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a b s t r a c t 

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) di- 

rectly in sensor space, using the signal from individual sensors, is a convenient and standard way of working 

with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. 

While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications 

have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of 

individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators 

in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of 

a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by 

computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous 

spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the 

individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentan- 

gle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms can contribute the 

majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor 

space. We also outline specific consequences of signal mixing for frequently used assessment of power, power 

ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to 

illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may 

be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic 

of investigation. 

1

 

i  

f  

a  

d  

d  

s  

r  

o  

r  

f  

p  

d  

s  

s  

r  

r

 

r  

p  

t  

t  

s  

a  

n  

t  

o  

s  

t  

s  

s  

o  

h

R

A

1

(

. Introduction 

Alpha rhythms (8–13 Hz) are a prominent feature of human non-

nvasive electrophysiological recordings. Different types of rhythms are

ound within this band, with generators in occipital, parietal, temporal

nd sensorimotor cortices ( Hindriks et al., 2017; Klimesch, 2012 ). The

ifferent alpha rhythms show a functional specificity, with event-related

esynchronization due to motor action for the sensorimotor rhythm, or

trong modulation due to eye-opening or closing for the occipital alpha

hythm. Within each rhythm type there may be an even finer degree

f organization, with differential modulation of the sensorimotor mu

hythms by hand vs. foot movements ( Pfurtscheller et al., 1997 ) or dif-

erential modulation of occipital alpha rhythms by stimuli in different

arts of the visual field ( Popov et al., 2019; Sokoliuk et al., 2019 ). In ad-

ition, alpha rhythms have been shown to be associated with attention

howing stronger amplitude in cortical areas where neuronal activity

hould be suppressed ( Jensen and Mazaheri, 2010 ). In general, these
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hythms remain a topic of active research directed at elucidating their

ole in cognition, perception and motor systems. 

A fundamental challenge in the analysis and interpretation of signals

ecorded with electroencephalography (EEG) or magnetoencephalogra-

hy (MEG) is volume conduction ( Nunez et al., 2019 ). Volume conduc-

ion leads to overlap of signals from different generators in space and

ime ( Meij et al., 2016 ). This overlap is especially problematic for sen-

or space analysis, in which signals from sensors are used directly, by

id of a standard reference, e.g., common average, linked mastoids or

ose-reference. Yet, despite distortions introduced by volume conduc-

ion, sensor space analysis remains a popular approach for the analysis

f EEG/MEG signals ( Jas et al., 2018 ). While MEG studies use sensor

pace as a first-pass analysis, e.g. for defining regions of interest and

hen run the main analyses using source analysis techniques, for EEG,

ensor space is often the exclusive way of analyzing the data. The wide-

pread use of sensor space analysis is certainly due to the convenience

f the procedure. In contrast to sensor space, source analysis requires: 1)

ata analysis training in inverse modeling and understanding of its pa-
ch 2022 
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ameters, 2) more computational resources required by inverse model-

ng algorithms 3) more training in statistical analysis, as corrections for

ultiple comparisons across sources are required 4) possibly more re-

ources are needed to be spent on the acquisition of individual anatomi-

al magnetic resonance imaging data. However, despite the relative ease

ith which sensor space analysis can be performed, it may potentially

bfuscate any fine degree of spatial specificity of neuronal rhythms to

ehavior, especially for EEG studies. Therefore, it is of interest to assess

n more detail how analysis in sensor space may blur contributions of

ifferent types of rhythms. 

The methodological validity of measures derived from sensor space

ata is especially relevant for studies involving EEG recordings with

 small number of electrodes. For instance, in a clinical setting, time

onstraints often limit the number of electrodes which can be placed

n a patient. For instance, Light et al. (2015) used 1-electrode EEG to

tudy a large cohort of patients with schizophrenia. In neurofeedback

tudies, typically participants receive feedback in the form of oscilla-

ory power of a single/limited number of sensors. In closed-loop EEG

tudies ( Schaworonkow et al., 2019; Zrenner et al., 2018 ), where mag-

etic stimulation is given dependent on features of EEG rhythms, only

 small number of EEG electrodes is used for the extraction of features

f interest to be robust against experimental noise. If only a small num-

er of sensors is to be used, the sensitivity of measures for this specific

ecording setup has to be considered in order to reliably detect the phe-

omena of interest. 

In this article, we illustrate the impact of spatial mixing on neu-

onal rhythms on the sensor space level compared to the source-level.

 number of studies has evaluated consistency and sensitivity of mea-

ures in sensor vs source space in the realm of connectivity metrics

ith respect to volume conduction and linear mixing ( Lai et al., 2018;

ahjoory et al., 2017 ). But here we focus on univariate properties of

euronal rhythms, mainly band-power of rhythms in the alpha-band.

hile many previous studies acknowledge the problem of volume con-

uction for the EEG/MEG analysis in sensor space in general, to the

est of our knowledge there are no reports directly showing how in-

ividual components/sources are actually mixed at the level of sen-

ors. We do so in this paper using specifically alpha rhythms, while the

ain conclusions can be generalized to other oscillations and evoked

esponses. 

The main contribution of the following article is the quantification

f spatial mixing of rhythms on the sensor space level. First, we dis-

uss an easy-to-use method for assessing origin and spatial spread of

xtracted rhythms given a standard sensor scheme via the calculation

f spatial patterns and demonstrate practical applications. We then use

patial patterns to assess spatial mixing of neuronal rhythms on the sen-

or space level compared to source level by using simulations in a real-

stic head model and a large dataset of EEG resting-state rhythms. Here,

e illustrate constituent band-power contributions of different rhythms

n the alpha-band in single sensors. Additionally, we show how spatial

ixing is even more problematic when using ratio-measures of oscil-

ations, due to the dynamic nature of oscillations, with high varying

mplitude modulation of neuronal rhythms, affecting relative contribu-

ions of specific rhythms. We hope that our illustrations provide intu-

tions for basic and clinical researchers, in order to evaluate whether

ensor space analysis may or may not be appropriate for their use

ase. 

. Materials and methods 

The analysis was performed using python and MNE version 0.23

 Gramfort et al., 2013 ) for the empirical analysis. The analysis code

eeded to reproduce the analysis and figures is available here: https:

/github.com/nschawor/meg- eeg- leadfield- mixing . While we show ex-

mples for single participants in the following, it is possible to gen-

rate these types of plots for all other participants with the provided

ode. 
2 
.1. Experimental recordings 

For the empirical data analysis, we analyzed EEG data which was

reviously collected in the project “Leipzig Cohort for Mind-Body-

motion Interactions ” (LEMON). We summarize participant details and

EG data acquisition briefly in the following. A more extensive descrip-

ion of the dataset of all study components can be found in the original

ublication ( Babayan et al., 2019 ). Additionally, we analyzed the resting

ata portion of an open MEG data set ( Schoffelen et al., 2019 ). 

.1.1. Participants 

EEG data was collected from 216 volunteers who did not have a

istory of neurological disease or usage of drugs that target the central

ervous system. The study protocol was approved by the ethics commit-

ee at the medical faculty at the University of Leipzig (reference num-

er 154/13-ff) and conformed to the Declaration of Helsinki. Written

nformed consent was obtained from all participants prior to the ex-

eriment. Data from 13 participants were excluded because the files

acked event information, had a different sampling rate, mismatched

eader files or insufficient data quality. In addition, the data from 18

articipants was excluded because of a low signal-to-noise ratio in the

lpha-band as indicated by a 1/f-corrected spectral peak in the alpha-

and below 5 dB (see Spectral analysis section for exact procedure).

ne participant was excluded because of suspected wrong ordering of

hannel names, resulting in corrupted spatial patterns. This resulted

n datasets from 181 participants (117 male, 64 female, age range:

0–77 years). 

MEG data was collected from 204 volunteers with no history of neu-

ological disease. The study protocol was approved by the ethics com-

ittee (CMO - the local ‘Committee on Research Involving Human Sub-

ects’ in the Arnhem-Nijmegen region) and conformed to the declaration

f Helsinki. Written informed consent was obtained from all participants

rior to the experiment. For 6 participants, resting state data was not

vailable. In addition, the data from 57 participants was excluded be-

ause of a low signal-to-noise ratio in the alpha-band as indicated by a

/f-corrected spectral peak in the alpha-band below 5 dB. This resulted

n datasets from 141 participants (75 male, 66 female, age range: 18–29

ears). 

.1.2. Recording setup 

Scalp EEG was recorded from a 62-channel active electrode cap (Ac-

iCAP, Brain Products GmbH, Germany). In this configuration, 61 elec-

rodes were in the international 10–20 system arrangement, and one

dditional electrode below the right eye was used to monitor vertical

ye movements. The reference electrode was located at FCz, and the

round electrode at the sternum. The impedance for all electrodes was

ept below 5 k Ω. Data was acquired with a BrainAmp MR plus am-

lifier (Brain Products GmbH, Germany) at an amplitude resolution of

.1 𝜇V with an online band-pass filter between 0.015 Hz and 1 kHz

nd with a sample rate of 2500 Hz. Recordings were made in a sound-

ttenuated EEG booth. In the experimental session, a total of 16 blocks

ere recorded, each lasting 60 s. Two conditions were interleaved, eyes

losed and eyes open, starting in the eyes closed condition. During eyes

pen blocks, participants were instructed to fixate on a digital fixation

ross. Changes between conditions were announced with the software

resentation (v16.5, Neurobehavioral Systems Inc., USA). 

MEG data was recorded using a 275-channel axial gradiometer sys-

em (CTF). Additionally, three bipolar Ag/AgCl electrodes measured

orizontal and vertical electro-oculogram and the electrocardiogram.

hree head localizer coils were positioned on the participant’s head (na-

ion, left and right ear canals), head position was continuously moni-

ored. Data was acquired with a sampling rate of 1200 Hz. For the rest-

ng state measurements, participants were instructed to think of nothing

pecific while focusing on the fixation cross at the center of the screen

or 5 min. 

https://github.com/nschawor/meg-eeg-leadfield-mixing
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Fig. 1. Analysis pipeline for quantifying the contributions of independent rhythms on sensor activity. A. The two datasets consisted of 62-channel resting- 

state EEG recordings for eyes open and eyes closed conditions and 275-channel resting state MEG recordings with eyes open. B. Spatial filters and patterns were 

calculated with spatio-spectral decomposition (SSD) using narrow-band data in the individual spectral peak in the alpha frequency-band. C. The entries of the spatial 

patterns for each sensor were extracted and normalized, the absolute value was taken to calculate the sensor complexity for each sensor. 
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.2. Data analysis 

.2.1. Preprocessing 

We used the available preprocessed data of the LEMON dataset, with

he preprocessing as applied by the data creators. The preprocessing is

escribed briefly in the following: Raw data was downsampled from

500 Hz to 250 Hz and band-pass filtered in the frequency range 1–

5 Hz with a Butterworth filter, with filter order 4. Raw activity traces

ere visually inspected and outlier electrodes with frequency shifts in

oltage and of poor signal quality were excluded. Data was inspected

or intervals with extreme peak-to-peak deflections and large bursts of

igh-frequency activity and these intervals were discarded. In order to

educe the dimensionality of EEG signals, principal component analysis

as used to keep principal components that explain 95% of the total data

ariance. Next, independent component analysis based on the Extended

nfomax algorithm was performed (step size: 0.00065/log(number of

lectrodes), annealing policy: weight change > 0.000001, learning rate

s multiplied by 0.98, stopping criterion: maximum number of iterations

12 or weight change < 0.000001). Any component that reflected eye

ovements, eye blinks, muscle activity or heartbeat related activity was

emoved, as evaluated by visual inspection. The remaining independent

omponents (mean number: 21.4, range: 14–28) were projected back

o sensor space. Importantly, components with alpha peaks were typ-

cally not removed. Therefore, the remaining components represent a

ast amount of alpha-related activity. 

.2.2. Spectral analysis 

As the focus here is oscillatory activity in the alpha frequency-band,

e included only participants which exceeded a signal-to-noise ratio

n the alpha frequency-band. For this, we used a criterion of > 5 dB

s in our previous work ( Schaworonkow and Nikulin, 2019 ). To deter-

ine the signal-to-noise ratio in the alpha band, the frequency spectrum
3 
as computed with Welch’s method (Hann window, 2 s window length,

0% overlap). To subtract the 1/f-contribution from the spectrum, we

sed spectral parametrization ( Donoghue et al., 2020 ). The settings used

ere: maximum number of peaks = 5; aperiodic mode = fixed, peak

idth limits = (0.5, 12), minimum peak height = 0; peak threshold = 2,

requency range of fit = 2–35 Hz. Participants were included if at least

ne electrode on the midline displayed an oscillatory peak > 5 dB in the

lpha band, as evaluated over the whole recording length. 

.2.3. Extraction of neuronal sources 

We used spatio-spectral decomposition (SSD) ( Nikulin et al., 2011 )

hich is a well-validated technique allowing us to extract neuronal oscil-

ations with the maximized signal-to-noise ratio in a specified frequency

and. The method is based on generalized eigenvalue decomposition of

ovariance matrices across sensors and maximizes the oscillatory power

f a component at a specified target frequency band, while simultane-

usly minimizing the power at flanking frequency bands, yielding oscil-

atory components with highest signal-to-noise ratio. The computation

an be performed fast and with few parameters. For our use case, we de-

ned the frequency band of interest as the participant-individual peak

n the alpha band, with a bandwidth of ± 2 Hz. 

.2.4. Assessing spatial mixing with the aid of spatial patterns 

To examine how different components mix on a chosen sensor, we

nalyzed the spatial pattern coefficients associated with the SSD spatial

lters. The general pipeline is shown in Fig. 1 . Spatial patterns describe

he contribution of sources 𝐒 on the activity recorded from sensors 𝐗
n a linear way: 𝐗 = 𝐀𝐒 , with 𝐀 being the matrix of spatial patterns,

ometimes also called mixing matrix. In our convention, the columns

f the matrix contain the spatial patterns for the individual sources,

nd the rows of the matrix contain the contributions of the individ-

al sensors to each source. Spatial patterns were computed according



N. Schaworonkow and V.V. Nikulin NeuroImage 253 (2022) 119093 

Fig. 2. Spatial patterns aid in assessing focality and origin of extracted sensor signals. A. Spatial filters for three different referencing scenarios: referenced 

to electrode FCz (reference at the time of signal acquisition), common-average reference, with filter weights = 1/N with N being the number of sensors, Laplacian 

referenced. B. Demonstration of how activity spread is attenuated by different referencing schemes. Reference types from left to right as in A. Activity extracted with 

a Laplacian filter around electrode C3 shows a reduced spatial spread around the region of interest compared to referencing to electrode FCz or common average 

referencing. C. Demonstration of how even a Laplacian does not extract activity below the activity center, the occipital alpha activity in this participant is so strong 

that occipital activity shows up in the Laplacian referenced electrode C3. D. Demonstration how theta activity shows a topography reminiscent of eye movement 

type activity, instead of more mid-frontal distribution. because of insufficient data cleaning. 
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o Haufe et al. (2014) on the basis of the covariance of activity filtered

n the alpha band multiplied with the spatial filter obtained with SSD.

s generalized eigenvalue decomposition methods are polarity invari-

nt, so the sign of the returned spatial patterns depend on initialization,

e analyzed the absolute value of the spatial patterns when evaluating

he proportions of rhythms contributing to each electrode. We calcu-

ated the absolute cosine distance as defined in Nikulin et al. (2011) of

patial patterns as calculated from the data to the best-fitting lead field

odel (described below). This measure allows assessment of how close

he obtained spatial pattern is to a single-dipole model. The measure

as calculated for all participants, we selected example participants for

igs. 6 and 7 on the basis of low absolute cosine distance and SNR in

he alpha-band. 

To assess how rhythms contribute to each sensor, we then computed

 measure quantifying the deviation from a scenario where all compo-

ents contribute with equal power to the signal of a given sensor. This

easure is called sensor complexity in the following and allowed us

o assess the relative contribution of each source in the observed EEG

ctivity: 

ormalized spatial pattern coefficients 𝑀 𝑖𝑗 = 

|𝐴 𝑖𝑗 |∑
𝑖 |𝐴 𝑖𝑗 |

sensor complexity 𝐶 𝑗 = − 

∑
𝑖 

𝑀 𝑖𝑗 log 𝑀 𝑖𝑗 
4 
ith 𝐴 𝑖𝑗 as the spatial pattern coefficient for EEG electrode 𝑗 and SSD

omponent 𝑖 . In the case of simulations, this is the lead field entry for

 specific EEG electrode 𝑗 and a specific source 𝑖 . A free parameter in

his context is how many components per participant are considered.

ecause not all components returned by SSD contain pronounced oscil-

atory activity in the alpha-band, we restricted the number of compo-

ents to a fixed number of 10. The number of components influences

he absolute value of the sensor complexity. The number of compo-

ents was chosen with aid of a power-ratio defined as power in the

eak frequency band over power in the flanking frequency bands as in

ikulin et al. (2011) . To obtain components with sufficient alpha-power,

e aimed at having a power-ratio greater than 1 dB, which yielded

.015 ± 4.476 (mean ± standard deviation) components per partici-

ant for the eyes open condition and 11.905 ± 4.193 for the eyes closed

ondition, which resulted in the choice of 10 components globally, 

.3. Simulations 

For the simulations, we distributed several sources of rhythms in the

lpha-band in specified cortical locations in a realistic 3D head model.

e then extracted the lead field coefficients for each EEG electrode and

omputed a sensor complexity for each sensor, which enables us to in-

estigate spatial mixing of rhythms per sensor basis. 
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Fig. 3. Different alpha rhythms contribute to activity recorded on each sensor, simulated example. A. 3D model of the head and cortical gray matter, with 

EEG electrodes and the locations of the corresponding alpha sources (blue: occipital alpha source, orange: parietal alpha source, green: temporal alpha source, red: 

sensorimotor mu source). B. Lead field topographies for each type of alpha source, showing contributions with positive (red) and negative (blue) polarity to the 

signal of each electrode for each alpha source. C. Simulated rhythm contributions onto individual sensors, eyes open condition. The contribution here is measured 

by the absolute leadfield value entry taken from B. Each pie plot represents one EEG electrode. The proportions displayed are colored according to rhythm type as 

in B, with more faint colors indicating contributions from sources located in the right hemisphere and more saturated colors indicating contributions from sources 

located in the left hemisphere. D. Rhythm contributions onto individual sensors, eyes closed condition, with an increased contribution of occipital alpha. 
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.3.1. Head and lead field models 

We used the New York Head, a realistic precomputed lead field

odel of Huang et al. (2016) and Haufe et al. (2015) . Here we give

 brief description of the generation of the head model and lead field,

ith full details given in the above articles. Briefly, the anatomical ba-

is for this model is the detailed ICBM152 head model, based on the

verage of 152 adult brains, imaged with magnetic resonance imag-

ng ( Fonov et al., 2011 ). For this head model, the finite element lead

eld solution is provided for a set of 231 standardized electrode po-

itions and 75,000 nodes distributed on a cortical surface mesh. We

xtract the lead field entries where dipole orientations are assumed

o be perpendicular to the cortical surface. The New York head lead

eld is provided for a common average reference. For the demon-

tration in Fig. 4 , the ‘fsaverage’ example data and head model pro-

ided by MNE was used. For MEG simulations, we have used the same

CBM152 basis for the head model as in the EEG case. The coordi-

ates of the MEG sensors were aligned to the head model. A surface-

ased source space was constructed using recursively subdivided octa-

edrons (oct7). The MEG leadfield was computed using a single layer

oundary element model (inner skull conductivity = 0.3 S/m), dipole

rientations were fixed to have an orientation normal to the cortex
urface. m  

5 
.3.2. Placement of alpha generators in a 3D cortex model 

Sixteen sources were placed in each hemisphere with locations ap-

roximated according to Hindriks et al. (2017) . We considered six occip-

tal, two inferior parietal, three somatosensory and five temporal alpha

ources. Dipole orientation was normal to the surface of the triangular

ace closest to the selected dipole location. The locations were adjusted

o the dipole orientation would reflect a relevant diversity of spatial pat-

erns, e.g., for sensorimotor rhythms to have a mixture of more radial

nd more tangentially oriented dipoles. As physiological rhythms are

nown to have different amplitudes, e.g., the more pronounced visual

lpha rhythm, the different rhythm types were multiplied with a spec-

fied gain factor, as listed in Table 1 , with higher power for occipital,

arietal and sensorimotor sources and lower power for temporal sources.

s the reference from which the source locations are drawn argues for

ore sources in the temporal cortex than in the sensorimotor cortex, we

hose a lower gain factor for the temporal cortex to balance their total

ower with sensorimotor sources ( 5 ∗ 0 . 5 = 2 . 5 ∼ 3 ∗ 1 ), in agreement

ith empirical observations ( Keitel and Gross, 2016 ). Additionally, we

odelled a state change from eyes open to eyes closed state, during

hich the sources placed in the occipital region increase in strength,

hile other sources remain unchanged. The lead field coefficients were

ultiplied with the type specific gain factors for the respective condi-
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Fig. 4. Changing the dipole orientation of a central alpha source affects sensor space activity on frontal electrodes. A. Different dipole orientations are 

shown on a 3D gray matter model. The color corresponds to the color in the topographies in B. B. The corresponding lead field entries for each dipole, plotted 

as a topography. C. Absolute lead field contribution to one sensorimotor electrode for different dipole orientations. Sensor activity is highly dependent on dipole 

orientation. D. Same as in C but for a frontal electrode. 

Table 1 

Gain factors for types of alpha activity sources, indicating their relative strength and state change properties. 

location of alpha source rhythm type specific gain factor state change: eyes open → eyes closed gain factor 

occipital/superior parietal 1 4 

inferior parietal 1 1 (no change) 

somatosensory 1 1 (no change) 

temporal 0.5 1 (no change) 

t  

a  

c  

r

2

 

w  

a  

n  

c  

e  

g  

t  

m  

b

3

3

 

a  

t  

c  

w  

S  

i

 

d  

n  

i  

t  

fi  

s  

c  

S  

s  

t  

t  

v  

t  

p

 

s  
ions. The lead field entries were calculated for each sensor and visu-

lized as a proportion on a topographic map. The original head model

ontains 231 EEG electrodes, the number of visualized electrodes was

educed to match the number of electrodes in the empirical data. 

.3.3. Assessing spatial mixing with the aid of the lead field 

To examine how different oscillatory sources mix on a given sensor,

e analyzed the lead field coefficients for each sensor. The lead field for

 constrained dipole orientation is given by a matrix 𝐋 with dimensions

umber of dipoles times number of sensors. Because the only sources

ontributing to activity in our simulations are the 16 above listed for

ach hemisphere, all other rows of the lead field matrix can be disre-

arded, resulting in 32 times number of electrodes lead field coefficients

o consider. The complexity measure was calculated using the same for-

ula as for the empirical data using the lead field coefficients weighted

y the respective gain factors. 

. Results 

.1. Spatial patterns as a tool to investigate spatial correlations 

First, we discuss the concept of spatial patterns. Spatial patterns are

n easy way to assess the spatial distribution of activity associated with
6 
he signal from one particular sensor or spatial filter by looking at the

orrelation across sensors. In EEG/MEG analysis, neighboring sensors

ill always be correlated to a large extent due to volume conduction.

patial patterns show how neuronal activation of sources/components

n the brain maps onto EEG/MEG sensors. 

In order to compute a spatial pattern, first a spatial filter needs to be

efined. A spatial filter is a vector with as many entries as sensors, with a

umerical weight value for each sensor. Each sensor has a certain weight

n a spatial filter vector, these weights can be zero as well. For instance,

he spatial filter vector for a sensor that is taken as is from the recording

le without re-referencing would have an entry of 1 for that respective

ensor and 0 otherwise. Referencing can be seen as the matrix multipli-

ation of a spatial filter with the data, which yields an activity trace.

imilarly, for common average referencing and Laplacian referencing a

patial filter vector can be easily constructed (see Fig. 2 A). Spatial pat-

erns are distinct from scalp potential maps, as spatial patterns reflect

he spatial spread of activity originating from a specified spatial filter

ector, so in the simplest case from a single sensor, whereas scalp po-

ential maps reflect the superposition of all activity at a particular time

oint. 

Spatial patterns are then computed by a multiplication of a specific

patial filter vector with the covariance matrix of activity across sensors.
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Fig. 5. Different alpha rhythms contribute to activity recorded on each MEG sensor, simulated example. A. 3D model of the head and cortical gray matter, 

with MEG sensors and the locations of the corresponding alpha sources (blue: occipital alpha source, orange: parietal alpha source, green: temporal alpha source, 

red: sensorimotor mu source). B. Lead field topographies for each type of alpha source, showing contributions with positive (red) and negative (blue) polarity to the 

signal of each MEG sensor for each alpha source. C. Simulated rhythm contributions onto individual sensors, eyes open condition. Each pie plot represents one MEG 

sensor. The proportions displayed are colored according to rhythm type as in B, with more faint colors indicating contributions from sources located in the right 

hemisphere and more saturated colors indicating contributions from sources located in the left hemisphere. D. Rhythm contributions onto individual sensors, eyes 

closed condition, with an increased contribution of occipital alpha. 
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movements. 
n this process, the covariance entries are added according to the polar-

ty and strength of the spatial filter weights. The spatial filter would be

qual to the spatial pattern, if the activity of sensors would be uncorre-

ated and the covariance matrix would be an identity matrix. But this is

ever the case for EEG/MEG data, therefore we need to transform spa-

ial filters into spatial patterns in order to make statements about the

ocation of extracted signals. For instance, the spatial pattern for a non

e-referenced sensor (using the referencing at the time of data acqui-

ition) would be exactly the covariance of this sensor to other sensors,

eflecting the signal spread across sensors. The signal activity is typically

and-pass filtered before computing the covariance matrix to investigate

he correlation structure of the signals for a specific frequency band of

nterest. Different constraints can be used to calculate spatial patterns,

or instance when enforcing sparsity of spatial patterns is desired, a reg-

larization term can be used ( Haufe et al., 2014 ). In general, spatial

atterns can be seen as least squares coefficients when attempting to fit

he data time series using the source time series as for instance returned

y SSD. 

Spatial patterns can help to verify and check the location of the sig-

al of interest, e.g., help check for appropriate presence of oscillations

o improve validity of measures. In Fig. 2 B, we show the spatial patterns

ssociated with electrode C3 over the left sensorimotor cortex, that has
7 
een referenced in three different ways: using a FCz-reference (the ref-

rence at time of signal acquisition), common average reference and

aplacian-reference, for activity in the 8–13 Hz range. It can be seen

hat the focality of the signal changes, depending on the respective ref-

rencing. In the ideal case, the contribution from areas far away from

he chosen region should be minimized, approaching a value of 0 for

he spatial pattern coefficients. It can be seen that the spatial spread

s relatively broad in the FCz-referenced case and becomes more focal

or a Laplacian reference. Despite improved focality for Laplacian ref-

rencing in general, the signal will not have a local origin in all cases

here a Laplacian reference is used. In Fig. 2 C, we show an example

f a participant where applying a Laplacian filter over the electrode C3

oes result in a signal originating in the vicinity of the sensorimotor

ortex, but has the strongest contribution from posterior activity. In the

bove cases the posterior alpha activity is just very strong compared to

he sensorimotor mu rhythm, which is not really detectable in this par-

icular participant. Figure 2 D shows an example where the aim was to

xtract theta activity in the frequency band of 4–7 Hz using a frontal

ensor, but insufficient data cleaning regarding eye movement artefacts

as been performed. Therefore, the extracted activity in the theta-band

s contaminated by artefacts as evident from a topography reflecting eye
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Fig. 6. Different alpha rhythms contribute to sensor space activity, empir- 

ical example for two participants. A. The first ten SSD spatial patterns in the 

alpha-band for one participant, for the eyes open condition. Each rhythm was 

assigned a color which corresponds to the colors in the next subplot. B. The pro- 

portion of the ten SSD components present at each EEG electrode, as assessed 

with aid of the relative contribution. While sensors in the sensorimotor regions 

show the highest proportion of sensorimotor rhythms, also alpha rhythms origi- 

nating from occipital regions contribute to the activity recorded at these sensors. 

C and D are analog to A and B for a different participant. 
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In summary, spatial patterns may be an easy-to-use tool for data ex-

loration for EEG analysis. Note that all these considerations presented

n Fig. 2 are in general applicable for neuronal activity in different fre-

uency ranges and therefore these examples can be generalized to other

ands, i.e., rhythms in the delta-, theta-, beta- and gamma-bands. 

.2. Simulations: Contribution of different alpha rhythms to sensor signals 

While previously we looked at spatial patterns associated with a spe-

ific component, next we illustrate how the spatial mixing of rhythms

an be assessed by analyzing multiple spatial patterns. For this, we use

imulations in a realistic head model. We place 16 sources into corti-

al locations per hemisphere, according to Hindriks et al. (2017) , see

ig. 3 A, with corresponding lead field entries plotted in Fig. 3 B. The

ree parameters here are the number of sources and the strength of each

ource relative to others. 

In Fig. 3 C we visualize the contribution of each rhythm by show-

ng the absolute spatial pattern coefficient as taken from the lead field.

or each sensor, we plot a pie plot, with the pie position according to

oordinates of the respective sensor. The contributions of all the alpha-

ources onto a specific sensor yield the whole area of the pie plot, as

easured by the sum of absolute leadfield values shown in Fig. 3 B. The

ontributions of different types of alpha-sources are visualized in spe-

ific categorical colors, with subdivision in more saturated and more

aint colors based on hemispheric origin of the source. A dimension

ot shown here is the absolute alpha-power, which is larger for pos-

erior electrodes where most prominent rhythms originate, and smaller

or frontal electrodes, which have no local alpha-source contributions. 

Several observations can be noted in Fig. 3 C: First, a non-trivial

mount of signal is contributed from the opposite hemisphere, which

ay complicate the evaluation of the lateralized effects. Second, it can

e seen that the majority of alpha activity at frontal sensors consists of

ontributions from propagated posterior alpha sources. To a large extent

his is due to the orientation of the dipoles, as well as the existence of

ore posterior alpha-sources than central mu-sources (6 per hemisphere

s 3). Third, on central sensors, only a small portion of the activity in

he alpha band is contributed by sensorimotor mu sources. The radial

omatosensory sources have a steep fall-off and contribute proportion-

lly less power to frontal electrodes despite their relative closeness. In

ig. 3 D, we show the effect of changing signal-to-noise ratio for one

ype of rhythm, posterior alpha, by increasing the strength of the poste-

ior alpha-rhythms. This could for instance occur in the case in an eyes

losed condition where the power of posterior alpha sources increases

rastically. It can be seen that the relative contributions of visual alpha

ctivity increase, making up a majority of the signal in the alpha band.

To further illustrate how changing the orientation of a central alpha

ource changes contributions in frontal sensors, we provide Fig. 4 . Here,

e display the location and three different possible dipole orientations

n Fig. 4 A with the corresponding lead field topographies in Fig. 4 B and

he absolute lead field coefficients for each dipole orientation in Fig. 4 C

nd D. It can be seen that, while for a radial orientation of the dipole, the

ontribution on frontal sensors is minimal, the contribution increases for

angential orientations of the dipole. 

Figure 5 shows the corresponding simulations for MEG analog to

ig. 3 . While the spatial spread for MEG is less extensive, sensor space

ctivity of frontal channels still show substantial contributions from pos-

erior alpha sources. 

The obtained proportions of rhythm contributions to sensors depend

n the used referencing scheme which in our case is common average

eferencing, since the standardized leadfield was provided in this con-

guration. Changing the referencing will change the spatial spread of

patial patterns, see Fig. 2 B, which in turn will result in different con-

ributions onto specific electrodes. The type of reference that will be

ble to maximize contributions of a source in the vicinity of a given sen-

or will be dependent on the orientation of the dipole as well as on the

resence of other rhythms. When performing sensor space analyses and
8 
eciding on a referencing scheme, it is recommended to compute spatial

atterns for different referencing as in Fig. 2 B for the sensors of interest,

.g., in the case of using central sensors when investigating sensorimotor

ctivity, in order to check a possible contribution from posterior sources.

.3. Resting state data: Contribution of different alpha rhythms to sensor 

ignals 

To illustrate how rhythms in the alpha-band spatially overlap on sen-

ors in empirical data, we show data for two individual participants in

ig. 6 . This illustration is constructed similar to the simulation illus-

ration shown in Fig. 3 C and D. Since the ground truth mixing coeffi-

ients are not known for empirical data, we estimate the components

nd the spatial patterns using a statistical approach based on spatio-

pectral decomposition (SSD). Example topographies of components are

hown in Fig. 6 A, ordered by signal-to-noise ratio in the alpha frequency-

and. Components reflecting typical occipital alpha and sensorimotor

u rhythm topographies can be seen. In Fig. 6 B, the contribution for

ach component onto individual sensors as evaluated in terms of band-
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Fig. 7. Different alpha rhythms contribute to MEG sensor space activity, empirical example for one participant. A. The first ten SSD spatial patterns in the 

alpha-band for one MEG participant, for the eyes open condition. Each rhythm was assigned a color which corresponds to the colors in the next subplot. B. The 

proportion of the ten SSD components present at each MEG sensor, as assessed with aid of the relative contribution. 
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ower is shown. Figure 6 C and D are analog for a different participant.

he figures generated are for a fixed number of components ( 𝑁 = 10 ). 
Analog to the simulation, it is evident that for frontal sensors a large

art of the activity in the alpha-band is from posterior alpha components

ith strongest contributions to occipital and parietal sensors. Over the

ensorimotor sensors, occipital alpha activity also contributes a major

art to sensor space alpha activity. We show an example of alpha-rhythm

ontributions on MEG sensors in Fig. 7 . Also here, the presence of multi-

le alpha-rhythms results in complex relative contributions on sensors.

ince the spatial patterns are the results of an estimation procedure, the

roportions may change depending on the method used for decompo-

ition. But the overall results are in correspondence to the simulation

esults, hinting at the fact that some rhythms and phenomena may be

asier to detect in EEG. This should also depend on the configuration

f EEG or MEG sensors and bipolar derivations in EEG or planar gra-

iometers in MEG that are likely to detect less field spread from remote

ources. 

.4. Resting state data: Spatial mixing across participants 

After demonstrating the qualitative effect of spatial mixing in single

articipants, we aim to see if we can see generalities regarding spatial

ixing across participants. For instance, whether we can identify sen-

or locations where the mixing of different rhythms is particularly pro-

ounced and thus representing challenges for the interpretation of the

lectrophysiological results. We compute a sensor complexity measure

or all EEG electrodes and different states (eyes open/closed) to quantify

he degree of spatial mixing. 

Figure 8 A and B show the mean sensor complexity for both eyes

losed and eyes open conditions for EEG. The eyes closed condition fea-

ures a much higher power for occipital alpha sources, and a large de-

iation from uniform contribution for occipito-parietal sensors. This is

xpected since only a few sources contribute a large proportion of the
9 
ower in the alpha-band. For the central sensorimotor sensors, there is a

elatively high complexity since here, there are contributions from the

ensorimotor mu rhythm as well as from the occipital alpha rhythms.

n the eyes open condition, the situation changes, since the occipital al-

ha sources are now much weaker and we see less spatial mixing on

entral sensors. In the MEG data ( Fig. 8 C), the eyes were open and the

omplexity map resembles the EEG eyes open condition in magnitude as

ell as topographical distribution. In addition, we also show complexity

alues for individual participants in Fig. 8 D and 8 E for an occipital and

ensorimotor EEG sensor respectively, to demonstrate high variability

egarding spatial mixing across participants. 

.5. Adding a dimension: Temporal fluctuations of EEG alpha rhythms 

For our calculations so far, we averaged power across time, disre-

arding temporal fluctuations. But neuronal oscillations also display

rominent fluctuations over fast and slow time scales. Therefore, in the

ollowing we briefly illustrate oscillatory fluctuations over time for indi-

idual participants, in order to show how contributions from individual

hythms change over time for different EEG electrodes in Fig. 9 A and B.

he corresponding topographies are shown in Fig. 9 C, showing sensori-

otor and posterior alpha rhythms. When expressing the alpha power

f SSD components as a ratio of the SSD component #2 over component

1, it can be seen the range of the power ratio between the compo-

ents changing substantially over time, see Fig. 9 D and E. Note that at

ifferent time segments the proportion/ratio of different rhythms may

hange. If one examines the changes in the amplitude in a frequency

and of one sensor, the changes can reflect different underlying sce-

arios. For instance, only one source is changing or many sources are

hanging simultaneously. This can depend on different factors, ranging

rom the strength of their amplitude envelope correlations ( Hipp et al.,

012 ) or other time domain properties, e.g., whether the rhythms ap-

ear in bursts or are of more continuous nature. In general, the stronger
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Fig. 8. Mean EEG sensor complexity across participants indicates less spa- 

tial mixing for posterior channels. A. Mean sensor complexity over partici- 

pants for eyes closed condition. Higher complexity is observed for sensorimotor 

sensors in the eyes closed condition, indicating a higher spatial mixing. B. Mean 

EEG sensor complexity over participants for the eyes open condition. C. Mean 

MEG sensor complexity over participants for eyes open condition. D. Sensor 

complexity for individual participants for occipital electrode Oz (paired rank- 

sum test, 𝑝 < 0 . 0001 ) and E. sensorimotor electrode Cz (paired rank-sum test, 

𝑝 < 0 . 0001 ). 
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10 
he spatial mixing on a given sensor, the harder it is to make inferences

egarding specific rhythms from the activity recorded at the specific sin-

le EEG electrode. While we show an example of one participant here,

he dynamic changes of the amplitude of alpha rhythms are a general

henomenon and are present in all other participants to some extent, if

hey display oscillatory rhythms in the alpha-band. 

. Discussion 

With this article, we aim to raise awareness for the effects of spa-

ial mixing on alpha rhythms as detected with EEG/MEG. We first il-

ustrated the usage of spatial patterns to analyze focality and origin of

EG activity as a practical tool for researchers. Using this tool, we evalu-

ted the contributions of different alpha rhythms on EEG electrodes and

EG sensors. First, we simulated the presence of different alpha gen-

rators in a realistic head model and computed contributions using the

orresponding lead field. The simulation analysis was complemented by

mpirical data analysis in two large datasets, where we analyzed spatial

attern coefficients for alpha rhythms as extracted by SSD. A complex-

ty measure on individual sensor level was defined and used to illustrate

ow alpha sources map onto EEG and MEG sensors, also depending on

tate. 

.1. Implications 

.1.1. Amplitude of rhythms and alpha asymmetry measures 

To date, many EEG/MEG studies are performed in sensor space.

ne of the clear advantages of such an approach is its relative

echnical simplicity not requiring source analysis using biophysical

r statistical constraints (for example using independent component

nalysis or SSD). Typical examples include spectral analysis, ampli-

ude dynamics, e.g., event-related desynchronization/synchronization

 Pfurtscheller and Silva, 1999 ), microstates ( Michel and Koenig, 2018 ),

iverse complexity measures such as long-range temporal correlations

 Hardstone et al., 2012 ), approximate and sample entropy ( Richman and

oorman, 2000 ). A typical approach in such studies is to define regions

f interest on the basis of spatial locations of sensors, for instance frontal,

entral temporal, parietal and occipital regions. This is often done with

he hope that the activity picked-up by the sensors in these regions of

nterest would reflect cortical processes generated in the proximity of

hese sensors. However, as one can see from the simulation illustrated in

ig. 3 for EEG and in Fig. 5 for MEG, a very large part of activity detected

n frontal sensors can originate from the occipital sources. This situation

s particularly important for the inference regarding alpha sources cal-

ulated on the basis of sensor space activity in EEG electrodes F3 and F4.

he asymmetry in alpha power between these EEG electrodes is often

sed as an indication for making conclusions about approach/avoidance

ehavior ( Smith et al., 2017 ). In this context, a stronger activation of the

eft hemisphere (smaller alpha power) indicates a tendency toward ap-

roach behavior while a stronger activation of the right hemisphere in-

icates rather avoidance. These conclusions are naturally based on the

ssumption that alpha activity in these frontal electrodes reflect neu-

onal processing, for instance in dorsolateral prefrontal cortex. How-

ver, this assumption can be very misleading. In fact, our analysis shows

hat the contribution of a combination of occipital and central sources

an be as high as 75% in frontal sensors for EEG. This in turn makes

nferences about the activation of the dorsolateral prefrontal cortex on

he basis of frontal electrode activity quite problematic. In case of MEG,

he spatial spread of the detected field depends on the geometry of the

ick-up coils where gradiometers have a better spatial specificity com-

ared to magnetometers ( Taulu et al., 2014 ). In the present study we

sed axial gradiometers and observed that the spread of the field was

ot as pronounced as in case of EEG potentials yet we still could detect

onsiderable contributions from posterior sources also for frontal MEG

hannels. 
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Fig. 9. Relative alpha rhythm contributions 

to sensor space activity change over time. A. 

Time resolved alpha-power variations from dif- 

ferent rhythms contributing to alpha-power mea- 

sured on posterior electrode PO8, the colors cor- 

respond to the color-coded topographies in sub- 

plot C. Vertical bars indicate block breaks. The y- 

axis limits are adjusted to highlight alpha power 

variations. B. Same as in A but for central senso- 

rimotor electrode C3. C. Topographies of com- 

ponents, color-coded as shown in A and B. D. 

Ratios of amplitude contributions over time for 

different SSD components #2 over SSD compo- 

nent #1 E. Same as E but for SSD component #3 

over SSD component #1. Relative power contri- 

butions to sensor space activity vary substantially 

over time. 
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Moreover, using real data, Fig. 6 shows that many occipital and cen-

ral sources contribute to the power of alpha rhythms in frontal EEG

lectrodes. On the one hand, it’s possible to investigate alpha asymme-

ry in different pairs of electrodes to show that primarily asymmetry

n the frontal electrodes corresponds best to the behavioral quantifi-

ation of approach/avoidance traits. However, such conclusions would

ot necessarily be correct since mixing of alpha rhythms might be

ore complex/different in occipital areas compared to frontal ones and

hus asymmetry of alpha sources outside of frontal areas can still be

 major contributing factor for alpha asymmetry in frontal electrodes

 Ko ł odziej et al., 2021 ). In general, we would recommend to perform

ome simple decomposition of alpha sources with independent compo-

ent analysis or SSD to calculate the proportion of components with

lear central and occipital patterns to the whole power at frontal elec-

rodes. If this proportion is more than 50%, caution should be applied

hen interpreting frontal alpha asymmetry. Such decompositions can be

erformed even when the recording consists of approximately 20 EEG

lectrodes since spatial patterns of the components could be identifiable

s having central, frontal or occipital sources. 

A similar logic can be applied to other locations of electrodes and

ther phenomena where the power of oscillations or their asymmetry
11 
hould be deduced. For instance, for the sensorimotor mu rhythm, an os-

illatory power difference between two hemispheres can indicate asym-

etry in excitation/inhibition-balance between the hemispheres on the

asis of which a certain therapeutic transcranial magnetic stimulation

rotocol can be prescribed ( Voineskos et al., 2010 ). In this case, a care-

ul evaluation of alpha-band mixing complexity is also important if one

s using standard reference schemes such as those based on common av-

rage, linked mastoids etc. Again, we would like to emphasize that for a

ore refined spatial estimation a source analysis is preferred. For MEG,

s exclusive sensor space analysis is rarely the case for MEG analysis,

he spatial mixing on MEG sensors has mainly to be considered when

nterpreting first-pass sensor space activity, for example for selection of

egions of interest. 

.1.2. Neurofeedback in sensor space 

Another important example for the use of alpha power, obtained

n sensor space, is neurofeedback. Here, the main idea is to volition-

lly up- or down-regulate power of oscillations at a specific sensor lo-

ation ( Sitaram et al., 2017 ). The main premise is that the changes in

lpha power are likely to be associated with functional changes of the

orresponding neuronal networks. Typically, a relationship is assumed
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etween the power of alpha rhythms and a spatially restricted neu-

onal network generating these alpha rhythms. However, our simula-

ions show that power in a given sensor reflects activity from generators

n a variety of different brain areas. Therefore, no exact correspondence

etween the increase of oscillations e.g., at EEG electrode Pz and spatial

ctivation in a given cortical patch can be established, even if activa-

ion is defined quite broadly, i.e., frontal, central or occipital locations.

mportantly, sensor-space MEG is used in neurofeedback applications

 Okazaki et al., 2015; Rana et al., 2020 ) and therefore all the considera-

ions presented above for EEG neurofeedback remain relevant for MEG

s well. Moreover, the power ratio of different SSD components varies

s a function of time (see Fig. 9 ) thus further obscuring a relationship

etween changes of alpha rhythms and underlying neuronal processing.

uch complexity of spatial mixing should inevitably lead to a decrease

n the efficacy to learn neurofeedback since reinforcing a specific power

f alpha rhythms at a given sensor biologically would correspond to

einforcing undetermined and ever-changing patterns of corresponding

euronal activity. This can be one of the reasons for the observation

hat many participants are not able to learn neurofeedback effectively

 Sitaram et al., 2017 ). In fact, on the basis of our results we hypothesize

hat the participants with the lower spatial complexity of alpha rhythms

hould be more efficient in performing reliably in neurofeedback ses-

ions. This can be tested directly in future studies. Since neurofeedback

ypically requires multiple sessions and this is a time-consuming proce-

ure, as a practical recommendation we suggest performing at least one

ecording with a high number of sensors (for instance 60 in the case of

EG) in order to quantify the presence and spatial complexity of alpha

hythms at different sensors. One can then determine sensors with suf-

ciently low complexity to be used later with low-electrode montages

for multisession training) or in case of participants with high spatial

omplexity, one can proceed with more electrodes in order to enable

isualizations of spatial patterns corresponding to spatially restricted

euronal activity for validation of the paradigm. 

.1.3. Spatial complexity and connectivity 

Previous studies have already explored effects of volume conduction

n the calculation of connectivity relationships based on coherence or

hase locking values ( Lai et al., 2018; Mahjoory et al., 2017 ). Here, a

purious connectivity can be detected when the same neuronal source

s mapped to many sensors and therefore a high connectivity value does

ot reflect functional interactions but rather the fact that the same neu-

onal trace is mapped to different sensors thus leading to high coherence

f phase locking. Clearly, volume conduction is also the reason for com-

lex spatial patterns obtained in the present study. While we will not

escribe strategies to overcome detection of spurious interactions here,

s it has been done in previous studies ( Mahjoory et al., 2017; Nolte

t al., 2004 ), we want to emphasize another important aspect relating

o our findings. Sensors, reflecting a high degree of spatial mixing of

ifferent components, are also likely to reflect a rich structure of neu-

onal interactions which can be picked up with different graph theoreti-

al metrics even when controlled for volume conduction. Therefore, we

uggest that if connectivity studies are based on a sensor space analysis,

 complementary spatial sensor complexity can be computed in order to

ssess the possibility of obtaining hub structures particularly in sensors

ith the highest sensor complexity. 

.2. Limitations 

For the empirical data analysis sections, we used a simple method

or source reconstruction. With SSD, as with any other decomposition

echnique, it is not possible to separate all individual alpha rhythms. Af-

er all, we only record data with 60 EEG electrodes and there are many

ore generators than that. Therefore, the decomposition will feature

omponents that are not of a dipolar structure, where multiple sources

hat are highly co-active have been combined into a single source by the
12 
ecomposition algorithm. While improvements can be made in this re-

ard, by using more sophisticated source reconstruction algorithms, our

eneral statement is not dependent on the specific source reconstruc-

ion method we used: the activity of a single EEG electrode will reflect

ultiple sources in the alpha-band, for which the contributions will dy-

amically vary across time. In general, the existence of statistical based

ource separation techniques like SSD makes investigation of rhythms in

ource/component space easy and allow separation of individual rhyth-

ic contributions without anatomical head models, to best utilize in-

ormation from electrophysiological data. In the current analyses, SSD

as chosen as the decomposition algorithm because of its few parame-

ers and easy computability as well as the special focus on narrow-band

hythms and should be understood as one possibility to counter volume

onduction effects. In general, the choice of source reconstruction algo-

ithm depends on the objectives of the study. Practical considerations

egarding source reconstructions are given in companion papers of re-

pective software packages ( Jas et al., 2018; Stropahl et al., 2018 ) For

pecific recommendations on how to use techniques based on general-

zed eigenvalue decomposition such as SSD see Cohen (2022) . The main

enefit of these techniques is that they are fast to compute and only

equire specification of a peak frequency and bandwidth, no anatom-

cal information required. For neurofeedback purposes and depending

n the specific task, one can select SSD component with clear occipito-

arietal or sensorimotor origins as these patterns are usually easy to

dentify without a necessity to perform inverse modeling. If there are

onstraints regarding the regional origin of sources, a technique utiliz-

ng these objectives may be of benefit, e.g., beamforming ( Westner et al.,

022 ). 

. Conclusion 

Spatial mixing due to volume conduction is inherent to data recorded

ith EEG/MEG. Here, we have shown the extent of spatial mixing of dif-

erent alpha-type rhythms and elaborated on the consequences in terms

f activity contributions to sensor space activity. For detecting relation-

hips between EEG/MEG signatures and behavior, the signal-to-noise

atio available needs to be carefully considered. While prominent pos-

erior rhythms show less spatial mixing in sensor space, the situation

s more complicated for sensorimotor and temporal alpha rhythms of

maller amplitude, potentially compromising analyses that are solely

onducted in sensor space. We hope that the provided practical illustra-

ions may be of use to EEG researchers for evaluation whether sensor

pace is sufficient for their topic of investigation. 
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