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3. Complexity measure is introduced to capture spatial mixing in sensor space. 
4. Sensor alpha-activity depends on participant-individual presence of rhythms. 
5. Alpha-rhythm relative contributions on sensors change dynamically over time. 
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Abstract6

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in
sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of
data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general
idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly
exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show
spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using
simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show
that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While
prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes
show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and
temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong
occipital rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that
are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used
assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With
this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical
illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for
their topic of investigation.

Keywords: alpha rhythm, neuronal oscillations, volume conduction, lead field, EEG, MEG7

1. Introduction8

Alpha rhythms (8–13 Hz) are a prominent feature of human non-invasive electrophysiological recordings. Different9

types of rhythms are found within this band, with generators in occipital, parietal, temporal and sensorimotor cortices10

[1, 2]. The different alpha rhythms show a functional specificity, with event-related desynchronization due to motor11

action for the sensorimotor rhythm, or strong modulation due to eye-opening or closing for the occipital alpha rhythm.12

Within each rhythm type there may be an even finer degree of organization, with differential modulation of the13

sensorimotor mu rhythms by hand vs. foot movements [3] or differential modulation of occipital alpha rhythms by14

stimuli in different parts of the visual field [4, 5]. In addition, alpha rhythms have been shown to be associated with15

attention showing stronger amplitude in cortical areas where neuronal activity should be suppressed [6]. In general,16

these rhythms remain a topic of active research directed at elucidating their role in cognition, perception and motor17

systems.18
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A fundamental challenge in the analysis and interpretation of signals recorded with electroencephalography (EEG)19

or magnetoencephalography (MEG) is volume conduction [7]. Volume conduction leads to overlap of signals from20

different generators in space and time [8]. This overlap is especially problematic for sensor space analysis, in which21

signals from sensors are used directly, by aid of a standard reference, e.g., common average, linked mastoids or22

nose-reference. Yet, despite distortions introduced by volume conduction, sensor space analysis remains a popular23

approach for the analysis of EEG/MEG signals [9]. While MEG studies use sensor space as a first-pass analysis, e.g.24

for defining regions of interest and then run the main analyses using source analysis techniques, for EEG, sensor space25

is often the exclusive way of analyzing the data. The wide-spread use of sensor space analysis is certainly due to26

the convenience of the procedure. In contrast to sensor space, source analysis requires: 1) data analysis training in27

inverse modeling and understanding of its parameters, 2) more computational resources required by inverse modeling28

algorithms 3) more training in statistical analysis, as corrections for multiple comparisons across sources are required 4)29

possibly more resources are needed to be spent on the acquisition of individual anatomical magnetic resonance imaging30

data. However, despite the relative ease with which sensor space analysis can be performed, it may potentially obfuscate31

any fine degree of spatial specificity of neuronal rhythms to behavior, especially for EEG studies. Therefore, it is of32

interest to assess in more detail how analysis in sensor space may blur contributions of different types of rhythms.33

The methodological validity of measures derived from sensor space data is especially relevant for studies involving34

EEG recordings with a small number of electrodes. For instance, in a clinical setting, time constraints often limit35

the number of electrodes which can be placed on a patient. For instance, [10] used 1-electrode EEG to study a large36

cohort of patients with schizophrenia. In neurofeedback studies, typically participants receive feedback in the form37

of oscillatory power of a single/limited number of sensors. In closed-loop EEG studies [11, 12], where magnetic38

stimulation is given dependent on features of EEG rhythms, only a small number of EEG electrodes is used for the39

extraction of features of interest to be robust against experimental noise. If only a small number of sensors is to be40

used, the sensitivity of measures for this specific recording setup has to be considered in order to reliably detect the41

phenomena of interest.42

In this article, we illustrate the impact of spatial mixing on neuronal rhythms on the sensor space level compared to the43

source-level. A number of studies has evaluated consistency and sensitivity of measures in sensor vs source space in44

the realm of connectivity metrics with respect to volume conduction and linear mixing [13, 14]. But here we focus on45

univariate properties of neuronal rhythms, mainly band-power of rhythms in the alpha-band. While many previous46

studies acknowledge the problem of volume conduction for the EEG/MEG analysis in sensor space in general, to the47

best of our knowledge there are no reports directly showing how individual components/sources are actually mixed48

at the level of sensors. We do so in this paper using specifically alpha rhythms, while the main conclusions can be49

generalized to other oscillations and evoked responses.50

The main contribution of the following article is the quantification of spatial mixing of rhythms on the sensor space51

level. First, we discuss an easy-to-use method for assessing origin and spatial spread of extracted rhythms given a52

standard sensor scheme via the calculation of spatial patterns and demonstrate practical applications. We then use53

spatial patterns to assess spatial mixing of neuronal rhythms on the sensor space level compared to source level by using54

simulations in a realistic head model and a large dataset of EEG resting-state rhythms. Here, we illustrate constituent55

band-power contributions of different rhythms in the alpha-band in single sensors. Additionally, we show how spatial56

mixing is even more problematic when using ratio-measures of oscillations, due to the dynamic nature of oscillations,57

with high varying amplitude modulation of neuronal rhythms, affecting relative contributions of specific rhythms. We58

hope that our illustrations provide intuitions for basic and clinical researchers, in order to evaluate whether sensor space59

analysis may or may not be appropriate for their use case.60

2. Materials and Methods61

The analysis was performed using python and MNE version 0.23 [15] for the empirical analysis. The analysis code62

needed to reproduce the analysis and figures is available here: https://github.com/nschawor/meg-eeg-leadfield-mixing.63

While we show examples for single participants in the following, it is possible to generate these types of plots for all64

other participants with the provided code.65
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2.1. Experimental recordings66

For the empirical data analysis, we analyzed EEG data which was previously collected in the project “Leipzig Cohort67

for Mind-Body-Emotion Interactions” (LEMON). We summarize participant details and EEG data acquisition briefly68

in the following. A more extensive description of the dataset of all study components can be found in the original69

publication [16]. Additionally, we analyzed the resting data portion of an open MEG data set [17].70

2.1.1. Participants71

EEG data was collected from 216 volunteers who did not have a history of neurological disease or usage of drugs that72

target the central nervous system. The study protocol was approved by the ethics committee at the medical faculty73

at the University of Leipzig (reference number 154/13-ff) and conformed to the Declaration of Helsinki. Written74

informed consent was obtained from all participants prior to the experiment. Data from 13 participants were excluded75

because the files lacked event information, had a different sampling rate, mismatched header files or insufficient data76

quality. In addition, the data from 18 participants was excluded because of a low signal-to-noise ratio in the alpha-band77

as indicated by a 1/f-corrected spectral peak in the alpha-band below 5 dB (see Spectral analysis section for exact78

procedure). One participant was excluded because of suspected wrong ordering of channel names, resulting in corrupted79

spatial patterns. This resulted in datasets from 181 participants (117 male, 64 female, age range: 20–77 years).80

MEG data was collected from 204 volunteers with no history of neurological disease. The study protocol was approved81

by the ethics committee (CMO – the local “Committee on Research Involving Human Subjects” in the Arnhem-82

Nijmegen region) and conformed to the declaration of Helsinki. Written informed consent was obtained from all83

participants prior to the experiment. For 6 participants, resting state data was not available. In addition, the data from84

57 participants was excluded because of a low signal-to-noise ratio in the alpha-band as indicated by a 1/f-corrected85

spectral peak in the alpha-band below 5 dB. This resulted in datasets from 141 participants (75 male, 66 female, age86

range: 18–29 years).87

2.1.2. Recording setup88

Scalp EEG was recorded from a 62-channel active electrode cap (ActiCAP, Brain Products GmbH, Germany). In this89

configuration, 61 electrodes were in the international 10-20 system arrangement, and one additional electrode below90

the right eye was used to monitor vertical eye movements. The reference electrode was located at FCz, and the ground91

electrode at the sternum. The impedance for all electrodes was kept below 5 kΩ. Data was acquired with a BrainAmp92

MR plus amplifier (Brain Products GmbH, Germany) at an amplitude resolution of 0.1 µV with an online band-pass93

filter between 0.015 Hz and 1 kHz and with a sample rate of 2500 Hz. Recordings were made in a sound-attenuated94

EEG booth. In the experimental session, a total of 16 blocks were recorded, each lasting 60 seconds. Two conditions95

were interleaved, eyes closed and eyes open, starting in the eyes closed condition. During eyes open blocks, participants96

were instructed to fixate on a digital fixation cross. Changes between conditions were announced with the software97

Presentation (v16.5, Neurobehavioral Systems Inc., USA).98

MEG data was recorded using a 275-channel axial gradiometer system (CTF). Additionally, three bipolar Ag/AgCl99

electrodes measured horizontal and vertical electro-oculogram and the electrocardiogram. Three head localizer coils100

were positioned on the participant’s head (nasion, left and right ear canals), head position was continuously monitored.101

Data was acquired with a sampling rate of 1200 Hz. For the resting state measurements, participants were instructed to102

think of nothing specific while focusing on the fixation cross at the center of the screen for 5 minutes.103

2.2. Data analysis104

2.2.1. Preprocessing105

We used the available preprocessed data of the LEMON dataset, with the preprocessing as applied by the data creators.106

The preprocessing is described briefly in the following: Raw data was downsampled from 2500 Hz to 250 Hz and107

band-pass filtered in the frequency range 1–45 Hz with a Butterworth filter, with filter order 4. Raw activity traces were108
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Figure 1: Analysis pipeline for quantifying the contributions of independent rhythms on sensor activity. A. The two datasets consisted of
62-channel resting-state EEG recordings for eyes open and eyes closed conditions and 275-channel resting state MEG recordings with eyes open. B.
Spatial filters and patterns were calculated with spatio-spectral decomposition (SSD) using narrow-band data in the individual spectral peak in the
alpha frequency-band. C. The entries of the spatial patterns for each sensor were extracted and normalized, the absolute value was taken to calculate
the sensor complexity for each sensor.

visually inspected and outlier electrodes with frequency shifts in voltage and of poor signal quality were excluded. Data109

was inspected for intervals with extreme peak-to-peak deflections and large bursts of high-frequency activity and these110

intervals were discarded. In order to reduce the dimensionality of EEG signals, principal component analysis was used111

to keep principal components that explain 95% of the total data variance. Next, independent component analysis based112

on the Extended Infomax algorithm was performed (step size: 0.00065/log(number of electrodes), annealing policy:113

weight change > 0.000001, learning rate is multiplied by 0.98, stopping criterion: maximum number of iterations 512114

or weight change < 0.000001). Any component that reflected eye movements, eye blinks, muscle activity or heartbeat115

related activity was removed, as evaluated by visual inspection. The remaining independent components (mean number:116

21.4, range: 14–28) were projected back to sensor space. Importantly, components with alpha peaks were typically not117

removed. Therefore, the remaining components represent a vast amount of alpha-related activity.118

2.2.2. Spectral analysis119

As the focus here is oscillatory activity in the alpha frequency-band, we included only participants which exceeded120

a signal-to-noise ratio in the alpha frequency-band. For this, we used a criterion of > 5 dB as in our previous work121

[18]. To determine the signal-to-noise ratio in the alpha band, the frequency spectrum was computed with Welch’s122

method (Hann window, 2 second window length, 50% overlap). To subtract the 1/f-contribution from the spectrum,123

we used spectral parametrization [19]. The settings used were: maximum number of peaks = 5; aperiodic mode =124
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fixed, peak width limits = (0.5, 12), minimum peak height = 0; peak threshold = 2, frequency range of fit = 2–35 Hz.125

Participants were included if at least one electrode on the midline displayed an oscillatory peak > 5 dB in the alpha126

band, as evaluated over the whole recording length.127

2.2.3. Extraction of neuronal sources128

We used spatio-spectral decomposition (SSD) [20] which is a well-validated technique allowing us to extract neuronal129

oscillations with the maximized signal-to-noise ratio in a specified frequency band. The method is based on generalized130

eigenvalue decomposition of covariance matrices across sensors and maximizes the oscillatory power of a component131

at a specified target frequency band, while simultaneously minimizing the power at flanking frequency bands, yielding132

oscillatory components with highest signal-to-noise ratio. The computation can be performed fast and with few133

parameters. For our use case, we defined the frequency band of interest as the participant-individual peak in the alpha134

band, with a bandwidth of ± 2 Hz.135

2.2.4. Assessing spatial mixing with the aid of spatial patterns136

To examine how different components mix on a chosen sensor, we analyzed the spatial pattern coefficients associated137

with the SSD spatial filters. The general pipeline is shown in Fig. 1. Spatial patterns describe the contribution of sources138

S on the activity recorded from sensors X in a linear way: X = AS, with A being the matrix of spatial patterns,139

sometimes also called mixing matrix. In our convention, the columns of the matrix contain the spatial patterns for the140

individual sources, and the rows of the matrix contain the contributions of the individual sensors to each source. Spatial141

patterns were computed according to [21] on the basis of the covariance of activity filtered in the alpha band multiplied142

with the spatial filter obtained with SSD. As generalized eigenvalue decomposition methods are polarity invariant, so143

the sign of the returned spatial patterns depend on initialization, we analyzed the absolute value of the spatial patterns144

when evaluating the proportions of rhythms contributing to each electrode. We calculated the absolute cosine distance145

as defined in [20] of spatial patterns as calculated from the data to the best-fitting lead field model (described below).146

This measure allows assessment of how close the obtained spatial pattern is to a single-dipole model. The measure was147

calculated for all participants, we selected example participants for Fig. 6 and Fig. 7 on the basis of low absolute cosine148

distance and SNR in the alpha-band.149

To assess how rhythms contribute to each sensor, we then computed a measure quantifying the deviation from a150

scenario where all components contribute with equal power to the signal of a given sensor. This measure is called151

sensor complexity in the following and allowed us to assess the relative contribution of each source in the observed152

EEG activity:153

normalized spatial pattern coefficients Mij =
|Aij |∑
i |Aij |

sensor complexity Cj = −
∑

i

Mij logMij

with Aij as the spatial pattern coefficient for EEG electrode j and SSD component i. In the case of simulations, this154

is the lead field entry for a specific EEG electrode j and a specific source i. A free parameter in this context is how155

many components per participant are considered. Because not all components returned by SSD contain pronounced156

oscillatory activity in the alpha-band, we restricted the number of components to a fixed number of 10. The number of157

components influences the absolute value of the sensor complexity. The number of components was chosen with aid of158

a power-ratio defined as power in the peak frequency band over power in the flanking frequency bands as in [20]. To159

obtain components with sufficient alpha-power, we aimed at having a power-ratio greater than 1 dB, which yielded160

8.015± 4.476 (mean± standard deviation) components per participant for the eyes open condition and 11.905± 4.193161

for the eyes closed condition, which resulted in the choice of 10 components globally,162

5

                  



2.3. Simulations163

For the simulations, we distributed several sources of rhythms in the alpha-band in specified cortical locations in a164

realistic 3D head model. We then extracted the lead field coefficients for each EEG electrode and computed a sensor165

complexity for each sensor, which enables us to investigate spatial mixing of rhythms per sensor basis.166

2.3.1. Head and lead field models167

We used the New York Head, a realistic precomputed lead field model of Huang et al. [22] and Haufe et al. [23]. Here168

we give a brief description of the generation of the head model and lead field, with full details given in the above169

articles. Briefly, the anatomical basis for this model is the detailed ICBM152 head model, based on the average of 152170

adult brains, imaged with magnetic resonance imaging [24]. For this head model, the finite element lead field solution171

is provided for a set of 231 standardized electrode positions and 75,000 nodes distributed on a cortical surface mesh.172

We extract the lead field entries where dipole orientations are assumed to be perpendicular to the cortical surface. The173

New York head lead field is provided for a common average reference. For the demonstration in Fig. 4, the ‘fsaverage’174

example data and head model provided by MNE was used. For MEG simulations, we have used the same ICBM152175

basis for the head model as in the EEG case. The coordinates of the MEG sensors were aligned to the head model. A176

surface-based source space was constructed using recursively subdivided octahedrons (oct7). The MEG leadfield was177

computed using a single layer boundary element model (inner skull conductivity=0.3 S/m), dipole orientations were178

fixed to have an orientation normal to the cortex surface.179

2.3.2. Placement of alpha generators in a 3D cortex model180

Sixteen sources were placed in each hemisphere with locations approximated according to [2]. We considered six181

occipital, two inferior parietal, three somatosensory and five temporal alpha sources. Dipole orientation was normal182

to the surface of the triangular face closest to the selected dipole location. The locations were adjusted so the dipole183

orientation would reflect a relevant diversity of spatial patterns, e.g., for sensorimotor rhythms to have a mixture of184

more radial and more tangentially oriented dipoles. As physiological rhythms are known to have different amplitudes,185

e.g., the more pronounced visual alpha rhythm, the different rhythm types were multiplied with a specified gain factor,186

as listed in Table 1, with higher power for occipital, parietal and sensorimotor sources and lower power for temporal187

sources. As the reference from which the source locations are drawn argues for more sources in the temporal cortex188

than in the sensorimotor cortex, we chose a lower gain factor for the temporal cortex to balance their total power189

with sensorimotor sources (5 ∗ 0.5 = 2.5 ∼ 3 ∗ 1), in agreement with empirical observations [25]. Additionally, we190

modelled a state change from eyes open to eyes closed state, during which the sources placed in the occipital region191

increase in strength, while other sources remain unchanged. The lead field coefficients were multiplied with the type192

specific gain factors for the respective conditions. The lead field entries were calculated for each sensor and visualized193

as a proportion on a topographic map. The original head model contains 231 EEG electrodes, the number of visualized194

electrodes was reduced to match the number of electrodes in the empirical data.195

2.3.3. Assessing spatial mixing with the aid of the lead field196

To examine how different oscillatory sources mix on a given sensor, we analyzed the lead field coefficients for each197

sensor. The lead field for a constrained dipole orientation is given by a matrix L with dimensions number of dipoles198

times number of sensors. Because the only sources contributing to activity in our simulations are the 16 above listed for199

each hemisphere, all other rows of the lead field matrix can be disregarded, resulting in 32 times number of electrodes200

lead field coefficients to consider. The complexity measure was calculated using the same formula as for the empirical201

data using the lead field coefficients weighted by the respective gain factors.202
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location of alpha source
rhythm type specific
gain factor

state change: eyes open →
eyes closed gain factor

occipital/superior parietal 1 4
inferior parietal 1 1 (no change)
somatosensory 1 1 (no change)
temporal 0.5 1 (no change)

Table 1: Gain factors for types of alpha activity sources, indicating their relative strength and state change properties.

3. Results203

3.1. Spatial patterns as a tool to investigate spatial correlations204

First, we discuss the concept of spatial patterns. Spatial patterns are an easy way to assess the spatial distribution of205

activity associated with the signal from one particular sensor or spatial filter by looking at the correlation across sensors.206

In EEG/MEG analysis, neighboring sensors will always be correlated to a large extent due to volume conduction.207

Spatial patterns show how neuronal activation of sources/components in the brain maps onto EEG/MEG sensors.208

In order to compute a spatial pattern, first a spatial filter needs to be defined. A spatial filter is a vector with as many209

entries as sensors, with a numerical weight value for each sensor. Each sensor has a certain weight in a spatial filter210

vector, these weights can be zero as well. For instance, the spatial filter vector for a sensor that is taken as is from the211

recording file without re-referencing would have an entry of 1 for that respective sensor and 0 otherwise. Referencing212

can be seen as the matrix multiplication of a spatial filter with the data, which yields an activity trace. Similarly, for213

common average referencing and Laplacian referencing a spatial filter vector can be easily constructed (see Fig. 2A).214

Spatial patterns are distinct from scalp potential maps, as spatial patterns reflect the spatial spread of activity originating215

from a specified spatial filter vector, so in the simplest case from a single sensor, whereas scalp potential maps reflect216

the superposition of all activity at a particular time point.217

Spatial patterns are then computed by a multiplication of a specific spatial filter vector with the covariance matrix218

of activity across sensors. In this process, the covariance entries are added according to the polarity and strength of219

the spatial filter weights. The spatial filter would be equal to the spatial pattern, if the activity of sensors would be220

uncorrelated and the covariance matrix would be an identity matrix. But this is never the case for EEG/MEG data,221

therefore we need to transform spatial filters into spatial patterns in order to make statements about the location of222

extracted signals. For instance, the spatial pattern for a non re-referenced sensor (using the referencing at the time of223

data acquisition) would be exactly the covariance of this sensor to other sensors, reflecting the signal spread across224

sensors. The signal activity is typically band-pass filtered before computing the covariance matrix to investigate the225

correlation structure of the signals for a specific frequency band of interest. Different constraints can be used to226

calculate spatial patterns, for instance when enforcing sparsity of spatial patterns is desired, a regularization term can227

be used [21]. In general, spatial patterns can be seen as least squares coefficients when attempting to fit the data time228

series using the source time series as for instance returned by SSD.229

Spatial patterns can help to verify and check the location of the signal of interest, e.g., help check for appropriate230

presence of oscillations to improve validity of measures. In Fig. 2B, we show the spatial patterns associated with231

electrode C3 over the left sensorimotor cortex, that has been referenced in three different ways: using a FCz-reference232

(the reference at time of signal acquisition), common average reference and Laplacian-reference, for activity in the233

8–13 Hz range. It can be seen that the focality of the signal changes, depending on the respective referencing. In the234

ideal case, the contribution from areas far away from the chosen region should be minimized, approaching a value of 0235

for the spatial pattern coefficients. It can be seen that the spatial spread is relatively broad in the FCz-referenced case236

and becomes more focal for a Laplacian reference. Despite improved focality for Laplacian referencing in general, the237

signal will not have a local origin in all cases where a Laplacian reference is used. In Fig. 2C, we show an example of a238

participant where applying a Laplacian filter over the electrode C3 does result in a signal originating in the vicinity of239

the sensorimotor cortex, but has the strongest contribution from posterior activity. In the above cases the posterior alpha240
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Figure 2: Spatial patterns aid in assessing focality and origin of extracted sensor signals. A. Spatial filters for three different referencing
scenarios: referenced to electrode FCz (reference at the time of signal acquisition), common-average reference, with filter weights = 1/N with
N being the number of sensors, Laplacian referenced. B. Demonstration of how activity spread is attenuated by different referencing schemes.
Reference types from left to right as in A. Activity extracted with a Laplacian filter around electrode C3 shows a reduced spatial spread around the
region of interest compared to referencing to electrode FCz or common average referencing. C. Demonstration of how even a Laplacian does not
extract activity below the activity center, the occipital alpha activity in this participant is so strong that occipital activity shows up in the Laplacian
referenced electrode C3. D. Demonstration how theta activity shows a topography reminiscent of eye movement type activity, instead of more
mid-frontal distribution. because of insufficient data cleaning.

activity is just very strong compared to the sensorimotor mu rhythm, which is not really detectable in this particular241

participant. Fig. 2D shows an example where the aim was to extract theta activity in the frequency band of 4–7 Hz using242

a frontal sensor, but insufficient data cleaning regarding eye movement artefacts has been performed. Therefore, the243

extracted activity in the theta-band is contaminated by artefacts as evident from a topography reflecting eye movements.244

In summary, spatial patterns may be an easy-to-use tool for data exploration for EEG analysis. Note that all these245

8

                  



considerations presented in Fig. 2 are in general applicable for neuronal activity in different frequency ranges and246

therefore these examples can be generalized to other bands, i.e., rhythms in the delta-, theta-, beta- and gamma-bands.247

3.2. Simulations: Contribution of different alpha rhythms to sensor signals248

While previously we looked at spatial patterns associated with a specific component, next we illustrate how the spatial249

mixing of rhythms can be assessed by analyzing multiple spatial patterns. For this, we use simulations in a realistic head250

model. We place 16 sources into cortical locations per hemisphere, according to [2], see Fig. 3A, with corresponding251

lead field entries plotted in Fig. 3B. The free parameters here are the number of sources and the strength of each source252

relative to others.253

In Fig. 3C we visualize the contribution of each rhythm by showing the absolute spatial pattern coefficient as taken from254

the lead field. For each sensor, we plot a pie plot, with the pie position according to coordinates of the respective sensor.255

The contributions of all the alpha-sources onto a specific sensor yield the whole area of the pie plot, as measured by the256

sum of absolute leadfield values shown in Fig. 3B. The contributions of different types of alpha-sources are visualized257

in specific categorical colors, with subdivision in more saturated and more faint colors based on hemispheric origin of258

the source. A dimension not shown here is the absolute alpha-power, which is larger for posterior electrodes where259

most prominent rhythms originate, and smaller for frontal electrodes, which have no local alpha-source contributions.260

Several observations can be noted in Fig. 3C: First, a non-trivial amount of signal is contributed from the opposite261

hemisphere, which may complicate the evaluation of the lateralized effects. Second, it can be seen that the majority of262

alpha activity at frontal sensors consists of contributions from propagated posterior alpha sources. To a large extent this263

is due to the orientation of the dipoles, as well as the existence of more posterior alpha-sources than central mu-sources264

(6 per hemisphere vs 3). Third, on central sensors, only a small portion of the activity in the alpha band is contributed265

by sensorimotor mu sources. The radial somatosensory sources have a steep fall-off and contribute proportionally less266

power to frontal electrodes despite their relative closeness. In Fig. 3D, we show the effect of changing signal-to-noise267

ratio for one type of rhythm, posterior alpha, by increasing the strength of the posterior alpha-rhythms. This could for268

instance occur in the case in an eyes closed condition where the power of posterior alpha sources increases drastically.269

It can be seen that the relative contributions of visual alpha activity increase, making up a majority of the signal in the270

alpha band.271

To further illustrate how changing the orientation of a central alpha source changes contributions in frontal sensors,272

we provide Fig. 4. Here, we display the location and three different possible dipole orientations in Fig. 4A with the273

corresponding lead field topographies in Fig. 4B and the absolute lead field coefficients for each dipole orientation in274

Fig. 4C and 4D. It can be seen that, while for a radial orientation of the dipole, the contribution on frontal sensors is275

minimal, the contribution increases for tangential orientations of the dipole.276

Fig. 5 shows the corresponding simulations for MEG analog to Fig. 3. While the spatial spread for MEG is less277

extensive, sensor space activity of frontal channels still show substantial contributions from posterior alpha sources.278

The obtained proportions of rhythm contributions to sensors depend on the used referencing scheme which in our279

case is common average referencing, since the standardized leadfield was provided in this configuration. Changing280

the referencing will change the spatial spread of spatial patterns, see Fig. 2B, which in turn will result in different281

contributions onto specific electrodes. The type of reference that will be able to maximize contributions of a source in282

the vicinity of a given sensor will be dependent on the orientation of the dipole as well as on the presence of other283

rhythms. When performing sensor space analyses and deciding on a referencing scheme, it is recommended to compute284

spatial patterns for different referencing as in Fig. 2B for the sensors of interest, e.g., in the case of using central sensors285

when investigating sensorimotor activity, in order to check a possible contribution from posterior sources.286

3.3. Resting state data: Contribution of different alpha rhythms to sensor signals287

To illustrate how rhythms in the alpha-band spatially overlap on sensors in empirical data, we show data for two288

individual participants in Fig. 6. This illustration is constructed similar to the simulation illustration shown in Fig. 3C289

and 3D. Since the ground truth mixing coefficients are not known for empirical data, we estimate the components and290
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Figure 3: Different alpha rhythms contribute to activity recorded on each sensor, simulated example. A. 3D model of the head and cortical
gray matter, with EEG electrodes and the locations of the corresponding alpha sources (blue: occipital alpha source, orange: parietal alpha source,
green: temporal alpha source, red: sensorimotor mu source). B. Lead field topographies for each type of alpha source, showing contributions with
positive (red) and negative (blue) polarity to the signal of each electrode for each alpha source. C. Simulated rhythm contributions onto individual
sensors, eyes open condition. The contribution here is measured by the absolute leadfield value entry taken from B. Each pie plot represents one
EEG electrode. The proportions displayed are colored according to rhythm type as in B, with more faint colors indicating contributions from
sources located in the right hemisphere and more saturated colors indicating contributions from sources located in the left hemisphere. D. Rhythm
contributions onto individual sensors, eyes closed condition, with an increased contribution of occipital alpha.

the spatial patterns using a statistical approach based on spatio-spectral decomposition (SSD). Example topographies of291

components are shown in Fig. 6A, ordered by signal-to-noise ratio in the alpha frequency-band. Components reflecting292

typical occipital alpha and sensorimotor mu rhythm topographies can be seen. In Fig. 6B, the contribution for each293

component onto individual sensors as evaluated in terms of band-power is shown. Fig. 6C and 6D are analog for a294

different participant. The figures generated are for a fixed number of components (N=10).295

Analog to the simulation, it is evident that for frontal sensors a large part of the activity in the alpha-band is from296

posterior alpha components with strongest contributions to occipital and parietal sensors. Over the sensorimotor297

sensors, occipital alpha activity also contributes a major part to sensor space alpha activity. We show an example of298

alpha-rhythm contributions on MEG sensors in Fig. 7. Also here, the presence of multiple alpha-rhythms results in299
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B. C.

D.

A. 

Figure 4: Changing the dipole orientation of a central alpha source affects sensor space activity on frontal electrodes. A. Different dipole
orientations are shown on a 3D gray matter model. The color corresponds to the color in the topographies in B. B. The corresponding lead field
entries for each dipole, plotted as a topography. C. Absolute lead field contribution to one sensorimotor electrode for different dipole orientations.
Sensor activity is highly dependent on dipole orientation. D. Same as in C but for a frontal electrode.

complex relative contributions on sensors. Since the spatial patterns are the results of an estimation procedure, the300

proportions may change depending on the method used for decomposition. But the overall results are in correspondence301

to the simulation results, hinting at the fact that some rhythms and phenomena may be easier to detect in EEG. This302

should also depend on the configuration of EEG or MEG sensors and bipolar derivations in EEG or planar gradiometers303

in MEG that are likely to detect less field spread from remote sources.304

3.4. Resting state data: Spatial mixing across participants305

After demonstrating the qualitative effect of spatial mixing in single participants, we aim to see if we can see306

generalities regarding spatial mixing across participants. For instance, whether we can identify sensor locations where307

the mixing of different rhythms is particularly pronounced and thus representing challenges for the interpretation of the308

electrophysiological results. We compute a sensor complexity measure for all EEG electrodes and different states (eyes309

open/closed) to quantify the degree of spatial mixing.310

Fig. 8A and Fig. 8B show the mean sensor complexity for both eyes closed and eyes open conditions for EEG. The311

eyes closed condition features a much higher power for occipital alpha sources, and a large deviation from uniform312

contribution for occipito-parietal sensors. This is expected since only a few sources contribute a large proportion of313

the power in the alpha-band. For the central sensorimotor sensors, there is a relatively high complexity since here,314

there are contributions from the sensorimotor mu rhythm as well as from the occipital alpha rhythms. In the eyes open315
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Figure 5: Different alpha rhythms contribute to activity recorded on each MEG sensor, simulated example. A. 3D model of the head and
cortical gray matter, with MEG sensors and the locations of the corresponding alpha sources (blue: occipital alpha source, orange: parietal alpha
source, green: temporal alpha source, red: sensorimotor mu source). B. Lead field topographies for each type of alpha source, showing contributions
with positive (red) and negative (blue) polarity to the signal of each MEG sensor for each alpha source. C. Simulated rhythm contributions onto
individual sensors, eyes open condition. Each pie plot represents one MEG sensor. The proportions displayed are colored according to rhythm
type as in B, with more faint colors indicating contributions from sources located in the right hemisphere and more saturated colors indicating
contributions from sources located in the left hemisphere. D. Rhythm contributions onto individual sensors, eyes closed condition, with an increased
contribution of occipital alpha.

condition, the situation changes, since the occipital alpha sources are now much weaker and we see less spatial mixing316

on central sensors. In the MEG data (Fig. 8C), the eyes were open and the complexity map resembles the EEG eyes317

open condition in magnitude as well as topographical distribution. In addition, we also show complexity values for318

individual participants in Fig. 8D and 8E for an occipital and sensorimotor EEG sensor respectively, to demonstrate319

high variability regarding spatial mixing across participants.320

3.5. Adding a dimension: temporal fluctuations of EEG alpha rhythms321

For our calculations so far, we averaged power across time, disregarding temporal fluctuations. But neuronal oscillations322

also display prominent fluctuations over fast and slow time scales. Therefore, in the following we briefly illustrate323
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Figure 6: Different alpha rhythms contribute to sensor space activity, empirical example for two participants. A. The first ten SSD spatial
patterns in the alpha-band for one participant, for the eyes open condition. Each rhythm was assigned a color which corresponds to the colors in the
next subplot. B. The proportion of the ten SSD components present at each EEG electrode, as assessed with aid of the relative contribution. While
sensors in the sensorimotor regions show the highest proportion of sensorimotor rhythms, also alpha rhythms originating from occipital regions
contribute to the activity recorded at these sensors. C and D are analog to A and B for a different participant.
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Figure 7: Different alpha rhythms contribute to MEG sensor space activity, empirical example for one participant. A. The first ten SSD
spatial patterns in the alpha-band for one MEG participant, for the eyes open condition. Each rhythm was assigned a color which corresponds to the
colors in the next subplot. B. The proportion of the ten SSD components present at each MEG sensor, as assessed with aid of the relative contribution.
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Figure 8: Mean EEG sensor complexity across participants indicates less spatial mixing for posterior channels. A. Mean sensor complexity
over participants for eyes closed condition. Higher complexity is observed for sensorimotor sensors in the eyes closed condition, indicating a higher
spatial mixing. B. Mean EEG sensor complexity over participants for the eyes open condition. C. Mean MEG sensor complexity over participants for
eyes open condition. D. Sensor complexity for individual participants for occipital electrode Oz (paired rank-sum test, p<0.0001) and E. sensorimotor
electrode Cz (paired rank-sum test, p<0.0001).
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oscillatory fluctuations over time for individual participants, in order to show how contributions from individual rhythms324

change over time for different EEG electrodes in Fig. 9A and 9B. The corresponding topographies are shown in Fig. 9C,325

showing sensorimotor and posterior alpha rhythms. When expressing the alpha power of SSD components as a ratio326

of the SSD component #2 over component #1, it can be seen the range of the power ratio between the components327

changing substantially over time, see Fig. 9D and 9E. Note that at different time segments the proportion/ratio of328

different rhythms may change. If one examines the changes in the amplitude in a frequency band of one sensor, the329

changes can reflect different underlying scenarios. For instance, only one source is changing or many sources are330

changing simultaneously. This can depend on different factors, ranging from the strength of their amplitude envelope331

correlations [26] or other time domain properties, e.g., whether the rhythms appear in bursts or are of more continuous332

nature. In general, the stronger the spatial mixing on a given sensor, the harder it is to make inferences regarding333

specific rhythms from the activity recorded at the specific single EEG electrode. While we show an example of one334

participant here, the dynamic changes of the amplitude of alpha rhythms are a general phenomenon and are present in335

all other participants to some extent, if they display oscillatory rhythms in the alpha-band.336
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Figure 9: Relative alpha rhythm contributions to sensor space activity change over time. A. Time resolved alpha-power variations from
different rhythms contributing to alpha-power measured on posterior electrode PO8, the colors correspond to the color-coded topographies in subplot
C. Vertical bars indicate block breaks. The y-axis limits are adjusted to highlight alpha power variations. B. Same as in A but for central sensorimotor
electrode C3. C. Topographies of components, color-coded as shown in A and B. D. Ratios of amplitude contributions over time for different SSD
components #2 over SSD component #1 E. Same as E but for SSD component #3 over SSD component #1. Relative power contributions to sensor
space activity vary substantially over time.
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4. Discussion337

With this article, we aim to raise awareness for the effects of spatial mixing on alpha rhythms as detected with338

EEG/MEG. We first illustrated the usage of spatial patterns to analyze focality and origin of EEG activity as a practical339

tool for researchers. Using this tool, we evaluated the contributions of different alpha rhythms on EEG electrodes340

and MEG sensors. First, we simulated the presence of different alpha generators in a realistic head model and341

computed contributions using the corresponding lead field. The simulation analysis was complemented by empirical342

data analysis in two large datasets, where we analyzed spatial pattern coefficients for alpha rhythms as extracted by343

SSD. A complexity measure on individual sensor level was defined and used to illustrate how alpha sources map onto344

EEG and MEG sensors, also depending on state.345

4.1. Implications346

4.1.1. Amplitude of rhythms and alpha asymmetry measures347

To date, many EEG/MEG studies are performed in sensor space. One of the clear advantages of such an approach is348

its relative technical simplicity not requiring source analysis using biophysical or statistical constraints (for example349

using independent component analysis or SSD). Typical examples include spectral analysis, amplitude dynamics,350

e.g., event-related desynchronization/synchronization [27], microstates [28], diverse complexity measures such as351

long-range temporal correlations [29], approximate and sample entropy [30]. A typical approach in such studies is to352

define regions of interest on the basis of spatial locations of sensors, for instance frontal, central temporal, parietal353

and occipital regions. This is often done with the hope that the activity picked-up by the sensors in these regions of354

interest would reflect cortical processes generated in the proximity of these sensors. However, as one can see from the355

simulation illustrated in Fig. 3 for EEG and in Fig. 5 for MEG, a very large part of activity detected in frontal sensors356

can originate from the occipital sources. This situation is particularly important for the inference regarding alpha357

sources calculated on the basis of sensor space activity in EEG electrodes F3 and F4. The asymmetry in alpha power358

between these EEG electrodes is often used as an indication for making conclusions about approach/avoidance behavior359

[31]. In this context, a stronger activation of the left hemisphere (smaller alpha power) indicates a tendency toward360

approach behavior while a stronger activation of the right hemisphere indicates rather avoidance. These conclusions are361

naturally based on the assumption that alpha activity in these frontal electrodes reflect neuronal processing, for instance362

in dorsolateral prefrontal cortex. However, this assumption can be very misleading. In fact, our analysis shows that the363

contribution of a combination of occipital and central sources can be as high as 75% in frontal sensors for EEG. This in364

turn makes inferences about the activation of the dorsolateral prefrontal cortex on the basis of frontal electrode activity365

quite problematic. In case of MEG, the spatial spread of the detected field depends on the geometry of the pick-up coils366

where gradiometers have a better spatial specificity compared to magnetometers [32]. In the present study we used367

axial gradiometers and observed that the spread of the field was not as pronounced as in case of EEG potentials yet we368

still could detect considerable contributions from posterior sources also for frontal MEG channels.369

Moreover, using real data, Fig. 6 shows that many occipital and central sources contribute to the power of alpha370

rhythms in frontal EEG electrodes. On the one hand, it’s possible to investigate alpha asymmetry in different pairs of371

electrodes to show that primarily asymmetry in the frontal electrodes corresponds best to the behavioral quantification372

of approach/avoidance traits. However, such conclusions would not necessarily be correct since mixing of alpha373

rhythms might be more complex/different in occipital areas compared to frontal ones and thus asymmetry of alpha374

sources outside of frontal areas can still be a major contributing factor for alpha asymmetry in frontal electrodes375

[33]. In general, we would recommend to perform some simple decomposition of alpha sources with independent376

component analysis or SSD to calculate the proportion of components with clear central and occipital patterns to the377

whole power at frontal electrodes. If this proportion is more than 50% a caution should be applied when interpreting378

frontal alpha asymmetry. Such decompositions can be performed even when the recording consists of approximately379

20 EEG electrodes since spatial patterns of the components could be identifiable as having central, frontal or occipital380

sources.381

A similar logic can be applied to other locations of electrodes and other phenomena where the power of oscillations or382

their asymmetry should be deduced. For instance, for the sensorimotor mu rhythm, an oscillatory power difference383
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between two hemispheres can indicate asymmetry in excitation/inhibition-balance between the hemispheres on the384

basis of which a certain therapeutic transcranial magnetic stimulation protocol can be prescribed [34]. In this case, a385

careful evaluation of alpha-band mixing complexity is also important if one is using standard reference schemes such386

as those based on common average, linked mastoids etc. Again, we would like to emphasize that for a more refined387

spatial estimation a source analysis is preferred. For MEG, as exclusive sensor space analysis is rarely the case for388

MEG analysis, the spatial mixing on MEG sensors has mainly to be considered when interpreting first-pass sensor389

space activity, for example for selection of regions of interest.390

4.1.2. Neurofeedback in sensor space391

Another important example for the use of alpha power, obtained in sensor space, is neurofeedback. Here, the main idea392

is to volitionally up- or down-regulate power of oscillations at a specific sensor location [35]. The main premise is that393

the changes in alpha power are likely to be associated with functional changes of the corresponding neuronal networks.394

Typically, a relationship is assumed between the power of alpha rhythms and a spatially restricted neuronal network395

generating these alpha rhythms. However, our simulations show that power in a given sensor reflects activity from396

generators in a variety of different brain areas. Therefore, no exact correspondence between the increase of oscillations397

e.g., at EEG electrode Pz and spatial activation in a given cortical patch can be established, even if activation is defined398

quite broadly, i.e., frontal, central or occipital locations. Importantly, sensor-space MEG is used in neurofeedback399

applications [36, 37] and therefore all the considerations presented above for EEG neurofeedback remain relevant400

for MEG as well. Moreover, the power ratio of different SSD components varies as a function of time (see Fig. 9)401

thus further obscuring a relationship between changes of alpha rhythms and underlying neuronal processing. Such402

complexity of spatial mixing should inevitably lead to a decrease in the efficacy to learn neurofeedback since reinforcing403

a specific power of alpha rhythms at a given sensor biologically would correspond to reinforcing undetermined and404

ever-changing patterns of corresponding neuronal activity. This can be one of the reasons for the observation that many405

participants are not able to learn neurofeedback effectively [35]. In fact, on the basis of our results we hypothesize that406

the participants with the lower spatial complexity of alpha rhythms should be more efficient in performing reliably407

in neurofeedback sessions. This can be tested directly in future studies. Since neurofeedback typically requires408

multiple sessions and this is a time-consuming procedure, as a practical recommendation we suggest performing at409

least one recording with a high number of sensors (for instance 60 in the case of EEG) in order to quantify the presence410

and spatial complexity of alpha rhythms at different sensors. One can then determine sensors with sufficiently low411

complexity to be used later with low-electrode montages (for multisession training) or in case of participants with412

high spatial complexity, one can proceed with more electrodes in order to enable visualizations of spatial patterns413

corresponding to spatially restricted neuronal activity for validation of the paradigm.414

4.1.3. Spatial complexity and connectivity415

Previous studies have already explored effects of volume conduction on the calculation of connectivity relationships416

based on coherence or phase locking values [13, 14]. Here, a spurious connectivity can be detected when the same417

neuronal source is mapped to many sensors and therefore a high connectivity value does not reflect functional418

interactions but rather the fact that the same neuronal trace is mapped to different sensors thus leading to high coherence419

of phase locking. Clearly, volume conduction is also the reason for complex spatial patterns obtained in the present420

study. While we will not describe strategies to overcome detection of spurious interactions here, as it has been done in421

previous studies [13, 38], we want to emphasize another important aspect relating to our findings. Sensors, reflecting a422

high degree of spatial mixing of different components, are also likely to reflect a rich structure of neuronal interactions423

which can be picked up with different graph theoretical metrics even when controlled for volume conduction. Therefore,424

we suggest that if connectivity studies are based on a sensor space analysis, a complementary spatial sensor complexity425

can be computed in order to assess the possibility of obtaining hub structures particularly in sensors with the highest426

sensor complexity.427
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4.2. Limitations428

For the empirical data analysis sections, we used a simple method for source reconstruction. With SSD, as with any429

other decomposition technique, it is not possible to separate all individual alpha rhythms. After all, we only record430

data with 60 EEG electrodes and there are many more generators than that. Therefore, the decomposition will feature431

components that are not of a dipolar structure, where multiple sources that are highly co-active have been combined432

into a single source by the decomposition algorithm. While improvements can be made in this regard, by using433

more sophisticated source reconstruction algorithms, our general statement is not dependent on the specific source434

reconstruction method we used: the activity of a single EEG electrode will reflect multiple sources in the alpha-band,435

for which the contributions will dynamically vary across time. In general, the existence of statistical based source436

separation techniques like SSD makes investigation of rhythms in source/component space easy and allow separation of437

individual rhythmic contributions without anatomical head models, to best utilize information from electrophysiological438

data. In the current analyses, SSD was chosen as the decomposition algorithm because of its few parameters and easy439

computability as well as the special focus on narrow-band rhythms and should be understood as one possibility to440

counter volume conduction effects. In general, the choice of source reconstruction algorithm depends on the objectives441

of the study. Practical considerations regarding source reconstructions are given in companion papers of respective442

software packages [9, 39] For specific recommendations on how to use techniques based on generalized eigenvalue443

decomposition such as SSD see [40]. The main benefit of these techniques is that they are fast to compute and only444

require specification of a peak frequency and bandwidth, no anatomical information required. For neurofeedback445

purposes and depending on the specific task, one can select SSD component with clear occipito-parietal or sensorimotor446

origins as these patterns are usually easy to identify without a necessity to perform inverse modeling. If there are447

constraints regarding the regional origin of sources, a technique utilizing these objectives may be of benefit, e.g.,448

beamforming [41].449

5. Conclusion450

Spatial mixing due to volume conduction is inherent to data recorded with EEG/MEG. Here, we have shown the extent451

of spatial mixing of different alpha-type rhythms and elaborated on the consequences in terms of activity contributions452

to sensor space activity. For detecting relationships between EEG/MEG signatures and behavior, the signal-to-noise453

ratio available needs to be carefully considered. While prominent posterior rhythms show less spatial mixing in sensor454

space, the situation is more complicated for sensorimotor and temporal alpha rhythms of smaller amplitude, potentially455

compromising analyses that are solely conducted in sensor space. We hope that the provided practical illustrations may456

be of use to EEG researchers for evaluation whether sensor space is sufficient for their topic of investigation.457

Data Availability Statement458

EEG data was previously collected as part of the "Leipzig Cohort for Mind-Body-Emotion Interactions" data set459

(LEMON). The EEG data is available at: http://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html460

MEG data was previously collected as part of the Mother Of Unification Studies (MOUS) dataset. The MEG data is461
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mixing464

Funding465

This research received no specific grant from a funding agency in the public, commercial, or not-for-profit sectors.466

19

                  



Declarations of interest467

None.468

References469

References470

[1] W. Klimesch, Alpha-band oscillations, attention, and controlled access to stored information, Trends in Cognitive Sciences 16 (2012) 606–617.471

[2] R. Hindriks, C. Micheli, D. Mantini, G. Deco, Human resting-state electrophysiological networks in the alpha frequency band: Evidence from472

magnetoencephalographic source imaging, preprint, Neuroscience, 2017.473

[3] G. Pfurtscheller, C. Neuper, C. Andrew, G. Edlinger, Foot and hand area mu rhythms, International Journal of Psychophysiology 26 (1997)474

121–135.475

[4] R. Sokoliuk, S. D. Mayhew, K. M. Aquino, R. Wilson, M. J. Brookes, S. T. Francis, S. Hanslmayr, K. J. Mullinger, Two Spatially Distinct476

Posterior Alpha Sources Fulfill Different Functional Roles in Attention, The Journal of Neuroscience 39 (2019) 7183–7194.477

[5] T. Popov, B. Gips, S. Kastner, O. Jensen, Spatial specificity of alpha oscillations in the human visual system, Human Brain Mapping 40 (2019)478

4432–4440.479

[6] O. Jensen, A. Mazaheri, Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition, Frontiers in Human Neuroscience480

4 (2010).481

[7] P. L. Nunez, M. D. Nunez, R. Srinivasan, Multi-Scale Neural Sources of EEG: Genuine, Equivalent, and Representative. A Tutorial Review,482

Brain Topography 32 (2019) 193–214.483

[8] R. v. d. Meij, F. v. Ede, E. Maris, Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping484

Neuronal Activity, PLOS ONE 11 (2016) e0154881. Publisher: Public Library of Science.485

[9] M. Jas, E. Larson, D. Engemann, J. Leppäkangas, S. Taulu, M. Hämäläinen, A. Gramfort, A reproducible MEG/EEG group study with the486

MNE software: Recommendations, quality assessments, and good practices, Frontiers in Neuroscience 12 (2018) 530.487

[10] G. A. Light, N. R. Swerdlow, M. L. Thomas, M. E. Calkins, M. F. Green, T. A. Greenwood, R. E. Gur, R. C. Gur, L. C. Lazzeroni, K. H.488

Nuechterlein, M. Pela, A. D. Radant, L. J. Seidman, R. F. Sharp, L. J. Siever, J. M. Silverman, J. Sprock, W. S. Stone, C. A. Sugar, D. W.489

Tsuang, M. T. Tsuang, D. L. Braff, B. I. Turetsky, Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia:490

Characterization of demographic, clinical, cognitive, and functional correlates in COGS-2, Schizophrenia Research 163 (2015) 63–72.491

[11] C. Zrenner, D. Desideri, P. Belardinelli, U. Ziemann, Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity492

in human motor cortex, Brain Stimulation 11 (2018) 374–389.493

[12] N. Schaworonkow, J. Triesch, U. Ziemann, C. Zrenner, EEG-triggered TMS reveals stronger brain state-dependent modulation of motor evoked494

potentials at weaker stimulation intensities, Brain Stimulation 12 (2019) 110–118.495

[13] K. Mahjoory, V. V. Nikulin, L. Botrel, K. Linkenkaer-Hansen, M. M. Fato, S. Haufe, Consistency of EEG source localization and connectivity496

estimates, NeuroImage 152 (2017) 590–601.497

[14] M. Lai, M. Demuru, A. Hillebrand, M. Fraschini, A comparison between scalp- and source-reconstructed EEG networks, Scientific Reports 8498

(2018) 12269.499

[15] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, M. Hämäläinen,500

MEG and EEG data analysis with MNE-Python, Frontiers in Neuroscience 7 (2013).501

[16] A. Babayan, M. Erbey, D. Kumral, J. D. Reinelt, A. M. F. Reiter, J. Röbbig, H. L. Schaare, M. Uhlig, A. Anwander, P.-L. Bazin, A. Horstmann,502

L. Lampe, V. V. Nikulin, H. Okon-Singer, S. Preusser, A. Pampel, C. S. Rohr, J. Sacher, A. Thöne-Otto, S. Trapp, T. Nierhaus, D. Altmann,503

K. Arelin, M. Blöchl, E. Bongartz, P. Breig, E. Cesnaite, S. Chen, R. Cozatl, S. Czerwonatis, G. Dambrauskaite, M. Dreyer, J. Enders,504

M. Engelhardt, M. M. Fischer, N. Forschack, J. Golchert, L. Golz, C. A. Guran, S. Hedrich, N. Hentschel, D. I. Hoffmann, J. M. Huntenburg,505

R. Jost, A. Kosatschek, S. Kunzendorf, H. Lammers, M. E. Lauckner, K. Mahjoory, A. S. Kanaan, N. Mendes, R. Menger, E. Morino, K. Näthe,506

J. Neubauer, H. Noyan, S. Oligschläger, P. Panczyszyn-Trzewik, D. Poehlchen, N. Putzke, S. Roski, M.-C. Schaller, A. Schieferbein, B. Schlaak,507

R. Schmidt, K. J. Gorgolewski, H. M. Schmidt, A. Schrimpf, S. Stasch, M. Voss, A. Wiedemann, D. S. Margulies, M. Gaebler, A. Villringer,508

A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults, Scientific Data 6 (2019)509

180308.510

[17] J.-M. Schoffelen, R. Oostenveld, N. H. L. Lam, J. Uddén, A. Hultén, P. Hagoort, A 204-subject multimodal neuroimaging dataset to study511

language processing, Scientific Data 6 (2019) 17.512

[18] N. Schaworonkow, V. V. Nikulin, Spatial neuronal synchronization and the waveform of oscillations: Implications for EEG and MEG, PLOS513

Computational Biology 15 (2019) e1007055.514

[19] T. Donoghue, M. Haller, E. J. Peterson, P. Varma, P. Sebastian, R. Gao, T. Noto, A. H. Lara, J. D. Wallis, R. T. Knight, A. Shestyuk, B. Voytek,515

Parameterizing neural power spectra into periodic and aperiodic components, Nature Neuroscience 23 (2020) 1655–1665.516

[20] V. V. Nikulin, G. Nolte, G. Curio, A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of517

spatio-spectral decomposition, NeuroImage 55 (2011) 1528–1535.518

[21] S. Haufe, F. Meinecke, K. Görgen, S. Dähne, J.-D. Haynes, B. Blankertz, F. Bießmann, On the interpretation of weight vectors of linear models519

in multivariate neuroimaging, NeuroImage 87 (2014) 96–110.520

[22] Y. Huang, L. C. Parra, S. Haufe, The New York Head—A precise standardized volume conductor model for EEG source localization and tES521

targeting, NeuroImage 140 (2016) 150–162.522

[23] S. Haufe, Y. Huang, L. C. Parra, A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source523

imaging and TCS targeting, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in524

Medicine and Biology Society. (2015) 4.525

20

                  



[24] V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, D. L. Collins, Unbiased average age-appropriate atlases for pediatric studies,526

NeuroImage 54 (2011) 313–327.527

[25] A. Keitel, J. Gross, Individual human brain areas can be identified from their characteristic spectral activation fingerprints, PLOS Biology 14528

(2016) 1–22.529

[26] J. F. Hipp, D. J. Hawellek, M. Corbetta, M. Siegel, A. K. Engel, Large-scale cortical correlation structure of spontaneous oscillatory activity,530

Nature Neuroscience 15 (2012) 884–890.531

[27] G. Pfurtscheller, F. Lopes da Silva, Event-related EEG/MEG synchronization and desynchronization: basic principles, Clinical Neurophysiology532

110 (1999) 1842–1857. ZSCC: 0006095.533

[28] C. M. Michel, T. Koenig, EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review,534

NeuroImage 180 (2018) 577–593.535

[29] R. Hardstone, S.-S. Poil, G. Schiavone, R. Jansen, V. Nikulin, H. Mansvelder, K. Linkenkaer-Hansen, Detrended Fluctuation Analysis: A536

Scale-Free View on Neuronal Oscillations, Frontiers in Physiology 3 (2012) 450.537

[30] J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, American Journal of538

Physiology-Heart and Circulatory Physiology 278 (2000) H2039–H2049.539

[31] E. E. Smith, S. J. Reznik, J. L. Stewart, J. J. B. Allen, Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording,540

processing, analyzing, and interpreting frontal alpha asymmetry, International Journal of Psychophysiology 111 (2017) 98–114.541

[32] S. Taulu, J. Simola, J. Nenonen, L. Parkkonen, Novel Noise Reduction Methods, in: S. Supek, C. J. Aine (Eds.), Magnetoencephalography,542

Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 35–71.543

[33] A. Kołodziej, M. Magnuski, A. Ruban, A. Brzezicka, No relationship between frontal alpha asymmetry and depressive disorders in a multiverse544

analysis of five studies, eLife 10 (2021) e60595.545

[34] A. N. Voineskos, F. Farzan, M. S. Barr, N. J. Lobaugh, B. H. Mulsant, R. Chen, P. B. Fitzgerald, Z. J. Daskalakis, The Role of the Corpus546

Callosum in Transcranial Magnetic Stimulation Induced Interhemispheric Signal Propagation, Biological Psychiatry 68 (2010) 825–831.547

[35] R. Sitaram, T. Ros, L. Stoeckel, S. Haller, F. Scharnowski, J. Lewis-Peacock, N. Weiskopf, M. L. Blefari, M. Rana, E. Oblak, N. Birbaumer,548

J. Sulzer, Closed-loop brain training: the science of neurofeedback, Nature Reviews Neuroscience 18 (2017).549

[36] Y. O. Okazaki, J. M. Horschig, L. Luther, R. Oostenveld, I. Murakami, O. Jensen, Real-time MEG neurofeedback training of posterior alpha550

activity modulates subsequent visual detection performance, NeuroImage 107 (2015) 323–332.551

[37] K. D. Rana, S. Khan, M. S. Hämäläinen, L. M. Vaina, A computational paradigm for real-time MEG neurofeedback for dynamic allocation of552

spatial attention, BioMedical Engineering OnLine 19 (2020) 45.553

[38] G. Nolte, O. Bai, L. Wheaton, Z. Mari, S. Vorbach, M. Hallett, Identifying true brain interaction from EEG data using the imaginary part of554

coherency, Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 115 (2004) 2292–2307.555

[39] M. Stropahl, A.-K. R. Bauer, S. Debener, M. G. Bleichner, Source-modeling auditory processes of EEG data using EEGLAB and brainstorm,556

Frontiers in Neuroscience 12 (2018) 309.557

[40] M. X. Cohen, A tutorial on generalized eigendecomposition for denoising, contrast enhancement, and dimension reduction in multichannel558

electrophysiology, NeuroImage 247 (2022) 118809.559

[41] B. U. Westner, S. S. Dalal, A. Gramfort, V. Litvak, J. C. Mosher, R. Oostenveld, J.-M. Schoffelen, A unified view on beamformers for m/eeg560

source reconstruction, NeuroImage 246 (2022) 118789.561

21

                  



Is sensor space analysis good enough? Spatial patterns as a tool 
for assessing spatial mixing of EEG/MEG rhythms  

Natalie Schaworonkowa,∗, Vadim V. Nikulinb 
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