã = −
∑
i≥0

1
i!
𝜙i+2(a,… , a, f, c0) +

∑
i≥0

1
i!
𝜙i+1(𝛿c0a, a,… , a) . (A.37)

This immediately yields∑
i≥0

1
i!
𝜙i(a + 𝛿c0a,… , a + 𝛿c0a) =

∑
i≥0

1
i!
𝜙i(a,… , a) +

∑
i≥0

1
i!
𝜙i+1(𝛿c0a, a,… , a)

= ã + 𝛿c̃0 ã +
∑
i≥0

1
i!
𝜙i+2(a,… , a, f, c0) .

(A.38)

Consequently, gauge equivalence classes of homotopy Maurer–Cartan elements in 𝔏 are mapped to gauge equivalence classes of
homotopy Maurer–Cartan elements in �̃� under curved morphisms.
Morphisms of Cyclic L∞-Algebras: Consider an uncurved morphism between two L∞-algebras (𝔏,𝜇i) and (�̃�, �̃�i), that is, a curved

morphism with 𝜙0 = 0. If, in addition, we have inner products ⟨−,−⟩𝔏 on 𝔏 and ⟨−,−⟩�̃� on �̃�, then a morphism of cyclic L∞-algebras
has to satisfy

⟨𝓁1,𝓁2⟩𝔏 = ⟨𝜙1(𝓁1),𝜙1(𝓁2)⟩�̃� (A.39a)

for all 𝓁1,2 ∈ 𝔏 and for all i ≥ 3 and 𝓁1,… ,𝓁i ∈ 𝔏∑
i1+i2=i
i1 ,i2≥1

⟨𝜙i1
(𝓁1,… ,𝓁i1

),𝜙i2
(𝓁i1+1,… ,𝓁i)⟩�̃� = 0 . (A.39b)

We note that the morphisms of cyclic L∞-algebras defined here require 𝜙1 to be injective. More general notions of such morphisms
can be defined using Lagrangian correspondences, cf. [297].
Suppose now that the inner product ⟨−,−⟩𝔏 on 𝔏 and ⟨−,−⟩�̃� on �̃� of degree −3 so that the homotopy Maurer–Cartan equations,

f = 0 and f̃ = 0, are variational. Then, under a morphism 𝜙 : (𝔏,𝜇i) → (�̃�, �̃�i), we obtain∑
i≥1

1
(i + 1)!

⟨a,𝜇i(a,… , a)⟩𝔏 = ShMC[a]

= S̃hMC[ã] =
∑
i≥1

1
(i + 1)!

⟨ã, �̃�i(ã,… , ã)⟩�̃� (A.40)

by virtue of (A.35) and (A.34).
Curved Quasi-Isomorphisms of L∞-Algebras: Recall that the homotopy Jacobi identities (A.17) (see also (A.18)) imply that 𝜇21 = 0.

Hence, we may consider the cohomology

H∙
𝜇1
(𝔏) =

⨁
k∈ℤ

Hk
𝜇1
(𝔏) with Hk

𝜇1
(𝔏) := ker(𝜇1|𝔏k

)∕im(𝜇1|𝔏k−1
) . (A.41)

A curved morphism of L∞-algebras 𝜙 : (𝔏,𝜇i) → (�̃�, �̃�i) is called a curved quasi-isomorphism (of L∞-algebras) whenever 𝜙1 induces an

isomorphism H∙
𝜇1
(𝔏) ≅ H∙

�̃�1
(�̃�). There is a bijection between the moduli spaces of gauge equivalence classes of homotopy Maurer–

Cartan elements of 𝔏 and �̃�. A curved quasi-isomorphism is called an (uncurved) quasi-isomorphism whenever 𝜙0 = 0.
Gauge Transformations as Curved Morphisms: Let us revisit the infinitesimal gauge transformations (A.25) and first explain how

they arise from partially flat homotopies. In particular, set I := [0, 1] ⊆ ℝ and consider the tensor product (see also Section 6.1)

𝔏Ω := Ω∙(I)⊗ 𝔏 =
⨁
k∈ℤ

(𝔏Ω)k with (𝔏Ω)k = 𝒞∞(I)⊗ 𝔏k ⊕Ω1(I)⊗ 𝔏k−1 (A.42)
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between the de Rham complex (Ω∙(I), d) on the interval I and an L∞-algebra (𝔏,𝜇i). Furthermore, the higher products 𝜇𝔏Ω
i on 𝔏Ω are

given by

𝜇
𝔏Ω
1 (𝜔1 ⊗ 𝓁1) := d𝜔1 ⊗ 𝓁1 + (−1)|𝜔1|Ω∙ (I)𝜔1 ⊗ 𝜇1(𝓁1),

𝜇
𝔏Ω
i (𝜔1 ⊗ 𝓁1,… ,𝜔i ⊗ 𝓁i) := (−1)i

∑i
j=1 |𝜔j|Ω∙ (I)+∑i−2

j=0 |𝜔j|𝜔∙ (I) ∑i−j−1
k=1 |𝓁k|𝔏 (𝜔1 ∧… ∧ 𝜔i)⊗ 𝜇i(𝓁1,… ,𝓁i) (A.43)

for all 𝜔1,… ,𝜔i ∈ Ω∙(I) and for all 𝓁1,… ,𝓁i ∈ 𝔏. Hence, a general element 𝖺 ∈ (𝔏Ω)1 is of the form 𝖺(t) = a(t) + dt⊗ c0(t) with
a(t) ∈ 𝒞∞(I)⊗ 𝔏1 and c0(t) ∈ 𝒞∞(I)⊗ 𝔏0. Its curvature 𝖿 ∈ (𝔏Ω)2 is then

𝖿 (t) = f (t) + dt⊗

{
𝜕a(t)
𝜕t

−
∑
i≥0

1
i!
𝜇i+1(a(t),… , a(t), c0(t))

}
, (A.44)

where f (t) ∈ 𝒞∞(I)⊗ 𝔏2 is the curvature of a(t). The requirement of partial flatness of 𝖿 (t) amounts to saying that 𝖿 (t) has no compo-
nents along dt. Thus,

𝜕a(t)
𝜕t

=
∑
i≥0

1
i!
𝜇i+1(a(t),… , a(t), c0(t)) (A.45)

and we recover the gauge transformations (A.25) from

𝛿c0a =
𝜕a(t)
𝜕t

||||t=0 (A.46)

with a = a(0) and c0 = c0(0). Furthermore, upon solving the ordinary differential Equation (A.45), we will obtain finite gauge transfor-
mations. Let us now explain how one can understand this as a curved morphism that preserves the products 𝜇i.
Concretely, we consider (A.34) and (A.36) and make the ansatz

a(t) :=
∑
i≥0

1
i!
𝜙i(t)(a,… , a) and c0(t) :=

∑
i≥0

1
i!
𝜙i+1(t)(a,… , a, c0) . (A.47)

Here, we again set a = a(0) and c0 = c0(0) which, in turn, translates to the conditions 𝜙i(0) = 0 for all i ≠ 1 and 𝜙1(0) = 1. Upon
substituting the ansatz (A.47) into (A.45) and remembering (A.37), we obtain

𝜕a(t)
𝜕t

=
∑
i≥0

1
i!
𝜕𝜙i(t)
𝜕t

(a,… , a)

= −
∑
i≥0

1
i!
𝜙i+2(t)(a,… , a, f, c0) +

∑
i≥0

1
i!
𝜙i+1(t)(𝛿c0a, a,… , a) ,

(A.48)

where f is the curvature of a. Thus, solving the ordinary differential Equation (A.45) for gauge transformations is equivalent to
solving the ordinary differential Equation (A.48) for a curved morphism 𝜙i on the L∞-algebra that preserves the L∞-algebra structure.
Put differently, finite gauge transformations are given by curved morphisms that arise as solutions to (A.48).
Let us exemplify these discussions by considering a standard Lie algebra valued one-form gauge potential on Minkowski space𝕄d.

Here, a = A ∈ Ω1(𝕄d)⊗ 𝔤 and c0 = c ∈ 𝒞∞(𝕄d)⊗ 𝔤 for a Lie algebra 𝔤. Moreover, in this case it is enough to consider 𝜙0(t) and 𝜙1(t)
and set 𝜙i(t) = 0 for all i > 1. Consequently, the ordinary differential Equation (A.48) reduces to

𝜕A(t)
𝜕t

=
𝜕𝜙0(t)
𝜕t

+
𝜕𝜙1(t)
𝜕t

(A) = 𝜙1(t)(dc + [A, c]) (A.49)
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and is solved by A(t) = 𝜙0(t) + 𝜙1(t)(A) and c(t) = 𝜙1(t)(c) with49

𝜙0(t) = tdc + t2

2!
[dc, c] + t3

3!
[[dc, c], c] +⋯ = e−tc detc ,

𝜙1(t)(A) = A + t[A, c] + t2

2!
[[A, c], c] + t3

3!
[[[A, c], c], c] +⋯ = e−tc A etc ,

𝜙1(t)(c) = c

(A.50)

as a short calculation reveals; recall from (A.32) that 𝜙0(t) must be a homotopy Maurer–Cartan element.

A.4. Structure Theorems

In the following, the term ‘homotopy algebra’ refers to either an A∞-, C∞-, or L∞-algebra. Note that the unary higher product is a
differential for any homotopy algebra. We call a homotopy algebraminimal provided the unary product vanishes. A homotopy algebra
is called strict if only the unary and binary products are non-vanishing. Moreover, a homotopy algebra is called linearly contractible if
only the unary product is nonvanishing, and it has trivial cohomology. Above we have introduced different notions of L∞-algebras.
Likewise, there are similar notions ofmorphisms forA∞- andC∞-algebras. In addition, there is a stricter notion of quasi-isomorphisms
known as isomorphisms. In the context of L∞-algebras, those are morphisms for which the lowest map 𝜙1 is invertible.
Structure Theorems: We now have the following structure theorems:

(i) The decomposition theorem: any homotopy algebra is isomorphic to the direct sum of a minimal and a linearly contractible one;
see e.g. [196] for the case of A∞-algebras.

(ii) The minimal model theorem: any homotopy algebra is quasi-isomorphic to a minimal one. This follows directly from the decom-
position theorem, see also [195, 196] for the case of L∞-algebras.

(iii) The strictification theorem: any homotopy algebra is quasi-isomorphic to a strict one.[298,299]

We note that strict A∞-, C∞-, and L∞-algebras are simply differential graded associative, differential graded commutative, and differ-
ential graded Lie algebras, respectively. We also note that mathematicians would probably use the term ‘rectify’ over ‘strictify’; we
found the latter term more descriptive.

Remark A.1. We also would like to make a few remarks on the relations between the homotopy algebras:

(i) As we saw above in (A.19), any A∞-algebra carries an L∞-structure by (graded) anti-symmetrisation the higher products.
(ii) All higher products of a C∞-algebra (which is also in particular an A∞-algebra) except for the differential vanish after anti-

symmetrisation.

Appendix B: Inverses of Wave Operators

In this paper, we have glossed over some of the finer analytical details as not to hide the simplicity of our constructions (too much)
behind arcane notation. In particular, we mostly ignored the difference between 𝒞∞(𝕄d) and the actual function space

𝔉 := 𝔉int ⊕𝔉free = 𝒮(𝕄d)⊕ ker𝒮(□) , (B.1)

cf. (4.29). This is unproblematic, but the mathematically minded reader may wonder about the definition of inverses of the operator
□ which appear throughout our discussion. Below, we give an answer to this point.
A first point to note is that only gluons can label scattering amplitudes (we are not talking about correlation functions) and therefore

they are the only relevant object in the minimal model consisting of (several copies of) the kernel of the wave operator. However, we
do want to have gauge symmetries also at the level of free fields, and we therefore allow also the ghosts to have free components. This
is not a problem for the scattering amplitudes, as gluons and ghosts live in homogeneously differently graded spaces. The anti-ghosts

49 We can also consider the more general case 𝜙0(t) = g−1(t) dg(t), 𝜙1(t)(A) = g−1(t)A g(t), and 𝜙1(t)(c) = g−1(t) 𝜕tg(t) for g ∈ 𝒞∞(I,𝖦) with g(0) = 1,
that is, g solves the ordinary differential equation 𝜕tg(t) = g(t) c(t); note that 𝜕tg(t)|t=0 = c.

Fortschr. Phys. 2021, 69, 2100075 2100075 (94 of 100) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

and Nakanishi–Lautrup field are only relevant as interacting fields, and we arrive at an L∞-algebra with underlying cochain complex

Ãa
μ

FΩ1 ⊗g
−Ã+a

μ

FΩ1 ⊗g

b̃a

S (Md)⊗g
b̃+a

S (Md)⊗g

c̃a
F⊗g

˜̄c+

S (Md)⊗g

˜̄ca

S (Md)⊗g
c̃+a
F⊗g

−�

−ξ̃	�∂μ

−�

ξ̃
	
�∂μ

� �

(B.2)

where 𝔉Ω1 are one-forms on𝕄d with coefficients in 𝔉 and□ (as well as
√
□) vanishes on ker𝒮(□)⊗ 𝔤. In this complex, expressions

such as 1√
□
b̃a are clearly well-defined.

We may feel slightly uncomfortable with this restriction of fields as the tensor product of scalar fields with elements in 𝔎𝔦𝔫 that
we used to construct the Yang–Mills fields does not make any distinction between gluons and ghost on the one side and anti-ghosts
and Nakanishi–Lautrup fields on the other side. To resolve this issue, we can consider a quasi-isomorphic L∞-algebra with underlying
complex

Ãa
μ

FΩ1 ⊗g
−Ã+a

μ

FΩ1 ⊗g

b̃a

S (Md)⊗g
b̃+a

S (Md)⊗g

b̃a
kerS (�)⊗g

b̃+a
kerS (�)⊗g

c̃a
F⊗g

˜̄c+

S (Md)⊗g

˜̄ca

S (Md)⊗g
c̃+a
F⊗g

˜̄c+
kerS (�)⊗g

˜̄ca
kerS (�)⊗g

−�

−ξ̃	�∂μ

−�

ξ̃
	
�∂μ

id

� �

id

(B.3)

We note that the identity component is readily implemented with a modification of the Yang–Mills twist 𝜏1 in (7.19). However, the
requiredmodification is technically a bit cumbersome, and hadwe inserted it, it would have distracted from themain point of the twist.
Finally, note that the twists 𝜏2 governing interactions can be left unmodified and merely need to be restricted to the Schwartz parts
𝒮(𝕄d)⊗ 𝔤 for anti-ghosts and Nakanishi–Lautrup fields. This is also evident, as scattering amplitudes will never lead to interactions
involving non-propagating anti-ghosts or Nakanishi–Lautrup fields.
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[9] L. Borsten, B. Jurčo, H. Kim, T. Macrelli, C. Saemann, M. Wolf, Phys. Rev. Lett. 2021, 126, 191601 [2007.13803 [hep-th]].
[10] S. Weinberg, E. Witten, Phys. Lett. B 1980, 96, 59.
[11] Z. Bern, D. C. Dunbar, T. Shimada, Phys. Lett. B 1993, 312, 277 [hep-th/9307001].
[12] Z. Bern, L. Dixon, D. C. Dunbar, D. A. Kosower, Nucl. Phys. B 1994, 425, 217 [hep-ph/9403226].
[13] Z. Bern, L. Dixon, D. C. Dunbar, D. A. Kosower, Nucl. Phys. B 1995, 435, 59 [hep-ph/9409265].
[14] Z. Bern, A. G. Morgan, Nucl. Phys. B 1996, 467, 479 [hep-ph/9511336].
[15] L. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359.
[16] Z. Bern, L. Dixon, D. A. Kosower, Ann. Rev. Nucl. Part. Sci. 1996, 46, 109 [hep-ph/9602280].
[17] R. Britto, J. Phys. A 2011, 44, 454006 [1012.4493 [hep-th]].
[18] Z. Bern, Y.-t. Huang, J. Phys. A 2011, 44, 454003 [1103.1869 [hep-th]].
[19] Z. Bern, L. Dixon, D. C. Dunbar, M. Perelstein, J. S. Rozowsky, Nucl. Phys. B 1998, 530, 401 [hep-th/9802162].
[20] H. Elvang, Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press, 2015 [doi].
[21] H. Elvang, Y.-t. Huang, Scattering amplitudes, 1308.1697 [hep-th].
[22] J. J. M. Carrasco, Gauge and gravity amplitude relations in: Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys

Through the Precision Frontier: Amplitudes for Colliders (TASI 2014), Boulder, Colorado, 2014 [doi] [1506.00974 [hep-th]].
[23] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban, The duality between color and kinematics and its applications, 1909.01358 [hep-th].
[24] L. Borsten, Riv. Nuovo Cim. 2020, 43, 97.
[25] N. E. J. Bjerrum-Bohr, P. H. Damgaard, T. Søndergaard, P. Vanhove, JHEP 2011, 1101, 001 [1010.3933 [hep-th]].
[26] C. R. Mafra, O. Schlotterer, S. Stieberger, JHEP 2011, 1107, 092 [1104.5224 [hep-th]].
[27] J. Broedel, O. Schlotterer, S. Stieberger, Fortsch. Phys. 2013, 61, 812 [1304.7267 [hep-th]].
[28] Y.-J. Du, C.-H. Fu, JHEP 2016, 1609, 174 [1606.05846 [hep-th]].
[29] S. Mizera, Phys. Rev. Lett. 2020, 124, 141601 [1912.03397 [hep-th]].
[30] Z. Bern, J. J. Carrasco, L. J. Dixon, H. Johansson, R. Roiban, Phys. Rev. Lett. 2009, 103, 081301 [0905.2326 [hep-th]].
[31] Z. Bern, S. Davies, T. Dennen, Phys. Rev. D 2014, 90, 105011 [1409.3089 [hep-th]].
[32] J. J. M. Carrasco, H. Johansson, Phys. Rev. D 2012, 85, 025006 [1106.4711 [hep-th]].
[33] S. Oxburgh, C. D. White, JHEP 2013, 1302, 127 [1210.1110 [hep-th]].
[34] Z. Bern, J. J. M. Carrasco, L. J. Dixon, H. Johansson, R. Roiban, Phys. Rev. D 2012, 85, 105014 [1201.5366 [hep-th]].
[35] Y.-J. Du, H. Luo, JHEP 2013, 1301, 129 [1207.4549 [hep-th]].
[36] E. Y. Yuan, JHEP 2013, 1305, 070 [1210.1816 [hep-th]].
[37] R. H. Boels, R. S. Isermann, R. Monteiro, D. O’Connell, JHEP 2013, 1304, 107 [1301.4165 [hep-th]].
[38] M. Chiodaroli, M. Günaydın, H. Johansson, R. Roiban, JHEP 2017, 1707, 002 [1703.00421 [hep-th]].
[39] Z. Bern, J. J. M. Carrasco, L. J. Dixon, H. Johansson, R. Roiban, Phys. Rev. D 2010, 82, 125040 [1008.3327 [hep-th]].
[40] M. Chiodaroli, M. Günaydın, R. Roiban, JHEP 2012, 1203, 093 [1108.3085 [hep-th]].
[41] Z. Bern, S. Davies, T. Dennen, Y.-t. Huang, Phys. Rev. D 2012, 86, 105014 [1209.2472 [hep-th]].
[42] J. J. M. Carrasco, M. Chiodaroli, M. Günaydın, R. Roiban, JHEP 2013, 1303, 056 [1212.1146 [hep-th]].
[43] P. H. Damgaard, R. Huang, T. Søndergaard, Y. Zhang, JHEP 2012, 1208, 101 [1206.1577 [hep-th]].
[44] Y.-t. Huang, H. Johansson, Phys. Rev. Lett. 2013, 110, 171601 [1210.2255 [hep-th]].
[45] T. Bargheer, S. He, T. McLoughlin, Phys. Rev. Lett. 2012, 108, 231601 [1203.0562 [hep-th]].
[46] J. J. M. Carrasco, R. Kallosh, R. Roiban, A. A. Tseytlin, JHEP 2013, 1307, 029 [1303.6219 [hep-th]].
[47] M. Chiodaroli, Q. Jin, R. Roiban, JHEP 2014, 1401, 152 [1311.3600 [hep-th]].
[48] H. Johansson, A. Ochirov, JHEP 2015, 1511, 046 [1407.4772 [hep-th]].
[49] M. Chiodaroli, M. Günaydın, H. Johansson, R. Roiban, JHEP 2015, 1501, 081 [1408.0764 [hep-th]].
[50] M. Chiodaroli, M. Günaydın, H. Johansson, R. Roiban, JHEP 2017, 1706, 064 [1511.01740 [hep-th]].
[51] M. Chiodaroli, M. Günaydın, H. Johansson, R. Roiban, Phys. Rev. Lett. 2016, 117, 011603 [1512.09130 [hep-th]].
[52] M. Chiodaroli, Simplifying amplitudes inMaxwell–Einstein and Yang–Mills–Einstein supergravities, in: Space–Time–Matter: Analytic and Geometric

Structures, eds. J. Brüning, M. Staudacher, p. 266, De Gruyter, 2018 [doi] [1607.04129 [hep-th]].
[53] J. J. M. Carrasco, C. R. Mafra, O. Schlotterer, JHEP 2017, 1708, 135 [1612.06446 [hep-th]].
[54] J. J. M. Carrasco, C. R. Mafra, O. Schlotterer, JHEP 2017, 1706, 093 [1608.02569 [hep-th]].
[55] A. Anastasiou, L. Borsten, M. J. Duff, M. J. Hughes, A. Marrani, S. Nagy, M. Zoccali, Phys. Rev. D 2017, 96, 026013 [1610.07192 [hep-th]].
[56] H. Johansson, G. Kälin, G. Mogull, JHEP 2017, 1709, 019 [1706.09381 [hep-th]].
[57] H. Johansson, J. Nohle, Conformal gravity from gauge theory, 1707.02965 [hep-th].

Fortschr. Phys. 2021, 69, 2100075 2100075 (96 of 100) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

[58] T. Azevedo, O. T. Engelund, JHEP 2017, 1711, 052 [1707.02192 [hep-th]].
[59] A. Anastasiou, L. Borsten, M. J. Duff, A. Marrani, S. Nagy, M. Zoccali, Nucl. Phys. B 2018, 934, 606 [1707.03234 [hep-th]].
[60] M. Chiodaroli, M. Günaydın, H. Johansson, R. Roiban, Phys. Rev. Lett. 2018, 120, 171601 [1710.08796 [hep-th]].
[61] M. Chiodaroli, M. Günaydın, H. Johansson, R. Roiban, JHEP 2019, 1906, 099 [1812.10434 [hep-th]].
[62] T. Azevedo, M. Chiodaroli, H. Johansson, O. Schlotterer, JHEP 2018, 1810, 012 [1803.05452 [hep-th]].
[63] Z. Bern, S. Davies, T. Dennen, Y.-t. Huang, Phys. Rev. Lett. 2012, 108, 201301 [1202.3423 [hep-th]].
[64] Z. Bern, S. Davies, T. Dennen, Phys. Rev. D 2013, 88, 065007 [1305.4876 [hep-th]].
[65] Z. Bern, S. Davies, T. Dennen, A. V. Smirnov, V. A. Smirnov, Phys. Rev. Lett. 2013, 111, 231302 [1309.2498 [hep-th]].
[66] Z. Bern, S. Davies, T. Dennen, The ultraviolet critical dimension of half-maximal supergravity at three loops, 1412.2441 [hep-th].
[67] Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon, J. Nohle, Phys. Rev. Lett. 2015, 115, 211301 [1507.06118 [hep-th]].
[68] Z. Bern, J. J. Carrasco, W.-M. Chen, A. Edison, H. Johansson, J. Parra-Martinez, R. Roiban, M. Zeng, Phys. Rev. D 2018, 98, 086021 [1804.09311

[hep-th]].
[69] S. Deser, J. H. Kay, K. S. Stelle, Phys. Rev. Lett. 1977, 38, 527 [1506.03757 [hep-th]].
[70] P. S. Howe, K. Stelle, Int. J. Mod. Phys. A 1989, 4, 1871.
[71] J. Broedel, L. J. Dixon, JHEP 2010, 1005, 003 [0911.5704 [hep-th]].
[72] M. B. Green, J. G. Russo, P. Vanhove, JHEP 2010, 1006, 075 [1002.3805 [hep-th]].
[73] G. Bossard, P. S. Howe, K. S. Stelle, JHEP 2011, 1101, 020 [1009.0743 [hep-th]].
[74] N. Beisert, H. Elvang, D. Z. Freedman, M. Kiermaier, A. Morales, S. Stieberger, Phys. Lett. B 2010, 694, 265 [1009.1643 [hep-th]].
[75] G. Bossard, P. S. Howe, K. S. Stelle, P. Vanhove, Class. Quant. Grav. 2011, 28, 215005 [1105.6087 [hep-th]].
[76] G. Bossard, P. S. Howe, K. S. Stelle, Phys. Lett. B 2013, 719, 424 [1212.0841 [hep-th]].
[77] D. Z. Freedman, R. Kallosh, Y. Yamada, Fortsch. Phys. 2018, 66, 1800054 [1807.06704 [hep-th]].
[78] Z. Bern, J. J. M. Carrasco, W.-M. Chen, H. Johansson, R. Roiban, M. Zeng, Phys. Rev. D 2017, 96, 126012 [1708.06807 [hep-th]].
[79] P. Ferrero, D. Francia, On the Lagrangian formulation of the double copy to cubic order, 2012.00713 [hep-th].
[80] M. Tolotti, S. Weinzierl, JHEP 2013, 1307, 111 [1306.2975 [hep-th]].
[81] R. Monteiro, D. O’Connell, JHEP 2011, 1107, 007 [1105.2565 [hep-th]].
[82] N. E. J. Bjerrum-Bohr, P. H. Damgaard, R. Monteiro, D. O’Connell, JHEP 2012, 1206, 061 [1203.0944 [hep-th]].
[83] R. Monteiro, D. O’Connell, JHEP 2014, 1403, 110 [1311.1151 [hep-th]].
[84] C.-H. Fu, K. Krasnov, JHEP 2017, 1701, 075 [1603.02033 [hep-th]].
[85] G. Chen, H. Johansson, F. Teng, T. Wang, JHEP 2019, 2019, 055 [1906.10683 [hep-th]].
[86] Z. Bern, A. K. Grant, Phys. Lett. B 1999, 457, 23 [hep-th/9904026].
[87] O. Hohm, JHEP 2011, 1104, 103 [1103.0032 [hep-th]].
[88] C. Cheung, G. N. Remmen, JHEP 2017, 1701, 104 [1612.03927 [hep-th]].
[89] C. Cheung, C.-H. Shen, Phys. Rev. Lett. 2017, 118, 121601 [1612.00868 [hep-th]].
[90] C. Cheung, G. N. Remmen, JHEP 2017, 1709, 002 [1705.00626 [hep-th]].
[91] A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes, S. Nagy, Phys. Rev. Lett. 2014, 113, 231606 [1408.4434 [hep-th]].
[92] L. Borsten, Phys. Rev. D 2018, 97, 066014 [1708.02573 [hep-th]].
[93] A. Anastasiou, L. Borsten, M. J. Duff, S. Nagy, M. Zoccali, Phys. Rev. Lett. 2018, 121, 211601 [1807.02486 [hep-th]].
[94] L. Borsten, S. Nagy, JHEP 2020, 2007, 093 [2004.14945 [hep-th]].
[95] W. Siegel, Phys. Lett. B 1988, 211, 55.
[96] W. Siegel, Phys. Rev. D 1996, 53, 3324 [hep-th/9510150].
[97] M. Campiglia, S. Nagy, A double copy for asymptotic symmetries in the self-dual sector, 2102.01680 [hep-th].
[98] K. Pohlmeyer, Commun. Math. Phys. 1980, 72, 37.
[99] L. Dolan, Phys. Rept. 1984, 109, 1.
[100] A. D. Popov, C. R. Preitschopf, Phys. Lett. B 1996, 374, 71 [hep-th/9512130].
[101] A. D. Popov, M. Bordemann, H. Roemer, Phys. Lett. B 1996, 385, 63 [hep-th/9606077].
[102] A. D. Popov, Rev. Math. Phys. 1999, 11, 1091 [hep-th/9803183].
[103] M. Wolf, JHEP 2005, 0502, 018 [hep-th/0412163].
[104] M. Wolf, Proc. of the Intern. Workshop on Supersymmetries and Quantum Symmetries 2005, 1, 448 [hep-th/0511230].
[105] L. Borsten, M. J. Duff, L. J. Hughes, S. Nagy, Phys. Rev. Lett. 2014, 112, 131601 [1301.4176 [hep-th]].
[106] A. Anastasiou, L. Borsten, M. J. Duff, L. J. Hughes, S. Nagy, JHEP 2014, 1404, 178 [1312.6523 [hep-th]].
[107] S. Nagy, JHEP 2016, 1607, 142 [1412.4750 [hep-th]].
[108] L. Borsten, M. J. Duff, Phys. Scr. 2015, 90, 108012 [1602.08267 [hep-th]].
[109] A. Anastasiou, L. Borsten, M. J. Hughes, S. Nagy, JHEP 2016, 1601, 148 [1502.05359 [hep-th]].
[110] L. Borsten, M. J. Duff, A. Marrani, JHEP 2019, 1903, 112 [1812.11130 [hep-th]].
[111] R. Monteiro, D. O’Connell, C. D. White, JHEP 2014, 1412, 056 [1410.0239 [hep-th]].
[112] A. Luna, R. Monteiro, D. O’Connell, C. D. White, Phys. Lett. B 2015, 750, 272 [1507.01869 [hep-th]].
[113] A. K. Ridgway, M. B. Wise, Phys. Rev. D 2016, 94, 044023 [1512.02243 [hep-th]].
[114] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, C. D. White, JHEP 2016, 1606, 023 [1603.05737 [hep-th]].
[115] C. D. White, Phys. Lett. B 2016, 763, 365 [1606.04724 [hep-th]].
[116] W. D. Goldberger, A. K. Ridgway, Phys. Rev. D 2017, 95, 125010 [1611.03493 [hep-th]].
[117] W. D. Goldberger, S. G. Prabhu, J. O. Thompson, Phys. Rev. D 2017, 96, 065009 [1705.09263 [hep-th]].
[118] A. Luna, I. Nicholson, D. O’Connell, C. D. White, JHEP 2018, 1803, 044 [1711.03901 [hep-th]].
[119] N. Bahjat-Abbas, A. Luna, C. D. White, JHEP 2017, 1712, 004 [1710.01953 [hep-th]].
[120] N. Bahjat-Abbas, R. Stark-Muchão, C. D. White, Phys. Lett. B 2019, 788, 274 [1810.08118 [hep-th]].

Fortschr. Phys. 2021, 69, 2100075 2100075 (97 of 100) © 2021 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

[121] D. S. Berman, E. Chacón, A. Luna, C. D. White, JHEP 2019, 1901, 107 [1809.04063 [hep-th]].
[122] M. C. González, B. Melcher, K. Ratliff, S. Watson, C. D. White, JHEP 2019, 1907, 167 [1904.11001 [hep-th]].
[123] I. Bah, R. Dempsey, P. Weck, JHEP 2020, 2020, 180 [1910.04197 [hep-th]].
[124] L. Alfonsi, C. D. White, S. Wikeley, JHEP 2020, 2007, 091 [2004.07181 [hep-th]].
[125] R. Alawadhi, D. S. Berman, B. Spence, D. P. Veiga, JHEP 2020, 2003, 059 [1911.06797 [hep-th]].
[126] A. Banerjee, E. Ó. Colgáin, J. A. Rosabal, H. Yavartanoo, Phys. Rev. D 2020, 102, 126017 [1912.02597 [hep-th]].
[127] A. Guevara, B. Maybee, A. Ochirov, D. O’Connell, J. Vines, A worldsheet for Kerr, 2012.11570 [hep-th].
[128] A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. O’Connell, N. Westerberg, C. D. White, JHEP 2017, 1704, 069 [1611.07508 [hep-th]].
[129] A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, Class. Quant. Grav. 2019, 36, 065003 [1810.08183 [hep-th]].
[130] R. Alawadhi, D. S. Berman, B. Spence, JHEP 2020, 2009, 127 [2007.03264 [hep-th]].
[131] H. Godazgar, M. Godazgar, R. Monteiro, C. N. Pope, D. P. Veiga, The Weyl double copy for gravitational waves, 2010.02925 [hep-th].
[132] C. D. White, A twistorial foundation for the classical double copy, 2012.02479 [hep-th].
[133] R. Monteiro, D. O’Connell, D. P. Veiga, M. Sergola, Classical solutions and their double copy in split signature, 2012.11190 [hep-th].
[134] A. Luna, S. Nagy, C. White, JHEP 2020, 2009, 062 [2004.11254 [hep-th]].
[135] G. L. Cardoso, S. Nagy, S. Nampuri, JHEP 2016, 1610, 127 [1609.05022 [hep-th]].
[136] G. L. Cardoso, S. Nagy, S. Nampuri, JHEP 2017, 1704, 037 [1611.04409 [hep-th]].
[137] C.-H. Shen, JHEP 2018, 1811, 162 [1806.07388 [hep-th]].
[138] J. Plefka, J. Steinhoff, W. Wormsbecher, Phys. Rev. D 2019, 99, 024021 [1807.09859 [hep-th]].
[139] C. Cheung, I. Z. Rothstein, M. P. Solon, Phys. Rev. Lett. 2018, 121, 251101 [1808.02489 [hep-th]].
[140] D. A. Kosower, B. Maybee, D. O’Connell, JHEP 2019, 1902, 137 [1811.10950 [hep-th]].
[141] J. Plefka, C. Shi, J. Steinhoff, T. Wang, Phys. Rev. D 2019, 100, 086006 [1906.05875 [hep-th]].
[142] B. Maybee, D. O’Connell, J. Vines, JHEP 2019, 1912, 156 [1906.09260 [hep-th]].
[143] H. Johansson, A. Ochirov, JHEP 2019, 1909, 040 [1906.12292 [hep-th]].
[144] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, M. Zeng, Phys. Rev. Lett. 2019, 122, 201603 [1901.04424 [hep-th]].
[145] N. Arkani-Hamed, Y.-t. Huang, D. O’Connell, JHEP 2020, 2001, 046 [1906.10100 [hep-th]].
[146] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, M. Zeng, JHEP 2019, 1910, 206 [1908.01493 [hep-th]].
[147] J. Plefka, C. Shi, T. Wang, Phys. Rev. D 2020, 101, 066004 [1911.06785 [hep-th]].
[148] Z. Bern, A. Luna, R. Roiban, C.-H. Shen, M. Zeng, Spinning black hole binary dynamics, scattering amplitudes and effective field theory, 2005.03071

[hep-th].
[149] Z. Bern, J. Parra-Martinez, R. Roiban, E. Sawyer, C.-H. Shen, Leading nonlinear tidal effects and scattering amplitudes, 2010.08559 [hep-th].
[150] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, M. Zeng, Scattering amplitudes and conservative binary dynamics at (G4),

2101.07254 [hep-th].
[151] O. Schlotterer, S. Stieberger, J. Phys. A 2013, 46, 475401 [1205.1516 [hep-th]].
[152] A. Ochirov, P. Tourkine, JHEP 2014, 1405, 136 [1312.1326 [hep-th]].
[153] N. E. J. Bjerrum-Bohr, P. H. Damgaard, P. Tourkine, P. Vanhove, Phys. Rev. D 2014, 90, 106002 [1403.4553 [hep-th]].
[154] S. He, R. Monteiro, O. Schlotterer, JHEP 2016, 1601, 171 [1507.06288 [hep-th]].
[155] F. Cachazo, S. He, E. Y. Yuan, JHEP 2014, 1407, 033 [1309.0885 [hep-th]].
[156] L. Mason, D. Skinner, JHEP 2014, 1407, 048 [1311.2564 [hep-th]].
[157] T. Adamo, E. Casali, D. Skinner, JHEP 2014, 1404, 104 [1312.3828 [hep-th]].
[158] L. Dolan, P. Goddard, JHEP 2014, 1405, 010 [1311.5200 [hep-th]].
[159] F. Cachazo, S. He, E. Y. Yuan, JHEP 2015, 1507, 149 [1412.3479 [hep-th]].
[160] Y. Geyer, L. Mason, R. Monteiro, P. Tourkine, Phys. Rev. Lett. 2015, 115, 121603 [1507.00321 [hep-th]].
[161] Y. Geyer, L. Mason, R. Monteiro, P. Tourkine, Phys. Rev. D 2016, 94, 125029 [1607.08887 [hep-th]].
[162] N. E. J. Bjerrum-Bohr, J. L. Bourjaily, P. H. Damgaard, B. Feng, JHEP 2016, 1609, 094 [1608.00006 [hep-th]].
[163] T. Adamo, E. Casali, L. Mason, S. Nekovar, Class. Quant. Grav. 2018, 35, 015004 [1706.08925 [hep-th]].
[164] Y. Geyer, L. Mason, Phys. Rev. Lett. 2019, 122, 101601 [1812.05548 [hep-th]].
[165] G. Albonico, Y. Geyer, L. Mason, Recursion and worldsheet formulae for 6d superamplitudes, 2001.05928 [hep-th].
[166] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. 1977, 69B, 309.
[167] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B 1981, 102, 27.
[168] I. A. Batalin, G. A. Vilkovisky, Phys. Rev. D 1983, 28, 2567.
[169] I. A. Batalin, G. A. Vilkovisky, Nucl. Phys. B 1984, 234, 106.
[170] I. A. Batalin, G. A. Vilkovisky, J. Math. Phys. 1985, 26, 172.
[171] A. Schwarz, Commun. Math. Phys. 1993, 155, 249 [hep-th/9205088].
[172] B. Zwiebach, Nucl. Phys. B 1993, 390, 33 [hep-th/9206084].
[173] J. D. Stasheff, Trans. Amer. Math. Soc. 1963, 108, 275.
[174] J. D. Stasheff, Trans. Amer. Math. Soc. 1963, 108, 293.
[175] J. Stasheff, Differential Graded Lie Algebras, Quasi-Hopf Algebras and Higher Homotopy Algebras, Quantum Groups (Leningrad, 1990), Lecture Notes

in Math., vol. 1510, Springer, Berlin 1992, pp. 120–137.
[176] T. Lada, J. Stasheff, Int. J. Theor. Phys. 1993, 32, 1087 [hep-th/9209099].
[177] T. Lada, M. Markl, Commun. Alg. 1995, 23, 2147 [hep-th/9406095].
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