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Linear stability of synchronized states in networks of delay-coupled oscillators depends on the type
of interaction, the network and oscillator properties. For inert oscillator response, found ubiquitously
from biology to engineering, states with time-dependent frequencies can arise. These generate side
bands in the frequency spectrum or lead to chaotic dynamics. Stability analysis is difficult due
to delay-induced multistability and has only been available via numerical approaches. We derive
criteria and conditions that enable fast and robust analytical linear stability analysis based on the
system parameters. These apply to arbitrary network topologies, identical oscillators and delays.

Introduction:—Self-organized synchronization can be
observed in chemical oscillators, embryonic development,
circadian clocks, ranging to power grids and the orches-
tration of mobile communications, microelectronic and
mechanical systems [1–10]. This type of synchroniza-
tion has been considered for electronic networks since
the 1980’s due to its robustness and as its properties
scale advantageously with growing system size [11, 12].
In application however, it did not prevail over hierarchi-
cal synchronization as the necessary theoretical frame-
work to guide architecture design was not available [11].
Within phase oscillator models the dynamics in networks
of coupled oscillators can be studied [13, 14]. This in-
cludes the effects of inevitable time delays in the cou-
pling. These lead to phenomena like multistability of syn-
chronized states [15]. Another aspect of the oscillators’
dynamics has recently come into focus, inert response to
external stimuli. Examples are the inertia of mechanical
oscillators, signal filtering in electronics, or biochemical
transport and conversion processes in cellular oscillators
[16, 17]. Inert system response in 2nd order phase models
can trigger bifurcations of synchronized states with con-
stant frequency [18, 19]. Frequency modulation occurs,
side bands arise in the spectrum and synchronized states
with constant phase relations become unstable.

In this work we derive stability criteria for in- and anti-
phase synchronized states in networks of delay-coupled
oscillators with inertia. These depend only on the physi-
cal properties of the oscillators and the network and can
guide, e.g., the architecture design of synchronization lay-
ers in networks of mutually coupled electronic oscillators.
In parameter space plots we then discuss the linear sta-
bility of in- and anti-phase synchronized states in gen-
eral. Our criteria simplify studying the physical prop-
erties of synchronization over large parameter regimes
and for, e.g., large delays and large number of oscilla-
tors. We then discuss how linear stability depends on
physical properties such as time delay, inertia, damping
or dissipation, interaction strength and network topology.
These generic concepts can then be related to application
specific concepts like, e.g, the loop gain and bandwidth
of electronic oscillators or the dissipation coefficients in
power grids [20–23]. Additionally, we present a condition

connecting these quantities. If fulfilled, linear stability is
guaranteed and hence no bifurcations occur.

Networks of delay-coupled oscillators with inertia:—
The dynamics in such networks can be studied within
the following set of coupled delay-differential equations

mθ̈k(t) + γθ̇k(t) = ω +
K

nk

N∑

l=0

cklh (∆θkl(t, τ, v)) , (1)

where ω ∈ R denotes the intrinsic frequency, h(·) the
coupling function, K ≥ 0 ∈ R the coupling strength,
m ≥ 0 ∈ R an inertial parameter, γ > 0 ∈ R a damp-
ing parameter, nk ≥ 0 ∈ N0 the number of inputs of
oscillator k, θi(t) ∈ R for i = {k, l} the phases of the
oscillators’ output signals with θ̇ and θ̈ denoting their
first and second time derivatives, ckl the components of
the network’s adjacency matrix, being either 1 if there
is a connection from oscillator l to k, or 0 otherwise.
∆θkl(t, τ, v) = (θl(t−τ)−θk(t))/v is the phase-difference
between k and an input l. Here v ∈ N denotes the di-
vision of the instantaneous output frequency of the os-
cillators, e.g., induced by a frequency divider. This is
well known from, e.g., periodic cross-coupling signals in
networks of electronic oscillators [24]. Note that Eqs. (1)
reduce to the classical first order Kuramoto model for si-
nusoidal coupling h(·) = sin(·), zero coupling delay τ = 0,
damping coefficent γ = 1, and inertia m = 0. We study
in- and anti-phase synchronized states making the Ansatz

θk(t) = Ωt+ βk + εqk(t), (2)

where Ω denotes the frequency of a synchronized state,
εqk(t) a small perturbation (ε � 1), and βk a phase-
offset. The properties of synchronized states can then be
obtained in O(ε0) by using the Ansatz (2) and Eqs. (1)

γ Ω = ω +K h

(
−Ωτ + β

v

)
, (3)

where β = βl−βk equals to 0 or π for in- and anti-phase
synchronized states in networks of identical oscillators,
respectively. From O(ε1) the dynamics of small pertur-
bations in the Laplace domain can be inferred:

eλτ
(
mλ2 + γλ+ α

)
qk(λ) = α

N∑

l=1

dkl ql(λ), (4)
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FIG. 1. Graphical solutions to Eqs. (6). Shown for α = −|α| < 0 (left), α > 0, µ̃ < 0 (middle), σ ≥ 0, when µ̃ = 0 (right).

where α = K
v h
′(−Ωτ+β

v ) denotes a steady state param-
eter, dkl = ckl/nk the components of the normalized
adjacency matrix D, and λ = σ + iµ the complex fre-
quency. Rewriting in matrix form, we identify the eigen-
value problem ζ ~q = D ~q and the characteristic equation

λ2 + ωcγλ+ αωc(1− ζe−λτ ) = 0 , (5)

where ωc = m−1 and ζ = |ζ|eiΨ are the eigenvalues of
the normalized adjacency matrix D. These ζ relate to the
perturbation modes in the network and each generates
an infinite discrete set Λζ of solutions λ. For diagonaliz-
able D arbitrary perturbations can be expressed by linear
combinations of ~q, the eigenvectors. The eigenvector that
induces a global shift of all phases ~q = (1, 1, . . . , 1) has
the eigenvalue ζ = 1 since

∑
l dkl = 1. It does not affect

the synchrony of the system and will be excluded in the
following discussions. From dynamical systems theory it
is known that the largest σ in the union ∪ζ 6=1Λζ domi-
nates the long term dynamics of the perturbations. If the
largest σ > 0 then perturbations grow and the state is
linearly unstable. If all σ < 0 the system is linearly sta-
ble. From Eq. (5) we find that if α = 0 then λ1 = 0 and
λ2 = −ωcγ. Hence, α = 0 relates to marginally stable
solutions and will also not be considered in the following.

Derivation of stability criteria:— For first order Ku-
ramoto models with time delays, i.e. without inertia,
Earl and Strogatz derived a criterion that determines lin-
ear stability of synchronized states [25]. It concludes that
synchronized states in networks of delay-coupled oscilla-
tors with arbitrary coupling topology are linearly stable
if and only if α = K h′ (−Ωτ) > 0. For Kuramoto models
with time delay and inertia it has been shown that this
criterion cannot sufficiently predict linear stability [26].
There is no known closed form solution to second or-
der exponential polynomials like Eq. (5). Such solutions
can be obtained numerically but require a careful choice
of initial conditions and become increasingly difficult for
large time delay and network size. In previous works,
conditions that connect inertial properties with the inter-
action strengths and properties of the synchronized states
that prevent instability have been found [11, 21, 27].

Here, we introduce stability criteria that allow to pre-
dict linear stability of in- and anti-phase synchronized
states in networks of delay-coupled oscillators with iner-

tia for any set of parameters. Furthermore, we extend the
previously found conditions and connect them to prop-
erties of the topology [21]. With λ = σ + iµ in Eq. (5)
and separate the real and imaginary parts:

σ2 + ωcγ σ = −αωc
(
1− |ζ| cos(µτ −Ψ) e−στ

)
+ µ2, (6a)

2σµ = −ωc
(
µγ + α|ζ| sin(µτ −Ψ) e−στ

)
. (6b)

Squaring and adding these equations we obtain

(σ2−µ2+ωcγσ+αωc)
2+(2σµ+ωcγµ)2 = (αωc|ζ|)2e−2στ .

(7)
We begin by addressing one direction of the known

stability criterion presented in [25]. For second order
phase models we show that if α < 0, there always exists
at least one σ > 0 and hence the states in Eq. (3) are
unstable. Setting α = −|α| and ρ = |ζ| cos(µτ − Ψ) in
Eq. (6a) we find after rearranging

σ2 + ωcγσ = |α|ωc
(
1− ρe−στ

)
+ µ2, (8)

where ρ ∈ [−1, 1], since |ζ| ≤ 1 as can be shown from
Gershgorin’s circle theorem [28], see Supplementary Ma-
terial. Using the boundedness of the |ζ|’s and Eq. (8) we
prove the proposition graphically, see Fig. 1 (left). The
left hand side (l.h.s.) of Eq. (8) is quadratic in σ and
crosses the x-axis at the origin σ1 = 0 and at σ2 = −ωcγ.
The right hand side (r.h.s.) of Eq. (8) crosses the y-axis
at µ2 + |α|ωc(1 − ρ). Since ρ ∈ [−1, 1] the y-axis is
always crossed at positive values if µ 6= 0 and there is
at least one intersection with σ > 0 independently of the
branches for ±ρ. There could however be an intersection
at zero if µ = 0 and ρ = 1. This occurs if |ζ| cos(−Ψ) = 1,
which is only true for |ζ| = 1 and Ψ = 2π n (n ∈ Z), i.e.,
related to a global phase shift as previously discussed.
This concludes the proof and hence, for α < 0 there al-
ways exists at least one σ > 0. Hence, the direction
α < 0 → σ > 0 of the stability criterion in [25] holds in
the presence of inertia.

Now, we show that in regimes where the perturbation
response dynamics are overdamped, i.e., µ = 0, the sta-
bility criterion holds also for second order phase models.
Hence, for µ = 0 and if α > 0 there can only be solutions
with σ < 0. Let us consider the contrary, for µ = 0 and
if α > 0 there always exists at least one solution with
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σ ≥ 0. In that case we would have µ = 0, σ = |σ| and
α = |α|. Using these expressions in Eq. (7) we find

(|σ|2 + ωcγ|σ|+ |α|ωc)2

(|α|ωc)2
= |ζ|2e−2|σ|τ . (9)

The r.h.s. is always in [0, 1] due to |ζ| ∈ [0, 1] as shown
before using Gershgorin’s circle theorem and e−2|σ|τ ∈
[0, 1] for σ ≥ 0. For σ > 0 the l.h.s. is always larger than
1 which contradicts |ζ|2e−2|σ|τ ≤ 1. The l.h.s. can only
be equal to 1 for σ = 0 which leads to equality with the
r.h.s for ζ = ±1 only. For ζ = −1 while λ = 0 we know
that α has to be zero, see Eq. (5), which contradicts the
assumptions. The case ζ = 1 relates to a global phase
shift and is not considered as discussed before. As the
contrary can never be fulfilled, the original proposition is
always true.

Using the same graphical procedure as before in Fig. 1
(left) we now ask for µ 6= 0, whether if α > 0, there
always exists at least one σ ≥ 0. Setting α = |α| in
Eq. (6a) it can be shown that the proposition cannot
always be fulfilled when studying the r.h.s. for σ = 0. If
the asymptotic value of the r.h.s. is µ2−|α|ωc < 0 and we
consider the branch for ρ > 0, then if µ2−|α|ωc(1−|ρ|) <
0 only solutions at σ < 0 can exist. For ρ < 0 there
cannot be a solution for σ ≥ 0 and a solution at σ < 0
cannot be guaranteed. Hence, the proposition cannot
always be fulfilled, bifurcations can occur when α > 0.

We proceed to derive sufficient and necessary criteria
that identify parameter regimes where the in- and anti-
phase synchronized states in Eq. (3) are unstable when
α > 0 and µ 6= 0. Studying the properties of Eqs. (6) at
σ = 0 and taking into account their asymptotic proper-
ties, stability criteria that connect µ̃ = µ(σ = 0) and the
parameters are obtained. We ask when at least one solu-
tion with σ > 0 exists. Rearranging Eq. (6b) and setting
ρ̂ = |ζ| sin(µτ −Ψ) we find 2σµ = −ωc (µγ + |α|ρ̂ e−στ ).
Four cases {±µ̃, ±ρ̂} need to be distinguished. The cases
for µ̃ = −|µ̃| are shown in Fig. 1 (middle). Using the
asymptotic property of the r.h.s. of Eq. (6b) reveals that
for the case α > 0 and ρ̂ < 0 there cannot be an in-
tersection at σ ≥ 0. For ρ̂ > 0 and |µ̃| > |α||ρ̂|/γ no
intersection at σ ≥ 0 can exist. In the other cases when
µ̃ = |µ̃| one finds that for ρ̂ > 0 there cannot be an in-
tersection at σ ≥ 0. For ρ̂ < 0 no solutions at σ ≥ 0 can
exist if |µ̃| > |α||ρ̂|/γ. The proof to conclude necessity
has the same structure. Our criteria are in agreement
with abstract mathematical results obtained for real ζ
[29].

Applying these criteria to study linear stability:— The
criteria derived in the last section can only be mean-
ingfully applied if the µ̃ are known. We calculate µ̃ at
the bifurcation, i.e., at the critical point σ = 0. Hence,
side-bands at Ω ± µ̃ arise in the power spectrum [19].
With these µ̃ linear stability can be analyzed as a func-
tion of the network topology, the interaction strength,
the damping coefficient, the time delay and the inertial

parameter. Moreover, we obtain a condition that pre-
dicts how the bifurcation can be prevented based only
on the physical parameters of the system. Setting σ = 0
while α = |α|, Eq. (7) after rearranging becomes

µ̃4 + µ̃2(γ2ω2
c − 2|α|ωc) + (|α|ωc)2(1− |ζ|2) = 0. (10)

Demanding µ̃ ∈ R while α > 0, a condition where syn-
chronized states in Eq. (3) are stable is obtained:

ωcγ
2

2|α| > 1−
√

1− |ζ0|2. (11)

Here ζ0 denotes the eigenvalue with the largest magni-
tude. This result can be combined with the analysis of
the criteria derived in the previous section using the so-
lutions µ̃ obtained from Eq. (10). For the case of ζ = −1
(Ψ = π), e.g., the case for N = 2 mutually coupled oscil-
lators, the r.h.s and l.h.s. of Eq. (6b) become zero when
µ̃ = 0. Such µ̃ are actually solutions to Eq. (10) in this
special case. This would imply that any type of pertur-
bation response is a valid solution. Consulting Eq. (6a)
for such µ̃ = 0 when ζ = −1 it becomes clear that ad-
ditional information is necessary to infer whether or not
the bifurcation has occurred. We need to plot Eq. (6b)
for σ ≥ 0 in the µ− f(µ) plane and ask when additional
solutions µ 6= 0 can arise that lead to bifurcations, see
Fig. 1 (right). From studying the slopes at µ = 0 and the
smallest |σ| = 0 we find that if γ ≥ |α|ωc no additional
solutions with σ ≥ 0 can exist and hence the state is lin-
early stable. An overview on how to apply the criteria is
provided in the Supplementary Materials.

Parameter space plots analyzing linear stability:— All
parameter space plots share the same color code. When
plots cover parameter space where multiple synchronized
states are stable, the stability of the one with the largest
frequency Ω = {Ωi}max

i∈N is plotted. Python scripts that
implement these criteria are available online [30]. These
can also solve Eq. (5) numerically for validation purposes,
see examples provided in the Supplementary Materials.

Cyan denotes regimes where α < 0 and the in- or
anti-phase synchronized state, see Eq. (3), is unstable.
States with different constant phase relations exist in
these regimes and can be stable if α > 0. Purple regimes
denote where in- or anti-phase synchronized states are
unstable due to inert system behavior when α > 0. They
are qualitatively different from parameter regimes where
synchronized states that satisfy Eq. (3) become unstable
when α < 0. At their onset they are characterized by
time-dependent frequencies and highly correlated peri-
odic dynamics. Hence, synchronization in a wider sense is
not necessarily lost after the Hopf bifurcation. There are
indications that these systems undergo a route to chaos
via subsequent period-doubling bifurcations as, e.g., the
time delay is increased [31].

Stable synchronized states are shown in grey and
white. Grey specifies where the condition in Eq. (11) is
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ωτ/2π
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ω

FIG. 2. K vs τ parameter space for 3× 3 identical oscillators
mutually coupled to their nearest neighbors on a 2d square
grid with periodic boundary conditions. Parameters are ω =
2π radHz, v = 1, ωc = 0.028π radHz, γ = 2, ζ ∈ {−0.5, 0.25}.
Unstable regimes shown in cyan/purple, stable in white/grey.

fulfilled for the ζ0 with the largest magnitude. In general,
the synchronized states of Eq. (3) tend to become unsta-
ble as the oscillators become increasingly inert (ωc � ω)
and the purple regimes cover larger areas in Fig. 2. Since
ωc plays an important role in suppressing higher order
frequency contributions in real systems, it cannot be in-
creased freely. Above some critical ωc the presence of,
e.g., intermodulation products which are not described
in Eq. (1), can also lead to time-dependent frequencies.
Our results can guide towards optimal parameter choices
for applications, e.g., in coupled electronic oscillators.

The physics of synchronization for large delays:— Net-
works of mutually coupled electronic oscillators, so called
phase-locked loops [32], are candidates for enabling new
technologies, such as satellite independent terrestrial
navigation and to provide orchestration to complex spa-
tially distributed systems. Their function relies on a ro-
bust clock signal distribution. Given operational frequen-
cies up to the THz regime, spatial extensions of a few
hundreds of meters imply time delays that are 3 − 6 or-
ders of magnitude larger than the oscillation period. In
these cases synchronization can only be stable for ade-
quately divided cross-coupling frequencies [33]. This also
requires to sufficiently decrease ωc, i.e., making the os-
cillators more inert. Otherwise side-bands will appear
in the frequency spectrum that may lead to, e.g., cross-
channel interference [34]. In consequence, the loop gains
α have to be tuned sufficiently small to prevent viola-
tion of the condition in Eq. (11) as ωc is decreased. Our
results also show that ωc can be optimized beyond this
condition, see white spaces in Fig. 4. Another challenge
is the large number of synchronized states that can exist
simultaneously. As a result, it becomes difficult to deter-
mine stability numerically or in simulations. Using the
criteria we derived, the stability at arbitrary time delays
can now be obtained. We find that synchronization is
feasible even when time delays span thousands of the os-
cillators’ periods, see Fig. 3. The condition in Eq. (11)

FIG. 3. K vs τ parameter space for 3× 3 identical oscillators
with nearest neighbor coupling on a 2d square grid with open
boundary conditions. Parameters are ω = 2π radHz, γ = 1,
v = 64, ωc = 0.0007π radHz, and ζ ∈ {−1, −0.5, 0.5}. Cyan
structures in inset are not visible in main due to resolution.

involves a periodic dependence on the time delay via α.
This suggests that fine-tuning the delay can enable stable
synchronization at very large time delay. In real systems
this may be limited by signal degradation during sending
and dynamic noise. Note also, that for N all to all cou-
pled oscillators ζ0 = (N −1)−1. Hence, the stable regime
guaranteed by condition Eq. (11) increases with N .

Damping coefficient rescales delay and frequency:— γ
relates to, e.g., gains in electronic oscillators, a friction in
mechanical or damping coefficent in power grid systems.
Substituting Ω∗ = γΩ and τ∗ = τ/γ in Eq. (3) reveals
that γ acts as a rescaling of the time delay and frequency
of synchronized states. The relation between time de-
lay and period of the oscillations changes, observe the
repetitive cyan-colored structures where α < 0 in Fig. 5.
Decreasing γ below one increases the frequency Ω of a
synchronized state. For constant ωc that changes the ra-
tio ωc/Ω and can trigger inertia-induced bifurcations, see
Fig. 6.

Discussion and conclusions:— We derived general sta-
bility criteria for in- and anti-phase synchronized states
in systems of delay-coupled oscillators with inertia for the

0.1 0.2 0.3 0.4 0.5
K
ω

0.25

0.50

0.75

1.00

ωc
ω

FIG. 4. ωc vs K parameter space. Parameters, network topol-
ogy and color code as in Fig. 2, except γ = 1 and τ = 0.65 s.
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0.1 0.2 0.3 0.4 0.5
K
ω

0.5

1.0

1.5

γ

FIG. 5. γ vs K parameter space. Parameters, network topol-
ogy and color code as in Fig. 2, except γ = 1, ωc = 0.4π and
τ = 2.95 s.

0 5 10 15

ωτ/2π

0.5

1.0

1.5

γ

FIG. 6. γ vs τ parameter space. Parameters, network topol-
ogy and color code as in Fig. 2, except ωc = 0.4π radHz and
K = 1.3π radHz.

first time. With their help, we identify parameter regimes
where system’s with inert oscillator response can excite
additional frequencies or lead to chaotic dynamics. In a
synchronized state with {Ω, β} constant in time, α de-
notes the change of the oscillators interaction terms with
respect to a small perturbation. For α < 0 the interaction
between the oscillators becomes repelling. In this case
another stable synchronized state exists for which α > 0
and the coupling is attractive. As long as perturbation
responses are overdamped no bifurcations occur. That
changes for underdamped response. Then, our criteria
and condition Eq. (11) reveal how the interplay between
the oscillators’ parameters and those of the network lead
to bifurcations. A specific example is how the cutoff fre-
quency ωc of a filter limits the loop gain α in networks
of electronic oscillators, see condition Eq. (11). In the
presence of dynamic noise, this analysis can be carried
out within the Fokker-Planck formalism [35, 36] and is
subject to ongoing work.

Our analysis can be applied to various fields as the
response of natural systems usually is inert [2, 7, 11].
It is especially helpful when the numerical solution of
the characteristic Eq. (5) or simulations become infeasi-
ble. For applications, our results enable fast identifica-

tion of the parameter regimes where synchronized states
with constant phase-differences are stable. This will im-
prove the architecture design process of, e.g., networks of
electronic oscillators [11, 23]. Furthermore it can enable
real time control algorithms for on-the-fly optimization of
such complex systems, e.g., when topology or time delays
change over time. We show that stable mutual synchro-
nization is feasible at large time delay. This makes it
a candidate for the next generation self-organized clock-
ing signal distribution layers [37]. It is relevant for, e.g.,
precise localisation using micro-satellites or terrestrial
beacons, sensoring and time distribution, high precision
physical measurements in spatially distributed systems
such as very long baseline interferometry and gravita-
tional wave detection [38–41].
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Here we provide technical details on the calculations
and theorems used in the main text. We present a nu-
merical verification of the conditions and criteria pre-
sented using parameter plots obtained numerically from
the characteristic equation. Furthermore the criteria are
summarized in a table for convenient application. The
parameters of all plots in the main and Supplementary
Material are shown in Table IV and III. We note, that
examples of time-series of the solutions that bifurcate
from in- and anti-phase synchronized states in the pur-
ple marked regimes can be found in Nirmal et al., Sup-
plementary Materials [1].

A. How to apply the critera and conditions

In a first step the properties of the synchronized states
whose linear stability is to be studied have to be com-
puted using

γ Ω = ω +K h

(
−Ωτ + β

v

)
, (1)

This yields the global frequencies Ω and phase-differences
β of the existing synchronized states. From this, the
parameter

α =
K

v
h′
(−Ωτ + β

v

)
, (2)

can be obtained. In a next step the eigenvalues ζ of
the normalized adjacency matrix need to be calculated.
Then, solving Eq. (10) we can calculate µ̃ from:

µ̃ = ±

√

−A
2
± A

2

√
1− 4B

A2
, (3)

where A(τ,K, ωc) = γ2ω2
c − 2|α|ωc and B(τ,K, ωc) =

(|α|ωc)
2(1 − |ζ|2) . Demanding that µ̃ ∈ R, conditions

where σ changes its sign while α > 0 are obtained:

ωcγ
2

2|α| > 1−
√

1− |ζ0|2. (4)

Then condition (4) can be used to understand where syn-
chronized states must be stable. If this condition is

∗ dprou@pks.mpg.de
† lwetzel@pks.mpg.de

sufficient conditions stability

α < 0 unstable

α > 0 and µ = 0 stable

α > 0 and 1−
√

1− |ζ0|2 < ωcγ
2

2|α| stable

TABLE I. Stability conditions

sufficient and necessary criteria stability

µ̃ < 0 and ρ̂ < 0 stable

µ̃ < 0 and ρ̂ > 0 and |µ̃| > |α||ρ̂|/γ
µ̃ > 0 and ρ̂ > 0 stable

µ̃ > 0 and ρ̂ > 0 and |µ̃| > |α||ρ̂|/γ
ζ = −1 and µ̃ = 0 and γ ≥ |α|ωc stable

TABLE II. Stability criteria for α > 0 and µ 6= 0, where
ρ̂ = |ζ| sin(µ̃τ −Ψ)

not fulfilled and µ̃ ∈ R, the criteria in Table II iden-
tify where states with time-dependent frequencies have
emerged from the ones with constant frequencies. In Ta-
bles I, II we show all the criteria and conditions which
need to be checked in order to study the linear stability
of in- and anti-phase synchronized states with constant
frequency.

B. Gershgorin theorem

The Gershgorin theorem defines disks centered around
each diagonal entry of a matrix D with radius given by
the row sum over all non-diagonal entries [2]. As there is
no self-coupling all dkk = 0 ∀ k and hence all Gershgorin
discs are centered at the origin. Hence |ζ| is bounded by
one

|ζ| ≤
∑

l 6=k

|dkl| = 1. (5)

Taking into account the definition dkl = ckl/nk, the
boundedness of the ζ’s given by Gershgorin’s theorem
is tied to the identical coupling capacity of all oscillators

1

nk

∑

l 6=k

|ckl| = 1. (6)
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FIG. 1. K vs τ parameter space for N = 2 mutually delay-
coupled oscillators, obtained numerically. All other parame-
ters listed in Table III.

This can also be achieved when the oscillators weight
different inputs with different weights, i.e.,

1

nkl

∑

l 6=k

|ckl| = 1. (7)

when the sum over all non-diagonal entries equals to one.

C. Additional plots and numerical verification

The parameter space plots, Figs. 3, 2, 4, share the
same color code. Stable synchronized states are shown
in grey and white. Grey specifies where the condition
in Eq. (4) is fulfilled. The white regimes relate to states
which are stable, when α > 0, i.e., the criteria for the
µ̃ ∈ R are fulfilled. Unstable synchronized states are
shown in cyan and purple. Cyan denotes regimes where
α < 0 and synchronized states are unstable. The purple
regimes relate to unstable states when α > 0.

1. Numerical verification of the criteria

We verify the results obtained using the criteria and
the conditions with numerical solutions to the character-
istic equation. The numerical results are obtained using
Python scripts which are available online [3]. The pa-
rameters of the system under investigation can be set in
the dictionaries of these scripts. The numerically ob-
tained parameter space plot in Figs. 1 has the following
color code. In this case red denotes regimes where the
real part σ of the characteristic equation is positive and
hence the synchronized states are unstable. Blue denotes
regimes where σ is negative and in- and/or anti-phase
synchronized states are stable. We choose this different
color code for the numerical results to avoid confusion
and clearly distinguish them from those obtained with
the stability conditions and criteria.

0 5 10 15

ωτ/2π

0.2

0.4

0.6
K
ω

FIG. 2. K vs τ parameter space for N = 2 mutually delay-
coupled oscillators, obtained analytically via the criteria and
condition. All other parameters listed in Table III.

It becomes apparent from the comparison of Figs. 1
and 2 that the results obtained analytically using the
criteria are in agreement with the numerical results. The
value of the perturbation response rate obtained from the
numerical solution shows no qualitative difference for the
white and grey regimes. Hence, it is not represented by
the color code in Fig. 1.

2. Parametric plots of different topologies

Here we show parametric plots for different network
topologies of mutually delay-coupled oscillators with in-
ertia. All other parameters have the same values, i.e.,
identical oscillator parameters and time delays.

In Fig. 2, the K − τ parameter space for a network of
two mutually coupled oscillators is shown. The nontrivial
eigenvalue ζ of the adjacency matrix is ζ = −1. In Fig. 3
the parameter space of a network of nine mutually delay-
coupled oscillators in a 2d lattice with nearest neighbor

0 5 10 15

ωτ/2π

0.2

0.4

0.6
K
ω

FIG. 3. K vs τ parameter space for 3 × 3 mutually delay-
coupled oscillators on a 2d square grid with periodic bound-
ary conditions, obtained analytically via the criteria and con-
dition. All other parameters listed in Table III.
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FIG. 4. K vs τ parameter space for N = 2 mutually delay-
coupled oscillators, obtained analytically via the criteria and
condition. In- (K ≥ 0) and anti-phase (K < 0) synchronized
states are shown. All other parameters listed in Table III.

interactions and periodic boundary conditions is shown.
The nontrivial eigenvalues ζ of the adjacency matrix in
this case are ζ = {−0.5, 0.25}. It can be observed that
linear stability is different for the two cases. The condi-
tion in Eq. (4) is fulfilled for different regimes, shown
in grey in the figures. When ζ = −1 then grey covers
the smallest regime, as can be understood from Eq. (4).
For networks in which the oscillators are arranged in 1d

with open boundary conditions, e.g., a chain topology,
the value ζ = −1 is always in the set of ζ’s [4]. The
criteria which are presented in Table II are also affected
by the topology and hence the stability regimes in white
and purple, are also different.

Fig ω ωc τ γ K ζ v

radHz radHz sec radHz radHz

1,2,4 2π 0.028π − 2 − −1 1

3 2π 0.028π − 2 − {−0.5, 0.25} 1

TABLE III. Parameters of plots in Supplemental Material

D. Parametric plot of in- and anti-phase
synchronized states

In Fig. 4 we show the parametric K-τ plot for in- and
anti-phase synchronized states in a system of two mutu-
ally delay-coupled oscillators with inertia. The regime
for K > 0 relates to the in-phase synchronized states
and for K < 0 to the anti-phase synchronized states.
Observe how the cyan regimes alternate between in- and
anti-phase synchronized state as the time delay increases.

Fig ω ωc τ γ K ζ v

radHz radHz sec radHz radHz

2 2π 0.028π − 2 − {−0.5, 0.25} 1

3 2π 0.0007π − 1 − {−1,−0.5, 0.25} 1

4 2π − 0.65 1 − {−0.5, 0.25} 1

5 2π 0.4π 2.95 − − {−0.5, 0.25} 1

6 2π 0.4π − − 1.3π {−0.5, 0.25} 1

TABLE IV. Parameter values of the in plots in main text
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and F. Jülicher, New Journal of Physics 16, 113009 (2014).


