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A STRUCTURE-PRESERVING DIVIDE-AND-CONQUER METHOD
FOR PSEUDOSYMMETRIC MATRICES\ast 

PETER BENNER\dagger , YUJI NAKATSUKASA\ddagger , AND CAROLIN PENKE\dagger 

Abstract. We devise a spectral divide-and-conquer scheme for matrices that are self-adjoint with
respect to a given indefinite scalar product (i.e., pseudosymmetic matrices). The pseudosymmetric
structure of the matrix is preserved in the spectral division such that the method can be applied
recursively to achieve full diagonalization. The method is well suited for structured matrices that
come up in computational quantum physics and chemistry. In this application context, additional
definiteness properties guarantee a convergence of the matrix sign function iteration within two steps
when Zolotarev functions are used. The steps are easily parallelizable. Furthermore, it is shown that
the matrix decouples into symmetric definite eigenvalue problems after just one step of spectral
division.

Key words. matrix sign function, polar decomposition, eigenvalue problem, structure
preservation, divide-and-conquer, pseudosymmetry
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1. Introduction. Given a diagonalizable matrix A \in \BbbK n\times n, where \BbbK \in \{ \BbbR ,\BbbC \} ,
we are interested in full diagonalization, i.e., finding V \in \BbbK n\times n such that

V  - 1AV =D.(1)

For \BbbK = \BbbC , the matrix D is diagonal and contains the eigenvalues of A as diagonal
values. For \BbbK = \BbbR , D is block diagonal with blocks of size 1 \times 1, corresponding to
real eigenvalues, or 2\times 2, corresponding to a pair of complex conjugate eigenvalues.
The well-established standard approach for solving (1) starts by computing the Schur
decomposition of A

Q\ast AQ= T,

where Q is orthogonal (or unitary) and T is (block) upper triangular, via the QR
algorithm [24]. The eigenvectors of T are computed via backward substitution, or the
eigenvectors of A are recovered via inverse iteration [4]. The QR algorithm, however,
has proven difficult to parallelize and is not well suited for computing only parts of
the eigenvalue spectrum [5]. This is why spectral divide-and-conquer algorithms were
explored as an alternative [34, 5, 6, 7]. They are based on the idea of spectral division.
A matrix V is found such that

V  - 1AV =

\biggl[ 
A11 A12

0 A22

\biggr] 
.(2)
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1246 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

This is achieved when the first columns of V form a basis of an invariant subspace
of A and the remaining columns complement them to form a basis of \BbbK n. Now, the
eigenvalue problems of the smaller matrices A11 and A22 are considered. Repeating
this method recursively leads to a spectral divide-and-conquer scheme for the trian-
gularization of a matrix.

The required subspace bases are acquired by employing the matrix sign func-
tion, which is computed via an iteration. In general, the operation count of spectral
divide-and-conquer methods is higher than that of QR-based algorithms. This is why
optimized implementations that exploit available parallelism are needed.

One direction towards more efficient implementations is to take the given structure
of a matrix into account. For example, it is clear that symmetry must be exploited
when available. In spectral division (2), exploiting symmetric structure is achieved by
finding an orthogonal matrix V . This way, a block-diagonalization is realized instead
of the block-triangularization.

This is done in the spectral divide-and-conquer approach presented in [39]. For
symmetric matrices, the computation of the matrix sign function can be parallelized
particularly well [13, 12, 37], making it competitive with standard approaches in a
high-performance setting [32, 31]. An important aspect is that spectral divide-and-
conquer methods require less communication than QR-based approaches. In recent
years, many efforts have been directed to finding communication-avoiding implemen-
tations of essential tools in numerical linear algebra [9]. Spectral divide-and-conquer
methods can be implemented using these available building blocks [8]. On more
advanced architectures, avoiding communication is more important than avoiding
FLOPs in order to minimize the runtime.

In the present work, we extend the spectral divide-and-conquer approach to solve
eigenvalue problems of matrices with a more general structure, called pseudosymme-
try. A pseudosymmetric matrix is symmetric up to sign changes of rows or columns.
Symmetric matrices are a subset of pseudosymmetric matrices. The complex analogue
is called a pseudo-Hermitian matrix. In the following, statements are formulated for
(pseudo-)symmetric matrices but also hold for (pseudo-)Hermitian matrices.

Efforts to exploit pseudosymmetric structure led to the development of the HR
algorithm [20, 21, 17]. It generalizes the symmetric QR algorithm and is motivated
by the following observation. A generalized eigenvalue problem with real symmetric
matrices

Ax= \lambda Bx, A=A\sansT , B =B\sansT (3)

can be cast into a pseudosymmetric standard eigenvalue problem. Neither A nor B
need to be positive definite. If B is nonsingular, it has a decomposition B = R\sansT \Sigma R,
where \Sigma is a diagonal matrix with 1 or  - 1 as diagonal values. Then (3) is equivalent
to

\Sigma R - \sansT AR - 1y= \lambda y, y=Rx.

\Sigma R - \sansT AR - 1 is clearly a pseudosymmetric matrix. Diagonal matrices with \pm 1 as
diagonal values are called signature matrices in the following.

The QR algorithm computes its results with great accuracy because only (im-
plicit) orthogonal transformations are involved. This is not true for the HR algo-
rithm, which uses (\Sigma , \^\Sigma )-orthogonal matrices instead (also called pseudo-orthogonal)
[53]. A (\Sigma , \^\Sigma )-orthogonal matrix H, where \Sigma and \^\Sigma are two signature matrices, fulfills
H\sansT \Sigma H = \^\Sigma . They are used to transform a matrix to upper triangular form, similar
to the QR decomposition.
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1247

On top of that, the HR algorithm suffers from the same drawbacks as the QR
algorithm in a high-performance environment: It is hard to parallelize and not
communication-avoiding, as explained above.

The spectral divide-and-conquer method developed in this work presents a promis-
ing alternative. It can be parallelized and only relies on building blocks for which
communication-avoiding implementations exist. It can be used to compute only parts
of the spectrum with reduced computational effort. Stability concerns are addressed
by employing alternatives to the HR decomposition in the computation of the matrix
sign function, presented in [14].

Our main motivation stems from computational quantum science. Time-
dependent density functional theory in the linear-response regime (TDDFT) and the
Bethe--Salpeter approach are two competing methods for computing excited states of
solids or molecules in the context of a perturbed induced density matrix [40, 44].

The Bethe--Salpeter equation derived from many-body perturbation theory
[40, 46, 11] and the Casida equation derived from TDDFT for molecules [23] lead
to pseudosymmetric eigenvalue problems in their discretized form: The matrices be-
come symmetric when multiplied with \Sigma = diag (I, - I), where I denotes the identity
matrix.

Due to physical constraints, these matrices have another property which is ex-
ploited in our proposed algorithm. The symmetric matrix resulting from multipli-
cation with \Sigma is positive definite. It was shown in [14] that, for these matrices, the
proposed iterations have the same favorable convergence properties as in the symmet-
ric setting. Furthermore, we prove in this work that the first round of spectral division
decouples the problem into a positive and a negative definite symmetric matrix.

Pseudosymmetric matrices with these definiteness properties also play a role in
describing damped oscillations of linear systems [49].

The remainder of the paper is structured as follows. Section 2 introduces scalar
products and related notation which form basic concepts used throughout the pa-
per. This refers to a generalization of symmetry and orthogonality with respect to
a scalar product defined by signature matrices. (\Sigma , \^\Sigma )-orthogonal matrices ensure
the preservation of structure in the spectral division for pseudosymmetric matrices.
Furthermore, the matrix sign function is introduced as the central tool for spectral
division. Section 3 explains the idea of spectral divide-and-conquer methods and
presents a generalization of this approach for pseudosymmetric matrices. The acqui-
sition of (\Sigma , \^\Sigma )-orthogonal representations of invariant subspaces is essential for struc-
ture preservation in the spectral division. In section 4, we point out a link between QR
decompositions of symmetric projection matrices (describing orthogonal projections)
and Cholesky factorizations. This link exists analogously for pseudosymmetric pro-
jection matrices and the LDL\sansT factorization. We use this insight to compute required
basis representations via the LDL\sansT factorization. Matrices arising in the application
of electronic excitation have additional definiteness properties. Section 5 shows how
these are exploited in the presented algorithms. The computation of proper basis
representations simplifies to a partial Cholesky factorization (section 5.2), and the
computation of the matrix sign function can be accelerated using Zolotarev functions
(section 5.3). Section 6 presents the results of numerical experiments regarding the
new method. Conclusions and further research directions are given in section 7.

2. Preliminaries. Following [27] and [33], we give some basic results regarding
non-Euclidian scalar products. A nonsingular matrix M defines a scalar product on
\BbbK n, where \BbbK \in \{ \BbbC ,\BbbR \} , that is a bilinear or sesquilinear form \langle \cdot , \cdot \rangle M , given by
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D
ow

nl
oa

de
d 

09
/2

2/
23

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1248 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

\langle x, y\rangle M =

\Biggl\{ 
x\sansT My for bilinear forms,

xHMy for sesquilinear forms,

for x, y \in \BbbK n. We use \cdot \ast throughout the paper to indicate transposition \cdot \sansT or conju-
gated transposition \cdot \sansH , depending on whether a bilinear or sesquilinear form is given.

For a matrix A \in \BbbK n\times n, A \star M \in \BbbK n\times n denotes the adjoint with respect to the
scalar product defined by M . This is a uniquely defined matrix satisfying the identity

\langle Ax,y\rangle M = \langle x,A \star M y\rangle M

for all x, y \in \BbbK n. We call A \star M the M -adjoint of A, and it holds that

A \star M =M - 1A\ast M.(4)

A matrix S is called (M -)self-adjoint (with respect to the scalar product induced
by M) if S = S \star M .

Similar concepts are available for rectangular matrices. As two vector spaces of
different dimensions now play a role, two distinct scalar products are considered. We
give some clarifying notation following [28]. For a matrix A \in \BbbK m\times n, A \star M,N \in \BbbK n\times m

denotes the adjoint with respect to the two scalar products defined by the nonsingular
matrices M \in \BbbK m\times m, N \in \BbbK n\times n. This matrix is uniquely defined by the identity

\langle Ax,y\rangle M = \langle x,A \star M,N y\rangle N

for all x\in \BbbK n, y \in \BbbK m. We call A \star M,N the (M,N)-adjoint of A, and it holds that

A \star M,N =N - 1A\ast M.

A matrix H \in \BbbK m\times n is called (M,N)-orthogonal when

H \star M,NH = In.

A prerequisite for this is n\leq m, which is the case for the applications discussed later.
For (M,N)-orthogonal matrices, we define

H\dagger :=H \star M,N =N - 1H\ast M.(5)

Here, (5) gives the (M,N)-Moore--Penrose pseudoinverse discussed in [28]. This no-
tion generalizes the well-known Moore--Penrose pseudoinverse, which is achieved by
setting M = Im and N = In.

Our proposed methods rely on the matrix sign function [43, 30, 26]. Let A\in \BbbK n\times n

be a nonsingular matrix with no imaginary eigenvalues with Jordan canonical form

A=Z

\biggl[ 
J - 

J+

\biggr] 
Z - 1,

where J - \in \BbbK m\times m contains the Jordan blocks associated with the eigenvalues having
a negative real part and J+ \in \BbbK p\times p contains the Jordan blocks associated with the
eigenvalues having a positive real part. Then the matrix sign function of A is defined
as

sign (A) :=Z

\biggl[ 
 - Im

Ip

\biggr] 
Z - 1.(6)

It follows from (6) that the matrix sign function can be used to acquire projectors
onto invariant subspaces associated with the subset of eigenvalues that have positive
and negative real parts, respectively.
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1249

Lemma 1. Let A \in \BbbK n\times n be nonsingular with no imaginary eigenvalues, and
let S = sign(A). Then P+ = 1

2 (In + S) and P - = 1
2 (In  - S) are projectors onto

the invariant subspaces associated with eigenvalues in the open right and open left
half-plane, respectively.

In order to acquire projections onto invariant subspaces associated with other
eigenvalue subsets, we can use the matrix sign function of a shifted A+ \sigma I. Another
possibility is to transform A before computing the matrix sign function in order to
acquire subspaces associated with almost arbitrary regions of the eigenvalue spectrum
[7]. What makes the matrix sign function useful is that there exist iterative methods
for its computation [26, 29]. Among the simplest is Newton's iteration to find the
roots of f(x) = x2  - 1,

Xk+1 =
1

2
(Xk +X - 1

k ), X0 =A.(7)

Our iteration of choice is based on Zolotarev functions and discussed in section 5.3.

3. Structure-preserving divide-and-conquer methods. The property of
the matrix sign function to acquire invariant subspaces was used in the original paper
[43] to solve algebraic Riccati equations. Later, it was used as a building block to
devise parallelizable methods for eigenvalue computations of nonsymmetric matrices
[5, 48, 13]. In [39] a spectral divide-and-conquer algorithm for symmetric matrices
is formulated, based on the relation between the matrix sign function and the po-
lar decomposition. In this section, we generalize this approach to pseudosymmetric
matrices. They are defined using signature matrices, which are diagonal matrices
\Sigma = diag (\sigma 1, . . . , \sigma n), where \sigma i \in \{ 1, - 1\} for i= 1, . . . , n.

Definition 2. A matrix A \in \BbbK n\times n is called pseudosymmetric (pseudo-
Hermitian) if there exists a signature matrix \Sigma such that A is self-adjoint with respect
to the bilinear form (sesquilinear form) induced by \Sigma .

Definition 2 is equivalent to \Sigma A (or A\Sigma ) being symmetric. Essentially, a pseu-
dosymmetric matrix is symmetric up to sign changes of certain rows (or columns).
This definition is slightly different than the one given, e.g., in [33], as we allow any

signature matrix and not just \Sigma p,q = [
Ip

 - Iq
].

In section 3.1, we outline the general idea of spectral division, which reduces
a large eigenvalue problem to two smaller ones. Recursively applying this tech-
nique yields parallelizable methods for acquiring all eigenvalues and eigenvectors.
Section 3.2 recounts how a symmetric structure can be preserved in this context.
The same line of argument is applied to pseudosymmetric matrices in section 3.3.

3.1. General spectral divide-and-conquer. It is a well-known concept to use
invariant subspaces of a matrix to block-triangularize it with a similarity transforma-
tion. In the following, we focus on real matrices, but everything extends to complex
matrices. For real matrices, we end up with 2\times 2 matrix blocks on the diagonal for
complex eigenvalues, whereas for complex matrices, this is unnecessary.

Theorem 3 (see [48]). Let A \in \BbbR n\times n and V1 \in \BbbR n\times k be a basis for an invariant
subspace of A, and let V =

\bigl[ 
V1 V2

\bigr] 
\in \BbbR n\times n have full rank. Then

V  - 1AV =

\biggl[ 
A11 A21

0 A22

\biggr] 
, A11 \in \BbbR k\times k, A22 \in \BbbR (n - k)\times (n - k).

Recursively applying the idea of Theorem 3 with shifts leads to a divide-and-
conquer scheme, given in Algorithm 1.
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1250 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Algorithm 1 Unstructured spectral divide-and-conquer.

Input: A\in \BbbR n\times n

Output: V,T such that V  - 1AV = T is block-upper triangular with blocks no larger
than 2\times 2 on the diagonal.

1: Stop if A is of size 1\times 1 or 2\times 2 with a complex pair of eigenvalues.
2: Find shift \sigma such that A - \sigma I has eigenvalues with positive and negative real

part and no eigenvalues with zero real part.
3: Compute S = sign(A - \sigma I) via an iteration.
4: Compute a basis V+ of range(S + I) and V - such that V0 =

\bigl[ 
V+ V - 

\bigr] 
has full

rank. Then

V  - 1
0 AV0 =

\biggl[ 
A11 A12

0 A22

\biggr] 
.

5: Repeat spectral divide-and-conquer for A11, i.e., find V1 such that V  - 1
1 A11V1 =

T11 is block-upper triangular.
6: Repeat spectral divide-and-conquer for A22, i.e., find V2 such that V  - 1

2 A22V2 =
T22 is block-upper triangular.

7: V \leftarrow V

\biggl[ 
V1 0
0 V2

\biggr] 
, T \leftarrow 

\biggl[ 
T11 V  - 1

1 A12V2

0 T22

\biggr] 
.

This algorithm serves as a prototype for structure-preserving methods developed
in the next subsections. The key idea is to choose the subspace basis in step 4 in a
way that preserves the structure in the spectral division.

3.2. Symmetric spectral divide-and-conquer. In this section, we consider
the symmetric eigenvalue problem, i.e., A = A\sansT . A structure-preserving method
requires the spectral division V  - 1AV to be symmetric. This is fulfilled by orthogonal
matrices, i.e., for matrices fulfilling V  - 1 = V \sansT . A structure-preserving variant of
Theorem 3 for symmetric matrices is given in the following.

Theorem 4. Let A = A\sansT \in \BbbR n\times n and V1 \in \BbbR n\times k be a basis of an invariant
subspace of A, and let V =

\bigl[ 
V1 V2

\bigr] 
be orthogonal. Then

V  - 1AV = V \sansT AV =

\biggl[ 
A11 0
0 A22

\biggr] 
, A11 =A\sansT 

11 \in \BbbR k\times k, A22 =A\sansT 
22 \in \BbbR (n - k)\times (n - k).

The symmetric version of Algorithm 1 follows immediately as Algorithm 2.
Due to the symmetry of A and by restricting the subspace basis to be orthogonal,

this can become a highly viable method. For symmetric A, sign(A) can be computed
in a stable way via the QDWH iteration [36, 38] or the Zolotarev iteration [37]. The
basis extraction can be done by performing a rank-revealing QR decomposition or a
subspace iteration [39], if pivoting is considered too expensive.

3.3. Pseudosymmetric spectral divide-and-conquer. We now extend sec-
tion 3.2 to pseudosymmetric matrices. The role of structure-preserving similarity
transformations was played by orthogonal matrices in section 3.2. For pseudosym-
metric matrices, this role is played by (\Sigma , \^\Sigma )-orthogonal matrices.

Lemma 5. If V \in \BbbR m\times n, m\geq n, is a (\Sigma , \^\Sigma )-orthogonal matrix and A\in \BbbR m\times m is
pseudosymmetric with respect to \Sigma , i.e., \Sigma A = A\sansT \Sigma , then \^A = V \dagger AV is pseudosym-
metric with respect to \^\Sigma , i.e., \^\Sigma \^A= \^A\sansT \^\Sigma .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1251

Algorithm 2 Symmetric spectral divide-and-conquer.

Input: A=A\sansT \in \BbbR n\times n

Output: Orthogonal V , diagonal D such that V \sansT AV =D.
1: Stop if A is of size 1\times 1.
2: Find shift \sigma such that A - \sigma I has positive and negative eigenvalues and no zero

eigenvalues.
3: Compute S = sign(A - \sigma I) via an iteration.
4: Compute a basis V+ of range(S + I) and V - such that V0 =

\bigl[ 
V+ V - 

\bigr] 
is

orthogonal. Then

V \sansT 
0 AV0 =

\biggl[ 
A11 0
0 A22

\biggr] 
, A11 =A\sansT 

11, A22 =A\sansT 
22.

5: Repeat spectral divide-and-conquer for A11, i.e., find V1 such that V \sansT 
1 A11V1 =

D11 is diagonal.
6: Repeat spectral divide-and-conquer for A22, i.e., find V2 such that V \sansT 

2 A22V2 =
D22 is diagonal.

7: V \leftarrow V0

\biggl[ 
V1 0
0 V2

\biggr] 
, D\leftarrow 

\biggl[ 
D11 0
0 D22

\biggr] 
.

Proof. With V \dagger = \^\Sigma V \sansT \Sigma , \Sigma V = (V \dagger )\sansT \^\Sigma , \Sigma 2 = Im and \^\Sigma 2 = In we have

\^\Sigma (V \dagger AV ) = V \sansT \Sigma AV = V \sansT A\sansT \Sigma V = V \sansT A\sansT (V \dagger )\sansT \^\Sigma = (V \dagger AV )\sansT \^\Sigma .

What (\Sigma , \^\Sigma )-orthogonal matrices have in common with orthogonal matrices is
that their (pseudo-)inverses can be easily computed via (5) in the form of

V \dagger = \^\Sigma V \sansT \Sigma .

For square matrices, it holds that V  - 1 = V \dagger and that V \dagger AV constitutes a similarity
transformation.

Methods for computing these matrices include the HR decomposition [19] and
methods described in [14]. They prescribe \Sigma and yield \^\Sigma and the (\Sigma , \^\Sigma )-orthogonal
matrix H. We do not actually care about how \^\Sigma looks exactly, as long as it is a sig-
nature matrix. This way, pseudosymmetry as we defined it in Definition 2, not being
bound to a specific \Sigma , is preserved. These kinds of matrices, i.e., (\Sigma , \^\Sigma )-orthogonal
matrices, where \^\Sigma does not matter, are sometimes called ``hyperexchange"" (e.g., in
[51, 52]).

These observations can be used to formulate a pseudosymmetric variant of Al-
gorithm 1, given in Algorithm 3. In step 4, we apply spectral division (Theorem 3)
and preserve pseudosymmetric structure (Lemma 3). The result is a block-triangular
matrix that is also pseudosymmetric and therefore block-diagonal. The property pre-
served in the spectral division is the pseudosymmetry. This means that \Sigma does not
stay fixed but is permuted and truncated in each division step.

4. Computing (\Sigma , \^\Sigma )-orthogonal representations of subspaces. Sym-
metric spectral divide-and-conquer methods rely on variants of the QR decompo-
sition. The natural generalization in the indefinite context is the hyperbolic QR
decomposition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1252 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Algorithm 3 Pseudosymmetric spectral divide-and-conquer.

Input: Signature matrix \Sigma , pseudosymmetric A with respect to \Sigma , i.e., \Sigma A= (\Sigma A)\sansT .

Output: Signature matrix \^\Sigma , and (\Sigma , \^\Sigma )-orthogonal V such that V \dagger AV =D is
block-diagonal with blocks no larger than 2\times 2.

1: Stop if A is of size 1\times 1 or 2\times 2 with a complex pair of eigenvalues.
2: Find shift \sigma such that A - \sigma I has eigenvalues with positive and negative real

part and no eigenvalues with zero real part.
3: Compute S = sign(A - \sigma I) via an iteration.
4: Compute a basis V+ of range(S + I) and V - such that V0 =

\bigl[ 
V+ V - 

\bigr] 
is

(\Sigma ,\Sigma 0)-orthogonal with \Sigma 0 = [
\Sigma +

\Sigma  - 
]. Then

V \dagger 
0 AV0 =

\biggl[ 
A11 0
0 A22

\biggr] 
, \Sigma +A11 = (\Sigma +A11)

\sansT , \Sigma  - A22 = (\Sigma  - A22)
\sansT .

5: Repeat spectral divide-and-conquer for A11 with \Sigma :=\Sigma +, i.e., find (\Sigma +,\Sigma 1)-

orthogonal V1 such that V \dagger 
1 A11V1 =D11 is block-diagonal.

6: Repeat spectral divide-and-conquer for A22 with \Sigma :=\Sigma  - , i.e., find (\Sigma  - ,\Sigma 2)-

orthogonal V2 such that V \dagger 
2 A22V2 =D22 is block-diagonal.

7: V \leftarrow V0

\biggl[ 
V1 0
0 V2

\biggr] 
, \^\Sigma \leftarrow 

\biggl[ 
\Sigma 1

\Sigma 2

\biggr] 
, D\leftarrow 

\biggl[ 
D11 0
0 D22

\biggr] 
.

Theorem 6 (the hyperbolic QR decomposition [19]). Let \Sigma \in \BbbR m\times m be a sig-
nature matrix, A \in \BbbR m\times n, m \geq n. Suppose all the leading principal submatrices
of A\sansT \Sigma A are nonsingular. Then there exists a permutation P , a signature matrix
\^\Sigma = P\sansT \Sigma P , a (\Sigma , \^\Sigma )-orthogonal matrix H \in \BbbR m\times n (i.e., H\sansT \Sigma H = \^\Sigma ), and an upper
triangular matrix R \in \BbbR n\times n such that

A=H

\biggl[ 
R
0

\biggr] 
.

Similar to the orthogonal QR decomposition, it can be computed by applying
transformations that introduce zeros below the diagonal, column by column. Details
can, e.g., be found in [53]. In [47], the indefinite QR decomposition is presented,
which improves stability by allowing 2\times 2 blocks on the diagonal of R and additional
pivoting. This variant can also be computed via the (pivoted) LDL\sansT decomposition
of A\sansT \Sigma A, a link which was exploited in [14] and [16]. There, the stability is improved
by applying this method twice.

In the context of this work, we aim to compute the indefinite QR decomposition
of a pseudosymmetric projection matrix. We will see that in this special case, an
indefinite QR decomposition can be computed via the LDL\sansT decomposition without
the need to form A\sansT \Sigma A. We do not make any statement about the stability of the
proposed computations, as these considerations go beyond the scope of this paper,
but make empirical observations in the numerical experiments presented in section 6.

We start with an observation regarding the symmetric divide-and-conquer
method. Here, the matrix sign function computes a symmetric projection matrix,
representing an orthogonal projection.

Lemma 7. Let P \in \BbbR n\times n be an orthogonal projection matrix, i.e., P 2 = P and
P = P\sansT , with rank r. Let R\sansT R= P , where R \in \BbbR r\times n has full row rank. Then R\sansT has
orthogonal columns, i.e., RR\sansT = Ir.
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1253

Algorithm 4 Compute orthogonal invariant subspace representations of a symmetric
matrix via Cholesky.

Input: A=A\sansT \in \BbbR n\times n nonsingular.
Output: An orthogonal basis Q=

\bigl[ 
Q+ Q - 

\bigr] 
, where Q+ is a basis of the invariant

subspace of A associated with positive eigenvalues, Q - is a basis of the invariant
subspace of A associated with negative eigenvalues.

1: S\leftarrow sign(A).
2: P+\leftarrow 1

2 (In + S).
3: Compute rank(P+) =: r+\leftarrow tr (P+).
4: Q1,+\leftarrow chol(P+(1 : r+,1 : r+).

5: Q+\leftarrow 
\biggl[ 

Q1,+

P+(r+ + 1 : n,1 : r+)Q
 - \sansT 
1,+

\biggr] 
.

6: P - \leftarrow 1
2 (In  - S).

7: Compute rank(P - ) =: r - \leftarrow n - r+.
8: Q1, - \leftarrow chol(P - (1 : r - ,1 : r - ).

9: Q - \leftarrow 
\biggl[ 

Q1, - 
P+(r - + 1 : n,1 : r - )Q

 - \sansT 
1, - 

\biggr] 
.

Proof. Because P is positive semidefinite, a low-rank factorization R\sansT R = P
exists. From P = P 2 follows R\sansT R=R\sansT RR\sansT R, and therefore, RR\sansT = Ir.

R can, for example, be chosen to be upper triangular, i.e., forming a low-rank
Cholesky decomposition of P . In that case, R\sansT R = P is a thin QR decomposition.
Then Lemma 7 states that, for projection matrices attained via the matrix sign func-
tion, the low-rank Cholesky and the thin QR decomposition are equivalent.

Let P+ = 1
2 (In + sign(A)) be the projection on the subspace of A associated

with positive eigenvalues. The advantage of computing the (full) QR decomposition\bigl[ 
Q+ Q - 

\bigr] \biggl[ R
0

\biggr] 
is that we immediately get a basis Q - for the complementing sub-

space, associated with negative eigenvalues. The Cholesky factorization applied in
the sense of Lemma 7 can only yield a thin QR decomposition. However, the same
procedure can be applied to P - = 1

2 (In  - sign(A). The two thin QR decompositions
can be combined to form a full one. Indeed, let Q+ and Q - be acquired from P+ and
P - via Lemma 7. The identities Q\sansT 

+Q+ = I and Q\sansT 
 - Q - = I follow immediately from

the orthogonality proven in the lemma. From P+ = Q+Q
\sansT 
+ follows Q+

\sansT = Q\sansT 
+P+,

and from P - =Q - Q
\sansT 
 - follows Q - = P - Q - . From the definition of the projectors in

Lemma 1, we have P+P - = 0, and therefore, Q\sansT 
+Q - =Q+P

\sansT 
+P - Q - = 0.

Algorithm 4 shows how Lemma 7 can be used to compute an orthogonal repre-
sentation of an invariant subspace of a symmetric matrix. In step 3, we use the trace
of a projection matrix to determine its rank. For badly conditioned matrices, pivoting
could be included in the computation of the Cholesky factorization. Lemma 7 does
not assume the triangular shape of R to show that its rows are orthogonal.

In the symmetric context, computing the QR decomposition like this does not
have an obvious benefit over computing a QR decomposition the standard way. How-
ever, it can be generalized to the indefinite case. Here, an LDL\sansT decomposition can be
used instead of a hyperbolic QR decomposition, which is much more widely used. Es-
tablished algorithms and highly optimized implementations are available and ready
to use, e.g., in MATLAB as the ldl command. Details are given in the following
theorem.
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1254 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Algorithm 5 Compute hyperbolic invariant subspace representations of a pseu-
dosymmetric projection matrix via LDL\sansT .

Input: Signature matrix \Sigma , A=\Sigma A\sansT \Sigma \in \BbbR n without purely imaginary eigenvalues.

Output: A signature matrix \^\Sigma , which is a permuted variant of \Sigma , a (\Sigma , \^\Sigma )-
orthogonal basis Q=

\bigl[ 
Q+ Q - 

\bigr] 
, i.e., Q\sansT \Sigma Q= \^\Sigma , where Q+ is a basis of the

invariant subspace of A associated with eigenvalues with positive real part,
Q - is a basis of the invariant subspace of A associated with eigenvalues with
negative real part.

1: S\leftarrow sign(A).
2: P+\leftarrow 1

2 (In + S).
3: Compute rank(P+) =: r+\leftarrow tr (P+).
4: [L+,D+]\leftarrow ldl(\Sigma P+).
5: Diagonalize D+ if it has blocks on the diagonal: [V+,D+]\leftarrow eig(D+) such that
D+(1 : r+,1 : r+) contains the nonzero diagonal values of D+.

6: R+\leftarrow (L+V+(:,1 : r+)D+(1 : r+,1 : r+)
1
2 )\sansT , \^\Sigma +\leftarrow sign(D+(1 : r+,1 : r+)).

7: P - \leftarrow 1
2 (In  - S).

8: Compute rank(P - ) =: r - \leftarrow n - r+.
9: [L - ,D - ]\leftarrow ldl(\Sigma P - ).
10: Diagonalize D - if it has blocks on the diagonal: [V - ,D - ]\leftarrow eig(D - ) such that

D - (1 : r - ,1 : r - ) contains the nonzero diagonal values of D - .

11: R - \leftarrow (L - V - (:,1 : r - )D - (1 : r - ,1 : r - )
1
2 )\sansT , \^\Sigma  - \leftarrow sign(D - (1 : r - ,1 : r - )).

12: \^\Sigma \leftarrow diag (\Sigma +,\Sigma  - ).

13: Q+\leftarrow \Sigma R\sansT 
+
\^\Sigma , Q - \leftarrow \Sigma R\sansT 

 - 
\^\Sigma .

Theorem 8. \Sigma is a given signature matrix, and P \in \BbbR n\times n is a projection matrix
and pseudosymmetric with respect to \Sigma , i.e., P 2 = P and \Sigma P\Sigma = P\sansT , with rank r.
Let R\sansT \^\Sigma R = \Sigma P , where R \in \BbbR r\times n, be a scaled low-rank LDL\sansT factorization, where
R has full row rank and \^\Sigma \in \BbbR r\times r is another signature matrix. Then R\sansT is (\Sigma , \^\Sigma )-
orthogonal, i.e., R\Sigma R\sansT = \^\Sigma , and HR = P with H = \Sigma R\sansT \^\Sigma is a decomposition of P,
where H is (\Sigma , \^\Sigma )-orthogonal.

Proof. With P =\Sigma R\sansT \^\Sigma R and P = P 2, it follows \Sigma R\sansT \^\Sigma R=\Sigma R\sansT \^\Sigma R\Sigma R\sansT \^\Sigma R, and
therefore, \^\Sigma = \^\Sigma R\Sigma R\sansT \^\Sigma , and finally

\^\Sigma =R\Sigma R\sansT .(8)

We used \^\Sigma 2 = Ir. (8) is equivalent to H := R\dagger = \Sigma R\sansT \^\Sigma being (\Sigma , \^\Sigma )-orthogonal:
H\sansT \Sigma H = \^\Sigma . We therefore have a decomposition P =\Sigma R\sansT \^\Sigma R=HR.

If R in Theorem 8 is computed with the Bunch--Kaufman algorithm [18] (e.g.,
MATLAB ldl), it can be a permuted block-triangular matrix, and stability can be
improved. Then P = HR is not a hyperbolic QR decomposition in the strict sense
given in Theorem 6. This is not important here, as we are only interested in the
subspace given by H. The indefinite variant of Algorithm 4 is given in Algorithm 5.

In contrast to the MATLAB function chol, ldl is not affected by singular ma-
trices, such as the given projectors. This is why steps 5 and 9 in Algorithm 4 do not
have a correspondence in Algorithm 5. The Cholesky-based algorithm (Algorithm 4)
computes the Cholesky factorization of the upper left block and expands it in order
to get a low-rank version. The LDL\sansT -based algorithm (Algorithm 5), on the other
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1255

hand, computes an LDL\sansT decomposition of the whole matrix, which we then truncate
in steps 6 and 11.

5. Definite pseudosymmetric matrices. In this section, we consider pseu-
dosymmetric matrices with an additional property. We call a pseudosymmetric matrix
A with respect to a signature matrix \Sigma definite if \Sigma A is positive definite.

The Bethe--Salpeter equation (BSE) approach is a state-of-the art method for
computing optical properties of materials and molecules, derived from many-body
perturbation theory. After appropriate discretization, eigenvalues and eigenvectors of
a complex structured matrix

HBSE =

\biggl[ 
ABSE BBSE

 - B\sansH 
BSE  - A\sansT 

BSE

\biggr] 
, ABSE =A\sansH 

BSE, BBSE =B\sansT 
BSE(9)

are sought [40]. A similar eigenvalue problem arises when molecules are considered
within time-dependent density functional theory in the linear response regime. Here,
the Casida equation can be recast into an eigenvalue problem of the real matrix

HCas =

\biggl[ 
ACas BCas

 - BCas  - ACas

\biggr] 
, ACas =A\sansT 

Cas, BCas =B\sansT 
Cas.(10)

Considering a Bethe--Salpeter approach within Hartree--Fock theory for molecules
leads to a matrix with the same structure [11].

For crystalline solids, the periodic structure can be exploited, and with a proper
choice of basis functions, the resulting matrix has the form [45]

HBSE,2 =

\biggl[ 
ABSE,2 BBSE,2

 - BBSE,2  - ABSE,2

\biggr] 
, ABSE,2 =A\sansH 

BSE,2, BBSE,2 =B\sansH 
BSE,2.(11)

The setup (11) is essentially a complex version of (10). A more detailed analysis of
the special structure in (9) and (11) is given in [16].

All of these matrices are obviously pseudosymmetric with respect to \Sigma =
diag (I, - I). Furthermore, they are typically definite; i.e., \Sigma H is positive definite
for any H defined in (9), (10), or (11).

5.1. Decoupling the indefinite eigenvalue problem into two symmetric
definite problems. In the following, we explain how the spectral divide-and-conquer
algorithm described in section 3.3 simplifies greatly for definite pseudosymmetric ma-
trices. Essentially, the problem can be reduced to two Hermitian positive definite
eigenvalue problems after just one spectral division step.

As a first result, we present the following theorem, clarifying the spectral struc-
ture of definite pseudosymmetric matrices. It is an extension of Theorem 5 in [16],
additionally clarifying the structure of the eigenvectors, and a more general variant of
Theorem 3 in [46]. Our version is independent of the additional structure of Bethe--
Salpeter matrices given in (9). It can be proven in a similar fashion relying on the
simultaneous diagonalization of \Sigma A and \Sigma .

Theorem 9. Let A \in \BbbK n\times n be a definite pseudosymmetric matrix with respect
to \Sigma , where \Sigma has p positive and n - p negative diagonal entries. Then A has only
real, nonzero eigenvalues, of which p are positive and n  - p are negative. There is
an eigenvalue decomposition AV = V \Lambda , \Lambda = diag (\lambda 1, . . . , \lambda n), where \lambda 1, . . . , \lambda p > 0,
\lambda p+1, . . . , \lambda n < 0, such that

V \ast \Sigma V =

\biggl[ 
Ip
 - In - p

\biggr] 
.(12)
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1256 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Proof. As \Sigma A is positive definite and \Sigma is symmetric, they can be diagonalized
simultaneously (see [24], Corollary 8.7.2); i.e., there is a nonsingular X \in \BbbC n\times n s.t.
X\sansH \Sigma AX = In, and X\sansH \Sigma X = \Lambda  - 1 \in \BbbR n\times n, where \Lambda  - 1 = diag

\bigl( 
\lambda  - 1
1 , . . . , \lambda  - 1

n

\bigr) 
gives

the eigenvalues of the matrix pencil \Sigma  - \lambda \Sigma A. It follows from Sylvester's law of
inertia that \Lambda  - 1 has p positive and n  - p negative values. We have X - 1AX = \Lambda ;
i.e., A is diagonalizable and \Lambda  - 1 contains the eigenvalues of A. The columns of X
can be arranged such that the positive eigenvalues are given in the upper left part
of \Lambda and the negative ones are given in the lower right part. X can be scaled in

form of V :=X| \Lambda |  - 
1
2 , where | \cdot | denotes the entrywise absolute value, such that (12)

holds.

For pseudosymmetric matrices that are definite, the structure-preserving spectral
divide-and-conquer algorithm (Algorithm 3) shows a special behavior that can be
exploited algorithmically. Generally, after one step of spectral division, we get two
smaller matrices that are pseudosymmetric with respect to two submatrices of the
original signature matrix \Sigma , denoted \Sigma + and \Sigma  - in Algorithm 3. The p positive and
the n - p negative values on the diagonal of \Sigma split up in an unpredictable way. For
definite matrices, they split up neatly: The positive values gather in \Sigma + = Ip, and the
negative values gather in \Sigma  - =  - In - p. After spectral division, the upper left block
A11 is definite pseudosymmetric with respect to Ip, i.e., symmetric positive definite.
The lower right block A22 is definite pseudosymmetric with respect to  - In - p, i.e.,
symmetric negative definite. This behavior is explained in the following theorem.

Theorem 10. Let A\in \BbbK n\times n be a definite pseudosymmetric matrix with respect to
\Sigma with p positive and n - p negative diagonal values. Let H be a basis of the invariant
subspace of A associated with the p positive (respectively, n - p negative) eigenvalues,
such that H\ast \Sigma H = \^\Sigma , where \^\Sigma is another signature matrix. Then H\dagger AH is Hermitian
positive (respectively, negative) definite and \^\Sigma = Ip (respectively, \^\Sigma = - In - p).

Proof. Let AV = V \Lambda be the eigenvalue decomposition given in Theorem 9. Let
Vp =

\bigl[ 
v1 . . . vp

\bigr] 
denote the first p columns of V , associated with the positive eigen-

values \Lambda + =diag (\lambda 1, . . . , \lambda p). Then AV+ = V+\Lambda + and

V \ast 
+\Sigma V+ = Ip.(13)

As H spans the same subspace as V+, there must be X \in \BbbK p\times p such that H =
V+X. Then H\ast \Sigma H = X\ast V \ast 

+\Sigma V+X = X\ast X is positive definite. The only signature

matrix with this property is the identity, showing \^\Sigma = Ip.
Then it holds that H\dagger =H\ast \Sigma , and therefore,

H\dagger AH =H\ast \Sigma AH

is Hermitian positive definite, as \Sigma A is Hermitian positive definite. Concerning the
negative eigenvalues, it can be shown that \^\Sigma = - In - p, and therefore,

H\dagger AH = - H\ast \Sigma AH

is Hermitian negative definite.

Theorem 10 greatly simplifies the divide-and-conquer method for definite pseu-
dosymmetric matrices (Algorithm 3). We only need one spectral division step and can
then fall back on existing algorithms for symmetric positive definite matrices. They
can be of the divide-and-conquer variety, e.g., developed in [39], but do not have to
be. In a high-performance setting, parallelized algorithms implemented in libraries
such as ELPA [35] can be used.
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Algorithm 6 Compute (\Sigma , \^\Sigma )-orthogonal invariant subspace representations of a
definite pseudosymmetric projection matrix via Cholesky.

Input: Signature matrix \Sigma with r+ positive and r - negative diagonal values,
A\in \BbbR n, such that \Sigma A is symmetric positive definite.

Output: A(\Sigma , \^\Sigma )-orthogonal basis Q=
\bigl[ 
Q+ Q - 

\bigr] 
, where \^\Sigma = diag

\bigl( 
Ir+ , - Ir - 

\bigr) 
, i.e.,

Q\sansT \Sigma Q= \^\Sigma , where Q+ is a basis of the invariant subspace of A associated with
positive eigenvalues, Q - is a basis of the invariant subspace of A associated
with negative eigenvalues.

1: S\leftarrow sign(A).
2: P+\leftarrow 1

2 (In + S).
3: Q1,+\leftarrow chol(\Sigma (1 : r+,1 : r+)P+(1 : r+,1 : r+)).

4: Q+\leftarrow 
\biggl[ 

\Sigma (1 : r+,1 : r+)Q
\sansH 
1,+

P+(r+ + 1 : n,1 : r+)Q
 - 1
1,+

\biggr] 
.

5: P - \leftarrow 1
2 (In  - S).

6: Q1, - \leftarrow chol( - \Sigma (1 : r - ,1 : r - )P - (1 : r - ,1 : r - )).

7: Q - \leftarrow 
\biggl[ 

\Sigma (1 : r - ,1 : r - )Q
\sansH 
1, - 

P - (r - + 1 : n,1 : r - )Q
 - 1
1, - 

\biggr] 
.

5.2. Computing (\Sigma , \^\Sigma )-orthogonal representations. The computation of
pseudo-orthogonal subspace representations described in section 4 also simplifies.
In step 6 of Algorithm 5, the smaller signature matrix \Sigma + related to the subspace
associated with positive eigenvalues is computed by taking the signs of the diagonal
matrix D of the previously computed LDL\sansT decomposition. Because of Theorem 10,
we know that \Sigma + = Ip. The LDL\sansT decomposition was taken of \Sigma P+, which hence
must be positive semidefinite. Therefore, the LDL\sansT decomposition can be substituted
by a low-rank Cholesky factorization, similar to the symmetric case described in Al-
gorithm 4. The computation of the rank (step 3 in Algorithm 5) is omitted because
we know that A has as many positive eigenvalues as \Sigma has positive diagonal values
according to Theorem 9.

Numerical experiments (in particular, examples from electronic structure theory,
presented in section 6.2) show that Algorithm 6 can break down due to numerical
errors in floating point arithmetic. This happens when numerical errors lead to \Sigma P+

having negative eigenvalues or \Sigma P - having positive eigenvalues such that the Cholesky
decomposition breaks down. In order to avoid this case, we implement a more robust
variant based on a truncated LDL\sansT decompositions, which includes pivoting, given
in Algorithm 7.

5.3. Using Zolotarev functions to accelerate the matrix sign iteration.
It was observed in [14] that the matrix sign function of a self-adjoint matrix A is given
as the first factor of its generalized polar decomposition, offering a new perspective
for its computation. A matrix A\in \BbbK n\times n (under certain assumptions; see [27]) admits
a generalized polar decomposition with respect to a scalar product induced by a
nonsingular matrix M

A=WS,

where W is a partial M -isometry and S is M--self-adjoint with no eigenvalues on
the negative real axis. Canonical generalized polar decompositions can be defined for
rectangular matrices [28]. We only consider the square case relevant to the application
discussed in this work.
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Algorithm 7 Robust computation of (\Sigma , \^\Sigma )-orthogonal invariant subspace represen-
tations of a definite pseudosymmetric projection matrix via LDL\sansT .

Input: Signature matrix \Sigma with r+ positive and r - negative diagonal values,
A\in \BbbR n, such that \Sigma A is symmetric positive definite.

Output: A(\Sigma , \^\Sigma )-orthogonal basis Q=
\bigl[ 
Q+ Q - 

\bigr] 
, where \^\Sigma = diag

\bigl( 
Ir+ , - Ir - 

\bigr) 
, i.e.,

Q\sansT \Sigma Q= \^\Sigma , where Q+ is a basis of the invariant subspace of A associated with
positive eigenvalues, Q - is a basis of the invariant subspace of A associated
with negative eigenvalues.

1: S\leftarrow sign(A).
2: P+\leftarrow 1

2 (In + S).
3: [L+,D+]\leftarrow ldl(\Sigma P+).
4: Diagonalize D+ if it has blocks on the diagonal: [V+,D+]\leftarrow eig(D+) such that

the diagonal entries of D+ are given in descending order.

5: Q+\leftarrow \Sigma L+V+(:,1 : r+)D
1
2
+(1 : r+,1 : r+).

6: P - \leftarrow 1
2 (In  - S).

7: [L - ,D - ]\leftarrow ldl( - \Sigma P - ).
8: Diagonalize D - if it has blocks on the diagonal: [V - ,D - ]\leftarrow eig(D - ) such that

the diagonal entries of D - are given in descending order.

9: Q - \leftarrow \Sigma L - V - (:,1 : r - )D
1
2
 - (1 : r - ,1 : r - ).

Iterations of a certain form that compute the generalized polar decomposition
A=WS work as a scalar iteration on the eigenvalues of S, pushing them closer to 1
in the course of the iteration. The following lemma clarifies this idea and is a slightly
altered variant of Corollary 5.2 in [14].

Lemma 11. Let g be a scalar function of the form

g(x) = xh(x2),(14)

where h is a scalar function that is analytic in a domain containing the spectrum of
the input matrix. Let A \in \BbbR n\times n be a matrix with a generalized polar decomposition
A=WS for a given scalar product induced by M \in \BbbR n\times n. Let

G(X) :=Xh(X \star MX)(15)

be a matrix function. Then it holds that

G(A) =WG(S) =Wg(S).

Proof. Observe

G(A) =G(WS) =WSh(S \star MW  \star MWS) =WSh(S \star MS) =WG(S) =Wg(S).

We used W  \star MWS = S, which holds according to Lemma 3.7 in [28]. The last equality
holds because S is self-adjoint and S \star MS = S2.

Given an iteration of the form

Xk+1 =G(Xk),(16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1259

with G from (15), Lemma 11 states that it acts as the function g from (14) on the
eigenvalues of the self-adjoint factor S. With the Jordan decomposition S =ZJZ - 1,
J =diag (Jk), we see

Xk+1 =WZdiag (g(Jk))Z
 - 1, k \in \BbbN .(17)

We have already seen in Theorem 10 that definite pseudosymmetric matrices have
a special spectral structure. The following lemma shows that, as a consequence, the
eigenvalues of the self-adjoint factor S, on which iterations of the form (16) act, are
real.

Lemma 12. Let A \in \BbbK n\times n be a definite pseudosymmetric matrix with respect to
\Sigma . Then the generalized polar decomposition of A with respect to \Sigma ,

A=WS,

exists. The eigenvalues of S are positive real and constitute the absolute values of the
eigenvalues of A.

Proof. For pseudosymmetric matrices, it holds that A \star \Sigma A = \Sigma A\ast \Sigma A = A2. Be-
cause A has only real nonzero eigenvalues (following from Theorem 9), A2 has only
real positive eigenvalues. Hence, the generalized polar decomposition exists. The
self-adjoint factor of the polar decomposition is defined as S = (A \star \Sigma A)

1
2 and has only

real eigenvalues because the square roots of real positive values are real. They are the
absolute values of the eigenvalues of A.

Let A be scaled such that its eigenvalues lie in [ - 1,1], and let 0< \ell < | \lambda | for all
\lambda \in \Lambda (A). Then the eigenvalues of S lie in (\ell ,1]. A rational function g(x) = xh(x2)
which maps them close to 1, i.e., approximates the scalar sign function on the interval
(\ell ,1], can be used in an iteration (16). We see from (17) that the result will be an
approximation to the polar factor W , which in our setting coincides with the matrix
sign function. Luckily, explicit formulas for rational best approximations of the sign
function with form (14) were found by Zolotarev in 1877 [54]. In [37], Zolotarev
functions are used to devise an iteration which computes the polar decomposition
in just two steps. The algorithmic cost of the steps is increased compared to other
iterative techniques, but the additional computations can be performed completely in
parallel. We extend this approach for computing the polar decomposition of definite
pseudosymmetric matrices.

We call the unique rational function of degree (2r+ 1,2r) solving

min
R\in \scrR 2r+1,2r

max
x\in [ - 1, - \ell ]\cup [\ell ,1]

| sign (x) - R(x)| 

for a given 0< \ell < 1 and an integer r the type (2r + 1,2r) Zolotarev function. Here,
\scrR 2r+1,2r denotes the set of rational functions, where the numerator is a polynomial
of degree 2r + 1 and the denominator is a polynomial of degree 2r. The Zolotarev
function is given explicitly in the form of

Z2r+1(x; \ell ) :=Cx

r\prod 
j=1

x2 + c2j
x2 + c2j - 1

.(18)

The coefficients c1, . . . , c2r are determined via the Jacobi elliptic functions sn(u; \ell ) and
cn(u; \ell ) (see, e.g., [1, Chapter 17] and [2, Chapter 5]) as

ci = \ell 2
sn2( iK\prime 

2r+1 ; \ell 
\prime )

cn2( iK\prime 

2r+1 ; \ell 
\prime )
, i= 1, . . .2r,(19)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1260 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

where \ell \prime =
\surd 
1 - \ell 2 and K \prime =

\int \pi /2

0
(1 - (\ell \prime )2 sin2(\theta )) - 1/2d\theta are familiar quantities in

the context of Jacobi elliptic functions. Details on the stable computation of the
coefficients can be found in [37]. The constant C > 0 is uniquely determined, which
will later be substituted by a normalization constant \^C. We use implementations
provided as MATLAB functions in [37] for their computation.

Zolotarev also showed (see [3, Chapter 9] and [41, Chapter 4]) that Z2r+1(x; \ell )
solves

max
P,Q\in \scrP r

min
\ell \leq x\leq 1

x
P (x2)

Q(x2)
,

where \scrP r denotes the set of polynomials of rank r. For r= 1, this optimization prob-
lem was solved in [36], leading to the dynamically weighted Halley (DWH) iteration.
This iteration was used in [14] to compute the generalized polar decomposition. An
iteration based on Zolotarev functions therefore generalizes the DWH approach in
terms of higher-degree rational functions.

A key oberservation in [37] is that the composition of Zolotarev functions is again
a Zolotarev function. More precisely, it holds that

\^Z2r+1( \^Z2r+1(x; \ell ); \ell 1) = \^Z(2r+1)2(x; \ell ),

where

\^Z2r+1(x; \ell ) =
Z2r+1(x; \ell )

Z2r+1(1; \ell )
= \^Cx

r\prod 
j=1

x2 + c2j
x2 + c2j - 1

, with \^C =

r\prod 
j=1

1 + c2j - 1

1 + c2j
,(20)

is a scaled Zolotarev function and \ell 1 = \^Z2r+1(\ell ; \ell ). It can be verified that, with
r := 8, \ell \geq 10 - 16, we have Z(2r+1)2([\ell ,1], \ell ])\subseteq [1 - 10 - 15,1]. Consequently, employing

Lemma 12 twice on a matrix A = WS with g(x) = \^Z2r+1(x; \ell ), we see that the
eigenvalues of g(g(S)) will be in the interval [1 - 10 - 15,1], under the condition that
all eigenvalues of S are in [\ell ,1] with \ell \geq 10 - 16. In this sense, G(G(A)) \approx W has
converged to the polar factor W after two iterations of iteration (16). Choosing a
higher r, algorithms can be devised that converge in just one step. It was argued in
[37] that a two-step approach is a sensible choice to acquire a robust algorithm. This
way, potential instabilities, e.g., in the computation of the Zolotarev coefficients ci,
are suppressed.

The scaled Zolotarev function can be represented in a partial fraction decompo-
sition

\^Z2r+1(x; \ell ) = \^Cx

\left(  1 +

r\sum 
j=1

aj
x2 + c2j - 1

\right)  ,(21)

aj = - 

\Biggl( 
r\prod 

k=1

(c2j - 1  - c2k)

\Biggr) 
\cdot 

\left(  r\prod 
k=1,k \not =j

(c2j - 1  - c2k - 1)

\right)  .(22)

An iteration (16) derived from (21) takes the form

Xk+1 = \^C

\left(  Xk +

r\sum 
j=1

aj,kXk(X
 \star M

k Xk + c2j - 1,kI)
 - 1

\right)  .(23)
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STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1261

With M =\Sigma as a signature matrix, (23) becomes

Xk+1 = \^C

\left(  Xk +

r\sum 
j=1

aj,kXk(X
\ast 
k\Sigma X + c2j - 1,k\Sigma )

 - 1\Sigma 

\right)  .(24)

Computing the inverse via an LDL\sansT decomposition leads to a first practical iteration.\left\{   
Z2j - 1,k = (X\ast 

k\Sigma Xk + c2j - 1,k\Sigma ), [Lj ,Dj , Pj ] = ldl(Z2j - 1,k),

Xk+1 = \^C(Xk +
\sum r

j=1 ajXkPjL
 - \ast 
j D - 1

j L - 1
j P\sansT 

j \Sigma )
(25)

The first line of (25) means that, in iteration k, the LDL\sansT decomposition Z2j - 1,k =
PjLjDjL

\ast 
jP

\sansT 
j is computed for each Z2j - 1,k, j = 1, . . . , r. Pj is a permutation matrix,

Lj is lower triangular, and Dj is block-diagonal with 1\times 1 or 2\times 2 blocks. In [14], the
special case for r= 1 is derived. There, the iteration is rewritten such that it becomes
inverse free, and a hyperbolic QR decomposition is employed instead.

Lemma 13. Let \Sigma be a signature matrix, \eta \in \BbbR . For X \in \BbbK n\times n, let [ \eta X
I
] =HR,

H = [H1

H2
] \in \BbbK 2n\times n, R \in \BbbK n\times n be a decomposition such that H\ast [\Sigma \Sigma ]H = \^\Sigma , where

\^\Sigma \in \BbbR n\times n is another signature matrix. Then

\eta X(I + \eta 2X \star \Sigma X) - 1 =H1
\^\Sigma H\ast 

2\Sigma .

Proof. Applying Lemma 5.4 in [14] with V :=H and M :=N := \Sigma yields

\eta X(I + \eta 2X \star \Sigma X) - 1 =H1

\biggl( 
\Sigma H\ast 

\biggl[ 
\Sigma 

\Sigma 

\biggr] 
H

\biggr)  - 1

\Sigma H\ast 
2\Sigma =H1

\^\Sigma H\ast 
2\Sigma ,

where in the last equality we have used H\ast [\Sigma \Sigma ]H = \^\Sigma .

Using Lemma 13 with \eta = 1\surd 
c2j - 1,k

, (24) can be rewritten as\left\{       
\biggl[ 

Xk\surd 
c2j - 1,kI

\biggr] 
=

\biggl[ 
H1,j

H2,j

\biggr] 
Rj , where

\biggl[ 
H1,j

H2,j

\biggr] \ast \biggl[ 
\Sigma 

\Sigma 

\biggr] \biggl[ 
H1,j

H2,j

\biggr] 
= \^\Sigma 

Xk+1 = \^C(Xk +
\sum r

j=1
aj\surd 
c2j - 1

H1,j
\^\Sigma H\ast 

2,j\Sigma ).

(26)

As in iteration (25), the first line refers to the computation of a total of r indepen-
dent decompositions [

Xk\surd 
c2j - 1,kI ] =HjRj for j = 1, . . . , r, per iteration step. One way

of computing the needed matrix H is the hyperbolic QR decomposition, which we
introduced in Theorem 6. Computing it via a column-elimination approach is noto-
riously unstable. This is why [14] and [15] exploit a link to the LDL\sansT factorization
and introduce the LDLIQR2 algorithm.

Algorithm 8 is the pseudocode of a Zolotarev-based computation of the general-
ized polar factor. We assume that convergence is reached after just two steps, which
are explicitly written in the algorithm. For the computation of iterate X1, iteration
(26) is employed. For the computation of the H matrices, we use the LDLIQR2 algo-
rithm from [14], which showed a better numerical stability than column-elimination--
based approaches. The second iterate X2 can safely be computed using the LDL\sansT -
based iteration (25) for the same reasoning given in [37]. The parameter estimation
and the scaling of A (steps 1 and 2) is needed to make sure that the eigenvalues of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1262 PETER BENNER, YUJI NAKATSUKASA, AND CAROLIN PENKE

Algorithm 8 Hyperbolic Zolo-PD for definite pseudosymmetric matrices.

Input: Signature matrix \Sigma with p positive and n - p negative values on the diagonal,
A\in \BbbC n\times n such that \Sigma A is Hermitian positive definite, Zolotarev rank r.

Output: S = sign(A).
1: Estimate \alpha \gtrsim max\{ | \lambda | : \lambda \in \Lambda (A)\} , \beta \lesssim min\{ | \lambda | : \lambda \in \Lambda (A)\} .
2: X0\leftarrow 1

\alpha A, \ell \leftarrow \beta 
\alpha .

First iteration:
3: for j = 1, . . . ,2r do

4: cj\leftarrow \ell 2sn2( iK\prime 

2r+1 ; \ell 
\prime )/cn2( iK\prime 

2r+1 ; \ell 
\prime ).  \triangleleft See (19)

5: end for
6: for j = 1, . . . , r do

7: aj\leftarrow  - (
\prod r

k=1(c2j - 1  - c2k)) \cdot 
\Bigl( \prod r

k=1,k \not =j(c2j - 1  - c2k - 1)
\Bigr) 
.  \triangleleft See (22)

8: end for

9: \^C\leftarrow 
\prod r

j
1+c2j - 1

1+c2j
 \triangleleft See (20)

10: Compute X1 according to (26), using the LDLIQR2 algorithm in [14]:\left\{       
\biggl[ 

X0\surd 
c2j - 1I

\biggr] 
=

\biggl[ 
H1,j

H2,j

\biggr] 
Rj , where

\biggl[ 
H1,j

H2,j

\biggr] \ast \biggl[ 
\Sigma 

\Sigma 

\biggr] \biggl[ 
H1,j

H2,j

\biggr] 
= \^\Sigma 

X1\leftarrow \^C(Xk +
\sum r

j=1
aj\surd 
c2j - 1

H1,j
\^\Sigma H\ast 

2,j\Sigma ).

11: \ell \leftarrow \^C\ell 
\prod r

j=1(\ell 
2 + c2j)/(\ell 

2 + c2j - 1).

12: Repeat step 3 to step 9 to update cj for j = 1, . . . ,2r and aj for j = 1, . . . , r and
\^C.
Second iteration:

13: Compute X2 according to (25):\left\{   
Z2j - 1,k = (X\ast 

k\Sigma Xk + c2j - 1,k\Sigma ), [Lj ,Dj , Pj ] = ldl(Z2j - 1,k),

Xk+1\leftarrow \^C(Xk +
\sum r

j=1 ajXkPjL
 - \ast 
j D - 1

j L - 1
j P\sansT 

j \Sigma ).

14: if \| X2  - X1\| F /\| X2\| F \leq u1/(2r+1) then
15: S\leftarrow X2.
16: else
17: A\leftarrow X2, return to step 1.
18: end if

self-adjoint factor lie in the interval [\ell ,1] (see Lemma 12 and the discussion following).
In our implementation, these are bounded using the MATLAB functions normest and
condest.

Algorithm 8 converges even for badly conditioned matrices. As explained in [37],
for well-conditioned A, it is possible to skip the first iteration or choose a lower
Zolotarev rank r < 8.

In exact arithmetic, the algorithm converges in two steps, as argued above. As
a safeguard for numerical errors, we adopt the stopping criterion from [37], \| X2  - 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/2

2/
23

 to
 1

93
.1

75
.5

3.
21

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



STRUCTURE-PRESERVING DIVIDE-AND-CONQUER 1263

X1\| F /\| X2\| F \leq u1/(2r+1), to guarantee convergence, using the known convergence
rate of 2r+1. We assume calculations are carried out in IEEE double precision with
unit roundoff u= 2 - 53 \approx 1.1\times 10 - 16.

6. Numerical experiments. In this section, we apply one step of spectral
divide-and-conquer (Algorithm 3) on definite pseudosymmetric matrices. The ma-
trix sign function is computed by the hyperbolic Zolo-PD algorithm (Algorithm 8),
algorithms based on the \Sigma DWH iteration presented in [14], or a scaled Newton iter-
ation with suboptimal scaling presented in [22]. We expect these algorithms to show
the same convergence properties as in the symmetric case due to Lemma 11. Zolo-PD
should converge in two steps, \Sigma DWH in six steps, and Newton in nine steps. We use
Algorithm 6 or 7 to compute (\Sigma , \^\Sigma )-orthogonal subspace representations used in the
spectral division. All experiments are performed in MATLAB R2017a using double-
precision arithmetic running on Ubuntu 18.04.5, using an Intel(R) CoreTM i7-8550U
CPU with 4 cores, 8 threads, and a clock rate of 1.80GHz. Random matrices are
generated with a seed defined by rng(0). We choose r according to Table 3.1 in [37];
i.e., the condition number is estimated and r is chosen such that a convergence within
two steps is guaranteed, as outlined in section 5.3.

6.1. Random pseudosymmetric matrices. The goal of our first numerical
experiment is to determine the achieved accuracy with different methods for comput-
ing the matrix sign function.

Example 1. \Sigma is a signature matrix, where the diagonal values are chosen to
be 1 or  - 1 with equal probability. Given a number \kappa = cond(A), we generate real
250\times 250 matrices as A=\Sigma QDQ\sansT . D is a diagonal matrix containing equally spaced
values between 1 and \kappa . Q is a random orthogonal matrix (Q=orth(rand(n,n))
in MATLAB). We perform 10 runs for different randomly generated matrices and
compare the backward error represented by \| Q\sansT 

+\Sigma AQ - \| F/\| A\| F that is achieved by
the different methods described in this work, [14], and [22].

The averaged results are given in Figure 1. All methods yield backward errors
smaller than 10 - 9, even for badly conditioned matrices. All show a similar behavior.
Hyperbolic Zolo-PD exhibits the highest backward error. Compared to the DWH-
based iteration, this is expected because Zolotarev functions of higher order are used.
The direct application of Zolotarev functions of high degree is known to be unstable
[37]. In the indefinite setting, this phenomenon seems to appear sooner than in the
setting described in [37]. The accuracy of DWH can be improved by employing
permuted Lagrangian graph (PLG) bases. This way, the accuracy is comparable to
a Newton approach [22]. PLG bases can also be employed for Zolotarev iterations of
higher order but go beyond the scope of this work.

Figure 2 displays the data of the individual runs of the same experiment. Here,
we see that even badly conditioned matrices often achieve a backward error of 10 - 14,
but some outliers increase the average. Further investigations are required in order
to answer the question of what backward error can be achieved for a given matrix.
The red crosses denote the matrices of a given \kappa for which hyperbolic Zolo-PD per-
formed worst. We see that, for the same matrices, \Sigma DWH with LDLIQR2 and the
Newton iteration also perform worse than on other matrices generated in the same
way. The quality, therefore, seems innate to the considered matrix. When PLG bases
are employed, this relation cannot be observed as clearly but is still noticeable.

The second example provides first insights on the performance which can be
expected by using different methods.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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101 103 105 107 109 1011 1013 1015
10 - 15

10 - 14

10 - 13

10 - 12

10 - 11

10 - 10

10 - 9

10 - 8

\kappa 

\| Q
\sansT +
\Sigma 
A
Q

 - 
\| F

/
\| A

\| F

Hyperbolic Zolo-PD with LDLIQR2

\Sigma DWH with LDLIQR2

\Sigma DWH with PLG bases
Newton

Fig. 1. Example 1: Average residual after one spectral divide-and-conquer step, for 10 random
matrices of size 250\times 250 with certain condition numbers. Different methods are used for computing
the matrix sign function.

Example 2. A random matrix of size 5000 \times 5000 is generated as in Example
1. We measure the number of iterations and the runtime using different methods
to compute the matrix sign function. We measure the runtime of the sequential
implementation of Zolo-PD, as well as the runtime resulting from its critical path.
This means that we only take the runtime of one of the r independent steps in each
iteration, i.e., the first lines in iterations (25) and (26), into account. This runtime
reflects a performance which can be achieved when these independent computations
are implemented in parallel. We compare it to runtimes achieved by \Sigma DWH based
on LDLIQR2 and \Sigma DWH based on LDL\sansT factorizations [16] and the Newton iteration
[22]. The computation of PLG bases is not yet suited for large-scale performance-
critical algorithms, which is why it is not included in the comparison. The results are
found in Table 1.

The methods converge as expected, and all except \Sigma DWH with LDL\sansT show good
accuracy. \Sigma DWH with LDL\sansT is known to be unstable for badly conditioned matrices
[14]. However, if it converges, it is the fastest among the measured methods. The
computational effort of one \Sigma DWH iteration based on LDL\sansT is comparable to the
effort of one Newton iteration that is also based on an LDL\sansT factorization. \Sigma DWH
converges in up to 6 steps, and Newton uses up to 9 steps. If LDLIQR2 is employed
instead of LDL\sansT in \Sigma DWH, the computational effort doubles because a second LDL\sansT 

decomposition is used for ``reorthogonalization."" This makes it slower than the New-
ton iteration.

Measuring the runtime of the critical path of hyperbolic Zolo-PD, i.e., including
only the computation of one addend in (25), gives an idea of the wall time that
could be achieved in a parallel setting. In this sense, we achieve a runtime reduction
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(a) Hyperbolic Zolo-PD
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(b) \Sigma DWH with LDLIQR2
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A
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(c) \Sigma DWH with PLG bases
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\sansT +
\Sigma 
A
Q

 - 
\| F

/\| 
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(d) Newton

Fig. 2. Example 1: Residuals after one step of spectral divide-and-conquer for 10 runs with
randomly generated matrices of certain condition numbers.

Table 1
Example 2: Number of iterations, runtimes, and error for different methods of spectral division

for a matrix of size 5000\times 5000. \Sigma DWH with LDL\sansT did not converge for matrices with \kappa = 1012.

\kappa 102 108 1012

hyperbolic Zolo-PD 2 2 2

\# iterations \Sigma DWH with LDLIQR2 5 6 6
\Sigma DWH with LDL\sansT 5 6 x

Newton 7 9 9

hyperbolic Zolo-PD
(critical path)

941.70
(298.66)

1136.91
(255.86)

1240.86
(257.70)

Runtime \Sigma DWH with LDLIQR2 883.79 988.39 1067.43
\Sigma DWH with LDL\sansT 281.95 304.27 x

Newton 355.05 379.38 416.19

hyperbolic Zolo-PD 7.42e-14 1.05e-11 1.78e-13
Backward error
\| Q\sansT 

+\Sigma AQ - \| F
\| A\| F

\Sigma DWH with LDLIQR2 7.88e-14 2.81e-12 3.29e-13

\Sigma DWH with LDL\sansT 8.50e-14 1.38e-11 x

Newton 1.70e-13 6.66e-13 1.01e-13

of 38\% for badly conditioned matrices compared to Newton when using hyperbolic
Zolo-PD. The main building blocks of all iterations are LDL\sansT decompositions and
matrix multiplications, so they would benefit equally by further optimizations of these
routines.
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Hyperbolic Zolo-PD could be accelerated at the cost of stability, when one LDL\sansT 

decomposition is used instead of LDLIQR2 in each iteration step.

6.2. Applications in electronic structure computations. We now apply
the developed method to two motivating examples concerning electronic excitations
in solids and molecules.

Example 3. The exciting package [25, 50] implements various ab initio methods
for computing excited states of solids or molecules, based on (linearized) augmented
planewave + local orbital ((L)APW+ lo) methods. It can be used to compute the
optical scattering spectrum of lithium fluoride based on the BSE. The main compu-
tational effort in this example is to compute eigenvalues and eigenvectors of a matrix
of the form

HLF =

\biggl[ 
ALF BLF

 - BLF  - ALF

\biggr] 
\in \BbbC 2560\times 2560, ALF =A\sansH 

LF , BLF =B\sansH 
LF .(27)

HLF is obviously pseudo-Hermitian with respect to \Sigma = diag (In, - In). Due to
the additional structure, the eigenvalues are known to come in pairs of \pm \lambda [16]. One
step of spectral division results in a positive definite matrix, from which all eigenvalues
and eigenvectors can be reconstructed. We extracted the matrix from the FORTRAN-
based exciting code as a test example for our MATLAB-based prototype.

The results in Table 2 show that convergence is achieved in a limited number of

iterations for all methods, as expected. The reported backward error
\| Q\sansT 

+\Sigma AQ - \| F

\| A\| F

depends largely on the chosen method for computing a hyperbolic subspace represen-
tation. The Cholesky-based method does not work well. The eigenvalues smallest in
modulus easily ``pass over"" such that the computed quantities \Sigma P+ or  - \Sigma P - have
negative eigenvalues. The Cholesky-based method in Algorithm 6 does not accurately
capture this behavior, while the LDL\sansT -based method alleviates the effect through
pivoting.

All methods for computing the matrix sign function work equally well concerning
accuracy because HLF is well conditioned (cond(HLF )\approx 10).

Example 4. In [11, 10], a Bethe--Salpeter approach is explored in the context
of tensor-structured Hartree--Fock theory for molecules [42]. We consider the N2H4

example in [11]. With real-valued orbitals, the derivation arrives at a structured
eigenvalue problem similar to Example 3 but with real values.

Table 2
Example 3: Results for Bethe--Salpeter matrix computed for lithium fluoride.

hyperbolic

Zolo-PD

\Sigma DWH with

LDLIQR2

\Sigma DWH with

LDL\sansT 
Newton

\# iterations 2 5 5 7
Zolotarev rank 4 1 1 not applicable

Backward error
(Cholesky,

Algorithm 6)

1.02e-10 7.42e-11 9.62e-11 2.48e-10

Backward error
(LDL\sansT ,

Algorithm 7)

6.93e-18 7.26e-18 6.99e-18 1.48e-17
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Table 3
Example 4: Results for Bethe--Salpeter matrix computed for N2H4.

hyperbolic
Zolo-PD

\Sigma DWH with
LDLIQR2

\Sigma DWH with
LDL\sansT 

Newton

\# iterations 2 5 5 7

Zolotarev rank 5 1 1 not applicable

Backward error
(Cholesky,

Algorithm 6)

1.19e-18 9.23e-19 1.46e-17 2.04e-18

Backward error
(LDL\sansT ,

Algorithm 7)

1.22e-18 9.62e-19 1.46e-17 2.13e-18

0 5 10 15 20 25 30
6

8

10

12

14

16

eigenvalues

en
er
gy

(e
V
)

Original matrix HN2H4 ∈ R2n×2n

Positive definite matrix HN2H4,+ ∈ Rn×n

after spectral division

Fig. 3. Example 4: Absolute values of eigenvalues corresponding to N2H4.

HN2H4
=

\biggl[ 
AN2H4

BN2H4

 - B\sansT 
N2H4

 - A\sansT 
N2H4

\biggr] 
\in \BbbR 1314\times 1314, AN2H4

=A\sansT 
N2H4

, BN2H4
\approx B\sansT 

N2H4
.

(28)

While the original derivation in [42] yields a symmetric off-diagonal block B, in the
construction in [11], this property is lost. The property of pseudosymmetry, however,
is not affected, making our developed method applicable.

Numerical results of the spectral division are found in Table 3. All methods yield
good results (cond(HN2H4

)\approx 5). In contrast to Example 3, no problem occurs when
the Cholesky decomposition is used for computing hyperbolic subspace representa-
tions. An explanation is probably linked to the fact that real matrices instead of
complex ones are considered but this requires further investigation.

Figure 3 corresponds to Figure 2 in [11] and displays absolute values of the ei-
genvalues of HN2H4

. The red crosses denote the eigenvalues of the positive definite
matrix resulting after one step of spectral division (A11 in Algorithm 3). The remain-
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ing eigenvalues have (approximately) equal modulus but opposite sign and are found
as the eigenvalues of the negative definite matrix (A22 in Algorithm 3).

7. Conclusions. We presented a generalization of the well-known spectral
divide-and-conquer approach for the computation of eigenvalues and eigenvectors of
pseudosymmetric matrices. In particular, when matrices with additional definiteness
properties are considered, many parallels to the symmetric divide-and-conquer method
become apparent. These parallels allow a computation of the matrix sign function, the
key element for spectral division approaches, in just two iterations, using Zolotarev
functions. Furthermore, the eigenvalue problem is decoupled into two smaller sym-
metric eigenvalue problems that can be solved with existing techniques. The presented
algorithm is a promising new approach in the field of computing electronic excitations.

As we presented a completely new approach for structured eigenvalue computa-
tions, naturally, many possible future research directions open up as a consequence
of this work. It is possible to use PLG bases, as presented in [16], to further improve
the accuracy of the Zolotarev iteration for computing the matrix sign function. This
should go hand in hand with a well-founded analysis of the stability of the proposed
methods. In the same vein, the numerical behavior of the subspace computations
(Algorithms 6 and 7) is not yet fully understood, as the examples presented in sec-
tion 6.2 show. Regarding the applications concerning electron excitation, the matrices
((9) to (11)) show even more structure than has been exploited in the presented meth-
ods. Making the proposed iterations aware of these structures such that they operate
directly on the matrix blocks A and B is a promising direction towards even more
efficient methods.
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