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Abstract

Entrainment depends on sequential neural phase reset by regular stimulus

onset, a temporal parameter. Entraining to sequences of identical stimuli also

entails stimulus feature predictability, but this component is not readily sepa-

rable from temporal regularity. To test if spectral regularities concur with tem-

poral regularities in determining the strength of auditory entrainment, we

devised sound sequences that varied in conditional perceptual inferences

based on deviant sound repetition probability: strong inference (100% repeti-

tion probability: If a deviant appears, then it will repeat), weak inference (75%

repetition probability) and no inference (50%: A deviant may or may not repeat

with equal probability). We recorded EEG data from 15 young human partici-

pants pre-attentively listening to the experimental sound sequences delivered

either isochronously or anisochronously (�20% jitter), at both delta (1.67 Hz)

and theta (6.67 Hz) stimulation rates. Strong perceptual inferences signifi-

cantly enhanced entrainment at either stimulation rate and determined posi-

tive correlations between precision in phase distribution at the onset of

deviant trials and entrained power. We conclude that both spectral predictabil-

ity and temporal regularity govern entrainment via neural phase control.

KEYWORD S
conditional inference, entrainment, neural phase, prediction, spectrotemporal regularities,
temporal expectations

1 | INTRODUCTION

The alert human brain is often described as
‘desynchronized’ to distinguish its awake activity pat-
terns from the large synchronous states occurring during
sleep (Ahmed & Cash, 2013). Yet the desynchronized
brain spontaneously generates rhythmic activity
across different characteristic frequencies (Keitel &

Gross, 2016). Furthermore, when external periodic
stimulation—a flashing light, a sound sequence—is used
to ‘hijack’ the alert brain’s rhythmic mode (Keitel
et al., 2014), brain activity becomes phase aligned to the
rate of regular stimulus presentation. This phenomenon,
termed neural entrainment, is assumed to depend on the
precision of the temporal parameter in input, as neural
phase aligns with the stimulus stream (Lakatos
et al., 2019). Phase alignment is preeminently controlled
by periodic phase reset caused by successive stimulus
onset at regular times, and because the phase of neuronal

Abbreviations: EEG, electroencephalogram; FDR, false discovery rate;
FFT, fast Fourier transform.
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oscillations closely reflects the underlying rhythmic fluc-
tuation of neuronal excitability, entrainment determines
a gain in stimulus processing relative to aperiodic stimu-
lus sequences (Lakatos et al., 2005). Entrained neural
oscillations also make it computationally efficient to pre-
dict the onset of the next stimulus. Hence, entrainment
has been proposed as a mechanism for the cyclic deploy-
ment of attention in time, aligning the excitability of neu-
ronal ensembles to stimulus onset probability (Lakatos
et al., 2008; Obleser & Kayser, 2019).

However, the repetition of identical stimuli entails
stimulus feature predictability, raising the issue of
whether temporal regularity may be a necessary, but not
sufficient component to account for variance in neural
entrainment. Lakatos et al. (2013) and O’Connell
et al. (2014) working on animal data first showed that
attention to external rhythmic sound sequences results in
two main spectral effects: (1) amplification of neural
responses in A1 to the stimulation frequency (frequency
tuning) at predicted sound onset times and (2) concurrent
suppression of activity for ignored frequencies. Hence,
the authors suggested that entrainment should be best
understood as a neural spectrotemporal sensory filter,
rather than just as a temporal filter. Evidence that audi-
tory prediction is spectrotemporal in nature also comes
from the frequency tagging approach for the study of cog-
nition (Keitel et al., 2014), according to which periodic
stimulation activates stimulus-specific neuronal ensem-
bles (Rossion, 2014). Furthermore, recent evidence in
nonhuman primates in a pre-attentive setting suggests
that entrainment in the delta band can be internally

(i.e., top-down) guided by the repetition (grouping) of
random acoustic patterns, in the absence of any cues as
to pattern onset/offset (Barczak et al., 2018).

We aimed at contributing to this line of investigation
by testing the sensitivity of neural entrainment to condi-
tional perceptual inferences in audition. We parame-
trized spectral predictability as a conditional inference
rule based on deviant sound repetition and assumed that
under high deviant repetition probability entrainment to
regular sound onset would be less perturbed by deviancy
onset, that is, spectral predictability should reduce uncer-
tainty in encoding the temporal component of entrain-
ment. We asked young human participants to pre-
attentively listen to oddball sound sequences carrying
block-wise evidence for varying degrees of deviant sound
repetition probability: strong inferential rule, with 100%
repetition probability (‘if a deviant appears, then it will
repeat’); weak inferential rule, with 75% probability of
deviant repetition; and no inferential rule, with 50% prob-
ability of deviant repetition. The onset of the first devi-
ants of a pair—and, if licenced by the condition, of single
deviants—within each sound sequence was made
unpredictable by pseudorandomly determining the num-
ber of standards preceding first deviants (minimal inter-
val of two standards). Implicit statistical learning was the
driving force driving perceptual inferencing in audition,
as participants’ attention was captured by a silenced
video (see Figure 1).

If entrainment relies on both temporal regularity and
stimulus predictability, then an interaction should
emerge favouring isochronous sequences carrying

F I GURE 1 Sound sequences. Two

50-ms pure tones, a 500-Hz standard and

a 560-Hz deviant, were arranged in

isochronous or anisochronous sound

sequences. Anisochrony was obtained

using a �20% jitter, uniformly

distributed in steps of 5 ms for theta

rhythms (6.67 Hz, corresponding to

150-ms stimulus onset asynchrony

[SOA]), and 30 ms for delta rhythms

(1.67 Hz, corresponding to 600-ms SOA).

Blue colour codes for strong inference

conditions (100% deviant repetition), red

colour for weak inference conditions

(75% deviant repetition) and yellow

colour for the absence of a perceptual

inference on repeated deviant onset (50%

deviant repetition)
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evidence for a strong inferential rule. Our proposal also
fits an alternative way of looking at entrainment as the
‘process by which a system returns to synchrony after a
perturbation’ (Large & Jones, 1999, p. 127), under the
assumption that predictability in deviant event onset sup-
presses the amount of sensory surprise generated by the
event. To extend the spectrotemporal entrainment
hypothesis beyond slow rhythms, we tested the effects of
conditional inferencing and temporal regularity at both
delta (1.67 Hz) and theta stimulation rates (6.67 Hz).

2 | MATERIALS AND METHOD

2.1 | Participants

Data were collected at the Wilhelm Wundt Institute for
Psychology of Leipzig University (Germany). An ERP
analysis of part of the dataset was previously published
(Tavano et al., 2014). Out of 20 originally recorded partic-
ipants, all of whom gave their written informed consent
to the study, 15 were viable for the present analysis (8 F,
age mean = 25, SD �4 years, range 20–30 years). Data
from four participants contained recording mishaps, and
the results of a fifth participant were discarded during
the analysis stage, as very few deviant epochs survived a
delta threshold (see Section 2.3). Participants sat alone in
an electrically shielded, sound-attenuated chamber. They
were instructed to direct their attention to a silenced,
subtitled movie on a computer screen (15 inches,
distance = 120 cm), while sound trains were diotically
presented to them (pre-attentive auditory stimulation).

2.2 | Stimuli and experimental design

Sounds were two 50-ms pure tones, a 500-Hz standard
and a 560-Hz deviant (ramp 10 ms, Tukey window).
Sound sequences were delivered at two stimulation rates:
delta rhythms running at a mean frequency of 1.67 Hz
(mean stimulus onset asynchrony [SOA] = 600 ms) and
theta rhythms running at a mean frequency of 6.67 Hz
(mean SOA = 150 ms). For each stimulation rate, two
factors were independently manipulated: temporal regu-
larity and conditional inference (see Figure 1a). The tem-
poral regularity factor was organized into two levels:
isochronous versus anisochronous delivery, with jitter
values up to �20% randomly selected from a pool of nine
uniformly distributed steps increasing/decreasing by
30 ms for delta sequences and 5 ms for theta sequences.
The conditional inference factor was organized by the
probability of deviant tone repetition. While the onset of
a single deviant or of the first deviant tone of a pair

within sound sequences was always unpredictable,
repeated deviant tone probability was blocked by condi-
tion: 100% probability (strong inference condition), 75%
(weak inference condition) or 50% (no inference
condition).

The number of deviant pairs (N = 120) was kept con-
stant across conditions to control for neural refractoriness
effects in deviant repetition. In the strong inference con-
dition, there were 1200 standard tones (83.3%) and
240 deviant stimuli (16.7%, no single deviants). In the
weak inference condition, there were 1550 standard tones
(86.2%) and 280 deviant stimuli (15.3%, 40 single devi-
ants). In the no inference condition, there were 2400
standard tones (87%) and 360 deviant stimuli (13%,
120 single deviants). There were at least two standards
preceding each first or single deviant onset. Delta stimu-
lus sequences were delivered in 20 blocks, 10 isochro-
nous—three each for strong and weak inference
conditions and four for the no inference condition—and
10 anisochronous. Theta stimulus sequences were deliv-
ered in six blocks, three isochronous—one for each infer-
ence condition—and three anisochronous. Condition
order presentation was randomly interleaved within
participants.

2.3 | EEG data collection and pre-
processing

The electroencephalogram (EEG) was DC-recorded at
512-Hz sampling rate using an ActiveTwo amplifier sys-
tem (BioSemi, Amsterdam, the Netherlands; biosemi.
com), with a 32-electrode cap organized according to the
10/20 system, and additional electrodes over the left and
right mastoids. Horizontal and vertical eye movements
were monitored using electrodes placed below the outer
canthi of both eyes and at the nasion. The reference was
placed on the tip of the nose.

EEG data were processed using custom scripts in
Matlab (mathworks.com). Channels with technical mal-
function (range 1–4 in seven participants) were interpo-
lated using a spherical spline. EEG signal was offline
passband filtered .2–40 Hz (Kaiser window, Beta 5.6533,
filter length = 4637 points). Electroocular artefacts were
corrected via regression weights, individually calculated
using standardized ocular movements recorded prior to
the experiment (Schlögel et al., 2007). The plugins
sphspline0.2 and firfilt1.6.2 for the Matlab toolbox
EEGLAB (eeglab.org, Delorme & Makeig, 2004) were
used for interpolation and filtering, respectively (version
14_1_2b).

The strength of entrainment was calculated as the
EEG power at stimulation frequency, estimated by means
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of the fast Fourier transform (FFT), using the Matlab
function fft.m. As the length of the input vector deter-
mines FFT resolution, to grant a fair comparison, we
trimmed the data to the same segment length in all con-
ditions. For theta stimulus sequences, each block was cut
to 110,000 points (about 214 s), the duration of the strong
inference condition. For delta stimulus sequences, we
selected the first three blocks of each condition, cut each
of them to 110,000 points and then concatenated the
three blocks. The pre-processing pipeline was common to
both stimulation rate contexts: Z scoring (electrode wise),
first-order detrending, Hann windowing, applying a com-
plex modulus (Matlab function abs.m) to the analytic sig-
nal (FFT) to extract global power estimates for each
electrode using the absolute value corrected for the Hann
window loss of power (sqrt(1.5)) and normalizing by the
length of the Hann window (calculated using the next
power of two: 131,072 points, equal to the number of fre-
quency points to calculate the discrete Fourier trans-
form). For delta stimulus sequences, we used a moving
FFT window, with half-window overlap.

Auditory deviance detection has been shown to rely
on at least two neural generators, a frontal one and a
supratemporal one (Deouell, 2007). Hence, we analysed
entrainment at both frontal and posterolateral (mastoid)
electrodes, which likely pick up activity from both gener-
ators, but with different sensitivity: The frontal one likely
reflects top-down effects on deviancy, and the
supratemporal one is more sensitive to purely sensory
deviancy magnitude (Schröger, 1998). The tip-of-the-nose
reference helps avoiding systematic differences between
hemispheres. We selected frontal (F3, Fz and F4) and
mastoid (M1 and M2) electrodes to separately analyse the
responses of the two neural generators. Scalp topogra-
phies were obtained using the topoplot function from
EEGLAB. Spectral profile plots were obtained by averag-
ing power estimates separately across frontal and mastoid
electrodes. Noise-referenced power estimates for delta
stimulus sequences were calculated for each frequency
point by subtracting the average of two samples to the left
and two to the right of the stimulation frequency bin,
beginning from the second sample to each side. For theta
stimulus sequences, we used six points to each side, again
beginning from the second sample to each side.

Single-trial phase and power analyses were run on
deviant pair trials (delta trial epoch: 4 s, 2-s baseline;
theta trial epoch: 2.5 s, 1-s baseline) in isochronous
sequences surviving a delta threshold (120 μV) applied to
the selected frontal and temporal electrodes and further
equated in number across conditions (range N trials for
delta stimulus sequences: 30–66; for theta stimulus
sequences, 61–81). A Hilbert transform was applied to
bandpassed filtered trials for Fz electrode only (delta

sequences, 1.2–2.2 Hz; theta sequences, 6.2–7.2 Hz;
Kaiser window, Beta 5.6533, filter length = 3093 points),
obtaining individual phase time courses in radians
(Matlab function angle.m) and corresponding power time
courses in μV2. Plotting was helped by the functions
ShadedErrorBar.m (Campbell, 2021), barwitherr.m
(Callaghan, 2021) and distributionPlot.m (Jonas, 2021).

2.4 | Statistical analyses

Noise-referenced global power values were subjected to a
series of univariate repeated-measures analyses of vari-
ance (rmANOVAs) using the Matlab function anovan.m
with factors temporal regularity (isochronous and
anisochronous), conditional inference (strong, weak and
no inference) and stimulation rate (delta, theta), sepa-
rately for frontal and mastoid sites. Two-sided, one-
sample t tests were used to verify the presence/absence of
entrainment in each condition, while two-sided, two-
sample t tests were used to compare individual condi-
tions. False discovery rate (FDR) correction with
Q value = .05 was applied in all cases of multiple com-
parisons: both the threshold p value and the uncorrected
p value are reported (Genovese et al., 2002).

To evaluate whether conditional inferences affect
entrainment from the start, we matched the mean num-
ber of stimuli between delta and theta sequences by pro-
portionally reducing the duration of the FFT input vector
for theta sequences to a quarter relative to delta
sequences, given that theta sequences run four times as
fast as delta sequences: delta, 110,000 points,
corresponding to about 214 s; theta, 27,500 points, equal-
ling about 53 s. Then, we further parametrized those
durations by dividing them by half, and then by four, in
the end obtaining three FFT input vector lengths for each
stimulation rates: long, medium and short. The resulting
power estimates were subjected to a rmANOVA with fac-
tors segment duration (three levels), conditional infer-
ence (three levels) and stimulation rate (delta and theta).

Phase precision was calculated across trials within a
peristimulus interval (200 ms for delta sequences and
50 ms for theta sequences) as the inverse of circular vari-
ance (Berens, 2009). A cluster-based permutation test
(Matlab function permutest.m, Gerber, 2021) was used to
detect significant differences between phase time courses
within each stimulation rate. The correlation coefficient
(Matlab function corrcoef.m) was used to estimate the
correlation between single-trial phase and single-trial
power, as well as between single-trial phase and noise-
referenced global power. The significance of correlation
peaks was determined via resampling by randomizing
phase distribution across trials for each time point,
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creating 2000 random phase predictors per condition.
Steiger’s Z test was used to assess significant differences
in correlation coefficient peaks. To determine the signifi-
cance of peak latency differences, we used a jackknife
resampling approach and entered the resulting estimates
into a two-sided, two-sample t test.

3 | RESULTS

3.1 | Neural entrainment at frontal sites

The importance of regular onset time to generate entrain-
ment was verified by a main effect of Temporal regular-
ity: F(1,28) = 42.37, p ≤ .0001, ηp2 = .60. Anisochrony
prevented entrainment in all conditions (FDR-corrected
threshold p = .0098): All one-sample ts(14) ≤ 2.09, all
p values ≥ .0544 (see Figure 2a,b). Conversely, all iso-
chronous conditions were well above noise level: all
ts(14) ≥ 4.26, all ps ≤ .0007, (see Figure 2c), except for the
delta rhythm, no inference condition, which did not sur-
vive FDR correction (t(14) = 2.63, p = .0196).

Confirming our hypothesis, a significant interaction
emerged between the factors conditional inference and
temporal regularity: F(2,28) = 11.55, p = .0002, ηp2 = .44.
Additionally, we found a main effect of conditional
inference for isochronous sequences: F(2,28) = 7.29,
p = .0028, ηp2 = .34. The conditional inference factor
was not significant for anisochronous sequences:
F(2,28) = 2.29, p = .0925. Isochronous tone sequences
governed by a strong inference rule (mean noise-
referenced power, SNR = .019, SD = .010) led to a sig-
nificantly more robust neural entrainment than tone
sequences with a no inference rule (mean = .011,
SD = .009): t(14) = 3.59, p = .0028. No other differences
survived FDR correction (FDR-corrected threshold
p = .0167): all ts ≤ 2.31, all ps ≥ .0361. Entrainment at
delta and theta rhythms was similarly modulated by
conditional perceptual inferences.

3.2 | Neural entrainment at mastoid
sites

Regular onset time distribution was the sole determiner
of entrainment at mastoid sites: F(1,28) = 26.68,
p = .0001, ηp2 = .48. Anisochrony prevented entrain-
ment in all conditions (FDR-corrected threshold
p = .0098): all one-sample ts ≤ 1.36, all p values ≥ .1949
(see Figure 3a,b). All isochronous theta conditions were
above noise level: all ts(14) ≥ 6.39, all ps ≤ .0001 (see
Figure 3c). The significance of isochronous delta condi-
tions did not survive FDR correction: all ts(14) ≥ 2.41, all
ps ≤ .0300. No other significant main effect or interaction
was found: all Fs ≤ 1.88, all ps ≥ .1708.

3.3 | Development of entrainment
effects

Does conditional inferencing determine the strength of
entrainment early on, or do its effects develops gradually?
At frontal sites, we found main effects of factors condi-
tional inference: F(2,28) = 6.41, p = .0051, ηp2 = .33, and
segment duration: F(2,28) = 5.84, p = .0076, ηp2 = .29. No
significant effect of stimulation rate (delta vs. theta) was
found: F(2,28) = .01, p = .9065. This confirms that condi-
tional inferences effects applied similarly within delta
and theta bands. There were no significant interactions:
all Fs ≤ 1.39, all ps ≥ .1481. Hence, we infer that condi-
tional inferences contribute to the very generation of
noise-normalized entrainment and are not applied at a
later processing stage.

Regardless of segment duration, strong inference con-
ditions (mean = .016, SD = .011) led to more robust
entrainment than both weak (mean = .008, SD = .0075)
and no inference (mean = .008, SD = .009) conditions:
all ts(14) ≥ 2.92, all ps ≤ .0110. No significant difference
was found between weak and no inference conditions:
t(14) = �.05, p = .9592 (see Figure 2f, upper panel).

F I GURE 2 Temporal and spectral predictions co-modulate auditory entrainment. (a) Neural entrainment profiles were extracted from

averaged frontal electrodes (F3, Fz and F4) activity. Scalp maps illustrate the spatial distribution of neural entrainment across conditions.

Entrainment to isochronous stimulus sequences in the delta band was modulated by conditional inferencing, resulting in larger activity for

the strong inference condition. The lower panel illustrates the absence of entrainment in all conditions when the stimulation is

anisochronous. (b) Results in (a) were replicated for isochronous stimulus sequences in the theta band. (c) Noise-referenced power estimates

highlighted a significant interaction between temporal regularity and conditional inference factors regardless of stimulation frequency. The

inset to the right-hand side illustrates the noise-referencing procedure (cyan and green colours indicate the values to the right and left that

are averaged and subtracted from the peak value). Violin plots highlight the shape of the distribution. Full horizontal bars indicate the

median, while dashed ones indicate the interquartile range. (d) Entrainment resulting from averaged mastoid responses. (e) Entrainment at

mastoid level shows only a main effect of temporal regularity. (f) The development of entrainment according to sensory evidence, matched

by number of deviant pairs across stimulus frequencies. Frontal entrainment is independently modulated by sensory inference (strong

inference) and the amount of sensory evidence for such inference. p value notation: **≤.01; *≤.05; ns = non-significant
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Medium length segments (mean = .0140, SD = .0090)
entrained more robustly than short segments
(mean = .0065, SD = .0107): t(14) = 3.21, p = .0061. Long
segments (mean = .012, SD = .006) entrained more
robustly than short segments, but the difference did not
survive FDR correction: t(14) = 2.27, p = .0393. Long and
medium segments did not significantly differ:
t(14) = �.78, p = .4477.

At mastoid sites, entrainment was solely driven by
the segment duration factor: F(2,28) = 21.62, p ≤ .0001,
ηp2 = .60. Long segments (mean = .010, SD = .007) and
medium segments (mean = .007, SD = .008) entrained
more robustly than short segments (mean = .002,
SD = .007): all ts(14) ≥ 3.69, all ps ≤ .0024. In turn, long
segments entrained more robustly than medium seg-
ments: t(14) = 2.72, p = .0163. No other significant main
effect of interaction was found: all Fs ≤ 3.20, all
ps ≥ .0562 (see Figure 2f, lower panel).

3.4 | Stimulus predictability controls the
neural phase of entrained power

How do inferential rules modulate the contribution of
deviant neural responses to auditory entrainment? We
hypothesized that reducing the need to process the spec-
tral features of predictable repeated deviants would sig-
nificantly enhance the temporal precision in processing
deviant onset across trials. To test this, we calculated per-
istimulus phase precision as the inverse of circular vari-
ance for both first and repeated deviant onset across
individual trials, per participant and condition, separately
for delta and theta sequences (see Figure 3a,b). A cluster-
based permutation test highlighted no significant differ-
ences in either deviant position or conditional inference
levels (strong vs. no inference conditions, the ones that
showed significant differences), suggesting that phase
precision was statistically similar across conditions: delta

rhythms, all ts ≤ 20.38, all ps ≥ .1627; theta rhythms, all
ts ≤ 5.55, all ps ≥ .1336.

However, while phase precision differences may not
be statistically significant, they can still drive significant
differences in their relationship with entrained power. To
test this, we estimated the portion of the neural signal
modulated by conditional inferencing by subtracting
phase precision and mean single-trial power in the no
inference conditions from phase precision and single-trial
power in the strong inference conditions. If phase preci-
sion selectively governs entrained power under a strong
inference rule, we should find positive correlations
between phase precision and both single-trial power dif-
ference waves, reflecting local power control at deviant
onset, as well as previously extracted FFT-based global
power, reflecting the contribution of deviant tone phase
to power estimates that also include standards. First, we
correlated phase precision difference waves with mean
single-trial power difference waves, for each participant
and condition, at stimulation frequency. There resulted
significant moderate positive correlations for both delta
and theta rhythms, suggesting that an increase in phase
precision also leads to more power at stimulation fre-
quency: delta rhythms, first deviant peak correlation,
rho = .42 (peak time = 47 ms), repeated deviant peak
correlation, rho = .47 (right at deviant onset: peak
time = 0); theta rhythms, first deviant peak correlation,
rho = .39 (peak time = 14 ms), repeated deviant peak
correlation, rho = .51 (peak time = 8 ms). The signifi-
cance of correlation peaks was assessed by bootstrapping
(2000 times) the calculation of the correlation coeffi-
cients: single-trial phase time courses were randomized
before calculating phase precision differences across tri-
als, separately for delta and theta rhythms as well as for
first and repeated deviant (see Figure 3c,d). There was no
significant effect of repetition in absolute correlation
peak value for delta rhythmic sequences (Steiger’s Z test
Z-observed score = .156, p = .8768). However, for theta

F I GURE 3 Phase precision governs entrained power. (a) Mean peristimulus phase precision across trials at 1.67 stimulation frequency.

While the repeated deviant in the no inference condition displays diminished phase precision at onset, such difference did not reach

statistical significance. Shaded areas indicate standard error of the mean boundaries. (b) Mean peristimulus phase precision across trials at

6.67 stimulus frequency. The apparent difference between strong and no inference conditions did not reach statistical significance. Shaded

areas indicate standard error of the mean boundaries. (c) Predictability effects (strong minus no inference conditions) for both first and

repeated deviants at 1.67 stimulus frequency. Phase precision differences positively correlate with single-trial power differences, suggesting

that an increase in phase precision leads to an increase in power at stimulation frequency. Shaded areas reflect bootstrapping confidence

intervals, obtained from random phase predictors. (d) Predictability effects (strong minus no inference conditions) for both first and repeated

deviants at 6.67 stimulus frequency. Shaded areas reflect bootstrapping confidence intervals, obtained from random phase predictors.

(e) Peristimulus phase concentration differences predict global power (full sequence) for both first and repeated deviants at 1.67 Hz. Notice

that only repeated deviants are weakly but significantly correlated with global power in the prestimulus interval. (f) Peristimulus phase

concentration differences predict global power (full sequence) for both first and repeated deviants at 6.67 Hz. Results are comparable with

those at 1.67 Hz
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rhythmic sequences, the effect was significant (Z-
observed score = 3.29, p = .0002), suggesting that repeti-
tion increases the correlation of phase precision and
mean single-trial power for predictable deviants. Further-
more, using a jackknife approach, we found that in delta
rhythmic sequences, the repeated deviant correlation
peaked significantly earlier than the first deviant correla-
tion: t(14) = 3.67, p = .0025. This was also the case for
theta rhythms, notwithstanding the small absolute differ-
ence in ms: t(14) = 5.22, p = .0001.

Finally, we calculated the correlation between phase
precision difference waves and FFT-based global power
differences between strong and no inference conditions.
The significance of correlation peaks was again evaluated
using a bootstrapping approach (2000 times), condition
wise. There emerged significant post-onset, moderate-to-
strong positive correlations for first deviants for delta
sequences, rho = .64, t = 4 ms, and theta sequences,
rho = .56, t = 21 ms, as well as for repeated deviants in
theta sequences, rho = .54, t = 15 ms, and weak to mod-
erate but significant pre-stimulus correlations for
repeated deviants: delta, rho = .33, t = �21 ms; theta,
rho = .39, t = �12 ms. We conclude that predictability,
estimated as the difference between strong and no infer-
ence conditions, modulates deviant pair neural phases to
positively contribute to global power at both delta and
theta stimulation frequencies.

4 | DISCUSSION

Phase alignment of neural oscillations to rhythmical
stimulus structures is a cornerstone paradigm of cogni-
tive neuroscience (Lakatos et al., 2019), particularly in
understanding how the brain encodes auditory sources
(Zoefel & VanRullen, 2017). So far, phase alignment has
been attributed to phase reset due to temporal regularity
in event onset, although recent work suggests that, physi-
ologically, neural entrainment as a mechanism for atten-
tion selection operates on both the temporal and spectral
axes (Lakatos et al., 2013): attention suppresses the
response of frequencies outside the stimulation fre-
quency, while amplifying entrainment at stimulation fre-
quency. It was however unclear if spectral predictability
is computed even when attention is directed away from
the stimulation frequency, and if so, by which mecha-
nism it contributes to neural entrainment. In classic iden-
tical sound repetition paradigms, spectral predictability
effects cannot be readily appreciated, because their
import is not separable from that of temporal regularity.
To overcome this limitation, we parameterized the effects
of second-order predictability based on deviant event rep-
etition probability and assumed that strongly inferring

the spectral content of the next deviant event would per-
turb the temporal encoding of sound onset to a lesser
degree, overall increasing sensory entrainment. Indeed,
when sound structures favoured a strong perceptual
inference—predicting with 100% probability that each
deviant will be repeated—there resulted a significantly
larger entrainment as compared with sound structures
licencing no inference as to the spectral identity of the
next sound (50% probability of deviant repetition). Hence,
even within a pre-attentive setting, auditory entrainment
at both slow and fast isochronous stimulation rates (1.67
and 6.67 Hz) appears to be concurrently modulated by
temporal regularity and the statistical learning of spectral
relationships between successive events. Such effect is
visible at frontocentral sites, but not at mastoid sites,
suggesting that supratemporal generators are mainly
involved in tracking temporal regularity, while frontal
ones are sensitive to both spectral and temporal predict-
ability cues (Deouell, 2007; Schröger, 1998). Indeed, no
matter the amount of evidence provided (short vs. long
input segments), mastoid electrodes were sensitive only
to the temporal component of entrainment, while frontal
electrodes picked up spectral predictability cues right
from the start, or with relatively limited evidence, along
with temporal regularity.

Spectral predictability appears to operate through a
phase control mechanism similar to the well-established
drive of temporal regularity on concatenated phase resets
governing phase alignment (Lakatos et al., 2019).
Although peristimulus phase precision differences
between conditions did not reach statistical significance
per se, they modulated entrained power depending on
both predictability and repetition. Repetition enhanced
and/or anticipated the control exerted by cross-trial phase
consistency on power at stimulation frequency. Interest-
ingly, predictability affected the control on power exerted
by phase precision not only for repeated deviants but also
for first deviants. In previous work (Tavano et al., 2014),
we showed that predictability affected only repeated devi-
ants, using the deviant N1 neural event-related response
(peaking between 100 and 150 ms post onset) as a depen-
dent measure. Here, by investigating the peristimulus
effects of phase concentration, we find that predictability
changes the phase reset properties of both deviant events,
even if the onset of first deviant events is, by distribu-
tional rule, unpredictable. This observation affords the
novel perspective that spectral rules, once learned,
become a property of, and affect the processing of, the
entire stimulation sequence, rather than only of individ-
ual events within a sequence.

We found similar effects of predictability and repeti-
tion across delta (1.67 Hz) and theta (6.67 Hz) stimula-
tion rates. This suggests the absence of a functional
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division between delta and theta bands as far as the tem-
poral and spectral dimensions of predictability in audi-
tion are concerned. The preference for the theta band
that is well documented for neural speech encoding
(Giraud & Poeppel, 2012; Teng & Poeppel, 2020) might
stem from a processing bias that is stimulus specific
(e.g., mean syllabic duration), rather than specific to the
auditory modality. However, as a focus of analysis on the
relationships between peristimulus phase and power is
still relatively uncommon, future research is needed to
tease apart the neural components of auditory predict-
ability from those which specifically characterize impor-
tant human stimuli, such as speech and music.
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