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Abstract
We study the performance of heuristics relative to the performance of optimal

solutions in the rich domain of sequential search, where the decision to stop the

search depends only on the applicant’s relative rank. Considering multiple variants

of the secretary problem, that vary from one another in their formulation and

method of solution, we find that descriptive heuristics perform well only when the

optimal solution prescribes a single threshold value. We show that a computational

heuristic originally proposed as an approximate solution to a single variant of the

secretary problem performs equally well in many other variants where the optimal

solution prescribes multiple threshold values that gradually relax the criterion for

stopping the search. Finally, we propose a new heuristic with near optimal per-

formance in a competitive or strategic variant of the secretary problem with multiple

employers competing with one another to hire job applicants. Both heuristics share a

simple computational component: the ratio of the number of interviewed applicants

to the number of those remaining to be searched. We present the subgame-perfect

Nash equilibrium for this competitive variant and an algorithm for its computation.
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1 Introduction

The heuristics literature in cognitive psychology is concerned with two different but

related issues. First, are heuristics predictive of human behavior? Second, how does

heuristic performance compare to the optimal solutions of the decision-making

tasks? When testing models in the controlled environment of the laboratory, the

focus of the literature typically is on the former question, their predictiveness,

namely, how well the predictions of the model match systematic and replicable

patterns of behavior that are observed in the raw data. In contrast, our manuscript

focuses on the second question, namely, the relative performance of heuristics

(simple rule-of-thumb models) vis-à-vis an optimal benchmark.

One viewpoint emphasizes the performance shortcomings of descriptive

heuristics, arguing that they often lead to biases and sub-optimal behavior (e.g.,

Kahneman, 2003a, b, 2011; Tversky & Kahneman, 1974). An alternative viewpoint

contends that heuristics can be fast and frugal, exhibiting excellent performance and

even outperforming normative models in environments of irreducible uncertainty

arising from nature (Gigerenzer et al., 1999, 2011; Hertwig et al., 2013; Todd et al.,

2012) or imperfect knowledge of opponents’ strategic behavior and payoffs in

games (Spiliopoulos & Hertwig, 2020). This latter strand of the literature

emphasizes that heuristics perform best when their processes match relevant

characteristics of the environment, thereby exploiting them efficiently in the spirit of

Simon’s ‘scissors’ metaphor, particularly in the face of uncertainty—see Hertwig

et al. (2019) for examples of this across a wide range of different decision-making

tasks.

Ultimately, moving away from a binary antagonistic stance regarding heuristic

performance, research should be directed at demarcating the boundary between

environments where heuristics perform well and environments where they may be

inappropriate. Where does this boundary lie? Are heuristics restricted to performing

well only in relatively simple environments or do they excel in exactly the opposite

type, i.e., complex environments? In choosing a new domain of complex problems

to test heuristics, one restriction is that some problems are intractable within

reasonable time and computational limits (e.g., NP-hard problems such as the

Traveling Salesman problem). Consequently, the optimal solutions are unknown,

rendering relative performance an undefinable property.

We have opted to study the taxing, yet numerically solvable, domain of

sequential search problems, which sometimes are dubbed as optimal stopping

problems (Ferguson, 2002), where the decision maker (DM) interviews the choice

alternatives (items, applicants) sequentially. There is a very large body of

theoretical research on the standard secretary problem, which originated about

60 years ago (Chow et al., 1964; Lindley, 1961). We narrow down this domain to a

class of no-information sequential search problems (Ferguson, 2002) in which the

DM has no prior knowledge about the probability distribution of the choice

alternatives and, therefore, cannot acquire information from experience about its

parameter values. Rather, in deciding whether to accept or reject a given item, the

DM is only informed of the relative rank of the present item in comparison to all the
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items preceding it in the sequence. The optimal stopping rules for these problems

may, in principle, be numerically calculated by dynamic programming (see, e.g.,

Chow et al., 1964; Gilbert & Mosteller, 1966). As Simon (1990) has noted, optimal

strategies provide important insights into the nature of the decision-making

environment under investigation, but the mathematical methods for discovering

them often use a formal language which is alien to most DMs and at times

incomprehensible. Consequently, optimal strategies are inaccessible to most

humans and organizations, both in the laboratory and in practice, because of their

formal language, computational costs, and the constraints imposed by the users’

cognitive abilities. This begs the question whether there exist simple heuristics that

are both accessible to DMs and capable of excellent performance in this domain.

Our paper presents three contributions. First, we investigate the performance of

heuristics in a non-competitive decision-making domain, consisting of four problem

variants (presented in Sect. 2), that is considerably richer and more complex than

the domains already studied. One set consists of three heuristics proposed by Seale

and Rapoport (1997, 2000) and further investigated by Stein et al. (2003)—these

three heuristics have been found to be used by subjects in experiments. Two of these

heuristics perform extremely well in variants of sequential search problems for

which the optimal decision rule consists of a single threshold. However, they

perform poorly in problem variants whose optimal decision rules call for multiple

(rather than a single) threshold. Second, in response to this finding, we investigate

for the first time the performance of a heuristic originally proposed only for a

specific sequential search problem (the expected rank minimization problem;

Krieger & Samuel-Cahn, 2009) in three other variants with multiple thresholds—we

call this the Progressive Stopping (PS) heuristic (Sect. 3). We establish that this

heuristic achieves more than 95% of the optimal performance across all these

variants and for sequences with different numbers of items (Sect. 4). Third, we

investigate a competitive secretary problem where multiple employers compete with

one another to hire the best job applicant (Sect. 5). We then construct an optimal

solution (a subgame-perfect Nash equilibrium) for this game following (and

correcting) the proof of Karlin and Lei (2015). We propose a new heuristic related

to the PS heuristic—the Inverse Progressive Stopping heuristic (Sect. 5.2)—and

show that it exhibits remarkably high performance for the whole set of employers.

Readers conversant with the literature on sequential search problems and/or

heuristics may skip the following Sects. 1.1 and 1.2, respectively, and continue from

Sect. 2.

1.1 A brief literature review of sequential search problems

The class of no-information sequential search decision problems has been studied

theoretically in applied probability and operations research (see literature reviews

by Ferguson, 1989, 2002; Freeman, 1983; Samuels, 1991) and experimentally in the

disciplines of psychology and behavioral economics (see, e.g., Corbin, 1980;

Bearden & Rapoport, 2005; Lee, 2006; Mak et al., 2019; Palley & Kremer, 2014;

Seale, 1996; Seale & Rapoport, 1997, 2000). Non-distributional models of

sequential search can be divided into two streams depending on the objective of
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the DM conducting the search. In one stream (e.g., Lindley, 1961), commonly

referred to as the probability maximization problem (PMP), or the best choice

secretary problem, the DM’s objective is to maximize the probability of selecting

the best item. This may appear very restrictive; however, in the business world,

returns to many investments are increasingly described by an all-or-nothing

distribution of returns in the long run, e.g., due to first mover advantage or a superior

technology dominating the industry. Or at the very least, there are strongly

increasing returns to choosing higher relative ranks; consider a sigmoidal

relationship, which approximates an all-or-nothing objective function.

Alternatively, the second stream of research (Chow et al., 1964), which is called

the expected rank minimization problem (ERMP), relaxes the all-or-nothing

assumption as the DM’s objective is assumed to minimize the expected absolute

rank of the item selected. Under this objective, the payoffs are either the same

(equal weight) or they decrease monotonically in the absolute rank of the selected

items; the smaller the rank, the higher the payoff. These two objectives differ from

each other in their assumptions about the DM’s objective, and so do the methods for

computing their optimal solutions.

At first sight, the assumption of knowledge of relative ranks—and ignorance of

the distribution of items—may seem overly restrictive, particularly to economists.

Traditionally, the economics literature deals with distributional models, which allow

for normative solutions derived from applications of Bayesian updating, e.g., work

on incomplete information in game theory. By contrast, research in Operations

Research and Applied Statistics often consists of non-distributional models, where

the utilities of items and their associated probability distribution are unknown—see

Bearden and Rapoport (2005) for a more detailed comparison of distributional and

non-distributional models of search. Consequently, neither computation of utilities

and probabilities is required nor complex Bayesian updating after the presentation

and inspection of each item. There are three major problems that severely restrict

the applicability of distributional models to sequential search in the field. First, full-

information solutions are very sensitive to the right extreme tail of the distribution

of item valuations leading to non-robustness if the distribution is not known

perfectly. In the wild, distributions are almost never presented by description to a

decision-maker, at best s/he may approximately learn the distribution through

observation. However, the tail ends of distributions consisting of rare events are

virtually impossible to learn with any reasonable degree of precision even with large

number of observations. Second, Knightian uncertainty is considerable in large

worlds, therefore attaching cardinal valuations to items even before the sequential

search commences is difficult. Third, and most importantly, distributional models

are restricted to a single attribute, whereas non-distributional models of sequential

search (e.g., searching sequentially for a date; searching sequentially for an

apartment after moving to a new location; attempting to choose the best k, k[ 1,

proposals which are evaluated sequentially) do not have this restriction.

We argue that the majority of important managerial decisions are based on

incomplete information due to the considerable state of flux in economic conditions,

the unpredictability of innovation, etc., leading to limited managerial control over

organizational processes (March & Simon, 1993). A relevant example would be a

123

138 A. Rapoport et al.



venture capital firm, sifting through start-ups with considerably uncertain valuations

and uncertain likelihoods of the future states affecting the valuations in an attempt

to decide which one to invest in. In short, we believe that non-distributional models

are more frequently applicable in practice and more realistically capture the nature

of sequential searches than distributional models. The important characteristics of

search problems are preserved in non-distributional models that allow for the

sequential search of multi-attribute items while by-passing the problem of

integrating them into a single value and still allowing for a rich set of variants in

terms of alternative objective functions, probabilistic knowledge of the number of

items and other assumptions—this will be apparent in Sect. 2 where we describe the

different variants that we investigate.

1.2 A brief literature review of heuristics

One viewpoint of the descriptive heuristics literature argues that they often lead to

biases and sub-optimal behavior (e.g., Kahneman, 2003a, 2003b, 2011; Tversky &

Kahneman, 1974) as they are subject to an effort-performance tradeoff (Payne et al.,

1988). While the reduction in effort may outweigh the loss in performance for some

applications, the contention is that heuristics necessarily suffer a considerable

degradation in performance. This viewpoint has been challenged by the fast and

frugal heuristics literature, which argues that heuristics can achieve excellent

performance and even outperform normative models in environments of irreducible

uncertainty (Gigerenzer et al., 1999). Consequently, an effort-performance tradeoff

is not a given; quite the opposite, less can be more. Earlier work investigated fast

and frugal heuristics in considerably simpler decision-making tasks with a focus on

tasks of inference (Gigerenzer et al., 1999, 2011; Todd et al., 2012), individual

decisions under risk and uncertainty (Hertwig et al., 2019; Payne et al., 1988;

Thorngate, 1980) and social environments (Hertwig et al., 2013). In parallel

research, economists have turned their attention to the axiomatization of heuristics

(and, more generally, principles of bounded rationality) from the psychology

literature Manzini and Mariotti (2007, 2012a, 2012b, 2014); see also Mandler et al.,

(2012).

More recent work has extended the domain of inquiry from individual to strategic

decision making. Theoretical work by Spiliopoulos and Hertwig (2020) shows that

bounded-rational heuristics are more robust than sophisticated decision rules—

including the normative Nash equilibrium—to both strategic and payoff uncertainty

in one-shot strategic interactions. A burgeoning management literature concludes

that managers often employ heuristics (Bingham & Eisenhardt, 2011) and that they

can be effective decision-making tools in the face of uncertainty (Artinger et al.,

2015). For example, Åstebro and Elhedhli (2006) show that simple heuristics can be

more effective than complex regression models in predicting the success of risky

ventures. That is, even in complex real world managerial domains, heuristics are not

necessarily a second-best solution, particularly in large world environments were

uncertainty and noise reign supreme.
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2 The set of optimal stopping problems

It is generally agreed that the first statement of the PMP appeared in the 1960

column of Scientific American (Gardner, 1960). Lindley (1961) seems to be the first

to have solved the PMP in a scientific publication; his work has been extended by

many others (e.g., Freeman, 1983). As stated above, the problem is to establish a

stopping rule that determines whether to choose item i based only on its relative

rank Ri, i.e., its rank among items 1 through i (i = 1, 2, …, n). The PMP is stated in

terms of the assumptions that underlie the sequential search for the best applicant:

Assumption 1 (number of applicants). The number of applicants for employment,

n, is finite and known.

Assumption 2 (no. of positions). A single position is available.

Assumption 3 (random order of arrival). The applicants are interviewed one at a

time in a random order, where the n! orderings are equally likely.

Assumption 4 (no ties). The decision maker (DM) can rank order all the

n applicants in terms of their absolute rank, Ai, from best (Ai = 1) to worst

(Ai = n) with no ties.

Assumption 5 (decision rule). On each stage i of the search, the DM is only

informed of the relative rank, Ri, of applicant i. Based on this information, the DM

either accepts the applicant for the position and thereby ends the search or rejects it

and then interviews the next one. If no selection is made prior to the nth applicant,

then the last applicant must be selected.

Assumption 6 (no recall). Once rejected, an applicant may not be recalled.

Assumption 7 (no refusal). An offer of selection is accepted with certainty by the

applicant.

Assumption 8 (payoff function). The DM’s objective is to maximize his/her

expected payoff: 1, if the best applicant (Ai = 1) is selected, and 0, otherwise

(Ai = 1).

A note on notation and terminology. The absolute and relative ranks of applicant

i depend on n. Because the value of n in sequential search experiments is fixed, and

the results do not necessarily generalize to other values of n, the superscript n is

suppressed. In the rest of this section, we use the terms candidate for an item with

relative rank Ri = 1 and applicant for all relative ranks.

Most of the assumptions stated above have been relaxed in one way or another

thereby giving rise to multiple variants of the best choice problem—see early

review papers by Gilbert and Mosteller (1966) and Freeman (1983), and

subsequently Chun (1998, 2000), Bearden et al. (2005) and Bearden et al. (2006).

For example, Presman and Sonin (1972) and Bruss and Samuels (1987) replace

Assumption 1 by:

Assumption 1’. The DM is only informed of the probability distribution of the

number of items, n.

We consider four typical variants of this standard specification. In the first

variant, called PMP-UN (Bruss & Samuels, 1987; Presman & Sonin, 1972), the DM

only knows the probability distribution of n. The second variant (Gilbert &

Mosteller, 1966; Woryna, 2017; Yeo & Yeo, 1994), called PMP-k, assumes that the
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DM’s objective is to maximize his/her expected payoff: 1, if any of the k best

applicants is selected (Ai = 1, …, Ai = k), and 0, otherwise. We will examine the

two most-researched cases, namely, k = 2 and k = 5. The standard PMP problem is

essentially the special case where k = 1. In the third variant, called ERMP (Chow

et al., 1964), the DM’s objective is to choose an item that minimizes the expected

value of the absolute rank of the item selected (Assumption 8’). In the fourth variant

(Gilbert & Mosteller, 1966, Problem 2b), which we term problem PMP-DC, at each

stage i of the search, the DM is informed of the relative rank Ri of applicant i. She is

allowed two (rather than a single) choices, termed r1 and r2 (r1\ r2); if either of

them selects the overall best applicant, then the search stops with a win (success).

The first choice is used on the first candidate starting with item r1. If it fails, then the

second choice is used on the first candidate starting with item r2. A detailed

comparison of the assumptions of these non-competitive PMP problems can be

found in Table 1. Appendix 1 documents the optimal solutions for all these variants.

We investigate one final variant, the strategic PMP-COMP (for competitive),

where multiple employers are competing to hire the best out of n applicants—this

will be presented in detail later in the text. To the best of our knowledge, this is the

first time that heuristic decision rules are examined in the context of competitive

secretary problems. This is an important extension, as arguably, many real-world

optimal stopping problems exhibit such game theoretic characteristics arising from

the competition between employers pursuing a limited number of applicants.

3 The progressive stopping heuristic

The computation of the optimal decision rule problems with multiple thresholds,

such as the ERMP, becomes tedious, costly, or highly time consuming (particularly

if n is very large). This led KS-C to consider simpler rules: ‘‘We consider finding

simple stopping rules that perform well in minimizing the sum of the expected value

of the absolute ranks of the items selected, when one or more items are desired’’

(2009, p. 1042). For the case where a single item is to be selected, KS-C proposed

the following heuristic rule for the ERMP, which we henceforth refer to as the

progressive stopping (PS) heuristic:

tn cð Þ ¼ inf i : Ri � cdf g; d ¼ i

nþ 1 � i
; ð1Þ

where tn(c) is the threshold stopping rule and c C 1 is a constant. This rule stops and

chooses the first applicant with a relative rank of Ri satisfying the above constraint,

i.e., meeting the threshold tn(c), and guarantees that some applicant is always chosen

as Pr(tn(c) B n) = 1. This rule performed very well in the ERMP that KS-C focused

on (see Table 13) especially for very high n—for which the optimal solution is even

more computationally intensive—choosing an expected rank smaller than 4 and

achieving 98.5% of the optimal (maximum) performance for n[ 100,000. KS-C

write: ‘‘Hence, when the number of items becomes large, the case where it is hard to

implement dynamic programming, is when the simple rule performs almost as well

as the optimal rule’’ (2009, p. 1053). The performance of this simple rule is striking.

123

Progressive stopping heuristics that excel in individual and… 141



We conjecture, and subsequently test the hypothesis that the PS heuristic rule

performs well in other variants of the secretary problem where the optimal solutions

call for multiple decision thresholds.

How likely is it that this heuristic—which was originally proposed as a

computational device, not as a heuristic descriptive of human behavior—may be

discovered and adopted by decision makers? While the exact quantitative optimal

solution is difficult to deduce without formal mathematical training, we posit that

qualitative aspects of the optimal solution may be accessible to inexperienced DMs;

they may first attempt to deduce basic qualitative features of an optimal solution to a

Table 1 The set of individual optimal stopping problems and their assumptions

PMP PMP-

UN

PMP-

k (2, 5)

ERMP PMP-

DC

Solution: # of thresholds 1 1 k Multiple 2

# of

applicants

n is finite 4 4 4 4 4

Only the probability distribution of n is
known

– 4 – – –

# of choices 1 1 1 1 2

Payoff

function

DM maximizes expected payoff: 1, if the

best applicant is selected, and 0,

otherwise

4 4 – 4 4

DM maximizes expected payoff: 1, if any

of the k best applicants is selected

(Ai = 1,…, Ai = k), and 0, otherwise

– – 4 – –

DM minimizes the expected value of the

absolute rank of the selected applicant

– – – 4 –

Decision rule *1 *1 *1 *1 *2

# of positions 1 1 1 1 1

Arrivals Applicants are interviewed one at a time in a random order, where the n! orderings are

equally likely

No ties The decision maker (DM) can rank order all the n applicants in terms of their absolute

rank, Ai, from best (Ai = 1) to worst (Ai = n) with no ties

Decision

rule

On each stage i, the DM is only informed of the relative rank, Ri, of applicant i. Based on

this information, the DM either accepts the applicant for the position and thereby ends

the search or rejects it and then interviews the next one. If no selection is made prior to

the nth applicant, then the last applicant must be selected

No recall Once rejected, an applicant may not be recalled

No refusal An offer of selection is accepted with certainty by the applicant

*1 On each stage i of the search, the DM is only informed of the relative rank, Ri, of applicant i. Based on

this information, the DM either accepts the applicant for the position and thereby ends the search or

rejects it and then interviews the next one. If no selection is made prior to the nth applicant, then the last

applicant must be selected

*2 On each stage i of the search, the DM is informed of the relative rank Ri of applicant i. She is allowed

two choices, termed r1 and r2 (r1\ r2); if either of them selects the overall best applicant (with absolute

rank 1), then the search stops with a win (success). The first choice is to be used on the first candidate

starting with item r1. If it fails, then the second choice is to be used on the first candidate starting with

item r2
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problem and then construct a heuristic out of basic building blocks that satisfies

these qualitative requirements. Alternatively, they may learn inductively what

works as long as the heuristic is relatively simple. Consider the experimental

economics literature on eureka or epiphany moments, where after repeated exposure

participants suddenly gain an insight into complicated games, with the effect

observable both in choices and response times (Dufwenberg et al., 2010; McKinney

& Huyck, 2013; Schotter & Trevino, 2020).

What are the building blocks and insights related to optimal stopping problems?

Dealing with insights, it is often easier to first consider the border-cases of a

problem—this can be construed as a type of decrease-and-conquer approach

(Levitin, 2012). For these problems, they are stopping the search immediately and

choosing the first candidate or continuing search until the last candidate. It is

immediately apparent that in the first case the probability of success is quite low as

no knowledge has been accumulated through search with which to compare and

improve on the first candidate—it is in essence, equivalent to a random uninformed

choice. In the latter case, since not choosing a candidate leads to a loss, the

probability of choosing the last candidate conditional on search continuing that

long, should be 1. These two observations imply high thresholds for the beginning

of the search and zero thresholds at its end. Alternatively, the DM may realize that

there are two opposing forces at work, which imply the same qualitative

conclusions. The longer the search, the more likely it is to come across the desired

candidates; but continuing the search risks losing the most desirable candidates by

passing up the opportunity to hire.

What is a simple way to construct a heuristic satisfying this insight and what

building blocks are required? Tracking the ratio of the number of applicants already

interviewed to the number of the remaining to be interviewed applicants satisfies

these requirements in a frugal and intuitive manner. Specifically, the PS heuristic

considers the ratio of two integers as combined in the search depth d: the number of

the present stage (how far you are away from the beginning of the search) divided

by the number of stages (plus 1) that remain in the search: i
nþ1�i. This ratio of two

integers is multiplied by the scaling parameter c, which is the only parameter of the

heuristic. Because Ri is an integer assuming the values 1, 2, …, n, the heuristic rule

consists of a sequence of n thresholds and has the same form as the optimal rule for

multiple-threshold problems. As the search progresses (i), the numerator in the ratio
i

nþ1�i increases and the denominator decreases, leading to an increase in the search

depth variable d, and a gradual relaxation of the criterion for stopping the search.

Figure 1 plots the progression of Ri as i increases for various values of c. Higher

values of c lead to a quicker relaxation of the stopping threshold criterion. The

curves are convex, i.e., increase at an increasing rate with i, as delaying choice

quickly increases the probability of passing up the best prospects, and not choosing

an item before all n items are observed necessarily leads to failure. This conforms

with the qualitative aspects of the solutions at the border-cases described above.

Note that larger values of n reveal the same general patterns but on a different scale.

The PS heuristic may thus be also viewed as a satisficing/aspiration rule in the spirit

of Simon (1957, p. 263):
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‘‘(a) When performance falls short of the level of aspiration, search behavior

(particularly search for new alternatives of action) is induced. (b) At the same

time, the level of aspiration begins to adjust itself downward until goals reach

levels that are practically attainable.’’

The PS heuristic has all the properties of a fast and frugal heuristic as it ignores a

large proportion of information that could be gleaned from extensive search, and has

obvious search, stopping, and decision components, as described above.

4 Results for non-competitive optimal stopping problems

The heuristic performance is measured by an approximation score, called the a-

score, which is defined below in terms of the probability of achieving the objective,

called the probability of success:

a-score ¼ Pr success achieved by the heuristic ruleð Þ
Pr success achieved by the optimal solutionð Þ :

Before proceeding with an in-depth analysis of the PS heuristic in multiple-

threshold sequential search problems, we first summarize our findings on existing

heuristics for the PMP, PMP-UN, and PMP-2 problems. The cutoff heuristic, where

the DM rejects the first r - 1 applicants, and then selects the first candidate

thereafter achieves perfect performance (a-score = 1), for the optimal r* value, in

the standard PMP and PMP-UN. However, it (and two other heuristics) suffers a

significant degradation in performance in the PMP-2, which calls for two rather than

a single threshold. This failure leads us to consider the PS heuristic as an alternative

for the class of multiple-threshold search problems. A more detailed discussion of

these heuristics and their performance in these problems can be found in Appendix

E of the Supplemental Online Material.
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4.1 The progressive stopping heuristic in multiple-threshold search problems

4.1.1 PMP-DC, PMP-5, PMP-2 and ERMP

In assessing the PS heuristic’s performance, we searched for the best value of the

single parameter (c), i.e., the one that maximizes the probability of success. The a-

score for problem PMP-5 was computed by simulation, but the a-scores for

problems PMP-2 and PMP-DC were computed directly from Eqs. (4) and (6) in

Appendix 1, respectively, as these two equations apply to any values of the

thresholds r1 and r2 and not only for the optimal values r1* and r2*.

The results for problems PMP-DC, PMP-2, PMP-5 and ERMP for n = 20, 50,

and 100 are summarized in Table 2—more details, such as the optimal c values,

threshold values, and the probability of winning can be found in Tables 9, 10, 11, 12

and 13 in Appendix 2. A key finding of the present paper is that the PS heuristic

performs extremely well across these variants. In PMP-DC, the PS heuristic

emulates the optimal solution across all n (achieving an a-score = 1) for the

appropriate values of c. In PMP-2 and PMP-5, while not achieving perfection, the

PS heuristic achieves exceptionally high a-scores ranging from 0.978 to 0.999. In

the ERMP, the heuristic achieves a-scores ranging from the near-perfect 0.995 for

n = 20 to 0.963 for n = 100 and as KS-C showed, still performs well for higher

values of n: 0.963 for n = 100, 0.981 for n = 1000, 0.984 for n = 10,000 and 0.985

for n[ 100,000. In some of these cases, the PS heuristic improves in performance

as n increases, that is as the complexity of the optimal solution increases this

heuristic becomes even more effective—problem complexity is tamed by a simple

decision process as embodied in the PS heuristic.

The PS heuristic outperforms other approximate solutions that have been

suggested for these problems. Dietz et al. (2011) propose two policies approximat-

ing the optimal solution to PMP-2, one of which consists of a single threshold and

the other of two thresholds. The former has two free parameters (the relative ranking

cutoff to be applied after a position threshold), whereas the latter has four

parameters (two rankings and two positions). In this sense, they are considerably

more complex that the PS heuristic’s single free parameter. Furthermore, deriving

the optimal parameters requires maximization over complex functional forms

involving obscure—to the uninitiated—combinatorics (Dietz et al., 2011, Eq. 2,

p. 160, Eq. 6, p. 164). From their Table 2 (p. 167), we calculate the approximation

Table 2 The approximation

scores of the PS heuristic in

multiple threshold problems

Problem n = 20 n = 50 n = 100

PMP-DC 1 1 1

PMP-2 0.978 0.981 0.988

PMP-5 0.999 0.986 0.985

ERMP 0.995 0.974 0.963
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score for n = 100 and k = 5 of the single-level policy as 0.894 and of the double-

level policy as 0.967.1 Recall from Table 2 that the relevant a-score of the PS

heuristic is 0.985; it is superior to the single- and double-level policies both in

performance and parsimony.

We are not aware of such close approximations of the optimal solutions by the

same simple, single-parameter heuristic to such a wide range of complex decision-

making problems requiring formal mathematical techniques to solve, which for

most people are intractable and incomprehensible. In the next section, we propose a

variant of the PS heuristic and show that the impressive performance of this class of

heuristics is not limited to individual or non-competitive secretary problems as it

also applies to competitive problems.

How robust is the PS heuristic to different values of c and n? Fig. 2 presents the

approximation scores associated with different values of these two variables for

each of the four problems. A striking result is that for all problems there is very little

variation in the approximation score with respect to the number of items

n conditional on values of c. For PMP-DC, the a-score is quite insensitive, or

robust, to values of c, as the curve is quite flat for a large range of values. This is not

the case for the other three problems, where the curve reveals greater sensitivity to

c. Let us examine the range of c values for which the a-score is greater than 0.95.

For the sake of exposition, we report here the ranges for n = 50 as there is little

variation across n. The ranges for problems PMP-DC, ERMP, PMP-2 and PMP-5

are [2.0–6.2], [1.7–2.7], [1.1–2.4] and [1.2–2.6], respectively. Note that c values

between 2.0 and 2.4 guarantee a-scores greater than 0.95 for all four problems.

Consequently, the PS heuristic generalizes admirably, that is, a decision-maker who

has learned appropriate c values from experience in one of these problems can

transfer this knowledge over to a different type of problems and immediately

achieve excellent performance. Furthermore, due to the discreteness of the possible

(integer) threshold stopping values, there exist ranges of c values that produce the

same optimal thresholds and perfect a-scores in problem PMP-DC. In conclusion,

the PS heuristic exhibits considerable robustness across different problems and their

features—this is a valuable trait for a fast and frugal heuristic.

5 The competitive secretary problem: PMP-COMP

Immorlica et al. (2006) and subsequently Karlin and Lei (2015) consider a new

variant of the PMP in which the sequential search for the best applicant is conducted

in a competitive setting by multiple DMs. This opens a new horizon for future

applications of the secretary problem as a general model of sequential search. As a

motivating example, consider the case of k (k C 2) academic departments sending

their faculty representatives, one per department, to a national academic conference

with the instructions of interviewing and subsequently hiring a single job applicant

1 While not formally defined in their paper, we assumed from the name of their metric that the relative

(%) errors are computed as RE ¼ 100 Pr optimalsuccessð Þ�Pr policysuccessð Þj j
Pr optimalsuccessð Þ . Consequently, the a-score can be

computed as 1 � RE
100

.

123

146 A. Rapoport et al.



for a junior position in their department. Exactly n job applicants attending the

conference are ranked from 1 (best) to n (worst) with no ties (same ranking for all

the k employers) and arrive at the interview, one at a time, in a random order. The

interviewers (hereafter called employers) are also ranked from 1 (best) to k (worst)

with no ties in terms of the ‘‘quality’’ of their job offers (e.g., starting salary,

teaching load, academic prestige, location of the school, or some combination of the

above). Employers are instructed by their institutions to hire the best applicant

(Karlin & Lei, 2015).

The assumptions underlying the sequential search for the best applicant in the

competitive variant of the PMP problem (hereafter called PMP-COMP) are stated

below.

Assumption 1 (no. of applicants). The number of applicants, n, is finite and

commonly known.

Assumption 2 (no. of employers). The number of employers, k, is finite and

commonly known.

Assumption 3 (priorities). (a) The n applicants are ordered in terms of their

absolute ranks Ai from best (Ai = 1) to worst (Ai = n) with no ties. (b) The

employers are ranked by the applicants from best (1) to worst (k) with no ties. The

employers’ ordering is publicly known whereas the applicants’ ordering is not

revealed to the employers.

Assumption 4 (interview). The n applicants are interviewed independently by the

k employers, one at a time, in a random order (all n! orderings are equally likely).

Fig. 2 Robustness of the PS heuristic to values of c and n
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Assumption 5 (applicant’s decision rule). If applicant i receives multiple job

offers, then she accepts the offer from the highest ranked employer among those

making the offer. Refusing an offer is not an option, and the terms of the job offer

are not negotiable.

Assumption 6 (employer’s decision rule). At each stage i of the search, at the end

of the interview all the k employers are informed of the relative rank, Ri, of

applicant i (i = 1, 2, … n). Based on this information, any employer may either

accept an applicant i (i.e., make her a job offer) or reject her. The k (binary)

decisions are made independently and are irrevocable. Once an employer hires an

applicant, he may submit no further offers. Note, that an employer may make more

than one offer, as prior offers may be rejected by applicants accepting offers from

higher ranked employers.

Assumption 7 (no recall). Once rejected by all the k employers, the applicant may

not be recalled.

Assumption 8 (objective). The objective of each employer is to maximize the

probability of hiring the best applicant (payoff = 1 if Ai = 1 and 0, otherwise).

5.1 The optimal solution

Using backwards induction to compute employer j’s best response, Karlin and Lei

(K&L) constructed the subgame-perfect Nash equilibrium solution to the PMP-

COMP problem. The solution also yields the probability of success for each of the

k employers. The equilibrium solution has the form of a multi-threshold strategy (t1,

t2, … tk), where for each value of n and each value of j between 1 and k, there is a

unique integer tj, called the optimal threshold value, such that employer j accepts

applicant i if (1) applicant i is a candidate (Ri = 1) and (2) i C tj. Thus, the first t1
applicants are rejected by all the employers, in the interval (t1 ? 1, t2) an applicant

is accepted by employer j = 1 if it is a candidate, in interval (t2 ? 1, t3) employer

j = 1 (if he is still active in the game) and employer j = 2 submit simultaneously

two job offers to applicant i if it is a candidate, and so on. To remain consistent with

the K&L notation, the thresholds are defined by the number of applicants to reject,

whereas in the previous sections the thresholds, r, were defined as the applicant with

which an employer should start submitting offers, i.e., rejecting the first r - 1

applicants. In Appendix 3 we provide counter examples for which the algorithm in

K&L fails to solve for the true optimal thresholds, as those are reported in Table 1 of

K&L.

The structure of the equilibrium proposed by K&L is correct, only the specific

values of the thresholds (t1, t2, … tk) are problematic. We constructed an algorithm

that resolves this inconsistency and returns the true optimal thresholds for all n—the

reasoning for our proof is identical to that given in K&L with a single modification

to their Eq. 3 (2015, p. 946). K&L define the optimal risk, Rk ið Þ; as that belonging

to a set of rules ignoring the first i applicants. Consequently, their Eq. 3 should read

Rk i� 1ð Þ instead of Rk ið Þ. In Appendix 3, we present the pseudo-code for the

algorithm that calculates the subgame-perfect Nash equilibrium. Table 3 reports

optimal threshold values using our algorithm for the parameter values n ¼
10; 20; 50; 100; 1; 000; 10; 000f g where k = 10. We report identical thresholds as

123

148 A. Rapoport et al.



K&L for the case n ! 1, which we approximated with n = 100,000—see Table 4

for the results as n ! 1 for large number of employers, k. For j = 1, 2, 3, and 4—

the top four employers—K&L report the optimal threshold values e-1 & 0.368

(same as the asymptotic threshold value in the basic PMP problem), e-3/2 & 0.223,

e-47/24 & 0.141, and e-2761/1152 & 0.091, respectively. In the limit, the thresholds

Table 3 Optimal threshold values for k employers competing with one another for hiring the best

applicant: n = 10, 50, 100, 1,000 and 10,000, and k = 10

Empl.

j
n = 20 n = 50 n = 100 n = 1,000 n = 10,000

t Pr(win) t Pr(win) t Pr(win) t Pr(win) t Pr(win)

1 7 0.389 18 0.378 37 0.371 368 0.368 3679 0.367

2 4 0.235 11 0.224 22 0.224 223 0.224 2231 0.224

3 2 0.143 7 0.142 14 0.143 141 0.141 1411 0.142

4 1 0.092 4 0.094 9 0.092 91 0.091 910 0.091

5 1 0.063 2 0.059 5 0.060 59 0.060 594 0.060

6 0 0.051 1 0.040 3 0.040 39 0.039 391 0.039

7 0 0.022 1 0.027 2 0.027 25 0.026 259 0.026

8 0 0.005 0 0.020 1 0.017 17 0.017 172 0.017

9 0 0.001 0 0.011 1 0.010 11 0.012 115 0.011

10 0 0.000a 0 0.003 0 0.010 7 0.007 77 0.008

aThe exact value is 0.0002

Table 4 Optimal threshold values (as a proportion of n) for employers competing with one another for

hiring the best applicant as n ? ?

Employer Threshold

(proportion)

Employer Threshold

(proportion)

Employer Threshold

(proportion)

1 0.367879 13 0.002350 25 0.000022

2 0.223130 14 0.001586 26 0.000015

3 0.141093 15 0.001073 27 0.000010

4 0.091017 16 0.000726 28 0.000007

5 0.059429 17 0.000492 29 0.000004

6 0.039124 18 0.000334 30 0.000003

7 0.025913 19 0.000226 31 0.000002

8 0.017242 20 0.000154 32 0.000001

9 0.011515 21 0.000104 33 0.000000

10 0.007713 22 0.000071 34 0.000000

11 0.005180 23 0.000048 35 0.000000

12 0.003485 24 0.000033
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(as proportions of n) are equal to the limiting probabilities of success (Matsui &

Ano, 2016).

The algorithm for the optimal solution is calculated recursively starting from the

highest-ranked employer, who behaves as if there were no competition whatsoever;

that is, the solution is identical to that of the standard best choice problem. Once this

is fixed, the employer in the second rank best responds to the behavior of the top-

ranked employer but disregards the behavior of all lower ranked employers.

Therefore, the solution for each employer j is independent of all lower-ranked

employers, so that the results for k\10 are simply the same threshold values in

Table 3 truncated at k. Similarly, if the optimal threshold is zero for the jth
employer, then it must also be zero for all employers[ j.

Before moving on we present an intriguing finding. Consider the extension of the

PMP problem where the DM can make r choices (r\ n), which can be found in

Sect. 2c of the paper by Gilbert and Mosteller (1966). Recall that earlier we

examined the PMP-DC problem, for which r = 2. The numerical solution for the

generalized r-choice problem appears in the fifth column of Table 4 by Gilbert and

Mosteller (the column titled ‘‘P(win)’’ for the solution with r Starting Numbers).

Note that when n ? ?, the solution to the PMP-COMP is identical to the r-choice

problem solution. This finding can be obtained from our Table 4 by simply adding

the probabilities of winning for all employers up to rank j—that is, calculating the

probability of any employer hiring the best candidate. Consequently, the subgame

perfect equilibrium solution for the competitive secretary problem PMP-COMP

constructed by K&L, where the strategy of each of the competitors has a single

threshold, is identical to the strategy of the single player in the r-choice problem,

which calls for using multiple threshold values in the sequential search for selecting

the best applicant.

5.2 The heuristic solution to problem PMP-COMP

How can DMs intuit important insights into this competitive problem? Recall that

the optimal solution is structured in terms of multiple threshold values similar to the

problems we examined above where we applied the PS heuristic with one important

difference: whereas the PS heuristic produces increasing thresholds, the PMP-

COMP optimal solution requires thresholds that are decreasing in the (numerical)

rank of the employer j. For lower-ranked employers to have a chance of hiring they

must—on average—make offers earlier than higher-ranked employers to avoid

directly competing with them (recall that multiple offers are always resolved in

favor of the highest-ranked employer). Armed with the insight that thresholds are

decreasing in the (numerical) rank of the employer provides the necessary

qualitative characteristics of a solution.

We propose the Inverse Progressive Stopping heuristic (IPS) (Eq. 2), inspired by

the original PS heuristic, due to its dependence on easily accessible information to

the employer, i.e., the number of applicants already interviewed and the number

remaining to be searched:
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tj cð Þ ¼ sup i : Rj �
1

cd

� �
if 9 i s.t. Rj �

1

cd
0 otherwise

8<
: ; d ¼ i

nþ 1 � i
for c[ 0:

ð2Þ

In contrast to the original PS heuristic, the right-hand side fraction is now

inverted so that it is decreasing in the search depth d (and by extension, i) instead of

increasing, and we seek the supremum of i for which the inequality holds rather than

the infimum. Also, note that the left-hand side of the inequality is the relative rank

of employer j. Finally, as the indexing of applicants i has a lower bound of 1, we

added a second possibility which allows for thresholds of zero, i.e., ignoring no

applicants and choosing the first one that appears, as is often the case in the optimal

solution. If an i does not exist for satisfying the first possibility, then the threshold is

set to zero.

In deriving the optimal value for the scaling parameter c, we chose a criterion

more relevant to the multiple players in the competitive secretary problem than to

the individual DM in the non-competitive problems. Let p�j be the optimal

probability of winning for employer j, and p
0

j be the probability of wining according

to the heuristic. The latter assumes that all employers are using the heuristic and the

same value of c. The optimal value of c minimizes the mean absolute deviation (D)

in the optimal and heuristic win probabilities: D ¼ 1=k
Pk

j¼1 jp�j � p
0
jj. The

optimization was performed via a two-stage grid search to ensure a global

maximum with the first stage in increments of 0.1 for 0:1� c� 10 and the second

with finer increments of 0.05 for 1� c� 5.

As can been seen in Table 5 (associated optimal c values and corresponding

threshold can be found in Table D.1 of the online supplemental material), the

performance of the IPS heuristic is quite impressive, as D varies between 0.0035

and 0.006 for different n values. That is, measuring this as the percentage of games

an employer is expected to win, the difference between the optimal and heuristic

solution leads to less than a 0.6%-point change on average to the win rate.

Furthermore, the lowest deviation score D (0.0035) is observed for n = 1000, which

would be the most computationally expensive for determining the optimal solution.

For n = 10, both the optimal and heuristic solutions exhibit a total win probability of

1 (the best applicant will surely be hired by one of the employers). For n other than

Table 5 Optimal and IPS

heuristic threshold values for

problem PMP-COMP

n =

10 20 50 100 1000

Heuristic

D 0.00591 0.00601 0.00503 0.00383 0.00348

P(Twin) 1 0.9534 0.9615 0.9603 0.9594

Optimal

P(Twin) 1 1 0.9989 0.9942 0.9851
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10, using the heuristic instead of the optimal solution leads to a small decrease in the

total win probability corresponding to a 4–5% point increase in the chances that the

best applicant will not be hired at all. However, note that our deviation score

criterion D that was used to choose the optimal c did not specifically maximize the

total probability of any employer winning. Directly optimizing for the latter leads to

a significant reduction in the gap between the heuristic and the optimal solution—

see Table D.2 in Appendix D of the online supplemental material.

Another significant observation is that the optimal c values across different

values of n all lie in a narrow range from 1.65 to 2.65 (see also Table 12 in

Appendix 2 for problem ERMP)—recall that this overlaps significantly with the

range of c [2.0–2.4] that guaranteed high performance in the non-competitive

problems in Sect. 4. Furthermore, as is evident from Fig. 3, which shows how the

deviation score D varies by c and n, the deviation score is quite insensitive around

the optimal values of the scaling factor c = 2. We conclude that the heuristic

exhibits excellent performance with similar c values across varying orders of

magnitude of n and that it is quite robust to deviations from c around the optimal

value. That is, the same heuristic with identical c value could be used by any

employer from 1 to k for virtually any range of n with very small performance

degradation in terms of the probability of winning. Even without prior experience, it

is likely that DMs will still attain high performance, which can be fine-tuned with

experience. Note that the parameter c is not some opaque parameter embedded in a

complex functional form making it difficult to interpret and adjust; rather, it is a

multiplicate scaling factor that adapts the rate of change in the threshold values as

the search progresses.

6 Discussion

More than 60 years ago, Simon (1957, 1959, 1982) suggested that while most

people strive to make rational choices, their decisions are often subjected to

cognitive limitations. People are constrained, he posited, by the amount of

information they have at their disposal, the amount of time they need for

deliberation before making their decisions, and their previous experience. Inspired

in part by Simon, a large body of research on rules-of-thumb, or heuristics, has been

growing exponentially in psychology and behavioral economics (e.g., Gigerenzer

Fig. 3 Deviation score, D, for
various values of c and n in the
PMP-COMP
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et al., 1999, 2011). They conclude that cognitive constraints need not be detrimental

to decision-making performance if they are attuned to environmental characteristics,

i.e., heuristics may be ecologically rational. In general, behavioral models are often

solely judged on their predictiveness, how well they match behavioral data from

experiments. The implicit assumption is that we should expect heuristics to be

inferior in performance to the normative solutions; therefore, heuristics are valuable

only as descriptive models. Consequently, less attention has been directed to the

model’s relative performance: how close is the performance of the heuristic to the

optimal solution. If the insight that the simplicity of the rule-of-thumb and its

accuracy are not mutually exclusive, then the relative performance of the rule is a

critical construct for validating heuristics not only as descriptive, but also as

prescriptive models.

Our results support previous claims in the heuristic literature that there exist

simple heuristics that can provide straightforward explanations for solving

astonishingly complex decision-making tasks. A synthesis of our findings reveals

that existing descriptive heuristics, such as the cutoff and successive non-candidate

heuristics (Seale & Rapoport, 1997), should be employed by decision-makers

whenever the optimal solution of the problem requires a single threshold. However,

the PS and the inverse PS heuristics should be used in multiple-threshold problems,

as they achieved near optimal performance across five variants of sequential search

problems, including a more complex competitive problem where the search for the

best job applicant is conducted sequentially by a group of k interviewers. As in

Spiliopoulos and Hertwig (2020), this result pushes back against the philosophical

arguments (e.g., Sterelny, 2003) that heuristics would not perform well in strategic

environments against other humans in contrast to individual decision-making tasks

against nature.

Armed with a toolbox of such heuristics, a DM may achieve near optimal

solutions with minimal computational demands across a wide domain of problems

with varying assumptions, including different objective functions. Our proposed

heuristics are ‘‘simple’’ in the sense that they are restricted to include only a single

parameter, and they require only counting of items and elementary mathematical

operations like maximization, minimization, summation, and division. Furthermore,

they do not compute probabilities and utilities, their cost of implementation is

negligible, and they employ a minimum of processing time. Notably, both heuristics

are built around a simple and intuitive ratio that DMs can track in real time—

namely, the ratio of the number of interviewed candidates to the number of those

remaining in the sequence. This contrasts sharply with the necessary computations

for the optimal solutions (that involve recursive dynamic programming), which

suffer from the curse of dimensionality. Furthermore, we have shown that within

each type of problem, the optimal value of the only free parameter of these

heuristics, c, is relatively invariant to the number of items, n. In the terminology of

Gigerenzer et al. (1999), the PS and IPS heuristics can be classified as ‘‘fast and

frugal’’ in terms of the information processing they require, storage space, and

mental computation.

The performance of these heuristics might be evaluated in comparison to the

prolong amount of time and considerable effort in deriving the optimal solutions to
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these variants of the secretary problem. Experimental studies in which the

sequential search problems that we have selected are iterated in time to allow for

learning might provide important additional information. In prior studies, Seale and

Rapoport (1997) report no evidence of learning, whereas Goldstein et al. (2020) do;

note that in the latter study, but not in the former, the distribution of applicants’

ability could be learned with experience. While the experimental evidence on

learning in repeated secretary games is meager with mixed results, one of the goals

of the present paper is to further instigate this line of research for a broader class of

problems and heuristics. We have shown that a set of simple heuristics with

excellent performance exists. Now, significant efforts must be directed in

understanding how decision makers facing optimal sequential search problems

arrive at and construct specific heuristics, how successful they are in doing so, and

how they learn with repeated exposure to improve upon these or adjust them.

Appendix 1: Optimal solutions to variants of the secretary problem

Problem PMP: the standard secretary problem.

The optimal policy for the standard PMP has the form of a single threshold rule:

there exists an integer r* depending on n. To maximize the probability of selecting

the best applicant, ignore the first r* - 1 applicants in the sequence and then choose

the first candidate. If no such candidate appears starting with item r* then the DM

incurs the reward 0. The probability t(r, n) of choosing the best applicant out of n, if

one passes the first r* - 1 applicants and then chooses the first candidate, if any, is

given by

t r; nð Þ ¼ r � 1

n

Xn�1

k¼r�1

1

k
; 1\r\n;

and the optimum value of r, denoted by r*, is the smallest value of r that satisfies the

inequality

1

r
þ 1

r þ 1
þ � � � þ 1

n� 1
\1\

1

r � 1
þ 1

r
þ 1

r þ 1
þ � � � þ 1

n� 1
: ð3Þ

Table 1 (Gilbert & Mosteller, 1966) presents the optimal threshold values r* and

the associated probabilities of choosing the best applicant for n = 10, 20, …, 100,

and 1,000. In the limit, as n ? ?, t(r, n) = 1/e & 0.368 and r* & n/e.

Stein et al. (2003) note that the DM does not need to know the value of r* in

order to perform well. This presumes that the DM uses a single-value threshold

policy for some value of r, which includes r* as a special case (Table 6). In the

section on heuristics, we study how the cutoff rule behaves for all values of r, not

only the optimal value of r*.
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Problem PMP-UN: the secretary problem with random population size

In this subsection, we consider a variant of the PMP, referred to as PMP-UN, which

satisfies Assumptions 10, 2, 3, 4, 5, 6, 7, and 8. In the standard PMP, the DM faces

the risk that if she rejects a candidate, then she may discover later that it was the best

applicant. In the PMP-UN, the DM is facing an additional risk, namely, that if she

rejects a candidate then she may later discover that it was the last applicant in the

sequence, in which case her payoff is zero.

Presman and Sonin (1972) show that, in general, the PMP-UN does not have a

single-value threshold solution. It does have an optimal solution in three cases

where the probability distribution of n is either uniform, geometric, or Poisson. The

optimal policy in these three special cases assumes the single-value threshold form,

where the first r* - 1 applicants are rejected and then the first candidate thereafter,

if any, is accepted. In the PMP-UN, if the number of applicants is distributed

randomly over the integers in [1, N], then the cutoff proportion r*/n assumes the

values 0.20, 0.15, 0.15, and 0.1375 for N = 10, 20, 40, and 80, respectively (see

Rasmussen & Robbins, 1975). The respective probabilities of choosing the best

applicant out of n, if the DM passes the first r* - 1 applicants and chooses the first

candidate thereafter, are 0.351, 0.308, 0.289, and 0.279. As n ? ?, r*/n ? 1/

e2 = 0.135, and the probability of success converges to 2/e = 0.2707 (see Table 7).

Problem PMP-2: the secretary problem with either the highest or second
highest rank

Gilbert and Mosteller (1966) reported yet another variant of the PMP, referred to as

the PMP-2, where the objective of the DM is to choose the applicant with either the

highest or second highest absolute rank. It turns out that the optimal policy no

longer has the form of a single-value threshold rule. Rather, it has the form of a

threshold rule with two values: reject the first r1 - 1 applicants, then choose the first

candidate thereafter, but starting with applicant r2 choose the first applicant in the

sequence with a relative rank of either 1 or 2. This policy relaxes the stopping rule

as the search progresses.

The probability of selecting one of the two best applicants (referred to as the

probability of success) consists of three parts:

Table 7 Optimum values of r* for problem PMP-UN and the associated probability of choosing the best

applicant for selected values of n

n 10 20 40 80 1000 ?

r*/n 0.2 0.15 0.15 0.1375 0.136 1/e2 = 0.1353

Pr(win) 0.351 0.308 0.289 0.279 0.271 0.2707
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Pr successjr1; r2; nð Þ ¼ r1 � 1

n n� 1ð Þ
Xr2

i¼r1

2 n� 1ð Þ
i� 1

� 1

� �

þ r1 � 1ð Þ r2 � 2ð Þ
n n� 1ð Þ �

Xn
i¼r2þ1

1

i� 2

� �
2 n� 1ð Þ
i� 1

� 1

� � ð4Þ

The optimal values of the two threshold values r1* and r2* (r1* B r2*) are

calculated numerically for relatively small values of n by scanning an r1 by r2 grid.

As n ? ?, Pr(success) ? 0.574.

Table 8 presents the optimal rules and the associated probability of success for

selected values of n (Gilbert & Mosteller, 1966).

Problem PMP-5: the secretary problem for selecting one of the k best
applicants

In this problem, the DM has a single choice for selecting one of the k best

applicants. We consider the case k = 5. The optimal solution has a threshold form

where the k values r1, r2, r3, r4, and r5 are computed for each value of c in a k-

dimensional grid search. The optimal values r�1, r�2, r�3, r�4, and r�5 are the ones that

maximize the probability of success. The equation of the probability of success by

selecting the ath best applicant out of n appears in Yeo and Yeo (1994, Eq. 4):

Pr successjr�1; r�2 ; r�3 ; r�4 ; r�5 ; n
� 	

¼ 1

nð Þðn�1
a�1Þ

Xk
d¼1

Xrdþ1�1

j¼rj

Yd
i¼1

ri � i

j� 1

Xd^a
s¼1

ðj�1
s�1Þðn�j

a�sÞ
ð5Þ

where d ^ a = min (d, a). Table 10 presents the values r�1, r�2, r�3, r�4, and r�5 and the

Pr(success) for n = 20, 50, and 100 and k = 5 in all cases.

Problem PMP-DC: the standard secretary problem with two choices.

As noted by Gilbert and Mosteller (1966), there are three mutually exclusive ways

of winning in this problem with the two-threshold strategy (r1, r2):

(i) win with the first choice (never use the second choice),

Table 8 Optimal values of r�1 and r�2 for problem PMP-2 and the associated probability of choosing either

the best or second-best applicant for selected values of n

n 10 20 40 80 1000 ?

r�1 4 8 15 35 348 0.347n

r�2 7 14 27 67 667 2n/3

Pr(win) 0.637 0.605 0.589 0.580 0.574 0.574
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(ii) win with the second choice where no choice is used before r2,

(iii) win with the second choice, where the first choice is used in one of the

rounds r1, r1 ? 1, r1 ? 2, … r2 - 1.

The respective probabilities of success are

Pr að Þ ¼ r1 � 1

n

1

r1 � 1
þ 1

r1

þ 1

r1 þ 1
þ � � � þ 1

n� 1

� �
; if r1 [ 1

Pr bð Þ ¼ r1 � 1

n

Xn
v¼r2þ1

Xv�1

u¼r2

1

u� 1ð Þ v� 1ð Þ ; if r2 [ r1 [ 1

Pr cð Þ ¼ r2 � r1

n

Xn
v¼r2

1

v� 1
; if r2 [ r1 [ 1:

ð6Þ

Therefore, the probability of success (win) is computed from Pr(success with (r1,

r2)) = Pr(a) ? Pr(b) ? Pr(c). The values of r�1, r�2, and Pr(success with (r�1, r�2)) are

determined numerically—see Table 11 for these values and a comparison with the

PS heuristic where n = 20, 50, and 100.

Problem ERMP

The optimal decision rule for retaining a single item that minimizes the expected

value of the absolute rank of the item selected can be computed by dynamic

programming (Chow et al., 1964). This rule consists of a sequence of n integers

(thresholds) rn(j), j = 0, 1, 2, … n, that satisfy the inequalities

1\rn 0ð Þ\rn 1ð Þ . . .\rn nð Þ ¼ n:

Denote the index of the item by i (i = 1, 2, … n). Then, if i B rn(0), the item is

never accepted. If i B rn(1), then the item with relative rank Ri = 1 is accepted. In

general, item i is accepted if its relative rank satisfies Ri B j and i B rn(j), provided

that no item was retained earlier. If n ? ?, then the optimal decision rule has the

following form (Ferguson, 2002). Do not choose any applicant until 25.8% of all the

applicants have been interviewed and discarded; then select any applicant i with Ri

= 1. After interviewing 44.8% of the applicants, select any applicant i with relative

rank of either 1 or 2. After 56.4% of the applicants have been interviewed, select

any applicant with relative rank of either 1, 2, or 3, and so on.

Let V(n) denote the expected value of the absolute rank of the applicant selected

by the optimal rule described above when there are n applicants. Chow et al. (1964)

shows that if n ? ?, then

V nð Þ ¼ V 1ð Þ ¼
Y1
j¼1

1 þ 2

j

� �1= jþ1ð Þ
¼ 3:869:
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Krieger and Samuel-Cahn write: ‘‘This is an astonishing result since it shows, for

example, that from one million items we can sequentially select an item with

expected rank less than 4’’ (2009, p. 1042). We concur.

Appendix 2 Further results comparing the optimal solutions to the PS
heuristic

PS in problem PMP-2 (Table 9)

PS in problem PMP-5 (Table 10)

PS in problem PMP-DC (Table 11)

PS in problem ERMP

Table 12 presents threshold values for n = 100, 1000, and 10,000 (column 1). The

top three rows present the proportional threshold values, namely rj(n)/n, to allow

Table 9 Optimal and PS heuristic values for problem PMP-2 for n = 20, 50, and 100

Model n c r1 r2 Pr(candidate selection) Pr(win) Approximation score

Optimal 20 N/A 8 14 0.773 0.6046 1.000

Heuristic 20 1.65–1.80 8 12 0.815 0.5913 0.978

Optimal 50 N/A 18 34 0.780 0.5858 1.0

Heuristic 50 1.45–1.50 21 30 0.772 0.5749 0.981

Optimal 100 N/A 35 67 0.776 0.5796 1.000

Heuristic 100 1.80 39 57 0.764 0.5724 0.988

Values of the a-score[ 0.95 appear in bold

Table 10 Optimal and PS heuristic for PMP-5 selecting for n = 20, 50, and 100

Model n c r1 r2 r3 r4 r5 Pr(candidate

selection)

Pr(win) Approximation

score

Optimal 20 N/A 7 11 14 16 18 0.9502 0.9051 1.000

Heuristic 20 1.90 8 11 13 15 16 0.9630 0.9040 0.999

Optimal 50 N/A 17 26 33 39 44 0.9382 0.8781 1.000

Heuristic 50 1.70 19 28 33 36 39 0.9344 0.8654 0.986

Optimal 100 N/A 33 52 66 77 87 0.9332 0.8692 1.000

Heuristic 100 1.70 38 55 65 71 76 0.9379 0.8559 0.985

Values of the a-score[ 0.95 appear in bold
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comparison across different values of n. The bottom row presents the proportional

threshold values for the optimal rule computed by dynamic programming for j = 1,

2, and 3 (reported by Ferguson, 2002). Column 2 presents the corresponding values

of the parameter c. It shows that the value of c is quite stable, and that it converges

to c = 2.42. Table 12 also shows that as the value of n increases, the proportions

rj(n)/n decrease gradually.

Table 13 (Table 5 in KS-C) displays the expected values of the absolute rank of

the item selected under the optimal rule (column 2) and under the heuristic rule

(column 3) for selected values of n. Column 4 exhibits the corresponding values of

Table 11 Optimal and PS heuristic values for problem PMP-DC with n = 20, 50, and 100

Model n c r1 r2 Pr(candidate selection) Pr(win) Approximation score

Optimal 20 N/A 5 8 0.802 0.6178 1.0

Heuristic 20 3.30 to 4.00 5 8 0.802 0.6178 1.0

Optimal 50 N/A 12 19 0.780 0.6014 1.0

Heuristic 50 3.40 to 3.60 12 19 0.780 0.6014 1.0

Optimal 100 N/A 23 38 0.780 0.5962 1.0

Heuristic 100 3.40 to 3.45 23 38 0.780 0.5962 1.0

Values of the a-score[ 0.95 appear in bold

Table 12 Proportional threshold values by the PS heuristic rule for problem ERMP

n c r0(n)/n r1(n)/n r2(n)/n r3(n)/n r4(n)/n r5(n)/n r6(n)/n

100 2.30 0.31 0.46 0.57 0.64 0.69 0.73 0.76

1,000 2.36 0.297 0.459 0.560 0.629 0.680 0.718 0.748

10,000 2.41 0.2932 0.4535 0.5545 0.6240 0.6748 0.7135 0.7438

n ? ? 2.42 0.2584 0.4476 0.5640 … … … …

Table 13 Optimal and PS heuristic for selecting a single item in problem ERMP

n Optimal expected rank PS expected rank Optimal value of c Approximation score

20 3.002 3.017 2.1 0.995

50 3.412 3.503 2.2 0.974

100 3.6032 3.7348 2.30 0.963

1000 3.8324 3.9062 2.36 0.981

10,000 3.8649 3.9258 2.41 0.984

100,000 3.8690 3.9279 2.41 0.985

1,000,000 3.8695 3.9281 2.42 0.985

Values of the a-score[ 0.95 appear in bold
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the parameter c. The right-hand column displays the approximation scores of the

heuristic rule. Note that for the values of n reported in Table 13, one may

sequentially select an item with expected rank less than 4 and that the

approximation score increases in n from 96.3 percent for n = 100 to 98.5% for

n[ 100,000.

Appendix 3: The optimal subgame perfect equilibrium solution
to problem PMP-COMP

Table 1 (second column) in K&L presents the optimal thresholds for n = 10.

Given the reported thresholds, we estimate the probability of employers 4, 5, 6,

7, and 8 winning (hiring the best candidate), as 0.075, 0.017, 0.002, 1:7 � 10�4

and 1 � 10�5, respectfully. The thresholds for employers 9 and 10 are reported

as zero; recall that the highest-ranked employer with a threshold of zero (in this

case 9) is guaranteed of winning with a probability of 1=n ¼ 0:1. As we have

estimated the probability of winning for employers 4 through 8 to be less than

0.1, each of these employers independently has an incentive to deviate from

playing the reported threshold of one to playing zero. This is because deviating

would make them the most highly ranked employer with a zero threshold,

increasing their probability of winning to 0.1. However, this incentive to deviate

is inconsistent with the notion of a Nash equilibrium, i.e., that no employer has

an incentive to unilaterally deviate from his action. Consequently, the threshold

values for n = 10 reported in Table 1 of K&L cannot be a subgame-perfect Nash

equilibrium of the game. It can be shown that for n = 50, a similar incentive for

unilateral deviation also exists for employers ranked 6 through to 10 given the

thresholds reported in K&L (2015, Table 1).

Our solution below follows the reasoning in K&L with two changes. The first is

the use of 1-based indexing, rather than 0-based indexing—this is merely a matter of

convenience for programming languages based on the former rather than the latter.

The second is defining the optimal risk, Rk ið Þ as that belonging to a set of rules that

make offers to candidates starting with the ith applicant onwards (instead of

ignoring the first i applicants)—this definition is more convenient when combined

with 1-based indexing.
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Pseudo-code for calculating the optimal thresholds in the PMP-COMP
problem
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