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Abstract: Unfolding techniques are employed to reconstruct the 1D energy distribution of runaway
electrons fromBremsstrahlung hardX-ray spectrum emitted during plasma disruptions in tokamaks.
Here we compare four inversion methods: truncated singular value decomposition, which is a linear
algebra technique, maximum likelihood expectation maximization, which is an iterative method,
and Tikhonov regularization applied to j2 and Poisson statistics, which are two minimization
approaches. The reconstruction fidelity and the capability of estimating cumulative statistics, such
as the mean and maximum energy, have been assessed on both synthetic and experimental spectra.
The effect of measurements limitations, such as the low energy cut and few number of counts, on
the final reconstruction has also been studied. We find that the iterative method performs best as it
better describes the statistics of the experimental data and is more robust to noise in the recorded
spectrum.
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1 Introduction

In recent years, the development of a new generation of hard-X ray (HXR) spectrometers, based on
!0�A3 inorganic scintillators with counting rates capabilities up to 1 MCps and energy resolution
of . 5 % @ 661 keV [1, 2], allowed to measure the Bremsstrahlung radiation emitted from
the interaction between runaway electrons (REs) and background ions during plasma disruptions
in tokamaks [3]. From this HXR spectrum, the 1D energy distribution of the beam can be
reconstructed using suitable unfolding techniques [4, 5], unveiling precious information for the
study of REs dynamics and the design of avoidance or mitigation strategies for ITER. In addition
to being computationally less expensive, measured 1D energy distribution functions can challenge
computations from first principles to improve our understanding of REs.

The performance of unfolding techniques strongly depends on the process under analysis, thus
the comparison of different deconvolution methods on synthetic distributions can help assessing
the capability and limits of the unfolding procedure. In this work we present a comparison of
four unfolding techniques, which are presented in section 2 and then applied to synthetic signals
(section 3) as well as to experimental data collected with the 1"x1" cylindrical LaBr3 scintillator
installed in the Bragg Bunker at ASDEX Upgrade (AUG) (section 4).

2 Analysis techniques

The HXR spectrum ( and the RE energy distribution � follow the convolution equation: ( = , ·�,
which is the same method as applied in energetic ion distribution functions [6]. Here the matrix
, describes the Bremsstrahlung emission probability, which was calculated using the GENESIS
code [7], and the interaction of a photon with a LaBr3 scintillator, which was simulated using the
MCNP code [8]. Figure 1 shows a sketch of,’s columns, which represent the spectra emitted by
a ideally mono-energetic RE beam, and rows, which are also called weight functions [19, 20] and
describe the diagnostic sensitivity to different regions in the RE energy spectrum. In this section we
present four unfolding techniques, whose performances on the problem at hand will be compared
in sections 3 and 4.
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Figure 1. (left) MCNP simulation of the DRF of the LaBr3 scintillator installed at AUG in the Bragg Bunker.
Transfer matrix, columns (centre) and rows (right), the latter for 5, 10 and 15 MeV measured signals.

Singular Value Decomposition (SVD) [9] is a linear algebra method for the spectral decompo-
sition of a rectangular matrix into orthogonal matrices, which in turn can be transposed to give the
truncated pseudo inverse: ,−1 = + ·Σ−1 ·*) . Here* and+ are the singular vectors matrices, while
Σ is the diagonal matrix containing, singular values. In order to smooth any computational and
experimental noise that might degrade the reconstruction Σ is usually truncated by neglecting all
singular values smaller than a custom threshold. Maximum Likelihood - ExpectationMaximization
(ML-EM) is an iterative algorithm commonly used in tomographic inversions [4, 10]: it makes
a first guess (e.g. �0
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,
= being the iteration number. Every =B<>>Cℎ8=6 iteration the estimate is smoothed by applying a
sliding window average filter to prevent the formation of artifacts. Tikhonov regularization tradi-
tionally minimizes the j2 statistics and a smoothing operator ! [11–16], that in the present work
has been chosen of the first order (i.e. it penalizes steep gradients in the reconstruction). The solu-
tion, then, is chosen as: � = arg min� ≥0

(
‖, · � − (‖2 + U‖! · �‖2

)
, where the parameter U ≥ 0

determines the intensity of the smoothing. Finally, we have also tested a variation of Tikhonov reg-
ularization, where the j2 has been substituted by the Poisson log-likelihood calculated in ref. [17]:
ℓ =

∑
8

( [
, · �

]
8
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)
− ∑

8

(
(8 log(

[
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]
8
+ V)

)
, which better describes our data. Here V is a

small arbitrary parameter that prevents the cost function from diverging.
In all four methods the smoothing parameters have been set according to the L-curve method,

as in ref. [11], while the confidence band of the reconstruction has been computed with the Monte
Carlo procedure proposed in ref. [18]. Since each of the methods presented suffers from the
generation of artifacts in the reconstructed distribution, cumulative statistics has been studied as
well. In particular the RE mean energy and the maximum energy, calculated as the - percentile of
the energy distribution, with - = 90 % and 99 %. and 99.9 %.

3 Synthetic tests

The performance of the methods explained in section 2 have been tested on four synthetic RE energy
distributions (figure 2): a gaussian (` = 12 MeV, f = 3 MeV), an exponential (g = 10 a.u.), a
maxwellian (g = 40 a.u.) and the sum of a maxwellian and a gaussian (g = 40 a.u., ` = 12 MeV,
f = 1 MeV). SVD shows severe artifacts in most reconstructionss: negative probability functions
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Table 1. Mean energy and maximum energy (calculated as the 90, 99, 99.9 percentiles) of the synthetic
distribution function shown in figure 2 reconstructed with the four methods presented in section 2. The errors
are estimated using a Monte Carlo procedure on the reconstructed RE distribution.

gaussian [MeV] SVD [MeV] ML-EM [MeV] Tikhonov [MeV] Poisson [MeV]
〈�〉 = 12.00 11.80 ± 0.10 12.01 ± 0.12 12.18 ± 0.3 11.95 ± 0.4
�90 = 15.76 15.15 ± 0.10 15.8 ± 0.1 16.47 ± 0.5 15.97 ± 0.5
�99 = 18.91 16.58 ± 2 18.91 ± 1.7 19.22 ± 1.5 18.10 ± 1.3
�99.9 = 21.25 25.83 ± 0.3 21.66 ± 5 20.24 ± 1.3 19.02 ± 1.2
exponential SVD ML-EM Tikhonov Poisson
〈�〉 = 8.48 8.55 ± 0.06 8.54 ± 0.09 8.79 ± 0.19 8.53 ± 0.4
�90 = 19.32 20.03 ± 0.3 19.22 ± 0.4 20.34 ± 1.1 19.22 ± 1.6
�99 = 28.27 28.68 ± 0.5 28.47 ± 0.9 28.88 ± 1.4 28.58 ± 2
�99.9 = 29.80 29.90 ± 0.4 29.90 ± 0.5 29.90 ± 0.9 29.90 ± 1.8
maxwellian SVD ML-EM Tikhonov Poisson
〈�〉 = 7.14 7.04 ± 0.07 7.18 ± 0.06 7.05 ± 0.02 7.10 ± 0.5
�90 = 11.08 10.78 ± 0.10 11.19 ± 0.15 10.88 ± 0.1 10.98 ± 1.0
�99 = 15.05 14.13 ± 7 15.46 ± 1.1 13.63 ± 0.2 14.13 ± 2.0
�99.9 = 18.00 22.78 ± 2 19.22 ± 7 15.05 ± 1.0 15.25 ± 1.9
maxwellian+gaussian SVD ML-EM Tikhonov Poisson
〈�〉 = 6.25 6.06 ± 0.11 6.18 ± 0.12 6.11 ± 0.08 6.18 ± 0.6
�90 = 10.98 10.47 ± 0.4 10.88 ± 0.4 10.58 ± 0.2 10.88 ± 2
�99 = 14.13 13.32 ± 5 13.63 ± 4 13.32 ± 0.9 13.52 ± 1.7
�99.9 = 15.35 13.73 ± 6 14.74 ± 4 14.34 ± 0.9 14.24 ± 1.6

and evident oscillations around 0 at high and low energy. The other three methods give better
results, eventhough traditional Tikhonov regularization often underestimates the high-energy tail
of the distribution. Table 1 reports the estimates of the mean energy of the RE beam (〈�〉) and
its maximum energy, as defined in section 2. The errors (f) of the estimates have been computed
using the Monte Carlo procedure of ref. [18]. The worst results are again obtained using SVD,
which will not be included in the analysis of section 4. The best results are obtained using ML-EM:
the estimates always differ from the true statistics less of ≈ 5 % and the Monte Carlo error always
accounts for this difference within one f.

4 Application to AUG data

The reconstructions of AUG shot #34084 (see also ref. [3]), obtained using the unfolding methods
presented in section 2, are compared in figure 3. All methods retrieve admissible solutions, which
well fit the experimental data. The reconstructed RE energy distributions are in good agreement up
to ≈ 10 MeV, while they differ in the high-energy tail. As already pointed out in section 3, Tikhonov
regularization with j2 statistics is prone to underestimate such a tail.

A cut at low energy between 0.1 and 0.5 MeV is always applied to the measured spectra in
order to remove the electronic noise due to the acquisition chain. To determine the effect of this loss
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Figure 2. Reconstructions of four synthetic signals: a gaussian, an exponential, a maxwellian and the
superposition of a maxwellian with a gaussian. The RE distribution used to generate the synthetic signal
is reported in red dots, while its reconstruction is shown as a blue line with statistical errors shown as a
light-blue band.

of information on the final reconstruction, shot #34084 has been analysed after applying different
energy cuts from 0.1 to 6 MeV (figure 4). Some minor artifacts appear in a region of ≈ 2 − 3
MeV right above the cut and the peaks in the high energy part of the distribution are accentuated.
However the overall spectral shape of the reconstruction is preserved, showing that the low energy
cut determines mainly the reconstruction below ≈ 5 MeV, while the shape of the high-energy part
of the RE energy distribution is mostly influenced by the high-energy counts in the HXR spectrum.

We are also interested in studying the minimum number of counts necessary to perform a
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Figure 3. (left) The experimental HXR spectrum measured during AUG shot #34084 in the time interval
1.00 - 1.13 s and its reconstruction obtained convolving the RE distributions (see graph on the right) with
the transfer matrix W (see figure 1). (right) REs energy distribution reconstructed from the experimental
spectrum shown on the left, using ML-EM, Poisson and Tikhonov regularizations.

reconstruction of the RE energy distribution. Statistically independent, uniformly drawn, random
samples of the shot #34084 HXR spectrum, with 1, 5, 10 and 20 kcounts have been analysed.
The reconstructions performed with Tikhonov minimization applied to the Poissonian statistics
show substantial differences already when 20 kcounts draws are analysed, thus suggesting that the
signal to noise ratio of the high-energy tail of the RE Bremsstrahlung emission is unfavorable for
the Poissonian cost function and that the two peaks above 10 MeV in figure 3 are probably an
artefacts. Better results are achieved using ML-EM and traditional Tikhonov regularization, which
can retrieve the overall shape of RE energy distribution even with only 5/10 kcounts. When only
global features of the RE beam are seeked, the above recommendation can be relaxed: figure 4
shows the average and standard deviation of 〈�'�〉, �90

'�
and �99

'�
calculated on multiple draws.

The inference of the mean RE energy gives good results also on spectra with only 1 kcounts, while
the estimates for the maximum energy are reliable on average up to 5 kcounts (the higher the
percentile of the estimate, the more counts are needed).

5 Conclusions

Four unfolding techniques have been applied to the reconstruction of the runaway electrons energy
distribution from their Bremsstrahlung HXR emission. ML-EM has produced the most reliable
reconstruction of the synthetic signals. With all four methods, the mean and maximum energy
of the RE beam has been estimated within 5% from the true value, proving those estimates to be
robust against the presence of artifacts in the reconstruction. The tests performed on experimental
data show that ML-EM and Tikhonov with j2 statistics give good results also when a generous
low-energy cut is applied. The two methods also perform well with limited statistics, reaching a
maximum time resolution of ≈ 10−2 s if the complete spectral information is required, which can
be pushed to ≈ 10−3 s for the estimate of the cumulative statistics.
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Figure 4. (left) Multiple reconstructions of the RE energy distribution in AUG shot #34084 for different low
energy cuts, performed with ML-EM. Black dots show the reconstruction of figure 3 for reference. (right)
Average and standard deviation of RE distribution statistics obtained by reconstructing random draws of the
experimental data set, with variable size (1, 5, 10, 20 kcounts), using ML-EM. Dashed lines refer to the
statistics of the reconstruction in figure 3
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