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Abstract Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical

rhythmicity and excitability in the heart and brain, but the function of HCN channels at the

subcellular level in axons remains poorly understood. Here, we show that the action potential

conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally

modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and

neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels

ensure reliable high-frequency firing and are strongly modulated by cAMP (EC50 40 mM; estimated

endogenous cAMP concentration 13 mM). In addition, immunogold-electron microscopy revealed

HCN2 as the dominating subunit in cerebellar mossy fibers. Computational modeling indicated that

HCN2 channels control conduction velocity primarily by altering the resting membrane potential

and are associated with significant metabolic costs. These results suggest that the cAMP-HCN

pathway provides neuromodulators with an opportunity to finely tune energy consumption and

temporal delays across axons in the brain.

DOI: https://doi.org/10.7554/eLife.42766.001

Introduction
HCN channels are expressed in the heart and nervous system and comprise four members (HCN1–

HCN4), which differ in their kinetics, voltage-dependence and degree of sensitivity to cyclic nucleoti-

des such as cAMP (Biel et al., 2009; Robinson and Siegelbaum, 2003). Membrane hyperpolariza-

tion activates HCN channels and causes a depolarizing mixed sodium/potassium (Na+/K+) current. In

the heart, the current through HCN channels (If) mediates the acceleratory effect of adrenaline on

heart rate by direct binding of cAMP (DiFrancesco, 2006). In neurons, the current through HCN

channels (Ih) controls a wide array of functions, such as rhythmic activity (Pape and McCormick,

1989) and excitability (Tang and Trussell, 2015). In addition to the somatic impact, HCN channels

are expressed throughout various subcellular compartments of neurons (Nusser, 2012). For exam-

ple, patch-clamp recordings from dendrites in pyramidal neurons have revealed particularly high

densities of HCN channels that act to control the local resting potential and leak conductance,

thereby playing important roles in regulating synaptic integration (George et al., 2009;

Harnett et al., 2015; Kole et al., 2006; Magee, 1999; Williams and Stuart, 2000).
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On the contrary, the expression and role of Ih in the axon is less studied. Ih seems to control the

strength of synaptic transmission in the crayfish and the Drosophila neuromuscular junction

(Beaumont and Zucker, 2000; Cheung et al., 2006). However, presynaptic recordings from the ver-

tebrate calyx of Held in the auditory brainstem found Ih to only have a marginal effect

on neurotransmitter release (Cuttle et al., 2001), but to exert a strong influence on the resting

membrane potential (Cuttle et al., 2001; Kim and von Gersdorff, 2012) and on vesicular neuro-

transmitter uptake (Huang and Trussell, 2014). At the synaptic terminals of pyramidal neurons in

the cortex of mice, HCN channels inhibit glutamate release by suppressing the activity of T-type

Ca2+ channels (Huang et al., 2011).

Besides a potential impact on neurotransmitter release, axonal Ih could play a role in the propaga-

tion of action potentials. Indeed, in axons of the stomatogastric nervous system of lobsters

(Marder and Bucher, 2001), the action potential conduction was affected by dopamine acting via

axonal HCN channels (Ballo et al., 2010; Ballo et al., 2012). In vertebrates, studies on action poten-

tial propagation by Waxman and coworkers indicated that Ih counteracts the hyperpolarization of

the membrane potential during periods of high-frequency firing (Baker et al., 1987; Birch et al.,

1991; Waxman et al., 1995), and that it participates in ionic homeostasis at the node of Ranvier

(Waxman and Ritchie, 1993). More recent investigations found Ih to be crucial for the emergence of

persistent action potential firing in axons of parvalbumin-positive interneurons (Elgueta et al.,

2015), but Ih seems to have an opposing effect on the excitability at the axon initial segment, where

its activation reduces the probability of action potential initiation (Ko et al., 2016). Finally, there is

evidence from extracellular recordings that blocking Ih decreases the action potential conduction

velocity in unmyelinated central axons (Baginskas et al., 2009; Soleng et al., 2003) and peripheral

axons of vertebrates (Grafe et al., 1997). However, the neuromodulation of conduction velocity and

the underlying cellular membrane mechanisms are not known in vertebrate axons.

Here, we demonstrate a decrease or increase in conduction velocity in central axons as a result of

the application of HCN blockers or neuromodulators. To gain mechanistic insights into the modula-

tion of conduction velocity by HCN channels, we performed recordings from en passant cerebellar

mossy fiber boutons (cMFB; Ritzau-Jost et al., 2014; Delvendahl et al., 2015). We found that HCN

channels in cMFBs mainly consist of the HCN2 subunit, are ~7% activated at resting membrane

potential, ensure high-frequency firing, and control the passive membrane properties. Whole-cell

and perforated patch clamp recordings from cMFBs demonstrated a strong dependence of HCN

channels on intracellular cAMP concentration with an EC50 of 40 mM and a high endogenous cAMP

concentration of 13 mM. Computational modeling indicated that the resting membrane potential

controls conduction velocity and that the activity of the HCN channel is metabolically expensive.

These data reveal the existence of a mechanism to modulate conduction velocity bidirectionally in

the central nervous system, which is shared among different types of axons.

Results

Bidirectional modulation of conduction velocity
To investigate whether HCNs affect conduction velocity, we recorded compound action potentials in

three different types of axons (Figure 1). Application of the specific HCN channel blocker ZD7288

(30 mM) decreased the conduction velocity by 8.0 ± 2.8% in myelinated cerebellar mossy fibers

(n = 14), by 9.2 ± 0.9% in unmyelinated cerebellar parallel fibers (n = 15), and by 4.0 ± 0.8% in optic

nerves (n = 4; see Figure 1 and its legend for statistical testing). As some studies implied that

ZD7288 might have unspecific side effects, such as blocking voltage-dependent Na+ channels

(Chevaleyre and Castillo, 2002; Wu et al., 2012), we recorded Na+ currents from 53 cMFBs and

found no change in the amplitude or kinetics of voltage-dependent Na+ currents after ZD7288 appli-

cation (Figure 1—figure supplement 1),suggesting that under our conditions and at a concentration

of 30 mM, ZD7288 did not affect the Na+ currents. Because of the modulation of HCN channels by

intracellular cAMP, we measured conduction velocity during the application of 8-bromoadenosine

30,50-cyclic monophosphate (8-Br-cAMP; 500 mM), a membrane-permeable cAMP-analog. The con-

duction velocity increased by 5.9 ± 2.8% in cerebellar mossy fibers (n = 17), by 3.7 ± 1.4% in parallel

fibers (n = 10), and by 4.6 ± 0.6% in optic nerves (n = 5; see Figure 1 and its legend for statistical
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Figure 1. Bidirectional modulation of conduction velocity. (A) Recording configuration of conduction velocity in mossy fibers using a bipolar tungsten

stimulation electrode (stim.) and two glass recording electrodes. (B) Example of compound action potentials recorded with two electrodes positioned

at different distances in relation to the stimulation electrode. The stimulation (100 ms duration) is indicated by the gray bar. Each trace is an average of

50 individual compound action potentials recorded at 1 Hz. The delay between the peak of the proximal and the distal compound action potential is

indicated by a horizontal line. (C) Average normalized mossy fiber conduction velocity, during bath application (starting at t = 0 min)of ZD7288 (30 mM)

or 8-Br-cAMP (500 mM). (D) Average relative changes in conduction velocity of mossy fiber measured 10 to 15 min after beginning the application of

ZD7288 or 8-Br-cAMP (bracket in C). PANOVA = 0.00015. PKruskal-Wallis = 0.00044. The individual P values of the Dunnett test for multiple comparisons with

the control are indicated. (E) Schematic illustration of the experimental configuration used to record from cerebellar parallel fibers. (F) Examples of

compound action potentials recorded from parallel fibers, as in panel (B). (G) Normalized conduction velocity in parallel fibers, as in panel (C). (H)

Average relative changes in conduction velocity parallel fibers, as in panel (D). PANOVA = 10�9. PKruskal-Wallis = 10�8. The individual P values of the

Dunnett test for multiple comparisons with the control are indicated. (I) Schematic illustration of the experimental configuration used to record from

optic nerve. (J) Examples of compound action potentials recorded from optic nerve, as in panel (B). (K) Normalized conduction velocity in optic nerve,

as in panel (C). (L) Average relative changes in conduction velocity of optic nerve, as in panel (D). PT-Test = 0.0002. PWilcoxon-Mann-Whitney-Test = 0.004.

DOI: https://doi.org/10.7554/eLife.42766.002

The following figure supplement is available for figure 1:

Figure supplement 1. ZD7288 does not alter Na+ currents in cMFBs.

DOI: https://doi.org/10.7554/eLife.42766.003
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testing). These results indicate that HCN channels control the conduction velocity in both myelinated

and unmyelinated central axons.

Neuromodulators differentially regulate conduction velocity via HCN
channels
To investigate a modulation of conduction velocity by physiological neuromodulators, we focused

on the cerebellar parallel fibers, in which the velocity could be most accurately measured, and then

applied several modulators known to act via cAMP-dependent pathways (Figure 2). Application of

200 mM norepinephrine (NE) resulted in a relatively fast increase in conduction velocity (1.9 ± 0.8%;

n = 6; see Figure 2A and C–E; see legend for statistical testing), consistent with the existence of b-

adrenergic receptors in the cerebellar cortex (Nicholas et al., 1993) that increase the cAMP concen-

tration via Gs-proteins. On the other hand, the application of either 200 mM serotonin (–3.5 ± 0.5%;

n = 11), 200 mM dopamine (–5.0 ± 0.7%; n = 13) or 200 mM adenosine (–7.2 ± 0.6%; n = 5) resulted

in a continuous decrease of the conduction velocity (Figure 2B and C–E), consistent with the exis-

tence of Gi-coupled receptors for serotonin, dopamine, and adenosine in the molecular layer of the

cerebellum (Geurts et al., 2002; Schweighofer et al., 2004), which decrease the cAMP concentra-

tion. Although we used high concentrations of the agonists and off-target effects cannot be

excluded (e.g., the activation of dopamine receptors by NE [Sánchez-Soto et al., 2016]), these data

nevertheless indicate that physiological neuromodulators can both increase and decrease action

potential conduction velocity, depending on the type of neuromodulator and receptor.

In addition to HCN channels, some voltage-gated Na+, K+, and Ca2+ channels can be modulated

by the intracellular cAMP-pathway (Burke et al., 2018; Yang et al., 2013; Yin et al., 2017). To

address the contribution of other channels on the neuromodulation of the conduction velocity, we

performed a set of experiments in which HCN channels were first blocked by 30 mM ZD7288 before

we applied three modulatory substances that had significantly increased or decreased conduction

velocity in previous experiments. With ZD7288 continuously present in the recording solution,

the conduction velocity of parallel fibers decreased over the course of 20 min (Figure 2F; see

Materials and methods). Compared with control conditions (i.e. only ZD7288), adding 8Br-cAMP

(500 mM), adenosine (200 mM) or NE (100 mM) at t = 0 min (i.e. 25 min after application of ZD7288)

did not change the conduction velocity. The average conduction velocity between t = 10 and 15 min

was decreased by –3.3 ± 2.4% for cAMP (n = 9), –4.6 ± 1.6% for adenosine (n = 9) and –3.7 ± 1.2%

for NE (n = 7) when compared to the average velocity between t = 0 and 5 min in the baseline

recording. This was not significantly different from the decrease measured in the presence of

ZD7288 alone (control, –3.3 ± 1.4%; n = 7, see Figure 2G), indicating that the previously shown

effects of cAMP and neuromodulators on conduction velocity are mainly mediated by HCN

channels.

Cerebellar mossy fiber terminals have a prominent voltage sag
To investigate the membrane and signaling mechanisms underlying the bidirectional control of con-

duction velocity, we focused on cerebellar mossy fibers, which allow whole-cell recordings

with direct access to the cytoplasmic compartment (Figure 3A). Because of a long membrane length

constant and the slow gating of HCN channels, recordings from en passant cMFBs are well suited

for the investigation of the ionic basis of conduction velocity in adjacent axonal compartments. Injec-

tion of depolarizing currents during current-clamp recordings evoked a single action potential, while

injection of hyperpolarizing currents generated a substantial ‘sag’ (Figure 3B; Rancz et al., 2007;

Ritzau-Jost et al., 2014) (i.e. a delayed depolarization towards the resting potential, which is a hall-

mark of the presence of Ih) (Biel et al., 2009; Robinson and Siegelbaum, 2003). At a potential of,

on average, –150 mV, the sag ratio (calculated from the peak and steady state amplitude as indi-

cated in Figure 3C (George et al., 2009) was 0.497 ± 0.030 (n = 12).

HCN channels support high-frequency action potential firing
Using direct recordings from cMFBs, we first aimed to investigate the impact of HCN channels on

action potential firing. To this end, we analyzed action potentials elicited by current injections into

the cMFBs (data not shown) as well as traveling action potentials elicited by axonal stimulation

with a second pipette (Figure 4A). In both cases, the amplitude and half-duration of the action
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Figure 2. Neuromodulators differentially regulate conduction velocity via HCN channels. (A) Example of

compound action potentials recorded in parallel fibers. Each trace is an average of signals recorded over a period

of 1 min, before (at �5 min, black line) and after application of 200 mM NE (at 15 min, blue line). The delays

between the peak of the proximal action potential and the distal compound action potential are indicated by

horizontal bars. Traces are aligned to the peak of the compound action potentials recorded with the proximal

electrode. (B) Example of compound action potentials as shown in panel (A) with the application of 200 mM

adenosine. (C) Average normalized conduction velocity in cerebellar parallel fibers during the application of

various neuromodulators that are known to act via cAMP-dependent pathways. (D) Average relative change in

conduction velocity measured from 1 to 6 min after the start of neuromodulator application (bracket marked D in

panel (C)). PANOVA = 9*10�10. PKruskal-Wallis = 3*10�8. The individual P values of the Dunnett test for multiple

comparisons with the control are indicated. (E) Average relative change in conduction velocity measured from 10

to 15 min after the start of application of the neuromodulators (bracket marked E in panel (C)). PANOVA = 3*10�7.

PKruskal-Wallis = 3*10�7. The individual P values of the Dunnett test for multiple comparisons with the control are

indicated. (F) Average normalized conduction velocity in parallel fibers. 30 mM ZD7288 was applied 25 min before

the start of the application of the neuromodulators. ZD7288 remained in the solution during recording to ensure

continuously blocked HCN channels. At t = 0 min, 8-Br-cAMP, adenosine or NE was added to the solution. (G)

Average relative change in conduction velocity measured 10 to 15 min after the start of application of the

neuromodulators (bracket marked G in panel (F)). PANOVA = 0.91. PKruskal-Wallis = 0.77. The individual P values of the

Dunnett test for multiple comparisons with the control are indicated.

DOI: https://doi.org/10.7554/eLife.42766.004

Byczkowicz et al. eLife 2019;8:e42766. DOI: https://doi.org/10.7554/eLife.42766 5 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.42766.004
https://doi.org/10.7554/eLife.42766


potentials elicited at 1 Hz were not significantly affected by the application of 30 mM ZD7288 (data

not shown and Figure 4B and C, respectively), indicating that HCN channels do not alter the active

membrane properties profoundly.

However, cerebellar mossy fibers can conduct trains of action potentials at frequencies exceeding

1 kHz (Ritzau-Jost et al., 2014), making them an ideal target to investigate the impact of axonal

HCNs on the propagation of high-frequency action potentials. Blocking HCN channels significantly

impaired the ability of mossy fibers to fire at high frequencies (20 stimuli at 200–1666 Hz). In the

examples illustrated in Figure 4D, the failure-free trains of action potentials could be elicited at up

to 1.1 kHz under control conditions and at up to 500 Hz when ZD7288 was present in the extracellu-

lar solution. The average failure-free frequency was reduced from 854 ± 60 Hz under control

conditions to 426 ± 63 Hz in the presence of ZD7288 (n = 20 and 10, respectively; PT-Test = 0.0002;

Figure 4E). Action potential broadening and amplitude reduction was more pronounced in the pres-

ence of ZD7288. For example, during trains of action potentials at 200 Hz, the half-duration of the

20th action potential was 109.6% ± 1.5% and 141.7% ± 7.0% of the half-duration of the 1st action

potential for control and ZD7288-treated MFBs, respectively (n = 20 and 10; PT-Test = 0.02;

Figure 4E). The amplitude of the 20th action potential was 96.5% ± 0.8% and 82.9% ± 1.6% of the

1st action potential for control and ZD7288-treated MFBs, respectively (n = 20 and 10; PT-Test = 0.02;

Figure 4E). Furthermore, the delay during trains of action potentials at 200 Hz increased by ~20% in

the presence of ZD7288 but decreased by ~5% in control recordings (Figure 4F), indicating an accel-

eration and a slowing of conduction velocity during high-frequency firing for control and ZD7288,

respectively. The difference in delay of the 20th action potential was maximal at intermediate fre-

quencies (200 and 333 Hz; Figure 4G). These experiments show, that HCNs, despite their slow kinet-

ics, ensure reliable high-frequency firing.

The passive membrane properties of cMFBs are HCN- and cAMP-
dependent
To better understand how Ih impacts action potential firing, we next investigated the passive mem-

brane properties of cMFBs by recording the voltage response elicited by small hyperpolarizing cur-

rent injections (–10 pA for 300 ms) in the absence and presence of 30 mM ZD7288 (Figure 5A and

B). ZD7288 caused (i) a hyperpolarization of the resting membrane potential by, on average, 5.4 mV

(–80.0 ± 0.6 mV and –85.4 ± 1.4 mV for control and ZD7288-treated cMFBs n = 94 and 35, respec-

tively), (ii) a doubling of the apparent input resistance calculated from the steady-state voltage at

the end of the current step (794 ± 48 MW and 1681 ± 185 MW, respectively), and (iii) a doubling of

the apparent membrane time constant, as determined by a mono-exponential fit to the initial decay

of the membrane potential (14.4 ± 0.8 ms and 35.0 ± 2.5 ms, respectively; see legend of Figure 5B

for statistical testing). To analyze the cAMP-dependence of the conduction velocity (cf. Figure 1),

Figure 3. Cerebellar mossy fiber terminals have a prominent voltage sag. (A) Two-photon microscopic image of a

whole-cell patch-clamp recording from a cMFB (green) filled with the fluorescence dye Atto 488 in an acute

cerebellar brain slice of an adult 39-day-old mouse (maximal projection of stack of images). (B) Characteristic

response of a cMFB to current injection: depolarizing pulses evoked a single action potential and hyperpolarizing

pulses evoked a strong hyperpolarization with a sag. (C) Average sag ratio of 12 cMFB recordings.

DOI: https://doi.org/10.7554/eLife.42766.005
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we determined the cAMP-dependence of the passive membrane properties of cMFBs. Adding

cAMP in various concentrations to the intracellular solution depolarized the membrane potential and

decreased both the input resistance and the apparent membrane time constant in a concentration-

dependent manner. These effects are opposite to those that result from the application of ZD7288

(Figure 5B). These data suggest that HCN channels in cerebellar mossy fibers determine the passive

membrane properties as a function of the intracellular cAMP concentration.

Figure 4. HCN channels support high-frequency action potential firing. (A) Two-photon microscopic image of a whole-cell patch-clamp recording from

a cMFB (green) filled with the fluorescent dye Atto 488 in an acute cerebellar brain slice of an adult (43-day-old) mouse (maximal projection of stack of

images). Targeted axonal stimulation was performed by adding a red dye, Atto 594, to the solution of the stimulation pipette. (B) Grand average of

action potentials evoked at 1 Hz under control conditions (black) and in the presence of ZD7288 (gray). (C) Average action potential amplitude

(measured from resting to peak) and half-duration (PT-Test = 0.16 and 0.51 for amplitude and resting, respectively). (D) Example traces of two different

cMFBs stimulated at frequencies between 200 Hz and 1111 Hz under control conditions (left, black) or in the presence of 30 mM ZD7288 (right, gray).

Traces for 100, 333, 1000 and 1666 Hz are not shown. The time of stimulation is indicated below each trace. Failures are illustrated by red asterisks. (E)

(Top graph) Average maximal failure-free firing frequency for control (black) and ZD7288-treated (gray) cMFBs. (Middle and bottom graph) Average

amplitude reduction and action potential broadening of the 20th compared with the 1st action potential (AP) of trains of 20 stimuli at 200 Hz for control

(black) and ZD7288-treated(gray) cMFBs. (F) Average delay between the peak of the APs and the stimulation during trains of 20 stimuli at 200 Hz,

normalized to the delay of the first AP, for control conditions (black) and ZD7288-treated (gray) cMFBs. (G) Average delay of the 20th AP normalized to

the delay of the 1staction potential during failure-free trains of 20 stimuli at frequencies ranging from 100 to 1000 Hz. The P-values were obtained from

t-tests and were multiplied by six to apply a Bonferroni-correction, indicating a highly significant slowing of the conduction velocity during failure-free

high-frequency trains in ZD7288-treated cMFBs compared with controls. Note that the number of experiments decreased with increasing frequency

because the analysis harestricted to failure-free traces.

DOI: https://doi.org/10.7554/eLife.42766.006
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HCN2 is uniformly distributed in mossy fiber axons and boutons
Of the four HCN subunits (HCN1–HCN4), the subunits HCN1 and HCN2 are predominantly

expressed in the cerebellar cortex (Notomi and Shigemoto, 2004; Santoro et al., 2000). Previous

studies in the cortex, hippocampus, and auditory brainstem primarily detected HCN1 in axons

(Elgueta et al., 2015; Huang et al., 2011; Ko et al., 2016), but HCN2 was found to be more sensi-

tive to cAMP than HCN1 (Wang et al., 2001; Zagotta et al., 2003). To understand the pronounced

cAMP-dependence of conduction velocity (cf. Figure 1) and the passive membrane properties (cf.

Figure 5) at the molecular level, we investigated the identity and distribution of HCN channels using

pre-embedding immunogold labeling for HCN1 and HCN2 in cMFBs and adjacent axons. At the

electron microscopic level, we found only background immunoreactivity for HCN1 (data not shown)

but significant labeling for HCN2 (Figure 6A). HCN2 immunogold particles were diffusely distributed

along the plasma membrane of cMFBs, with similar labeling density in the adjacent mossy fiber axon

(Figure 6B), which could be traced back up to 3.5 mm from cMFBs. In addition, we created a 3D

reconstruction of a cMFB (Figure 6C and Figure 6—video 1), including gold particles for HCN2 and

identified synaptic connections. Synapses onto granule cell dendrites were observed within invagi-

nated parts of the bouton. HCN2 was uniformly distributed without apparent spatial relations to

those synapses. The density of immunogold particles for HCN2 in this reconstructed bouton was

17.1 particles/mm2 (in total 1260 particles per 73.65 mm2). The mean density of immunogold particles

for HCN2 was 22.7 ± 2.4 per mm2 (n = 6 cMFBs from two mice). These data indicate that HCN2 is

the dominant subunit mediating Ih in cMFBs, consistent with its pronounced cAMP-dependence.

HCN channels in cMFB are strongly modulated by cAMP
To better understand the function of axonal HCN2 channels and their modulation by intracellular

cAMP, we performed voltage-clamp recordings from cMFBs with different cAMP concentrations in

the intracellular patch solution. Hyperpolarizing voltage steps evoked a slowly activating, non-inacti-

vating inward current, which was inhibited by ZD7288 (Figure 7A). Using the tail currents of

Figure 5. The passive membrane properties of cMFBs are HCN- and cAMP-dependent. (A) Example voltage

response of cMFBs to small hyperpolarizing current steps. The application of 30 mM ZD7288 eliminated the Ih-

mediated voltage sag (left). Adding 1 mM cAMP to the intracellular path-clamp solution (right) reduced the input

resistance as seen by the reduced steady-state voltage response (dashed lines). (B) Average resting membrane

potential (left), apparent input resistance (middle), and apparent membrane time constant (right) upon application

of 30 mM ZD7288 or different concentrations of cAMP. For all three parameters, PANOVA and PKruskal-Wallis

are <10�10. The Dunnett test for multiple comparisons with the control indicates significance for control vs.

ZD7288 (p<0.0001) and for control vs. cAMP concentrations >~0.1 mM (e.g., P<0.001 for control vs. 1 mM cAMP).

DOI: https://doi.org/10.7554/eLife.42766.007
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ZD7288-sensitive currents evoked by voltage steps between –80 mV and –150 mV from a holding

potential of –70 mV, we calculated the activation curve of Ih with a mean V½ of –103.3 ± 0.8 mV

(Figure 7B; n = 36 V½-values, each from a different cMFB). On the basis of the average resting mem-

brane potential of cMFBs, this means that about 7% of the overall HCN2-mediated current is active

at rest.

To analyze the cAMP concentration-dependence of Ih, we added different concentrations of

cAMP (30 mM to 10 mM) to the intracellular patch solution. With 1 mM cAMP, V½ shifted by 17 mV

to, on average, –86.6 ± 1.2 mV (n = 16 cMFBs; PT-Test <10
�10; Figure 7B). The resulting average

shifts of V½ revealed an EC50 of 40.4 mM intracellular cAMP (Figure 7D). In order to estimate the

endogenous presynaptic cAMP concentration, we performed presynaptic perforated-patch record-

ings on cMFBs. Under perforated patch conditions, the V½ of Ih was –96.4 ± 1.2 mV (n = 10), signifi-

cantly more depolarized than the corresponding whole-cell recordings after rupture of the

perforated patch (–101.3 ± 1.0 mV; n = 10; PT-Test = 0.0076; Figure 7C; see Materials and methods

for comparisons with additional control groups). This voltage shift

(4.9 ± 1.2 mV, n = 10 cMFBs) indicates an endogenous cAMP concentration of 12.6 mM in cMFBs,

with a 68% confidence interval of 1.8 to 60.7 mM cAMP (Figure 7D). These data reveal a high endog-

enous resting cAMP concentration.

Figure 6. HCN2 is uniformly distributed in mossy fiber axons and boutons. (A) Electron microscopic image showing a cMFB (magenta) labeled for

HCN2. Many particles are diffusely distributed along the plasma membrane of the cMFB, some of them being clustered. Arrows mark synapses

between the cMFB and dendrites of adjacent granule cells. (B) Another cMFB, showing similar labeling density for HCN2 in a proximal part of the

mossy fiber axon. (C) Reconstructed cMFB (red) with identified synapses based on the ultrastructure (blue) and with HCN2 labeled with gold particles

(yellow).

DOI: https://doi.org/10.7554/eLife.42766.008

The following video is available for figure 6:

Figure 6—video 1. Reconstructed cMFB with labeled synapses and HCN2 channels.

DOI: https://doi.org/10.7554/eLife.42766.009
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Hodgkin-Huxley model describing HCN2 channel gating
For our ultimate aim, to obtain a mechanistic and quantitative understanding of axonal HCN2 func-

tion in cerebellar mossy-fiber axons, we developed a computational Hodgkin-Huxley (HH) model.

The model was constrained to the experimentally recorded Ih kinetics derived from the activation

and deactivation time constants of Ih (Figure 8A) measured at potentials between –70 and –150 mV.

The activation curve (cf. Figure 8B), as well as the averaged time constants for both activation

(n = 20) and deactivation (n = 15; Figure 8B), were well described by a HH-model with one activa-

tion gate. In addition, we generated an alternative HH-model to describe the HCN2 current in the

presence of 1 mM intracellular cAMP (for a more detailed implementation of the cAMP-dependence

of HCN2 gating, see Hummert et al., 2018). Furthermore, we estimated the reversal potential of Ih
with short voltage ramps as described previously (Cuttle et al., 2001) and found a value of –

23.4 ± 1.4 mV (n = 7; Figure 8C), similar to previous estimates (Aponte et al., 2006; Cuttle et al.,

2001). These data provide a quantitative description of axonal Ih at cMFBs.

Figure 7. HCN channels in cMFB are strongly modulated by cAMP. (A) Example currents elicited by hyperpolarizing voltage steps (from –70 mV to a

voltage between –70 mV and –150 mV). Top, control current, middle, remaining transients in the presence of 30 mM ZD7288 and, bottom, subtracted

currents. The ZD7288-sensitive current is slowly activating, non-inactivating and shows inward tail currents (arrow). (B) Activation curve of Ih determined

as the normalized tail current of ZD7288-sensitive currents obtained after the end of the conditioning voltage pulse (arrow in panel (A)) plotted

against the corresponding voltage pulse with 0 mM cAMP (filled circles, n = 36) and 1 mM cAMP (open circles, n = 15) in the intracellular solution.

Sigmoidal fits (continuous magenta lines) yield the midpoints of Ih activation (V½, arrows). The steady-state activation curves produced by the Hodgkin-

Huxley models (dotted magenta line) are superimposed. Inset on top: illustration of the whole-cell recording configuration with 0 and 1 mM cAMP in

the intracellular solution. (C) Activation curves obtained with the perforated-patch recordings and after rupture of the perforated membrane patch

(n = 10). Inset on top: illustration of the whole-cell recording configuration with 0 mM cAMP in the intracellular solution and in the perforated patch

configuration, when the intracellular cAMP concentration is unperturbed. (D) Shift in Ih V½ versus the corresponding cAMP concentration (mean ± SEM).

Fitting the data with a Hill equation (magenta line) revealed an EC50 of 40.4 mM. Superposition of the 68% confidence band of the fit (light magenta

area) with the average voltage shift observed in perforated patch recordings (4.8 ± 1.2 mV, n = 10, dotted black line and gray area) results in an

estimated endogenous cAMP-concentration of 12.6 mM with a 68% confidence interval of 1.8 to 60.7 mM cAMP (dotted line and light blue area).

DOI: https://doi.org/10.7554/eLife.42766.010
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Mechanism of control of conduction velocity and metabolic costs of
HCN channels
What are the mechanisms by which axonal HCN2 channels control conduction velocity? In principle,

the depolarization caused by HCN2 channels will bring the resting membrane potential closer to the

threshold for voltage-gated Na+ channel activation, which could accelerate the initiation of the

action potential (see discussion). Alternatively, the increased membrane conductance caused by

HCN2 channels will decrease the membrane time constant, which could accelerate the voltage

responses, as has been shown, for example, for dendritic signals in auditory pathways (Golding and

Oertel, 2012; Mathews et al., 2010). To distinguish between these two possibilities, we generated

a conductance-based NEURON model consisting of cylindrical compartments representing cMFBs

that are connected by myelinated axons (Figure 9A; Ritzau-Jost et al., 2014). The model contained

voltage-dependent axonal Na+ and K+ channels, passive Na+ and K+ leak channels, and the estab-

lished HH model of Ih (cf. Figure 8). After adjustments of the peak conductance densities, the model

captured the current clamp responses to –10 pA current injections (Figure 9B), the resting mem-

brane potential (Figure 9C), and the apparent input resistance (Figure 9D). Removing the HH model

of Ih, or replacing it with the 1-mM-cAMP-HH-model of Ih, reproduced the corresponding voltage

responses, the shift in the resting membrane potential, and the change in the apparent input resis-

tance obtained in the presence of ZD7288 or 1 mM intracellular cAMP (Figure 9B–D). Interestingly,

Figure 8. Hodgkin-Huxley model describing HCN2 channel gating. (A) Example of ZD7288-sensitive currents

(black) elicited by the illustrated activation (top) and deactivation (bottom) voltage protocols superimposed with

mono-exponential fits (magenta). (B) Average time constants of activation (filled circles) and deactivation (open

circles; mean ± SEM). The dotted magenta line represents the prediction of Ih activation and deactivation time

constant based on the Hodgkin-Huxley model. (C) Example of linear extrapolation (magenta lines) of leak

subtracted currents evoked by fast (10 ms) voltage ramps generated from a range of holding potentials that

extended across the activation range of Ih. The reversal potential was found to be –36 mV in this example. Inset:

average reversal potential from seven independent experiments.

DOI: https://doi.org/10.7554/eLife.42766.011
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the models predicted a decrease of the conduction velocity when the control HH model was

removed, and conversely an increase with the 1-mM-cAMP-HH model (Figure 9E), that was similar

in extent to that measured experimentally with ZD7288 and 8-Br-cAMP treatments (cf. Figure 1).

These findings support our conclusion that HCN2 channel modulation suffices to tune conduction

velocity bidirectionally.

Next, we generated two additional models, in which either only the depolarizing effect of HCN2

channels (Vm-model) or the decreased input resistance (i.e. the decreased membrane

resistance, Rm-model) was implemented (by modifying the K+ or the Ih reversal potential, respec-

tively; see Materials and methods). The results showed that the Vm-model but not the Rm-model

caused an increase in conduction velocity, indicating that the depolarizing effect of axonal HCN2

channels determines conduction velocity (Figure 9E). Interestingly, increasing the resting membrane

Figure 9. Mechanism of control of conduction velocity and metabolic costs of HCN channels. (A) Illustration of the cerebellar mossy fiber model

consisting of 15 connected cylindrical compartments representing cMFBs and the myelinated axon. (B) Grand average voltage response (black) and

standard deviation (gray area) of cMFBs to a –10 pA hyperpolarizing current pulse with 1 mM cAMP included in the patch pipette (top), under control

conditions (middle) or for cMFBs treated with ZD7288 (bottom), superimposed with the predicted voltage response from the model (magenta). (C)

Average resting membrane potential of cMFBs measured under control conditions (black), with ZD7288 (gray), or 1 mM intracellular cAMP (open bar;

data from Figure 5B) compared to the predictions from the corresponding models (magenta). Furthermore, the chart also shows the resting membrane

potential of the two models that simulate only the membrane depolarization (Vm- model; light brown) or only the decreased membrane resistance (Rm-

model; blue) caused by HCN channels. (D) Corresponding comparison between the measured values and the predictions from the models as shown in

panel (C) for the apparent input resistance of cMFBs. (E) Corresponding comparison between the measured values and the predictions from the

models as shown in panels (C) and (D) for the conduction velocity in mossy fibers. Inset top: illustration of the model of a mossy fiber and the action

potentials at two different positions with (magenta line) and without (dashed magenta line) the HH model of HCN channels. (F) The calculated

metabolic costs for maintaining the resting membrane potential are shown for each model as the number of required ATP molecules per mm of mossy

fiber axon and per second. The metabolic cost of the firing of a single action potential (AP) is indicated by the dashed line as the number of required

ATP molecules per mm of mossy fiber axon (this number was very similar for all models).

DOI: https://doi.org/10.7554/eLife.42766.012

The following figure supplement is available for figure 9:

Figure supplement 1. Impact of depolarization on NaV availability and on conduction velocity in our model of a mossy fiber axon.

DOI: https://doi.org/10.7554/eLife.42766.013
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potential from –90 mV to –65 mV, decreased the availability of voltage-dependent Na+ (NaV) chan-

nels but increased the conduction velocity (Figure 9—figure supplement 1). The conduction veloc-

ity decreased only at resting membrane potentials above –65 mV in our model. Together, these

data indicate that the depolarization mediated by HCN2 channels accelerates the conduction veloc-

ity by bringing the membrane potential closer to the firing threshold.

The non-inactivating nature of HCN channels and the accompanying shunt at the resting mem-

brane potentials suggest that Ih is metabolically expensive. Therefore, we calculated the Na+ influx

in each model and converted it into the ATP consumption required to restore the Na+ gradient

(Hallermann et al., 2012). Computational modeling showed that it is ~100% more expensive to

maintain the resting membrane potential with Ih than without or by depolarization alone (Vm-model;

Figure 9F). Furthermore, the metabolic cost of maintaining the resting membrane potential with Ih
for one second was ~3-fold higher than the cost of generating one action potential (Figure 9F).

Assuming an average frequency of cerebellar mossy fibers of 4 Hz in vivo (Chadderton et al., 2004;

Rancz et al., 2007), the HCN2 channels increased the required energy of cerebellar mossy fibers

by ~30%. With increasing firing frequency, the metabolic costs of action potential firing will become

dominant compared with the HCN2-mediated costs for resting membrane potentials (e.g., ~3% at

40 Hz). These data indicate that HCN2 channels are a major consumer of the energetic demands of

axons.

Discussion
Here, we demonstrate that the HCN channels increase action potential velocity and fidelity in central

axons. By combining electrophysiological, electron-microscopic, and computational techniques, we

reveal the mechanism and the metabolic costs of the dynamic control of the velocity and fidelity of

action potential propagation by HCN channels in the vertebrate central nervous system.

Dynamic control of conduction velocity
We describe both an increase and decrease of the baseline axonal conduction velocity in the range

of ~5% mediated by HCN channels (Figures 1–3). Furthermore, HCN channels increase the maximal

failure-free firing frequency by a factor of two (Figure 4). Although the changes in baseline conduc-

tion velocity are relatively small, considering the long distances that axons traverse in the brain,

HCN channels can be expected to change the arrival time of the action potential by, for example,

0.5 ms in the case of unmyelinated cerebellar parallel fibers (assuming 3 mm length and 0.3 m/s

velocity; Swadlow and Waxman, 2012). Such temporal delays will influence information processing

in the central nervous system, because spike-timing dependent plasticity (Caporale and Dan, 2008),

coincidence detection (Softky, 1994), and the neuronal rhythms of cell ensembles (Buzsáki et al.,

2013) precisely tune the arrival times of action potentials. There are several examples of the specific

tuning of conduction velocity in the sub-millisecond domain: the diameter and the degree of myeli-

nation of cerebellar climbing fibers (Sugihara et al., 1993; Lang and Rosenbluth, 2003; but see

Baker and Edgley, 2006), the degree of myelination of thalamocortical axons (Salami et al., 2003),

and the internode distance of auditory axons (Ford et al., 2015) are all tuned exactly to offset

the different arrival times of action potentials with a temporal precision of ~100 ms.

The cerebellum is involved in the accurate control of muscle contraction with a temporal precision

of 1–100 ms (Hore et al., 1991). Submillisecond correlations in spike timing occurring between

neighboring Purkinje cells have been noted previously (reviewed in Isope et al., 2002; Person and

Raman, 2012). Furthermore, submillisecond precision of the mossy or parallel fiber input are critical

for information processing in the cerebellar circuits (Braitenberg et al., 1997; Heck et al., 2001;

Isope et al., 2002). Together, the here-described changes in action potential conduction velocity in

mossy and parallel fibers (Figures 1–3) may thus play an important role in cerebellar computation.

Furthermore, HCN channels facilitate high-frequency firing (Figure 4), which occurs in many parts of

the mammalian CNS (Delvendahl and Hallermann, 2016).

Our findings that the cAMP-HCN pathway and neuromodulators can finely tune conduction veloc-

ity in the vertebrate central nervous system adds to the emerging idea that axons directly contribute

to computation in neuronal circuits. Indeed, the view of the axon as a cable-like compartment in

which conduction velocity is static has substantially changed over recent years in favor of a model

that allows flexibility and complex forms of axonal computation (Debanne et al., 2011). Recent
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findings showed that axon diameters change during long-term potentiation (Chéreau et al., 2017),

and changes in myelination in the motor cortex were resolved during the learning of complex motor

skills (McKenzie et al., 2014; for environmental effects on myelination see also Forbes and Gallo,

2017). One caveat of our study is the rather high concentration of the used neuromodulators and

the lack of in vivo evidence for the neuromodulation of conduction velocity. However, our data dem-

onstrate that, under certain conditions, an active control of conduction velocity could occur in the

vertebrate CNS via the cAMP-HCN pathway.

Mechanism and metabolic costs of HCN-channel-mediated control of
action potential propagation
Our analysis revealed that the control of conduction velocity is solely mediated by changes in resting

membrane potential. Isolated changes in membrane conductance and thus in the membrane time

and length constant had no effect on conduction velocity (Figure 9E). The increased conduction

velocity upon depolarization is consistent with a previously observed correlation between conduction

velocity and the depolarization from the resting potential required to reach the firing threshold in

motoneurons (Carp et al., 2003). On the other hand, Na+ channels have a steep steady-state inacti-

vation and are partially inactivated at the resting membrane potential in axons (Battefeld et al.,

2014; Engel and Jonas, 2005; Rama et al., 2015). Depolarization could thus be expected to further

inactivate Na+ channels and to decrease conduction velocity. However, our modeling results showed

that increasing the membrane potential from –90 to –60 mV increased the conduction velocity

despite significantly decreasing Na+ channel availability (Figure 9—figure supplement 1). Interest-

ingly, these findings are in agreement with the nonlinear cable theory predicting that the difference

between the resting membrane potential and the firing threshold is a critical parameter for action

potential conduction velocity (see, for example, Figure 12.25 in Jack et al. (1983) which shows

increasing velocity with increasing safety factor, that is, decreasing excitation threshold ‘VB’). Intui-

tively, the HCN-channel-mediated acceleration of conduction velocity can be understood as follows:

NaV-mediated current influx in one axonal location will depolarize neighboring locations faster above

the threshold in a depolarized axon compared with a resting axon. In our model, this effect out-

weighs the disadvantage of the increased steady-state inactivation of Na+ channels up to a mem-

brane potential of about –65 mV and a NaV availability of 50%. But the exact values above which

NaV availability limits conduction velocity critically depend on the assumptions of the model, such as

the voltage-dependence of inactivation and the density of the NaV channel. Interestingly, Ca2+

entering through axonal voltage-gated Ca2+ channels (Brenowitz and Regehr, 2007) could interact

with the cAMP pathway by activating or inhibiting different subtypes of adenylyl cyclase and phos-

phodiesterase (Bruce et al., 2003).

We observed a marked decrease in the maximal failure-free firing frequency from ~800 to ~400

Hz in cerebellar mossy fiber axons upon blockade of HCN channels (Figure 4). Although we cannot

differentiate between initiation failure and conduction failure, the alterations in the half duration and

amplitude of action potentials during high-frequency firing (Figure 4E) argue for impaired action

potential conduction in the absence of HCN channels. This is consistent with findings in cerebellar

parallel fibers and hippocampal Schaffer collaterals, where HCN channels ensure reliable conduction,

particularly at branch points (Baginskas et al., 2009; Soleng et al., 2003). The extent to which con-

duction failures occur under physiological conditions is controversial (Debanne et al., 2011;

Rama et al., 2018; Radivojevic et al., 2017), but our data indicate that HCN channels are required

to ensure the reliable initiation and conduction of action potentials at high frequencies. This is con-

sistent with Ih counteracting the hyperpolarization during high-frequency firing (Waxman et al.,

1995).

Our modeling results (Figure 9) indicate that the evolutionary design of HCN channels as a con-

tinuously open shunt for Na+ influx incurs significant metabolic costs. These high costs might appear

surprising, because a metabolically cheaper way to depolarize the membrane would be the expres-

sion of fewer Na+-K+-ATPases, resulting in a depolarized K+ reversal potential (cf. Vm-model in Fig-

ure 9). However, such a design might complicate high-frequency firing. Furthermore, as discussed in

the following paragraph, our finding that conduction velocity can be rapidly regulated via the cAMP-

HCN pathway might provide an additional justification for the metabolic costs of axonal HCN

channels.
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Modulation of conduction velocity via intracellular cAMP concentration
Using direct whole-cell recordings and immunogold EM from en passant boutons in cerebellar

axons, we identified near exclusive expression of HCN2 isoforms and a half-maximal shift of the acti-

vation of HCN2 channels at a cAMP concentration of 40 mM (Figure 7D). Furthermore, our perfo-

rated patch-recordings from axonal compartments provide, to our knowledge, the first direct

estimate of endogenous cAMP concentration in vertebrate central axons of 13 mM (Figure 7D). This

is higher than previous estimates of 50 nM in Aplysia sensory neurons (Bacskai et al., 1993; but see

Greenberg et al., 1987) and 1 mM in cardiomyocytes (Börner et al., 2011). But a recently reported

low cAMP-sensitivity of protein kinase A (Koschinski and Zaccolo, 2017), a prototypical cAMP-regu-

lated protein, also argues for high intracellular cAMP concentrations. On the other hand, our data

do not rule out that such high cAMP concentrations are limited to spatially restricted domains. The

possibility of local cAMP signaling-compartments was recently observed in Drosophila axons

(Maiellaro et al., 2016).

A high endogenous cAMP concentration and expression of the HCN2 isoform facilitates the abil-

ity of neuromodulators to control conduction velocity bidirectionally and dynamically. Only norepi-

nephrine increased the conduction velocity in cerebellar parallel fibers whereas the other

neuromodulators reduced the velocity (Figure 2), consistent with the expression of both Gi- and Gs-

coupled receptors, respectively. Indeed, Gs-coupled receptors for serotonin, dopamine, and adeno-

sine are expressed in the molecular layer of the cerebellum (see, for example, Geurts et al., 2002;

Schweighofer et al., 2004). Interestingly, adenosine, which decreased the conduction velocity (Fig-

ure 2), has been shown to be an endogenous sleep factor (Basheer et al., 2004; Porkka-

Heiskanen et al., 1997). Moreover, serotonin, dopamine, and norepinephrine play important regula-

tory functions during sleep in, for example, the cerebellum (Canto et al., 2017). Therefore, it is

tempting to speculate that the cAMP-HCN pathway allows not only an increase in the conduction

velocity during arousal but also a decrease in the velocity that saves metabolic costs during periods

of rest or sleep. The cAMP-HCN pathway in axons could thus contribute to the reduced energy con-

sumption of the brain during sleep (Boyle et al., 1994; Townsend et al., 1973). It should be noted

that the observed modulation of conduction velocity by neurotransmitters (Figure 2) is consistent

with a modulation via the cAMP-HCN pathway. Nevertheless, other mechanisms, such as direct influ-

ences on voltage-dependent Na+ (Yin et al., 2017), K+ (Yang et al., 2013), and Ca2+ channels

(Burke et al., 2018), could contribute to the modulation of conduction velocity. Furthermore, off-tar-

get interactions cannot be excluded with the used concentrations of neuromodulators.

Clinical relevance of axonal HCN channels
The function of HCN channels has been studied in human peripheral nerves using non-invasive

threshold tracking techniques (Howells et al., 2016; Howells et al., 2012; Lorenz and Jones,

2014). Significant alterations of HCN channel expression and/or function have been described in

pathologies such as stroke (Jankelowitz et al., 2007), porphyria (Lin et al., 2008), diabetic neuropa-

thy (Horn et al., 1996), neuropathic pain (Chaplan et al., 2003), and inflammation (Momin and

McNaughton, 2009), as well as in a vertebrate model of demyelination (Fledrich et al., 2014). In

some of these cases, the alterations are consistent with an activity-dependent modulation of HCN

channels (Jankelowitz et al., 2007). Furthermore, HCN channels seem to be causally related to pain

symptoms (Chaplan et al., 2003; Momin and McNaughton, 2009) and therapeutic blockade of

HCN channels are also considered (Wickenden et al., 2009). On the basis of our findings, HCN

could also play a compensatory role in restoring conduction velocity in some diseases.

Materials and methods

Preparation of cerebellar slices
Cerebellar slices were prepared from P21-P46 C57BL/6 mice of either sex as reported previously

(Ritzau-Jost et al., 2014). In short, after anesthetization with isoflurane, mice were killed by rapid

decapitation; the cerebellar vermis was quickly removed and placed in a slicing chamber filled with

ice-cold extracellular solution (ACSF) containing (in mM): NaCl 125, KCl 2.5, NaHCO3 26, NaH2PO4

1.25, glucose 20, CaCl2 2, MgCl2 1 (pH adjusted to 7.3–7.4 with HCl). Parasagittal or horizontal slices

were cut from the vermis of the cerebellum using a microtome with a vibrating blade (VT1200, Leica
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Biosystems, Nussloch, Germany), incubated at 35˚C for approximately 30 min and subsequently

stored at room temperature until use. For electrophysiological recordings, a slice was transferred

into the recording chamber mounted on the stage of an upright Nikon microscope. The recording

chamber was perfused with ACSF and the temperature in the center of the recording chamber was

set to 35˚C using a TC-324B perfusion heat controller (Warner Instruments, Hamden CT, USA).

Measuring conduction velocity in cerebellar parallel and mossy fibers
Compound action potentials were evoked by electrical stimulation using a bipolar platinum/iridium

electrode (from Microprobes for Life Science, Gaithersburg MD, USA) placed either in the white

matter or in the molecular layer (Figure 1) of the cerebellum. For the extracellular recording of com-

pound action potentials, two pipettes were filled with a 1M NaCl solution (tip resistance of 1–3 MW)

and placed within the respective fiber bundle and the voltage was measured in current clamp mode

with an EPC10 amplifier (CC gain 10x). Compound action potentials were evoked at 0.5 and 1 Hz in

parallel and mossy fibers, respectively. All recordings were performed in the presence of 10 mM

NBQX to block synaptic potentials. The conduction velocity of parallel fibers was measured at 35˚C.

Owing to the higher conduction velocity in myelinated mossy fibers, the action potentials evoked by

white matter stimulation had to be recorded at room temperature to allow the separation of the

compound action potential from the stimulation artifact. To calculate the conduction velocity, we

determined the delays of the peaks of the compound action potential component recorded with the

proximal and distal electrode. Compound action potentials from mossy fibers were analyzed offline

using the smoothing spline interpolation operation of Igor Pro to increase the signal to noise ratio.

Control recordings were performed interleaved with the application of different drugs. The conduc-

tion velocity experienced a small rundown over 20 min under control conditions (Figures 1 and 2C–

E). To investigate the contribution of HCN channels on the neuromodulation of the conduction

velocity (Figure 2F–G), cerebellar slices were pre-incubated for 20 min at room temperature with 30

mM ZD7288 and then transferred to the recording chamber (35˚C) with continued application of 30

mM ZD7288. The neuromodulators were applied 5 min after the beginning of the recordings (t = 0

min). Note that the control data without application of neuromodulators (‘only ZD7288’ in Figure 2F

and G) show a larger decrease in conduction velocity during the 20 min recording period compared

to the control data in Figure 2C–E. The difference in these control data is most likely due to the

slow action of ZD7288 (cf. Figure 1), which further decreases the conduction velocity during the

recordings, in addition to the run-down observed in control recordings without ZD7288. Therefore,

the change in conduction velocity induced by the neuromodulators with and without pre-incubation

of ZD7288 (Figure 2F–G and C–E, respectively) cannot be compared directly but have to be com-

pared with the corresponding controls.

Measuring conduction velocity in the optic nerve
Male wildtype mice of the C57BL6/N strain (P63±4) were euthanized by decapitation. After the brain

was exposed, the optic nerves (ON) were separated from the retina at the ocular cavity, and both

ONs were detached by cutting posterior to the optic chiasm. The preparation was gently placed

into an interface brain/tissue slice (BTS) perfusion chamber (Harvard Apparatus) and continuously

superfused with ACSF, bubbled with carbogen (95% O2, 5% CO2) at 36.5˚C during the experiment

(Trevisiol et al., 2017). In case both nerves were used for experiments, the non-recorded ON was

transferred to a different incubation chamber (Leica HI 1210) that provided incubation conditions

similar to those experienced by the recorded nerve while preventing exposure to ZD7288 and 8-Br-

cAMP. The temperature was maintained constant using a feedback-driven temperature controller

(model TC-10, NPI electronic) connected to a temperature probe (TS-100-S; NPI electronic) inserted

into the BTS incubation chamber near the nerve. Each ON was detached from the optic chiasm and

individually placed into the suction electrodes for stimulation and recording. The stimulation’s direc-

tion of the ON was maintained constant (orthodromic) throughout the experiments by inserting the

proximal (retinal) end of the nerve into the stimulation electrode as illustrated in Figure 1I. The stim-

ulating electrode was connected to a battery (Stimulus Isolator A385; WPI) that delivered a supra-

maximal stimulus to the nerve. The voltage was pre-amplified 500 times and fed to the AD ports of

the EPC9 or acquired directly via the EPC9 headstage (HEKA Elektronik, Lambrecht/Pfalz). The refer-

ence channel was obtained from an ACSF-filled glass capillary next to the recording suction
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electrode, which was in contact with the bathing ACSF. Initial equilibration of the ONs was per-

formed at 0.1 Hz stimulation, until the recorded compound action potentials showed a steady shape

(typically around 45–60 min from preparation). Five nerves from four animals and four nerves from

four animals were used for ZD7288 and 8-Br-cAMP treatment, respectively. Compound action

potentials were analyzed as described above using the smoothing spline interpolation operation of

Igor Pro to increase the signal to noise ratio.

Patch-clamp recordings from cMFBs
Recordings from cMFBs were visualized as previously described (Ritzau-Jost et al., 2014) with infra-

red differential interference contrast (DIC) optics using a FN-1 microscope from Nikon with a 100x

objective (NA 1.1) or infrared oblique illumination optics using a Femto-2D two-photon microscope

(Femtonics, Budapest) with a 60x Olympus (NA 1.0) objective. The passive properties of the cMFB

were determined as previously described (Hallermann et al., 2003) and revealed similar values for a

two-compartment model (data not shown) as previously described for cMFBs (Ritzau-Jost et al.,

2014), indicating that we did indeed record from cMFBs. Furthermore, the access resistance was on

average 16.9 ± 0.9 MW (n = 53 cMFBs), indicating optimal voltage clamp conditions.

To elicit traveling action potentials by axonal stimulation with a second pipette (Figure 4A),

whole-cell recordings from cMFBs were performed with 50 mM of the green-fluorescent dye Atto488

(from Atto-Tec, Siegen, Germany) in the intracellular solution to visualize single mossy fiber axons.

The additional stimulation pipettes filled with ACSF and 50 mM of the red-fluorescent dye Atto594

had the same opening diameter as patch pipettes and were positioned close to the axon and

approximately 100 mm away from the patched terminal. Stimulation pulses with durations of 100 ms

were delivered by a voltage-stimulator (ISO-Pulser ISOP1, AD-Elektronik, Buchenbach, Germany).

The stimulation intensity (1–30 V) was adjusted to ensure failure-free initiation of action potentials at

1 Hz (~1.5 time the firing threshold). High-frequency trains of action potentials were evoked at 100,

200, 333, 500, 750, 1000, 1111 and 1666 Hz. Amplitudes were measured from peak to baseline. The

duration was determined at half-maximal amplitude and is referred to as half-width. Action poten-

tials were treated as failures if the peak did not exceed –40 mV.

Recordings were performed with an EPC10/2 patch-clamp amplifier, operated by the correspond-

ing software PatchMaster (HEKA Elektronik) running on a personal computer. Recording electrodes

were pulled from borosilicate glass capillaries (inner diameter 1.16 mm, outer diameter 2 mm) by a

microelectrode puller (DMZ-Universal Puller, Zeitz Instruments, Augsburg). Pipettes used for patch-

clamp recordings had open-tip resistances of 5–12 MW. The intracellular presynaptic patch pipette

contained (in mM): K-gluconate 150, MgATP 3, NaGTP 0.3, NaCl 10, HEPES 10 and EGTA 0.05. The

apparent input resistance of cMFBs was estimated by linear regression of the steady-state voltage in

response to 300 ms hyperpolarizing current pulses of increasing amplitude (–five to –20 pA), whereas

the apparent membrane time constant was determined by fitting the voltage response to a �10 pA

hyperpolarizing pulse with a mono-exponential function.

Ih activation curves determined from the analysis of normalized tail current were fitted with a

Boltzmann function:

I

Imax
¼

1

1þ e

V�V
1=2
k

;

where V is the holding potential, V½ is the voltage of half-maximal activation and k the slope factor.

The reversal potential of Ih was calculated from leak-subtracted currents evoked by 10 ms long volt-

age ramps extending across the activation range of Ih (Cuttle et al., 2001). Three I-V relationships

recorded at activation potentials of –80,–110 and –140 mV were linearly extrapolated and the rever-

sal potential was calculated from average of the potentials of the three intersection points of the

three linear fits.

Perforated patch recordings from cMFBs
For perforated-patch recordings from cMFBs, a stock solution was prepared by dissolving the pore-

forming antimycotic nystatin in DMSO (25 mg/ml). Immediately before the experiments, the nysta-

tin-stock was added to the intracellular solution at a final concentration of 50 mg/ml. In order to mon-

itor the integrity of the perforated membrane patch, the green-fluorescent dye Atto 488 was added
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at a concentration of 50 mM. As nystatin is known to impair the formation of the GW seal, the

initial ~500 mm of the pipette tip was filled with a perforating agent-free internal solution (tip-

filling) before back-filling the pipette shaft with the perforating agent-containing solution. After

establishing a GW seal, the holding potential was set to –70 mV and the access resistance (Ra) was

continuously monitored by applying 10 ms long depolarizing pulses to –60 mV at 1 Hz. Recording

the voltage-dependent activation of Ih was begun after Ra dropped below 150 MW. Because the per-

forated membrane patch ruptured spontaneously at Ra <50 MW, the access resistance was not com-

parable to standard whole-cell recordings. To exclude the possibility that the right-shift of the Ih
activation curve in the perforated configuration (Figure 7C) was caused by the comparatively higher

Ra, the voltage-dependent activation of Ih was measured under normal whole-cell patch-clamp con-

ditions, using pipettes with small openings that resulted in high access resistances (Ra = 119 ± 12

MW). However, in these recordings, the midpoint of Ih activation (–105.5 ± 1.4 mV; n = 8) had a ten-

dency to be left-shifted when compared with regular whole-cell recordings with standard patch pip-

ettes (Ra » 30–60 MW; V½ = –103.3 ± 0.8 mV; n = 36; PT-Test = 0.13). The left-shift of the Ih activation

curve measured with high access resistances indicates that the right-shift measured with perforated

patch recordings might be underestimated because of the higher Ra, which would result in an even

higher estimate of the endogenous cAMP concentration (Figure 7D).

Analysis of the ZD sensitivity of Na+ currents
Sodium currents (Figure 1—figure supplement 1) were isolated using a modified ACSF containing

(in mM): NaCl 105, KCl 2.5, NaHCO3 25, NaH2PO4 1.25, glucose 20, CaCl2 2, MgCl2 1, TEA 20, 4-AP

5 and CdCl2 0.2. To avoid underestimation of the true size of the presynaptic Na+ currents

because of the voltage-drop through the access resistance, we blocked a portion of the Na+ current

with 30 nM TTX. Na+ currents were elicited from a holding potential of –80 mV by a 3-ms-long depo-

larization to 0 mV. Peak amplitudes and half-durations of Na+ currents were measured from leak-

subtracted traces.

Immunoelectron microscopy
Preembedding immunogold labeling was performed as described (Notomi and Shigemoto, 2004).

Briefly, adult C57Bl/6 mice were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and per-

fused transcardially with a fixative containing 4% formaldehyde, 0.05% glutaraldehyde and 15% of a

saturated picric acid in 0.1 M phosphate buffer (PB; pH 7.4). Parasagittal sections through the cere-

bellum were cut at 50 mm, cryoprotected with 30% sucrose, flash frozen in liquid nitrogen and rap-

idly thawed. Sections were blocked in 10% normal goat serum and 2% bovine serum albumin (BSA)

in tris-buffered saline (TBS) for 2 hr at room temperature, incubated in TBS containing 2% BSA and

either guinea pig anti-HCN1 or anti-HCN2 antibody (1 mg/ml, Notomi and Shigemoto, 2004) for 48

hr at 4˚C, and finally reacted with nanogold-conjugated secondary antibody (Nanoprobes, 1:100) for

24 hr at 4˚C. Nanogold particles were amplified with the HQ Silver Enhancement kit (Nanoprobes)

for 8 min. Sections were treated in 0.5% osmium tetroxide in PB for 40 min and then 1% aqueous

uranyl acetate for 30 min at room temperature, dehydrated, and flat embedded in Durcopan resin

(Sigma-Aldrich). Ultrathin sections were cut at 70 nm and observed by a transmission electron micro-

scope (Tecnai 12, FEI, Oregon). Sequential images were recorded from the granule cell layer within

a few microns of the surface of ultrathin sections at X26,500 using a CCD camera (VELETA, Olym-

pus). For the reconstruction of a half mossy fiber bouton, 36 serial ultrathin sections were used.

Sequential images were aligned and stacked using the TrakEM2 program (Cardona et al., 2012).

For the measurement of density of immunogold particles for HCN2 on this reconstructed profile,

1260 immunogold particles were counted on the mossy fiber bouton membrane area (73.7 mm2), giv-

ing a density of 17.1 particles/mm2. Immunogold particles within 30 nm of the bouton membranes

were included in the analysis on the basis of the possible distance of the immunogold particle from

the epitope (Matsubara et al., 1996). The density of non-specific labeling was estimated using

the nuclear membrane of a granule cell located adjacent to the reconstructed mossy fiber bouton.

We found 40 immunogold particles on the nuclear membrane area of 60.5 mm2 giving a density of

0.66 particles/mm2, which was 3.9% of the HCN2 labeling density on the mossy fiber bouton.
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Hodgkin-Huxley model of axonal HCN channels
Because we did not intend to simulate the cAMP dependence of HCN channel gating explicitly

(Hummert et al., 2018), we created two separate models for 0 and 1 mM intracellular cAMP, which

were based on a previously described Hodgkin-Huxley model (Kole et al., 2006) with one activation

gate and no inactivation (Hodgkin and Huxley, 1952). In short, the activation gate was described by

dm

dt
¼ am 1�mð Þ� bmm

with

am Vð Þ ¼ A e

�ðVm �V
1=2 Þ

Va

and

bm Vð Þ ¼ A e

ðVm � V
1=2Þ

Vb

The four free parameters, A, V1/2, Va, and Vb were determined by simultaneously fitting am /(am

+ bm) to the steady-state activation curve (see Figure 7B) and 1/(am + bm) to the voltage depen-

dence of the time constant of Ih activation and deactivation (Figure 8B). The sum of squared errors

was minimized using the FindMinimum routine of Mathematica (version 10; Wolfram Research,

Champaign, IL), with the time constants of activation and deactivation weighed with the inverse of

the square of the maximum value in each of the three datasets (time constant of activation, time con-

stant of deactivation, and steady-state activation curve). The resulting parameters for 0 mM cAMP

were A = 6.907 ms�1, V1/2 = –102.1 mV, Va = 18.71 mV, and Vb = 21.73 mV. To confirm that the

global minimum was reached, the best-fit parameters were shown to be independent of the starting

values within a plausible range. The 68% confidence interval was calculated as the square roots of

the diagonals of the inverse of the Hessian matrix (Press et al., 2002), resulting in ±2.71 ms�1, ±16.5

mV, ±17.5 mV, and ±24.3 mV, for A, V1/2, Va, and Vb, respectively. We also generated a model for

the corresponding data obtained with 1 mM cAMP in the intracellular solution (cf. Figure 7B), result-

ing in A = 7.570 ms�1, V1/2 = –87.31 mV, Va = 31.46 mV, and Vb = 10.84 mV.

NEURON model of cMFB
The model of the cMFB consisted of connected cylindrical compartments representing 15 boutons

(length 8 mm and diameter 8 mm) and 15 myelinated axonal compartments (length 35 mm and diame-

ter 0.8 mm; cf. Palay and Chan-Palay, 1974; Figure 9A). In addition, at one side of this chain, a long

cylinder was added presenting the axon in the white matter (length 150 mm and diameter 1.2 mm).

The specific membrane resistance was 0.9 mF/cm2 (Gentet et al., 2000) and the cytoplasmatic resis-

tivity was 120 W cm (Hallermann et al., 2003). The specific membrane resistance and capacitance of

the axonal compartments were both reduced by a factor of 10, representing myelination.

The ionic membrane conductances were similar to those published by Ritzau-Jost et al. (2014)

and were adjusted to reproduce the action potential duration and the maximal firing frequency as

well as the data shown in Figure 9B–D. Namely, an axonal Na+ channel (Schmidt-Hieber and Bis-

chofberger, 2010) and K+ channel NMODL model (Hallermann et al., 2012) was added with a den-

sity of 2000 and 1000 pS/mm2 in the boutons and 0 and 0 pS/mm2 in the axonal compartments,

respectively. The Na+ and K+ reversal potentials were 55 and –97 mV, respectively. To enable the

analysis of the ATP consumption (Hallermann et al., 2012), the leak conductance was implemented

as separate Na+ and K+ leak channel models with a conductance of 0.0138 and 0.18 pS/mm2, respec-

tively, in the bouton compartments. In the axonal compartments, both conductances were reduced

by a factor of 10. The above-described Hodgkin-Huxley model of axonal HCN channels (for 0 mM

intracellular cAMP) was added with a density of gHCN = 0.3 and 0.03 pS/mm2 for the bouton and axo-

nal compartments, respectively. For the analysis of the ATP consumption, the gHCN conductance was

separated in a Na+ and a K+ conductance according to gHCN(Na) = (1 – ratioK/Na) gHCN and gHCN(K) =

ratioK/Na gHCN, where ratioK/Na = (eNa + eHCN)/(eNa – eK), where eNa and eK are the Na+ and K+ rever-

sal potential as described above and eHCN is the reversal potential of Ih measured as –23.3 mV (cf.

Figure 8C). Assuming a single channel conductance of 1.7 pS for HCN2 channels (Thon et al.,

2013), this conductance corresponds to a density of 0.18 HCN channels/mm2, which is much lower
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than the estimate from preembedding immunogold labeling (22 particles/mm2; Figure 6). However,

the optimal density of the model critically depends on the geometry of the structure, which was not

obtained from the recorded boutons. To obtain the required structural information, including the

fenestration of the cMFB (cf. Figure 6) and the level of myelination, electron microscopic reconstruc-

tions of large volumes of the recorded cMFB and the entire axon would be needed. When we used

a gHCN, as determined with preembedding immunogold labeling in our model, the model also pre-

dicted that Ih critically effects conduction velocity and that the depolarization is the main reason for

the velocity to change. In general, these two conclusions of the model were very insensitive to the

specific parameters of the model and were, for example, also obtained with additional interleaved

cylindrical compartments with high Na+ and K+ channel densities representing nodes of Ranvier, or

with a long cylindrical compartment with homogenous channel densities representing an unmyelin-

ated axon. This further supports our finding that HCN channels accelerate conduction velocity inde-

pendently of the exact parameters of the axon and the degree of myelination (cf. Figure 1).

Starting from the model that reproduced the control data, the following four additional models

were generated. (1) To simulate ZD application, the HCN HH model was removed. (2) To simulate 8-

br-cAMP application, the parameters of the HCN HH model were exchanged with the parameters

obtained from the experiments with 1 mM cAMP. (3) To simulate only the depolarization by HCN

channels (Vm-model), the HCN HH channel model was removed and the K+ reversal potential was

increased from –97 mV to –90 mV. (4) To simulate only the increase in membrane conductance by

HCN channels (Rm-model), the reversal potential of the HCN HH model was decreased from –23.3

mV to –85.5 mV and the density was increased from 0.3 pS/mm2 to 1 pS/mm2 in the bouton and from

0.03 pS/mm2 to 0.1 pS/mm2 in the axon.

All simulations were run with a simulation time interval (dt) of <0.2 ms, preceded by a simulation

of 1 s with a dt of 5 ms to allow equilibration of all conductances. Conduction velocity was calculated

from the peak of the action potentials in different boutons of the model. The apparent input resis-

tance was calculated identically to the experimental recordings, that is from the voltage after 300 ms

of a –10 pA current injection. IPython (Jupyter Notebooks; Kluyver et al., 2016)

or Mathematica (Wolfram Research, Champaign, IL) were used to run the NEURON simulations and

to visualize and analyze the results (Hines et al., 2009).

Statistics
Statistical analysis was performed using built-in functions of Igor Pro (Wavemetrics, Lake Oswego,

OR). The suffix of the P values provided in the legends and the main test indicate the used statistical

test. Results were considered significant when P<0.05.

Code
The NEURON scripts allowing to reproduce the model results will be available at: https://github.

com/HallermannLab/2019_HCN (Hallermann Labratory, 2019; copy archived at https://github.com/

elifesciences-publications/2019_HCN).
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Isope P, Dieudonné S, Barbour B. 2002. Temporal organization of activity in the cerebellar cortex: a manifesto
for synchrony. Annals of the New York Academy of Sciences 978:164–174. DOI: https://doi.org/10.1111/j.1749-
6632.2002.tb07564.x, PMID: 12582050

Jack JJB, Noble D, Tsien RW. 1983. Electric Current Flow in Excitable Cells. Oxford: Clarendon Press.
Jankelowitz SK, Howells J, Burke D. 2007. Plasticity of inwardly rectifying conductances following a corticospinal
lesion in human subjects. The Journal of Physiology 581:927–940. DOI: https://doi.org/10.1113/jphysiol.2006.
123661

Kim JH, von Gersdorff H. 2012. Suppression of spikes during posttetanic hyperpolarization in auditory neurons:
the role of temperature, Ih currents, and the Na+-K+-ATPase pump. Journal of Neurophysiology 108:1924–
1932. DOI: https://doi.org/10.1152/jn.00103.2012

Kluyver T, Ragan-Kelley B, Perez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S.
2016. Jupyter Notebooks - a publishing format for reproducible computational workflows. Positioning and
Power in Academic Publishing: Players, Agents and Agendas:87–90. DOI: https://doi.org/10.3233/978-1-61499-
649-1-87

Ko KW, Rasband MN, Meseguer V, Kramer RH, Golding NL. 2016. Serotonin modulates spike probability in the
axon initial segment through HCN channels. Nature Neuroscience 19:826–834. DOI: https://doi.org/10.1038/
nn.4293

Kole MH, Hallermann S, Stuart GJ. 2006. Single Ih channels in pyramidal neuron dendrites: properties,
distribution, and impact on action potential output. Journal of Neuroscience 26:1677–1687. DOI: https://doi.
org/10.1523/JNEUROSCI.3664-05.2006, PMID: 16467515

Koschinski A, Zaccolo M. 2017. Activation of PKA in cell requires higher concentration of cAMP than in vitro:
implications for compartmentalization of cAMP signalling. Scientific Reports 7:14090. DOI: https://doi.org/10.
1038/s41598-017-13021-y

Lang EJ, Rosenbluth J. 2003. Role of myelination in the development of a uniform olivocerebellar conduction
time. Journal of Neurophysiology 89:2259–2270. DOI: https://doi.org/10.1152/jn.00922.2002, PMID: 12611949

Lin CS-Y, Krishnan AV, Lee M-J, Zagami AS, You H-L, Yang C-C, Bostock H, Kiernan MC. 2008. Nerve function
and dysfunction in acute intermittent porphyria. Brain 131:2510–2519. DOI: https://doi.org/10.1093/brain/
awn152

Lorenz C, Jones KE. 2014. Ih activity is increased in populations of slow versus fast motor axons of the rat.
Frontiers in Human Neuroscience 8:766. DOI: https://doi.org/10.3389/fnhum.2014.00766, PMID: 25309406

Magee JC. 1999. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nature
Neuroscience 2:508–514. DOI: https://doi.org/10.1038/9158

Maiellaro I, Lohse MJ, Kittel RJ, Calebiro D. 2016. cAMP signals in Drosophila motor neurons are confined to
single synaptic boutons. Cell Reports 17:1238–1246. DOI: https://doi.org/10.1016/j.celrep.2016.09.090,
PMID: 27783939

Marder E, Bucher D. 2001. Central pattern generators and the control of rhythmic movements. Current Biology
11:R986–R996. DOI: https://doi.org/10.1016/S0960-9822(01)00581-4

Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL. 2010. Control of submillisecond synaptic timing in
binaural coincidence detectors by Kv1 channels. Nature Neuroscience 13:601–609. DOI: https://doi.org/10.
1038/nn.2530, PMID: 20364143

Matsubara A, Laake JH, Davanger S, Usami S-ichi, Ottersen OP. 1996. Organization of AMPA receptor subunits
at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of corti. The
Journal of Neuroscience 16:4457–4467. DOI: https://doi.org/10.1523/JNEUROSCI.16-14-04457.1996

McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD. 2014. Motor skill learning
requires active central myelination. Science 346:318–322. DOI: https://doi.org/10.1126/science.1254960,
PMID: 25324381

Momin A, McNaughton PA. 2009. Regulation of firing frequency in nociceptive neurons by pro-inflammatory
mediators. Experimental Brain Research 196:45–52. DOI: https://doi.org/10.1007/s00221-009-1744-2, PMID: 1
9350231

Nicholas AP, Pieribone VA, Hökfelt T. 1993. Cellular localization of messenger RNA for beta-1 and beta-2
adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1023–1039. DOI: https://doi.
org/10.1016/0306-4522(93)90148-9, PMID: 8284033

Notomi T, Shigemoto R. 2004. Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain.
The Journal of Comparative Neurology 471:241–276. DOI: https://doi.org/10.1002/cne.11039, PMID: 14991560

Nusser Z. 2012. Differential subcellular distribution of ion channels and the diversity of neuronal function. Current
Opinion in Neurobiology 22:366–371. DOI: https://doi.org/10.1016/j.conb.2011.10.006, PMID: 22033281

Palay SM, Chan-Palay V. 1974. Cerebellar Cortex: Cytology and Organization. Berlin: Springer.
Pape HC, McCormick DA. 1989. Noradrenaline and serotonin selectively modulate thalamic burst firing by
enhancing a hyperpolarization-activated cation current. Nature 340:715–718. DOI: https://doi.org/10.1038/
340715a0, PMID: 2475782

Person AL, Raman IM. 2012. Synchrony and neural coding in cerebellar circuits. Frontiers in Neural Circuits 6:97.
DOI: https://doi.org/10.3389/fncir.2012.00097, PMID: 23248585

Byczkowicz et al. eLife 2019;8:e42766. DOI: https://doi.org/10.7554/eLife.42766 24 of 26

Research article Neuroscience

https://doi.org/10.1016/j.neuron.2014.08.046
http://www.ncbi.nlm.nih.gov/pubmed/25263752
https://doi.org/10.1371/journal.pcbi.1006045
https://doi.org/10.1111/j.1749-6632.2002.tb07564.x
https://doi.org/10.1111/j.1749-6632.2002.tb07564.x
http://www.ncbi.nlm.nih.gov/pubmed/12582050
https://doi.org/10.1113/jphysiol.2006.123661
https://doi.org/10.1113/jphysiol.2006.123661
https://doi.org/10.1152/jn.00103.2012
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1038/nn.4293
https://doi.org/10.1038/nn.4293
https://doi.org/10.1523/JNEUROSCI.3664-05.2006
https://doi.org/10.1523/JNEUROSCI.3664-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16467515
https://doi.org/10.1038/s41598-017-13021-y
https://doi.org/10.1038/s41598-017-13021-y
https://doi.org/10.1152/jn.00922.2002
http://www.ncbi.nlm.nih.gov/pubmed/12611949
https://doi.org/10.1093/brain/awn152
https://doi.org/10.1093/brain/awn152
https://doi.org/10.3389/fnhum.2014.00766
http://www.ncbi.nlm.nih.gov/pubmed/25309406
https://doi.org/10.1038/9158
https://doi.org/10.1016/j.celrep.2016.09.090
http://www.ncbi.nlm.nih.gov/pubmed/27783939
https://doi.org/10.1016/S0960-9822(01)00581-4
https://doi.org/10.1038/nn.2530
https://doi.org/10.1038/nn.2530
http://www.ncbi.nlm.nih.gov/pubmed/20364143
https://doi.org/10.1523/JNEUROSCI.16-14-04457.1996
https://doi.org/10.1126/science.1254960
http://www.ncbi.nlm.nih.gov/pubmed/25324381
https://doi.org/10.1007/s00221-009-1744-2
http://www.ncbi.nlm.nih.gov/pubmed/19350231
http://www.ncbi.nlm.nih.gov/pubmed/19350231
https://doi.org/10.1016/0306-4522(93)90148-9
https://doi.org/10.1016/0306-4522(93)90148-9
http://www.ncbi.nlm.nih.gov/pubmed/8284033
https://doi.org/10.1002/cne.11039
http://www.ncbi.nlm.nih.gov/pubmed/14991560
https://doi.org/10.1016/j.conb.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22033281
https://doi.org/10.1038/340715a0
https://doi.org/10.1038/340715a0
http://www.ncbi.nlm.nih.gov/pubmed/2475782
https://doi.org/10.3389/fncir.2012.00097
http://www.ncbi.nlm.nih.gov/pubmed/23248585
https://doi.org/10.7554/eLife.42766


Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. 1997. Adenosine: a
mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268. DOI: https://doi.
org/10.1126/science.276.5316.1265, PMID: 9157887

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. 2002. Numerical Recipes in C++: The Art of Scientific
Computing. 2nd edn. Cambridge, UK: Cambridge UP.

Radivojevic M, Franke F, Altermatt M, Müller J, Hierlemann A, Bakkum DJ. 2017. Tracking individual action
potentials throughout mammalian axonal arbors. eLife 6:e30198. DOI: https://doi.org/10.7554/eLife.30198,
PMID: 28990925

Rama S, Zbili M, Bialowas A, Fronzaroli-Molinieres L, Ankri N, Carlier E, Marra V, Debanne D. 2015. Presynaptic
hyperpolarization induces a fast analogue modulation of spike-evoked transmission mediated by axonal sodium
channels. Nature Communications 6:10163. DOI: https://doi.org/10.1038/ncomms10163, PMID: 26657943

Rama S, Zbili M, Debanne D. 2018. Signal propagation along the axon. Current Opinion in Neurobiology 51:37–
44. DOI: https://doi.org/10.1016/j.conb.2018.02.017, PMID: 29525575

Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M. 2007. High-fidelity transmission of sensory
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