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PLETHORA OF CLUSTER STRUCTURES ON GL,

M. GEKHTMAN, M. SHAPIRO, AND A. VAINSHTEIN

ABSTRACT. We continue the study of multiple cluster structures in the rings
of regular functions on G L, SLy, and Mat,, that are compatible with Poisson-
Lie and Poisson-homogeneous structures. According to our initial conjecture,
each class in the Belavin—Drinfeld classification of Poisson—Lie structures on
semisimple complex group G corresponds to a cluster structure in O(G). Here
we prove this conjecture for a large subset of Belavin-Drinfeld (BD) data of A,
type, which includes all the previously known examples. Namely, we subdivide
all possible A,, type BD data into oriented and non-oriented kinds. In the ori-
ented case, we single out BD data satisfying a certain combinatorial condition
that we call aperiodicity and prove that for any BD data of this kind there ex-
ists a regular cluster structure compatible with the corresponding Poisson—Lie
bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD
data and prove a more general result that establishes an existence of a regular
cluster structure on SL,, compatible with a Poisson bracket homogeneous with
respect to the right and left action of two copies of SL, equipped with two
different Poisson-Lie brackets. If the aperiodicity condition is not satisfied,
a compatible cluster structure has to be replaced with a generalized cluster
structure. We will address this situation in future publications.
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1. INTRODUCTION

In this paper we continue the systematic study of multiple cluster structures
in the rings of regular functions on GL,,, SL, and Mat,, started in [13| [14, [15].
It follows an approach developed and implemented in [10, 11 [12] for constructing
cluster structures on algebraic varieties.

Recall that given a complex algebraic Poisson variety (M, {-,-}), a compatible
cluster structure Cyq on M is a collection of coordinate charts (called clusters) com-
prised of regular functions with simple birational transition maps between charts
(called cluster transformations, see [§]) such that the logarithms of any two func-
tions in the same chart have a constant Poisson bracket. Once found, any such
chart can be used as a starting point, and our construction allows us to restore
the whole Cp, provided the arising birational maps preserve regularity. Algebraic
structures corresponding to Caq (the cluster algebra and the upper cluster algebra)
are closely related to the ring O(M) of regular functions on M. In fact, under cer-
tain rather mild conditions, O(M) can be obtained by tensoring the upper cluster
algebra with C, see [12].

This construction was applied in [I2] Ch. 4.3] to double Bruhat cells in semisim-
ple Lie groups equipped with (the restriction of) the standard Poisson—Lie structure.
It was shown that the resulting cluster structure coincides with the one built in [2].
The standard Poisson—Lie structure is a particular case of Poisson—Lie structures
corresponding to quasi-triangular Lie bialgebras. Such structures are associated
with solutions to the classical Yang—Baxter equation. Their complete classification
was obtained by Belavin and Drinfeld in [I]. Solutions are parametrized by the
data that consists of a continuous and a discrete components. The latter, called
the Belavin—Drinfeld triple, is defined in terms of the root system of the Lie algebra
of the corresponding semisimple Lie group. In [I3] we conjectured that any such
solution gives rise to a compatible cluster structure on this Lie group. This con-
jecture was verified in [4] for SLs and proved in [5l [6] for the simplest non-trivial
Belavin-Drinfeld triple in SL,, and in [I5] for the Cremmer—Gervais case.

In this paper we extend these results to a wide class of Belavin—Drinfeld triples
in SL,. We define a subclass of oriented triples, see Section Bl and encode
the corresponding information in a combinatorial object called a Belavin—Drinfeld
graph. Our main result claims that the conjecture of [I3] holds true whenever
the corresponding Belavin—Drinfeld graph is acyclic. In this case the structure of
the Belavin—Drinfeld graph is mirrored in the explicit construction of the initial
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cluster. In fact, we have proved a stronger result: given two oriented Belavin—
Drinfeld triples in SL,, we define the graph of the pair, and if this graph possesses
a certain acyclicity property then the Poisson bracket defined by the pair (note that
it is not Poisson—Lie anymore) gives rise to a compatible cluster structure on SL,,.

If the Belavin—Drinfeld graph has cycles then the conjecture of [I3] needs to be
modified: one has to consider generalized cluster structures instead of the ordinary
ones. We will address Belavin—Drinfeld graphs with cycles in a separate publication.

In [I7], Goodearl and Yakimov developed a uniform approach for constructing
cluster algebra structures in symmetric Poisson nilpotent algebras using sequences
of Poisson-prime elements in chains of Poisson unique factorization domains. These
results apply to a large class of Poisson varieties, e.g., Schubert cells in Kac-Moody
groups viewed as Poisson subvarieties with respect to the standard Poisson-Lie
bracket. It is worth pointing out, however, that the approach of [I7], in its current
form, does not seem to be applicable to the situation we consider here. This is
evident from the fact that for cluster structures constructed in [I7], the cluster
algebra and the corresponding upper cluster algebra always coincide. In contrast,
as we have shown in [I4], the simplest non-trivial Belavin—Drinfreld data in SLs
results in a strict inclusion of the cluster algebra into the upper cluster algebra.

The paper is organized as follows. Section Pl contains a concise description of
necessary definitions and results on cluster algebras and Poisson—Lie groups. Sec-
tion [J] presents main constructions and results. The Belavin—Drinfeld graph and
related combinatorial data are defined in Section [3.Il The same section contains
the formulations of the main Theorems and An explicit construction of
the initial cluster is contained in Section [B.21and summarized in Theorem 3.4l Sec-
tion Mlis dedicated to the proof of this theorem. The quiver that together with the
initial cluster defines the compatible cluster structure is built in Section B3] see
Theorem [B.8 whose proof is contained in Section Bl Section 3.4l outlines the proof of
the main Theorems and It contains, inter alia, Theorem B.IT] that enables
us to implement the induction step in the proof of an isomorphism between the
constructed upper cluster algebra and the ring of regular functions on Mat,,. A de-
tailed constructive proof of this isomorphism is the subject of Section[ll Section
is devoted to showing that cluster structures we constructed are regular and admit
a global toric action.

Our research was supported in part by the NSF research grants DMS #1362801
and DMS #1702054 (M. G.), NSF research grants DMS #1362352 and DMS-
1702115 (M. S.), and ISF grants #162/12 and #1144/16 (A. V.). While work-
ing on this project, we benefited from support of the following institutions and
programs: Université Claude Bernard Lyon 1 (M. S., Spring 2016), University of
Notre Dame (A. V., Spring 2016), Research in Pairs Program at the Mathema-
tisches Forschungsinstitut Oberwolfach (M. G., M. S.; A. V., Summer 2016), Max
Planck Institute for Mathematics, Bonn (M. G. and A. V., Fall 2016), Bernoulli
Brainstorm Program at EPFL, Lausanne (M. G. and A. V., Summer 2017), Re-
search in Paris Program at the Institut Henri Poincaré (M. G., M. S., A. V., Fall
2017), Institute Des Hautes Etudes Scientifiques in (M. G. and A. V., Fall 2017),
Mathematical Institute of the University of Heidelberg (M. G., Spring 2017 and
Summer 2018), Michigan State University (A. V., Fall 2018). This paper was fin-
ished during the joint visit of the authors to the University of Notre Dame Jerusalem
Global Gateway and the University of Haifa in December 2018. We are grateful
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to all these institutions for their hospitality and outstanding working conditions
they provided. Special thanks are due to Salvatore Stella who pointed to a mistake
in the original proof of Theorem B.4] and to Gus Schrader, Alexander Shapiro and
Milen Yakimov for valuable discussions.

2. PRELIMINARIES

2.1. Cluster structures of geometric type and compatible Poisson brack-
ets. Let F be the field of rational functions in N + M independent variables
with rational coefficients. There are M distinguished variables; they are denoted
TN41,y---s Ny and called frozen, or stable. The (N + M)-tuple x = (21, ...,
xn4a) is called a cluster, and its elements x4, ...,z are called cluster variables.
The quiver @ is a directed multigraph on the vertices 1,..., N + M corresponding
to all variables; the vertices corresponding to frozen variables are called frozen. An
edge going from a vertex i to a vertex j is denoted ¢ — j. The pair X = (x,Q) is
called a seed.

Given a seed as above, the adjacent cluster in direction k, 1 < k < N, is defined
by x' = (x\{zx})U{z},}, where the new cluster variable x}, is given by the exchange

relation
xkx; = H xr; + H €X;.
k—i i—k

The quiver mutation of @ in direction k is given by the following three steps:
(i) for any two-edge path ¢ — k — j in @, e(i,5) edges i — j are added, where
e(i,j) is the number of two-edge paths i — k — j; (ii) every edge j — @ (if it
exists) annihilates with an edge i — j; (iii) all edges ¢ — k and all edges k — i are
reversed. The resulting quiver is denoted Q' = i (Q). It is sometimes convenient
to represent the quiver by an N x (N + M) integer matrix B = B(Q) called
the exchange matriz, where b;; is the number of arrows ¢ — j in (). Note that the
principal part of B is skew-symmetric (recall that the principal part of a rectangular
matrix is its maximal leading square submatrix).

Given a seed ¥ = (x,Q), we say that a seed ¥/ = (x/,Q’) is adjacent to X (in
direction k) if x" is adjacent to x in direction k and Q" = pi(Q). Two seeds are
mutation equivalent if they can be connected by a sequence of pairwise adjacent
seeds. The set of all seeds mutation equivalent to X is called the cluster structure
(of geometric type) in F associated with ¥ and denoted by C(X); in what follows,
we usually write just C instead.

Let A be a ground ring satisfying the condition

Z[LL'N_H, e 7$N+M] Q A g Z[{Eﬁil, e 71‘.%1+M]

(we write 2% instead of z,2~!). Following [8] 2], we associate with C two algebras
of rank N over A: the cluster algebra A = A(C), which is the A-subalgebra of F
generated by all cluster variables in all seeds in C, and the upper cluster algebra
A = A(C), which is the intersection of the rings of Laurent polynomials over A
in cluster variables taken over all seeds in C. The famous Laurent phenomenon
[9] claims the inclusion A(C) C A(C). Note that originally upper cluster algebras
were defined over the ring of Laurent polynomials in frozen variables. In [16] we
proved that upper cluster algebras over subrings of this ring retain all properties
of usual upper cluster algebras. In what follows we assume that the ground ring is
the polynomial ring in frozen variables, unless explicitly stated otherwise.
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Let V be a quasi-affine variety over C, C(V') be the field of rational functions on
V, and O(V') be the ring of regular functions on V. Let C be a cluster structure in
F as above. Assume that {f1,..., fnv+m} is a transcendence basis of C(V'). Then
the map ¢ : 2; — f;, 1 < i < N 4+ M], can be extended to a field isomorphism
¢ : Fg — C(V), where F¢ = F®C is obtained from F by extension of scalars. The
pair (C, ) is called a cluster structure in C(V') (or just a cluster structure on V),
{f1, - fn+m} is called a cluster in (C, ). Occasionally, we omit direct indication
of ¢ and say that C is a cluster structure on V. A cluster structure (C, ¢) is called
reqular if p(x) is a regular function for any cluster variable 2. The two algebras
defined above have their counterparts in F¢ obtained by extension of scalars; they
are denoted Ac and Ac. If, moreover, the field isomorphism ¢ can be restricted
to an isomorphism of Ac (or Ag) and O(V), we say that Ac (or Ac) is naturally
isomorphic to O(V).

Let {-, -} be a Poisson bracket on the ambient field F, and C be a cluster structure
in F. We say that the bracket and the cluster structure are compatible if, for
any cluster x = (z1,...,Zn4m), one has {z;,z;} = w;jz;z;, where w;; € Q are
constants for all 1 <4,j < N 4+ M. The matrix Q* = (w;;) is called the coefficient
matriz of {-,-} (in the basis x); clearly, O* is skew-symmetric. The notion of
compatibility extends to Poisson brackets on F¢ without any changes.

Fix an arbitrary cluster x = (x1,...,2n4+n) and define a local toric action of
rank s at x as a map

N+M

(2.1) X <$ Hﬂ”) ;o a=(q,...,q) € (C7),
a=1

i=1

where W = (w;) is an integer (N + M) x s weight matriz of full rank. Let x’ be
another cluster in C, then the corresponding local toric action defined by the weight
matrix W is compatible with the local toric action ([21I) if it commutes with the
sequence of cluster transformations that takes x to x’. If local toric actions at all
clusters are compatible, they define a global toric action on C called the C-extension
of the local toric action (2.

2.2. Poisson—Lie groups. A reductive complex Lie group G equipped with a Pois-
son bracket {-,-} is called a Poisson—Lie group if the multiplication map G x G >
(X,Y) — XY € G is Poisson. Perhaps, the most important class of Poisson—Lie
groups is the one associated with quasitriangular Lie bialgebras defined in terms of
classical R-matrices (see, e. g., [3, Ch. 1], [I8] and [19] for a detailed exposition of
these structures).

Let g be the Lie algebra corresponding to G and (-,-) be an invariant nonde-
generate form on g. A classical R-matrix is an element r € g ® g that satisfies
the classical Yang-Bazter equation (CYBE). The Poisson-Lie bracket on G that
corresponds to 7 can be written as

{117 = R (VEF), VEF2) = (R (VEFY), VEf2)

2.2
22 = (R_(VEf1), VEf?) = (R-(VEfY), V),

where R., R_ € Endg are given by (Ry1,¢) = (r,n® ¢), —(R_C,n) = (nn®¢)
for any 7, ¢ € g and VL, VF are the right and the left gradients of functions on G
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with respect to (-,-) defined by

(VRF(x),6) = &

"t
forany £ € g, X € G.
Following [I8], let us recall the construction of the Drinfeld double. First, note
that CYBE implies that

(2.3) g+ —Im(Ry), g =Im(R)

are subalgebras in g. The double of g is D(g) = g ® g equipped with an invariant
nondegenerate bilinear form

<<(€777)7 (5/7 77/)>> = <§7§/> - <77777/>
Define subalgebras 2+ of D(g) by

(2.4) 0. ={(58):eat, - ={(Ry (&) R-(S)): € € g},

then 04 are isotropic subalgebras of D(g) and D(g) = 0, +0_. In other words,
(D(g),04,0_) is a Manin triple. Then the operator Rp = my, — mp_ can be used
to define a Poisson—Lie structure on D(G) = G x G, the double of the group G, via

(25) {770 = 5 ((Rp(FF), T25) — (Ro (T, 7772))

where VE and V' are right and left gradients with respect to ({-,-)). Restriction of
this bracket to G identified with the diagonal subgroup of D(G) (whose Lie algebra
is 04 ) coincides with the Poisson-Lie bracket {-,-},. on G. Let D_ be the subgroup
of D(G) that corresponds to 09— Double cosets of D_ in D(G) play an important
role in the description of symplectic leaves in Poisson-Lie groups G and D(G), see
[19)].

The classification of classical R-matrices for simple complex Lie groups was given
by Belavin and Drinfeld in [I]. Let G be a simple complex Lie group, ® be the root
system associated with its Lie algebra g, ®* be the set of positive roots, and IT C ®*
be the set of positive simple roots. A Belavin—Drinfeld triple T' = (T'1,T3,7) (in
what follows, a BD triple) consists of two subsets I'1,I's of II and an isometry
~v: 't — I'e nilpotent in the following sense: for every a € I'; there exists m € N
such that v/ (a) € Ty for j € [0,m — 1], but v™(a) ¢ T';.

The isometry ~ yields an isomorphism, also denoted by ~, between Lie subal-
gebras gr, and gr, that correspond to I'y and I's. It is uniquely defined by the
property veq = €4(q) for a € I'1, where e, is the Chevalley generator corresponding
to the the root a. The isomorphism v*: gr, — gr, is defined as the adjoint to y
with respect to the form (-,-). It is given by v*ey () = eq for y(a) € T's. Both
~v and v* can be extended to maps of g to itself by applying first the orthogonal
projection on gr, (respectively, on gr,) with respect to (-,-); clearly, the extended
maps remain adjoint to each other. Note that the restrictions of v and ~v* to the
positive and the negative nilpotent subalgebras ny and n_ of g are Lie algebra
homomorphisms of ny and n_ to themselves, and y(e4,) =0 for all & € IT\ T'y.

By the classification theorem, each classical R-matrix is equivalent to an R-
matrix from a Belavin-Drinfeld class defined by a BD triple I'. Following [7], we
write down an expression for the members of this class:

1
(2.6) r=§Qb+s+Ze_a®ea+Ze_a/\

FXE), (THIX),€) = S fex)
t=0

’Ye,
1_,_)/(17
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here the summation is over the set of all positive roots, 2y € h ® b is given by

Qy = 3 ha @ hg where {hy} is the standard basis of the Cartan subalgebra b, {h}
is the dual basis with respect to the restriction of (-,-) to b, and s € h A b satisfies

(2.7) (1-=7)a®1)(2s) =((1+7)a®1)Qy

for any a € I'y. Solutions to (2.7) form a linear space of dimension w with
kr = [IT\ T'1|. More precisely, define

(2.8) br ={h€b : alh) =B(h)ify/(a) =B for some j},

then dimbhr = kr, and if ¢’ is a fixed solution of ([27), then every other solution
has a form s = s’ + s, where sq is an arbitrary element of hr A hr. The subalgebra
br defines a torus Hr = exp hr in G.

Let 7, m< be projections of g onto ny and n_, m; be the projection onto h. It
follows from (2.0 that Ry in ([22]) is given by

1 * 1
(29) R+—1_77T>—1j—7*ﬂ'<+<5+8> Th,

where S € End by is skew-symmetric with respect to the restriction of (-, -) to h and
satisfies (Sh,h') = (s,h ® 1) for any h,h’ € b and conditions

(2.10) S(1 = y)ha = %(1 + 1 )ha

for any o € T'y, translated from (2.7).

For an R-matrix given by (2.6), subalgebras g+ from (23] are contained in
parabolic subalgebras p1 of g determined by the BD triple: p; contains by and
all the negative root spaces in gr,, while p_ contains b_ and all the positive root
spaces in gr,. Then one has

(2.11) p+ =0+ Dby, p-=g- @b

with by C b. An explicit description of subalgebras b1 can be found, e.g., in [19,
Sect. 3.1]. Let [+ denote the Levi component of px. Then [} = gp,, [ = gr,, and
the Lie algebra isomorphism 7 described above restricts to [ Mgy — [_Ng_. This
allows to describe the subalgebra 0_ as

(2.12) o ={(&+,8)): Ex € 9+, V(Tring &4) = Ting €}
CH{(E4,€2)): x € 9, V(M &y) = m_ &},
where 7. are the projections to the corresponding subalgebras.
In what follows we will use a Poisson bracket on G that is a generalization

of the bracket (22)). Let 7,7’ be two classical R-matrices, and R, R/ be the
corresponding operators, then we write

(2.13) {5 1 = (R (VI VE2) — (RL(VE Y, VI 1),

By [18, Proposition 12.11], the above expression defines a Poisson bracket, which
is not Poisson—Lie unless r = 1/, in which case {f!, f2},., evidently coincides with
{fY, f?},. The bracket (ZI3) defines a Poisson homogeneous structure on G with
respect to the left and right multiplication by Poisson-Lie groups (G, {-,-},) and
(G, {-,-},/), respectively. The bracket on the Drinfeld double that corresponds to
{fY, f?},. is defined similarly to (23] via

1

(2.14) (£ 12300 = 5 (B (VEF1), VEF2) = (R (VR 1), VEF2)) -
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3. MAIN RESULTS AND THE OUTLINE OF THE PROOF

3.1. Combinatorial data and main results. In this paper, we only deal with
g = sl,, and hence I'; and T's can be identified with subsets of [1,n—1]. We assume
that T' is oriented, that is, i,44+ 1 € I'y implies y(i + 1) = v(¢) + 1.

For any i € [1,n] put

iy =min{j € [1,n]\T1: j >i}, i— =max{j € [0,n]\T1: j <i}.

The interval A(i) = [i— + 1,44 ] is called the X -run of i. Clearly, all distinct X-runs
form a partition of [1,n]. The X-runs are numbered consecutively from left to right.
For example, let n = 7 and 'y = {1, 2,4}, then there are four X-runs: A; = [1, 3],
AQ = [4, 5], Ag = [6,6] and A4 = [7, 7] Clearly, A(Q) = Al, A(4) = AQ, etc.

In a similar way, I's defines another partition of [1,n] into Y-runs A(i). For
example, let in the above example T'y = {1,3,4}, then A; = [1,2], Ay = [3,5],
Az =[6,6] and Ay = [7,7].

Runs of length one are called trivial. The map ~ induces a bijection on the
sets of nontrivial X-runs and Y-runs: we say that A; = v(A;) if there exists
k € A; such that A(y(k)) = A;. The inverse of the bijection v is denoted ~*
(the reasons for this notation will become clear later). Let in the previous example
v(1) =3,7(2) = 4,7(4) = 1, then Ay = y(Az) and Ay = y(Ay).

The BD graph Gr is defined as follows. The vertices of Gt are two copies of the
set of positive simple roots identified with [1,n — 1]. One of the sets is called the
upper part of the graph, and the other is called the lower part. A vertex i € I'y is
connected with an inclined edge to the vertex v(i) € I'y. Finally, vertices ¢ and n—1
in the same part are connected with a horizontal edge. If n =2k and i =n—1 =k,
the corresponding horizontal edge is a loop. The BD graph for the above example
is shown in Fig. [l on the left. In the same figure on the right one finds the BD
graph for the case of SLg with I’y = {1,3,4}, 'y = {2,4,5} and v: i — i + 1.

1 2 3 4 5 6 1 2 3 4

[
N
w
H
)]
o)
[any
N
w
ISy
)]

FIGURE 1. BD graphs for aperiodic BD triples

Clearly, there are four possible types of connected components in Gr: a path,
a path with a loop, a path with two loops, and a cycle. We say that a BD triple
T is aperiodic if each component in Gr is either a path or a path with a loop, and
periodic otherwise. In what follows we assume that I' is aperiodic. The case of
periodic BD triples will be addressed in a separate paper.

Remark 3.1. Let wp be the longest permutation in S,,. Observe that horizontal
edges in both rows of the BD graph can be seen as a depiction of the action of
(—wp) on the set of positive simple roots of SL,,. Thus the BD graph can be used



PLETHORA OF CLUSTER STRUCTURES ON GL, 9

to analyze the properties of the map woywoy~'. A map of this kind, with the
pair (wp,wp) replaced by a pair of elements of the Well group satisfying certain
properties dictated by the BD triple in an arbitrary reductive Lie group, was de-
fined in [I9 Sect. 5.1.1] and utilized in the description of symplectic leaves of the
corresponding Poisson—Lie structure.

The main result of this paper states that the conjecture formulated in [I3] holds
for oriented aperiodic BD triples in SL,,. Namely,

Theorem 3.2. For any oriented aperiodic Belavin—Drinfeld triple T' = (T'1,Ta,7)
there exists a cluster structure Cr on SL,, such that

(i) the number of frozen variables is 2kr, and the corresponding exchange matriz
has a full rank;

(ii) Cr is regular, and the corresponding upper cluster algebra Ac(Cr) is naturally
isomorphic to O(SLy);

(iii) the global toric action of (C*)?** on Cr is generated by the action of Hr x Hr
on SL,, given by (Hi,H2)(X) = H1XH>;

(iv) for any solution of CYBE that belongs to the Belavin—Drinfeld class specified
by T, the corresponding Sklyanin bracket is compatible with Cr;

(v) a Poisson—Lie bracket on SL, is compatible with Cr only if it is a scalar
multiple of the Sklyanin bracket associated with a solution of CYBE that belongs to
the Belavin—Drinfeld class specified by T .

This result was established previously for the Cremmer—Gervais case (given by
vii—=i+1for 1 <i<n-—2)in [I5] and for all cases when kr =n — 2 in [5] 6].

In fact, the construction above is a particular case of a more general construction.
Let r* and r° be two classical R-matrices that correspond to BD triples I'" =
(T1,T5,~4") and T'° = (T'7,T'S, v°), which we call the row and the column BD triples,
respectively.

Assume that both I'" and I'® are oriented. Similarly to the BD graph Gr for T,
one can define a graph Grr e for the pair (I'",I'°) as follows. Take Gpr with all
inclined edges directed downwards and Gre in which all inclined edges are directed
upwards. Superimpose these graphs by identifying the corresponding vertices. In
the resulting graph, for every pair of vertices i,n — ¢ in either top or bottom row
there are two edges joining them. We give these edges opposite orientations. If n is
even, then we retain only one loop at each of the two vertices labeled 5. The result
is a directed graph Gp: pe on 2(n — 1) vertices. For example, consider the case of
GL5 with T = ({1,2},{2,3},1— 2,2+ 3) and T'° = ({1,2},{3,4},1+— 3,2 — 4).
The corresponding graph Grr re is shown on the left in Fig. 2l For horizontal edges,
no direction is indicated, which means that they can be traversed in both directions.
The graph shown on in Fig. @ on the right corresponds to the case of GLg with
' =({2,6},{3,7},2— 3,6 — 7) and I'° = ({2,6},{1,5},6 — 1,2 — 5).

A directed path in Grr pe is called alternating if horizontal and inclined edges
in the path alternate. In particular, an edge is a (trivial) alternating path. An
alternating path with coinciding endpoints and an even number of edges is called an
alternating cycle. Similarly to the decomposition of Gr into connected components,
we can decompose the edge set of Gpr re into a disjoint union of maximal alternating
paths and alternating cycles. If the resulting collection contains no alternating
cycles, we call the pair (I'",T'°) aperiodic; clearly, (I',T) is aperiodic if and only
if T' is aperiodic. For the graph on the left in Fig. 2 the corresponding maximal
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paths are 412314, 3232, 1423, and 41 (here vertices in the lower part are marked
with a dash for better visualization). None of them is an alternating cycle, so the
corresponding pair is aperiodic. For the graph on the right in Fig. @ the path
623526716 is an alternating cycle; the edges 17 and 53 are trivial alternating paths.

1 2 3 4 1 2 3 4 5 6
1 2 3 4 1 2 3 4 5 6 7

FIGURE 2. Alternating paths and cycles in Grr pe

The following result generalizes the first two claims of Theorem

Theorem 3.3. For any aperiodic pair of oriented Belavin—Drinfeld triples (T*,T'¢)
there exists a cluster structure Crx re on SL,, such that

(i) the number of frozen variables is kr+ + kre, and the corresponding exchange
matriz has a full rank;

(ii) Cr:pe is regular, and the corresponding upper cluster algebra Ac(Cr: <) is
naturally isomorphic to O(SLy,).

(i) the global toric action of (C*)Frtkr on Cr« pe is generated by the action of
Hrr X Hpe on SL, given by (Hy, He)(X) = H1 X Hs.

(iv) for any pair of solutions of CYBE that belong to the Belavin—Drinfeld classes
specified by T and T'°, the corresponding bracket [213) is compatible with Cpr pe;

(v) a Poisson bracket on SL, is compatible with Crrpe only if it is a scalar
multiple of the bracket (ZI3) associated with a pair of solutions of CYBE that
belong to the Belavin—Drinfeld classes specified by T'" and T°°.

Following the approach suggested in [15], we will construct a cluster structure on
the space Mat,, of n x n matrices and derive the required properties of Crr pe from
similar features of the latter cluster structure. Note that in the case of GL,, we also
obtain a regular cluster structure with the same properties, however, in this case
the ring of regular functions on GL,, is isomorphic to the localization of the upper
cluster algebra with respect to det X, which is equivalent to replacing the ground
ring by the corresponding localization of the polynomial ring in frozen variables.
In what follows we use the same notation Crr re for all three cluster structures and
indicate explicitly which one is meant when needed.

3.2. The basis. Consider connected components of Gr for an aperiodic I'. The
choice of the endpoint of a component induces directions of its edges: the first
edge is directed from the endpoint, the second one from the head of the first one,
and so on. Note that for a path with a loop, each edge except for the loop gets
two opposite directions. Consequently, the choice of an endpoint of a component
defines a matrix built of blocks curved out from two n xn matrices of indeterminates
X = (z4;) and Y = (y;;). Each block is defined by a horizontal directed edge, that
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is, an edge whose head and tail belong to the same part of the graph. The block
corresponding to a horizontal edge i — (n—1) in the upper part, called an X -block,
is the submatrix X; with I = [a,n] and J = [1, ], where a = (n —i +1)_ + 1 is
the leftmost point of the X-run containing n — i + 1, and 8 = i is the rightmost
point of the X-run containing ¢. The entry (n — i+ 1,1) is called the exit point of
the X-block. Similarly, the block corresponding to a horizontal edge i — (n —14) in
the lower part, called a Y -block, is the submatrix YI—J with I = [1,a] and J = 3, n],
where & = i, is the rightmost point of the Y-run containing i and 5 = (n—i+1)_+1
is the leftmost point of the Y-run containing n — i + 1. The entry (I,n — i+ 1) is
called the exit point of the Y-block. In the example shown in Fig. [l on the left,

the edge 5 — 2 in the upper part defines the X-block X [[11)’%]

(3,1), the edge 4 — 3 in the lower part defines the Y-block VI*7 with the exit

(1,5]
point (1,4), and the edge 1 — 6 in the upper part defines the X-block X[[;y’%] with

the exit point (7,1), see the left part of Fig. Bl where the exit points of the blocks
are circled.

with the exit point

1112 1% 1314 17 71 X 73
21 23 1314 17 0
31 Y 23
X Y 1112 14
53 57 21
_ 53 5731
71 75 71X 7 X
0
71 75

F1GURE 3. Blocks and their gluing

The number of directed edges is odd and the blocks of different types alternate;
therefore, if this number equals 4b — 1, then there are b blocks of each type. If there
are 4b — 3 directed edges, there are b blocks of one type and b— 1 blocks of the other
type. By adding at most two dummy blocks with empty sets of rows or columns at
the beginning and at the end of the sequence, we may assume that the number of
blocks of each type is equal, and that the first block is of X-type.

The blocks are glued together with the help of inclined edges whose head and tail
belong to different parts of the graph. An inclined edge i — j directed downwards
stipulates placing the entry (j, n) of the Y-block defined by j — (n—j) immediately
to the left of the entry (i,1) of the X-block defined by (n —¢) — i. In other words,
the two blocks are glued in such a way that A(a) and A(a) = v(A(«)) coincide.
Similarly, an inclined edge ¢ — j directed upwards stipulates placing the entry (n, 7)
of the X-block defined by j — (n — j) immediately above the entry (1,7) of the
Y-block defined by (n — i) — i. In other words, the two blocks are glued in such a
way that A(f) and A(B) = v*(A(B)) coincide. Clearly, the exit points of all blocks
lie on the main diagonal of the resulting matrix. For example, the directed path
5—2—=4—3—1—6in the BD graph shown in Fig. [ on the left defines the
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gluing shown in Fig. Bl on the right. The runs along which the blocks are glued are
shown in bold. The same path traversed in the opposite direction defines a matrix

glued from the blocks X [[11 )’76]], 3/[[1357]] and X [[617’%].

Given an aperiodic pair (I'",I'°) and the decomposition of Grr re into maximal
alternating paths, the blocks are defined in a similar way. To each edge i — (n — 1)
in the upper part of Gpr e, assign the block X{ with I = [a,n] and J = [1, 3],
where a = (n — i+ 1)_(T") + 1 and 8 = ¢4 (T'°) are defined by X-runs exactly as
before except with respect to different BD triples I'" and I'°. Similarly, the block
corresponding to a horizontal edge i — (n — ¢) in the lower part is the submatrix
Yy with I = [1,a] and J = [3,n], where @ =i, (T") and B = (n —i+1)_(T°) + 1
are defined by Y-runs. These blocks are glued together in the same fashion as
before, except that gluing of a Y-block to an X-block on the left (respectively, at
the bottom) is governed by the row triple I'" (respectively, the column triple I'°).
In what follows, we will call X — and Y —runs corresponding to I'" (respectively, to
I'°) row (respectively, column) runs.

Let £ = L(X,Y) denote the matrix glued from X- and Y-blocks as explained
above. It follows immediately from the construction that if £ is defined by an
alternating path iy — io — - - — ig;, then it is a square N (L) x N(£) matrix with

k
N(L) = s 1.
j=1
The matrices £ defined by all maximal alternating paths in Grr pe form a collection
denoted L = Lyr pe (or Ly if I =T° =T'). Thus,

(i) each £ € L is a square N(£) x N(£) matrix,

(ii) for any 1 < i < j < n, there is a unique pair (£ € L, s € [1, N(£)]) such that
ﬁss = Yij, and

(iii) for any 1 < j < i < n, there exists and a unique pair (£ € L, s € [1, N(£)])
such that L5 = ;5.

We thus have a bijection J = Jrrre between [1,n] x [1,n] \ U’ (4,7) and
the set of pairs {(£,s): L€ L,s € [1,N(L£)]} that takes a pair (i,j), i # j, to
(L(iy4),s(i,7)). We then define
o k) - as L NED) 45
The block of L(7, j) that contains the entry (s(i,7), s(4, 7)) is called the leading block

of fij.
Additionally, we define
(3.2) £5(X,Y) =det X[, £7(X,Y) =det Y.

The leading block of £5 is X, and the leading block of £ is Y. Note that (B.2)
means that s is extended to the diagonal via s(i,4) = i, while £(7,) is not defined
uniquely: it might denote either X or Y.

Finally, we put f;;(X) = £;(X,X) for i« # j and fi;(X) = £5(X,X) =
£(X, X), and define

F = Fl“r)l"c = {flJ(X) 11, € [1,TL]}

Theorem 3.4. Let (T*,T'°) be an oriented aperiodic pair of BD triples, then the
family Frr pe forms a log-canonical coordinate system with respect to the Poisson

bracket (2ZI3) on Mat,, with r =r" and v’ = r° given by (2.6).
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Remark 3.5. A log-canonical coordinate system on SL,, with respect to the same
bracket is formed by Fp: pe \ {det X }.

Although the construction of the family of functions Fr- pe is admittedly ad hoc,
the intuition behind it is given by the collection L = Lypr e that does have an
intrinsic meaning. Recall the observation we previously utilized in [I5]: a function
serving as a frozen variable in a cluster structure on a Poisson variety has a property
that it is log-canonical with every cluster variable in every cluster. The vanishing
locus of such a function foliates into a union of non-generic symplectic leaves. On the
other hand, in many examples of Poisson varieties supporting a cluster structure,
the union of generic symplectic leaves forms an open orbit of a certain natural
group action. Thus, it makes sense to select semi-invariants of this group action as
frozen variables. Furthermore, a global toric action on the cluster structure arising
this way can be described in two equivalent ways: it is generated by an action of
a commutative subgroup of the group acting on the underlying Poisson variety or,
alternatively, by Hamiltonian flows generated by the frozen variables.

In our current situation, the group action is determined by the BD data I'",
I'“. Let ?° and ?° be subalgebras defined in (2Z4]) that correspond to I'" and
I'°, respectively, and let D™ = exp(d" ) and D° = exp(d°) be the corresponding
subgroups of the double. Consider the action of D" x D¢ on the double D(GL,,)
with D~ acting on the left and D¢ acting on the right.

Proposition 3.6. Let £L(X,Y) € Ly pe. Then
(i) det L(X,Y) is a semi-invariant of the action of D" x DS described above;
(ii) det L(X,X) is log-canonical with all matriz entries x;; with respect to the
Poisson bracket (213]).

Consequently, we select the subcollection {det £(X,X) : £ € L+ pe JU{det X} C
Frr e as the set of frozen variables.

3.3. The quiver. Let us choose the family Frrpe as the initial cluster for our
cluster structure. We now define the quiver Qrr re that corresponds to this cluster.

The quiver has n? vertices labeled (i, 7). The function attached to a vertex (i, 5)
is fi;. Any vertex except for (n,n) is frozen if and only if its degree is at most
three. The vertex (n,n) is never frozen. We will show below that frozen vertices
correspond bijectively to the determinants of the matrices £ € LU{ X }, as suggested
by Proposition [3.61

FIGURE 4. The neighborhood of a vertex (i,5), 1 <i,j <n



14 M. GEKHTMAN, M. SHAPIRO, AND A. VAINSHTEIN

A vertex (i,7) for 1 < i <mn, 1 < j < n has degree six, and its neighborhood
looks as shown in Fig. @ Here and in what follows, mutable vertices are depicted
by circles, frozen vertices by squares, and vertices of unspecified nature by ellipsa.

A vertex (1,7) for 1 < j < n can have degree two, three, five, or six. If I'°
stipulates both inclined edges (j — 1) — (k — 1) and j — k in the graph Gpr re
for some k, that is, if v°(k — 1) = 7 — 1 and 7°(k) = j, then the degree of (1, j) in
Qr: e equals six, and its neighborhood looks as shown in Fig. Bl(a).

If I'° stipulates only the edge (j — 1) — (k — 1) as above but not the other one,
that is, if v(k — 1) = j — 1 and j ¢ 'S, the degree of (1,7) in Qrr e equals five,
and its neighborhood looks as shown in Fig. Bl(b).

If T'° stipulates only the edge ;7 — k as above but not the other one, that is,
if j—1 ¢ TS and v°(k) = j, the degree of (1,7) in Qr: e equals three, and its
neighborhood looks as shown in Fig. Bl(c).

Finally, if I'® does not stipulate any one of the above two inclined edges in
Grr re, that is, if j — 1,5 ¢ T'S, the degree of (1,7) in Qrr re equals two, and its
neighborhood looks as shown in Fig. Bl(d).

FIGURE 5. Possible neighborhoods of a vertex (1,5), 1 <j <mn

Similarly, a vertex (i,1) for 1 < i < n can have degree two, three, five, or six. If
I'" stipulates both inclined edges (i — 1) — (k — 1) and ¢ — k in the graph G+ e
for some k, that is, if v*(i — 1) = k — 1 and +"(i) = k, then the degree of (i,1) in
Qr+ re equals six, and its neighborhood looks as shown in Fig. [6fa).

If T stipulates only the edge (i — 1) — (k — 1) as above but not the other one,
that is, if " (i — 1) = k — 1 and ¢ ¢ T}, the degree of (4,1) in Qr: re equals five, and
its neighborhood looks as shown in Fig. [6[b).
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If T'" stipulates only the edge ¢ — k as above but not the other one, that is,
if i —1 ¢ I' and 4"(i) = k, the degree of (i,1) in Qr: e equals three, and its
neighborhood looks as shown in Fig. [6lc).

Finally, if I'" does not stipulate any one of the above two inclined edges in Grr e,
that is, if i — 1,7 ¢ I'}, the degree of (i,1) in Qrr re equals two, and its neighborhood
looks as shown in Fig. [B(d).

(@) (b)

() (d)

FIGURE 6. Possible neighborhoods of a vertex (i,1), 1 <i <n

A vertex (n,j) for 1 < j < n can have degree four, five, or six. If T'® stipulates
both inclined edges (k —1) — (j — 1) and k — j in the graph Gpr e for some k,
that is, if v°(j — 1) = k—1 and 7°(j) = k, then the degree of (n, j) in Qr+ re equals
six, and its neighborhood looks as shown in Fig. [fl(a).

If I'° stipulates only the edge (k — 1) — (j — 1) as above but not the other one,
that is, if v°(j — 1) = k — 1 and j ¢ T'{, the degree of (n,j) in Qr: - equals five,
and its neighborhood looks as shown in Fig. [[(b).

If T'° stipulates only the edge k& — j as above but not the other one, that is, if
j—1¢ T and v°(j) = k, the degree of (n,j) in Qr- e equals five as well, and its
neighborhood looks as shown in Fig. [@(c).

Finally, if I' does not stipulate any one of the above two inclined edges in
Grr e, that is, if j — 1,5 ¢ I'§, the degree of (n,j) in Qr: re equals four, and its
neighborhood looks as shown in Fig. [(d).

Similarly, a vertex (i,m) for 1 < ¢ < n can have degree four, five, or six. If I'"
stipulates both inclined edges (k — 1) — (i — 1) and k — ¢ in the graph Gpr pe for
some k, that is, if 7" (k—1) =i —1 and 7" (k) = 4, then the degree of (i,n) in Qr: re
equals six, and its neighborhood looks as shown in Fig. [§l(a).
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(€Y (b)

()

(c)

FIGURE 7. Possible neighborhoods of a vertex (n,j), 1 <j <n

If T'" stipulates only the edge (k — 1) — (i — 1) as above but not the other one,
that is, if v"(k — 1) = ¢ — 1 and ¢ ¢ T}, the degree of (i,n) in Qrr re equals five,
and its neighborhood looks as shown in Fig. B(b).

If I'" stipulates only the edge k& — i as above but not the other one, that is, if
i—1¢ T4 and 7" (k) = 4, the degree of (i,n) in Qr+ re equals five as well, and its
neighborhood looks as shown in Fig. Bl(c).

Finally, if I'" does not stipulate any one of the above two inclined edges in Grr e,
that is, if i—1,4 ¢ T'%, the degree of (7, n) in Q= re equals four, and its neighborhood
looks as shown in Fig. B{(d).

The vertex (1,n) can have degree one, two, four, or five. If T'¢ stipulates an
inclined edge (n — 1) — j for some j, and I'" stipulates an inclined edge i — 1 for
some 14, that is, if ¥°(j) = n — 1 and ~"(¢) = 1, then the degree of (1,n) in Qpr re
equals five, and its neighborhood looks as shown in Fig. [0fa).

If only the first of the above two edges is stipulated, that is, if v(j) = n — 1
and 1 ¢ T'%, the degree of (1,n) in Qr: re equals four, and its neighborhood looks
as shown in Fig. @(b).

If only the second of the above two edges is stipulated, that is, if 4"(i) = 1 and
n—1¢ TS, the degree of (1,n) in Qpr re equals two, and its neighborhood looks as
shown in Fig. [@(c).

Finally, if none of the above two edges is stipulated, that is, if 1 ¢ T'5 and
n—1¢T'§, the degree of (1,n) in Qr+ re equals one, and its neighborhood looks as
shown in Fig. [@(d).

Similarly, the vertex (n, 1) can have degree one, two, four, or five. If I'" stipulates
an inclined edge (n — 1) — j for some j, and I'® stipulates an inclined edge i — 1
for some ¢, that is, if v*(n—1) = j and v°(1) = ¢, then the degree of (n, 1) in Qr: re
equals five, and its neighborhood looks as shown in Fig. [[0(a).
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(b)

ae
a3

(d)

FIGURE 8. Possible neighborhoods of a vertex (i,n), 1 <i<n

(a (b)

Ln) @n)

© (d)

FIGURE 9. Possible neighborhoods of the vertex (1,n)

If only the first of the above two edges is stipulated, that is, if v*(n — 1) = j
and 1 ¢ T'Y, the degree of (n,1) in Qr: re equals four, and its neighborhood looks
as shown in Fig. [[0(b).
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If only the second of the above two edges is stipulated, that is, if (1) = ¢ and
n—1¢ T}, the degree of (n,1) in Qp: re equals two, and its neighborhood looks as
shown in Fig. [0l(c).

Finally, if none of the above two edges is stipulated, that is, if 1 ¢ I'{ and
n—1¢ T, the degree of (n,1) in Qr+ pe equals one, and its neighborhood looks as
shown in Fig. [0(d).

@)
(02—

(@ (b)

(n1)7

é@@

e/

(© (d)

FIGURE 10. Possible neighborhoods of the vertex (n, 1)

The vertex (n,n) can have degree three, four, or five. If I'" stipulates an inclined
edge i — (n—1) for some i, and I'° stipulates an inclined edge j — (n—1) for some
Jj, that is, if 4*(1) = n — 1 and ¥°(n — 1) = j, then the degree of (n,n) in Qr: -
equals five, and its neighborhood looks as shown in Fig. [[T(a).

If only one of the above two edges is stipulated, that is, if either 4*(i) = n — 1
and n— 1¢I5, or v°(n—1) = jand n — 1 ¢ T', the degree of (n,n) in Qrr e
equals four, and its neighborhood looks as shown in Fig. [Tkb,c).

Finally, if none of the above two edges is stipulated, that is, if n — 1 ¢ T' and
n—1 ¢ T, the degree of (n,n) in Qrr re equals three, and its neighborhood looks
as shown in Fig. [[I}d).

Finally, the vertex (1,1) can have degree one, two, or three. If I'" stipulates an
inclined edge 1 — i for some ¢, and I'° stipulates an inclined edge 1 — j for some 7,
that is, if 4*(1) = ¢ and v°(j) = 1, then the degree of (1,1) in Qr- - equals three,
and its neighborhood looks as shown in Fig. [[2|(a).

If only one of the above two edges is stipulated, that is, if either 4*(1) = ¢ and
1¢T5, orv°(j) =1and 1 ¢ I'}, the degree of (n,n) in Qr: pe equals two, and its
neighborhood looks as shown in Fig. [2(b,c).
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() ()
(@ (b)
(o) (o)

© (d)

FIGURE 11. Possible neighborhoods of the vertex (n,n)

If none of the above two edges is stipulated, that is, if 1 ¢ T'S and 1 ¢ T4,
the degree of (1,1) in Qrr re equals one, and its neighborhood looks as shown in

Fig. T2(d).

(@) (b)

(©) (d)

FIGURE 12. Possible neighborhoods of the vertex (1,1)

We can now prove the characterization of frozen vertices mentioned at the be-
ginning of the section.
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Proposition 3.7. A vertex (i,7) is frozen in Qr: e if and only if i = j =1 and
fi1 = det X or fi; is the restriction to the diagonal X =Y of det L for some
L e L[‘r,[‘c.

Proof. Tt follows from the description of the quiver that there are two types of frozen
vertices distinct from (1,1): vertices (1,7) such that j — 1 ¢ T'§, see Fig. Bl(c),(d)
and Fig. @l(c),(d), and vertices (i,1) such that ¢« — 1 ¢ T}, see Fig. [Blc),(d) and
Fig. I0c),(d).

In the first case, the horizontal edge (n — j +2) — (j — 1) in the lower part
of G'rr re is the last edge of a maximal alternating path. Therefore, the Y-block
defined by this edge is the uppermost block of the matrix £ corresponding to this
path. Consequently, 3 = (j —1)_(I'®) + 1 = j, and hence (1, j) is indeed the upper
left entry of L.

The second case is handled in a similar manner. O

The quiver Qr: re shown in Fig. [[3 corresponds to the BD data I'" = ({1, 2},
{2,3},1—=2,2—3) and T'° = ({1,2},{3,4},1— 3,2—4) in GL;. The corre-
sponding graph G re is shown on the left in Fig.[2l For example, consider the ver-
tex (1,4) and note that Grr e contains both edges 4 — 2 and 3 — 1. Consequently,
the first of the above conditions for the vertices of type (1, j) holds with & = 2, and
hence (1,4) has outgoing edges (1,4) — (5,2), (1,4) — (2,5), and (1,4) — (1,3),
and ingoing edges (5,1) — (1,4), (1,5) — (1,4), and (2,4) — (1,4). Alternatively,
consider the vertex (4,5) and note that Gr: e contains the edge 2 — 3, while
4 ¢ T'y. Consequently, the second of the above conditions for the vertices of type
(4,m) holds with & = 3, and hence (4,5) has outgoing edges (4,5) — (4,4) and
(4,5) — (3,5) and ingoing edges (3,4) — (4,5), (3,1) — (4,5), and (5,5) — (4,5).

FIGURE 13. An example of the quiver Qpr pe
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Theorem 3.8. Let (T*,T'°) be an oriented aperiodic pair of BD triples, then the
quiver Qr: pe defines a cluster structure compatible with the Poisson bracket ([213)
on Mat,, with r =r" and ' = r° given by (2.6)).

Remark 3.9. The quiver that defines a cluster structure compatible with the same
bracket on SL, is obtained from Q- re by deleting the vertex (1,1).

3.4. Outline of the proof. The proof of Theorem [B4] is based on lengthy and
rather involved calculations. Following the strategy introduced in [15], we con-
sider the bracket (2I4) on the Drinfeld double of SL,, and lift it to a bracket on
Mat,, x Mat,,. The family Frr e is obtained as the restriction onto the diagonal
X =Y of the family Frr pe of functions defined on Mat,, x Mat,, via

F=Fpope = {£5(X,Y) 14,5 € [L,n],i £ j} U{E5(X,Y), £3(X,Y) 1 i € [1,n]},

23 7T
see (B1I), (32). The bracket of a pair of functions f,g € Frr e is decomposed
into a large number of contributions that either vanish, or are proportional to the
product fg. In the process we repeatedly use invariance properties of functions in
Fr: re with respect to the right and left action of certain subgroups of the double.

The proof of Theorem is based on the standard characterization of Poisson
structures compatible with a given cluster structure, see e.g. [I2, Ch. 4]. Note that
the number of frozen variables in Qrr re equals 1 + kpr + kre, and that det X is
frozen. As an immediate consequence we get Theorem B3|(i), which for I'" = I'
turns into Theorem B2(i).

The proof of Theorem B.3[iii) is based on the claim that right hand sides of
all exchange relations in one cluster are semi-invariants of the left-right action of
Hr: X Hre, see Lemma It also involves the regularity check for all clusters
adjacent to the initial one, see Theorem Theorem B.2(iii) follows when I'" =
I'°. After this is done, Theorem B2(iv) and (v) follow from Theorem B.8 via [13]
Theorem 4.1]. To get Theorem[B3[iv) and (v) we need a generalization of the latter
result to the case of two different tori, which is straightforward.

The central part of the paper is the proof of Theorem B3(ii) (Theorem B2Xii)
then follows in the case I'" = T'°). It relies on Proposition 2.1 in [I5], which is
reproduced below for readers’ convenience.

Proposition 3.10. Let V be a Zariski open subset in C"™™ and C be a cluster
structure in C(V) with n cluster and m frozen variables such that

(i) there exists a cluster (f1,..., fantm) in C such that f; is regular on V for
1€ [l,n+m];

(ii) any cluster variable f}, adjacent to fr, k € [1,n], is reqular on V;

(iii) any frozen variable fy+i, i € [1,m], vanishes at some point of V;

(iv) each reqular function on V belongs to Ac(C).
Then C is a regular cluster structure and Ac(C) is naturally isomorphic to O(V).

Conditions (i) and (iii) are established via direct observation, and condition (ii)
was already discussed above. Therefore, the main task is to check condition (iv).
Note that Theorem B3li) and Theorem 3.11 in [16] imply that it is enough to
check that every matrix entry can be written as a Laurent polynomial in the initial
cluster and in any cluster adjacent to the initial one. In [I5] this goal was achieved
by constructing two distinguished sequences of mutations. Here we suggest a new
approach: induction on the total size [I}| 4+ [I'$|. Let T' be the BD triple obtained
from IT' by removing a certain root « from I'; and the corresponding root v(«) from
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T'y. Given an aperiodic pair (I'",I'°) with |T}| > 0, we choose « to be the rightmost
root in an arbitrary nontrivial row X-run A* and define an aperiodic pair (I'", T'¢).
Since the total size of this pair is smaller, we assume that C = Cp, . possesses the

above mentioned Laurent property. Recall that both C and C are cluster structures
on the space of regular functions on Mat,,. To distinguish between them, the matrix
entries in the latter are denoted z;;; they form an n x n matrix Z = (z;;).

Let F = {f;;(X):4,j € [1,n]} and F = {f;;(Z):4,j € [1,n]} be initial clusters
for C and C, respectively, and @) and Q be the corresponding quivers. It is easy to
see that all maximal alternating paths in Grr e are preserved in Gfr,I‘C except for
the path that goes through the directed inclined edge o — (). The latter one
is split into two: the initial segment up to the vertex o and the closing segment
starting with the vertex vy(a). Consequently, the only difference between @ and
Q is that the vertex v = (o + 1,1) that corresponds to the endpoint of the initial
segment is mutable in @) and frozen in Q, and that certain three edges incident to
v in Q do not exist in Q

Let us consider four fields of rational functions in n? independent variables: X' =
(C(xll, RPN ,CCnn), Z = C(le, NN ,Znn), F = (C(gﬁll, ey Sﬁnn)y and F = C(@ll; ey
@nn). Polynomial maps f : F — X and f : F — Z are given by @;;j — fi;(X)
and @;; — ﬁj (Z). By the induction hypothesis, there exists a map P : Z — F
that takes z;; to a Laurent polynomial in variables ¢,3 such that f o P = Id.
Note that the polynomials fij(Z ) are algebraically independent, and hence f is an
isomorphism. Consequently, Po f = Id as well. Our first goal is to build a map
P : X — F that takes x;; to a Laurent polynomial in variables .3 and satisfies
condition fo P =1d.

We start from the following result.

Theorem 3.11. There exist a birational map U : X — Z and an invertible poly-
nomial map T : F — F satisfying the following conditions:

a) foT=Uof;

b) the denominator of any U(xi;) is a power of f,(Z);

¢) the inverse of T is a monomial transformation.

Put P =T 'oPolU;itisa map X — F, and by a) and the induction hypothesis,
Pof=T"'oPoUocf=T'oPfoT=T"'oT =1d.

For the same reason as above this yields f o P = Id. Let us check that P takes x;;
to a Laurent polynomial in variables p,3. Indeed, by b), U takes z;; into a rational
expression whose denominator is a power of fv(Z ). Consequently, by the induction
hypothesis, P takes the numerator of this expression to a Laurent polynomial in
Pag, and the denominator to a power of @,. As a result, P o U takes z;; to a
Laurent polynomial in ¢,5. Finally, by ¢), T~ takes this Laurent polynomial to a
Laurent polynomial in ¢,g, and hence P as above satisfies the required conditions.

The next goal is to implement a similar construction at all adjacent clusters.
Fix an arbitrary mutable vertex u # v in @Q; as it was explained above, u re-
mains mutable in @ as well. Let s, (F) and ju,(F) be the clusters obtained
from F and F, respectively, via the mutation in direction u, and let f1(X) and
f1(Z) be cluster variables that replace fu(X) and fu(Z) in p,(F) and . (F).
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Replace variables ¢, and ¢, by new variables ¢! and ¢!, and define two addi-
tional fields of rational functions in n? variables: 7' = C(p11,...,%,, .., @nn) and
F = C(P11y-- oy @lyy ooy Prn). Similarly to the situation discussed above, there
are polynomial isomorphisms f’ : 7/ — X and f’ : 7/ — Z and a Laurent map
P': Z — F' such that f' o P’ = Id (the latter exists by the induction hypothesis).

We define a map 7" : F' — F' via T'(pi;) = T(pqj) for (i,7) # w and T'(p),) =
@! @ou for some integer \, and prove that maps U and 7" satisfy the analogs of
conditions a)—c) above. Consequently, the map P’ = (T')~! o P' o U takes each
to a Laurent polynomial in @11, ...,¢., ..., @¢n, and satisfies condition P’'o f" = Id.

Thus, we proved that every matrix entry can be written as a Laurent polynomial
in the initial cluster F' of Cprr pe and in any cluster p,(F) adjacent to it, except
for the cluster p,(F). To handle this remaining cluster, we pick a different «:
the rightmost root in another nontrivial row X-run (if there are other nontrivial
row X-runs), or the leftmost root of the same row X-run (if it differs from the
rightmost root), or the rightmost root of an arbitrary nontrivial column X-run and
an aperiodic pair (I'",T°) (if |T'{| > 0), and proceed in the same way as above.
Namely, we prove the existence of the analogs of the maps U and T satisfying
conditions a)—c) above with a different distinguished vertex v. Consequently, i, (F')
is now covered by the above reasoning about adjacent clusters.

Similarly, if the initial pair (I'*, I'°) satisfies |I'§| > 0, we apply the same strategy
starting with column X-runs. It follows from the above description that the only
case that cannot be treated in this way is [I'j| + [T'§| = 1. It is considered as the
base of induction and treated via direct calculations

We thus obtain an analog of Theorem B.3(ii) for the cluster structure Cr+ e on
Mat,,. The sought-for statement for the cluster structure on SL,, follows from the
fact that both Ac(Crr pe) and O(SL,,) are obtained from their Mat,, counterparts
via the restriction to det X = 1.

4. INITIAL BASIS

The goal of this Section is the proof of Theorem B.4]

4.1. The bracket. In this paper, we only deal with g = sl,,, and hence gr, and
gr, are subalgebras of block-diagonal matrices with nontrivial traceless blocks de-
termined by nontrivial runs of I'y and I's, respectively, and zeros everywhere else.
Each diagonal component is isomorphic to sl, where k is the size of the correspond-
ing run. Formula (2.I3), where Ry = RS and R/, = R, are given by (29) with
S skew-symmetric and subject to conditions (2.I0), defines a Poisson bracket on
G = SL,. Tt will be convenient to write down an extension of the bracket (ZI4]) to
the double D(GL,,) such that its restriction to the diagonal X =Y is an extension
of [ZI3) to GL, (for brevity, in what follows we write {-,-}” instead of {, -}fr,).

To provide an explicit expression for such an extension, we extend the maps
v and v* to the whole gl,,. Namely, v is re-defined as the projection from gl,
onto the union of diagonal blocks specified by I'y, which are then moved by the
Lie algebra isomorphism between gr, and gr, to corresponding diagonal blocks
specified by I'o. Similarly, the adjoint map v* acts as the projection to gr, followed
by the Lie algebra isomorphism that moves each diagonal block of gr, back to the
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corresponding diagonal block of gr,. Consequently,

vy=Mr,, " =,

W=7 AW =77,

where Iy, is the projection to gr, and I, is the projection to gr,. Note that the

restriction of v to gr, is nilpotent, and hence 1 — + is invertible on the whole gl,,.
We now view 7, m~ and my as projections to the upper triangular, lower tri-

angular and diagonal matrices, respectively. Additionally, define 7> = 7~ + 7,

T< = T« + 7o and for any square matrix A write A, A, Ay, A>, A< instead of

s A, m A, moA, m> A, m< A, respectively. Finally, define operators Vx and Vy via

fo=(6f> , Vyf=(6f> ,

Oxj; ij=1 dyji ij=1

(4.1)

and operators

E, =VxX+VyY,
&L =7°(VxX)+ VyY,
n =VxX +~7(VyY),

Er=XVx +YVy,
gR = XVX +’Yr*(YVy),
nr=7"(XVx)+YVy

vin ELf =Vxf-X+Vyf-Y, Erf =XVxf+YVyf, and so on. The following
simple relations will be used repeatedly in what follows:

1 1 1
Ep=VxX+ —=¢;, Er=XVx + IR,
1_/}/(3 1_,7C 1_,Yr 1_;7[‘
(4.2) L p—vyv+— L .
e Lt VyY + 1_%*%, [ e LR Vy + 1_7”51%,

L =) + M. (VxX), nr="7"(&r) + Mgy (YVy),
where Hf} is the orthogonal projection complementary to HF; forj=1,2,1=r,c.

The statement below is a generalization of [I5, Lemma 4.1].

Theorem 4.1. The bracket 2ZI4) on the double D(GLy,) is given by

4.3) {f" APXY) = (RUELF"), ELf?) — (R (Erf"), Erf?)
+(XVxfLYVy f?) = (Vxf - X, Vyf?Y),

where
1 71*
1 _
(44) RY(Q) = TG — T
L/ 4 1 1 1 I
() G- 2 (08 - T (s )
with
1 1 1
- -
8_2(1—71 1—7‘*)1
forl=r,c.

Proof. We need to “tweak” Ry to extend the bracket (ZI3) to GL,, in such a way
that the function det is a Casimir function. This is guaranteed by requiring that
R, is extended to an operator on gl, which coincides with the one given by (2.9)
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on sl, and for which 1 € gl,, is an eigenvector. The latter goal can be achieved by
replacing ([2.9]) with

(4.5) I 2

= T —

1—7v 1 ¥
where 7 is the projection to the space of traceless diagonal matrices given by m(¢) =
¢— % Tr(¢)1, 7* is the adjoint to 7 with respect to the restriction of the trace form
to the space of diagonal matrices in gl,, and S is an operator on this space which
is skew-symmetric with respect to the restriction of the trace form and satisfies
@I13).

The operator S in ([LH) can be selected as follows.

1 .
—T< + iwo + 7 Snmg,

Lemma 4.2. The operator

1 1 1
(4.6) S=-(— —

2\1—~v 1—n*
with ~v,~* understood as acting on the space of diagonal matrices in gl, is skew-
symmetric with respect to the restriction of the trace form to this space and satisfies

RI0).
Proof. Rewrite ([A0]) as

S_ll—l—w_l( v 1 )

T 21—y 2\1-nv  1-—#4*

The first term above clearly satisfies (ZI0). The second term, multiplied by (1 —+)
on the right, becomes

1 1 1 1
—= 1-— =—— 11—~
2(7+1_7*( v)) 21_7*( )
and vanishes on hr, C § spanned by b, € I'y. (I

We can now compute

757(o) = S(Go) — - (Tr(Q)S(1) + TH(S(6o))1)

= 5(o) — = (Tr(O)S(1) — Te(CS(1))1)

n
and plug into (@A) taking into account ({6, which gives (£4]). Expression (@3] is
obtained from (2X) in the same way as formula (4.2) in [15]. O

4.2. Handling functions in F. It will be convenient to carry out all computations
in the double with functions in Frr re, and to retrieve the statements for Fyr re via
the restriction to the diagonal.

Recall that matrices £ used for the definition of the collection Frr pe are built
from X- and Y-blocks, see Section We will frequently use the following com-
parison statement, which is an easy consequence of the definitions, see Fig. [[4l

Proposition 4.3. Let Xj], XIJ,, be two X -blocks and Yl—j, YI—‘? be two Y -blocks.

(i) If B/ < B (respectively, o/ > a) then X{, fits completely inside X7 ; in
particular, o' > « (respectively, 5’ < ). ) .

(ii) If B' > B (respectively, & < a) then Yf']/ fits completely inside Y/ ; in
particular, & < & (respectively, ' > B).
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b B

2

QI

B B
FI1GURE 14. Fitting of X- and Y -blocks

Consider a matrix £ defined by a maximal alternating path in Gprre. Let us
number the X-blocks along the path consecutively, so that the t-th X-block is
denoted X}]t . In a similar way we number the Y-blocks, so that the t-th Y-block is

denoted Yl—{t The glued blocks form a matrix £ so that Efgt = X}]t ¢t and Eif(tt = YI{Q
which we write as

(4.7) L= Xy + Y Vi
t=1 t=1

According to the agreement above, if the t-th X-block is non-dummy, then the ¢-
th Y-block lies immediately to the left of it, and if the ¢-th Y-block is non-dummy;,
then the (¢ + 1)-th X-block lies immediately above it. In more detail, all K;’s
are disjoint, and the same holds for all K,’s; moreover, K; N K;,_; = @. If both
t-th blocks are not dummy, put ® = K, N K;. Then ® # & corresponds to
the nontrivial row runs A(a;) and A(a;) = v (A(ay)) along which the two blocks
are glued. Consequently, ®; is the uppermost segment in K; and the lowermost
segment in K;. If the first block is a dummy X-block and A(ay) is a nontrivial
row Y-run, define ®; as the set of rows corresponding to A(a;y); if this Y-run is
trivial, put ®; = @. Similarly, if the last block is a dummy Y-block and A(ay) is a
nontrivial row X-run, define ®; as the set of rows corresponding to A(as) and put
I = v (A(ay)); if this X-run is trivial, put ®, = @. We put K; = ®; for a dummy
first X-block and K, = ®, for a dummy last Y-block to keep relation &, = K;N K,
valid for dummy blocks as well.

Further, all L,’s are disjoint, and the same holds for all L;’s; moreover, L; N L; =
g. For2 <t<s, put U, =1L;N L;_1, then U, # & corresponds to the nontrivial
column runs A(B;—1) and A(B;) = v*(A(B¢—1)). Consequently, ¥y is the rightmost
segment in L; and the leftmost segment in L,_. If the first block is a non-dummy
X-block and A(f1) is a nontrivial column X-run, define ¥y as the set of columns
corresponding to A(S); if this X-run is trivial, or the block is dummy, define
U, = @. Similarly, if the last block is a non-dummy Y-block and A(f,) is a
nontrivial column Y-run, define ¥, as the set of columns corresponding to A(BS)
and put Jo11 = 7 (A(Bs)) (note that Jsy;1 does not correspond to any X-block
of £); if this Y-run is trivial, or the block is dummy, define Uy, = @. We put
Lo = T, and Lsy1 = Ugyyq to keep relation Uy = Ly N Ly qvalidfor 1 <t<s—+1.
The structure of the obtained matrix £ is shown in Fig.
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— Ky

Lt—1
FIGURE 15. The structure of £

It follows from (7)) that the gradients Vxg and Vyg of a function g = ¢g(£)

can be written as
S S

(4.8) Vxg =S (Veg) il Vyg=3 (Veg) Kl
t=1 t=1
Note that unlike (@), the blocks in ([@J]) may overlap. B o
Direct computation shows that for I = [a,n], J = [1,5], I = [1,a], J = [5,n]
one has
K—1_ |0 * KT _ ij(ch)If 0
49 XV =0 xomgn] VTl - 0|

*

Here and in what follows we denote by an asterisk parts of matrices that are not
relevant for further considerations. Note that the square block X7 (Vzg)¥ is the
diagonal block defined by the index set I, whereas the square block Yl—j (Vgg)lg is
the diagonal block defined by the index set I.
Similarly, for I, J, I, J as above,
(4.10)
K. yJ I
(Veg)i7 X = [(vﬁg)é Xi ;} ; (Veg)fi] Y = {2 (Vﬁg)of ~YIJ] ,

and the corresponding square blocks are diagonal blocks defined by the index sets
J and J, respectively.

Let N4, N_ € GL,, be arbitrary unipotent upper- and lower-triangular elements
and T7,T» € H be arbitrary diagonal elements. It is easy to see that the structure
of X- and Y-blocks as defined in Section and the way they are glued together,
as shown in Fig. [[3] imply that for any £ € Frr re one has

(411) £ (VX exp(y")(N2)Y) = £ (X exp(y")(N_), YN_) = £(X, )
and
(4.12) £ (11X exp(y"")(T2), exp(Y)(T1)Y T2) = a®(Th)a" (T2)£(X,Y),

where a°(T7) and a"(T») are constants depending only on 77 and T%, respectively.
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It will be more convenient to work with the logarithms of the functions f € Frr pe,
instead of the functions £ themselves. The corresponding infinitesimal form of the
invariance properties (L.I1)) and (£I2) reads: for any f € Fpr pe,

(413) <€Rg7 TL+> = <§Lg7 TL_> =0
and
(4.14) (€rg)o = const, (Erg)o = const

with g = log f. Additional invariance properties of the functions in Fpr pe are given
by the following statement.

Lemma 4.4. For any f € Fre re, any X-run A and any Y -run A,
Tr(Vxg- X)A = const, Tr(XVxg)a = const,
Tr(Vyg- Y)% = const, Tr(YVYg)% = const
with g = log £.

Proof. Consider for example the second equality above. Let 1 denote the diagonal
n X n matrix whose entry (j,7) equals 1 if j € A and 0 otherwise. Condition
Tr(XVxg)A = aa for an integer constant aa is the infinitesimal version of the
equality

(4.15) £(1n + (2 — 1)1a)X,Y) = 292 £(X,Y).

To establish the latter, recall that £(X,Y) is a principal minor of a matrix £ € L.
Clearly, £((1, + (z—1)1a)X,Y) represents the same principal minor in the matrix
L(z) obtained from £ via multiplying by z every submatrix Lé’i such that the row
set R; corresponds to the X-run A. There are two types of such submatrices: those
for which Ry lies strictly below ®; and those for which R; coincides with ®; (the
latter might happen only when the run X is nontrivial). To perform the above
operation on each submatrix of the first type it suffices to multiply £ on the left
by the diagonal matrix having z in all positions corresponding to R; and 1 in all
other positions. To handle a submatrix of the second type, we multiply by z all
rows of £ starting from the first one and ending at the lowest row in K, and divide
by z all columns starting from the first one and ending at the rightmost column
in L, see Fig. Clearly, this is equivalent to the left multiplication of £ by a
diagonal matrix whose entries are either z or 1 and the right multiplication of £ by
a diagonal matrix whose entries are either z~! or 1. Consequently, every principal
minor of £(z) is an integer power of z times the corresponding minor of £, and
(E13) follows.

A similar reasoning shows that the remaining three equalities in the statement
of the lemma hold as well. O

Furthermore, the following statement holds true.
Lemma 4.5. For any £ € Fpr pe,
Hfﬂl (Vxg- X)o = const,
Hflz (Vyg-Y)o = const,

1 (XVxg)o = const,
(4.16) :
£ (YVyg)o = const

II
II

with g =logf and1=c,r.
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Proof. Same as in the proof of Lemma [£4], we will only focus on the second equality
in ([@I6), since the other three can be treated in a similar way.
For any diagonal matrix ¢ we have

(4.17) Z ) I (CA)1a,

where the sum is taken over all X-runs. Let ( = (XVxg)o, then by Lemma [ all
terms in the sum above are constant. O

Corollary 4.6. (i) For any £' € Fr pe,
Tr(Vxg- X) = const, Tr(XVxg) = const,

(4.18) Tr(Vyg-Y) = const, Tr(YVyg) = const
with g =logf.
(ii) For any £ € Frr pe,
(4.19) (nLg)o = const, (nrg)o = const
with g =logf.

Proof. (i) Follows immediately form Lemma and equality Tr¢ = Tr Mgy ) =
Terl2 (¢) for any ¢ and 1 = ¢, .
(ii) Follows immediately form Lemma and [@I4) via the last two relations

in (42). O

4.3. Proof of Theorem 3.4k first steps. Theorem[3.4lis an immediate corollary
of the following result.

Theorem 4.7. For any £!,£% € Fr: e, the bracket {log£',log £2} is constant.

The proof of the theorem is given in this and the following sections. It comprises
a number of explicit formulas for the objects involved.

4.3.1. Ezplicit expression for the bracket. Let us derive an explicit expression for
{log £',log £2}”. To indicate that an operator is applied to a function log £, i =
1,2, we add i as an upper index of the corresponding operator, so that Vi X =
Vxlogf!- X, E? = E log £2, etc

Let

1

420 R =g (T ) G- x (S - T (S) 1),

for ¢ € gl,,, cf. [@A); clearly, Ry(¢) is a diagonal matrix.

Proposition 4.8. For any £',£2 € Fr« re,
(4.21) {log ' log £2}7

— (RS(EL), )~ (Ry(ER), B3) + { (Do, === o)

— (koo (€0 ) + (T (€ Ty (V3 o)
()<, 7)) —={(R)=» MR)<)+(7°* (€1) < v (VY ) +(V (€R)>, 1 (X VX)) -
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Proof. First, it follows from Theorem 1] that
(4.22)  {logt',log£*}” = (R$.(EL) — Vi X, E7) — (RL(ER) — XV, Eg) .

By @.2) and @.20),
1 1

1
RS(Ep) - VX = R§(Ep) + 1_—70(&)2 T1 e (L)<
1 1
_ 1 1 1y .
= RG(EL) + 1_—7C(§L)0 - m(%)o
the second equality holds since £} € b_ by ([EI3). Similarly,
. . 1 1
R () - XV = Bi(ER) + —— (rh)= - ——— (€h)-
Y Y
(4.23) )
= Ro(ER) + 1— v (nR)>;

the second equality holds since £} € by by {@I3).
Consequently, the first term in (£22]) is equal to

(4.24) (RS(EL), EL) + <1 v: (fi)0=Ei> - <1 —176* (n£)<’E%> '

The second term in (24 can be re-written via ([@2]) as

1 1
<1_—7C(§£)075%> = <(§£)0,V§/Y+ 1_770*77%>

- <<§£>o, %Q + (Mg (6)0, Mg (VEY)) + (TIrg (€L)o, Tirg (V3 Y))

R <<§z>o, 1_717“(77%)0> + (Mg (610, Mg (VEY)o) + (17 (610, 7" (V3 V),

where the last equality follows from ([@I]).
We re-write the third term in [@24]) as

1 1
<(77i)<, 1_—7CE%> = <(77£)<7V§<X + 1— 7C§%> = <(77i)<7V§<X)>
= (()<;nZ) = (L)< (VEY)) = ()< i) — (77" (€L) <. 7" (V3Y))
where the second equality follows from (ZI3)), and the last equality, from (2] and
<Hfg (A),WC*(B)> =0 for any A, B.
Similarly, the second term in in (£22) is equal to

(425) (RYER).ER) + (2 (k) B )
1

()

— (RS(EL), E2) + ((nh)s, YV3) + <(77}%)0,
= (R, 23+ { ks e (€ )+ (b)) 37 G (X T).

Combining ([{24)), (£25) and plugging the result into [@.22]), we obtain [A21) as
required. (I
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4.3.2. Diagonal contributions. Note that the third, the fourth and the fifth terms
in (£21)) are constant due to ({I4) and [@I6). The first two terms are handled by
the following statement.

Lemma 4.9. The quantities (Ro(E1), E}) and (Ro(E}), ER) are constant for any
fl, f2 e Fre re.

Proof. Let us start with

420 (RoEd).B2) =3 ( (2 + 1= ) (Bn. )
- % (Tr(EL) Tr(EZS) — Tr(ELS) Tr(E7))

where v = ~¢. First, note that

(1.27) Te(ES) = <E (ﬁ 1 _17*) 1> - ((1 == ﬁ) E)

L Lo i i
:Tr<1—~y*nL_ 1_7§L+VYY—VXX) = const

for i = 1,2 by (@2), @I4), @I8) and (@I9). Thus, the terms in the second line

in ([@20) are constant.

Next, by ([@2),

1 1 1
(L-i- >EL— &+ N,

I—v 1-=9* 1—v 1=
1 1
(4.28) <m§iaE%> = <€i7V§/Y + 1_—7*77%> ;
1 ,'71 E2 — ,'71 V2X+ 1 52
1_,}/* L>~L Ly VX 1_7 L />
and hence
i 1 1 2
1 1
= <(§i)07V§/Y + 1_—7*77%> + <(77i)07V§(X + m§%>

= (Do = tdo ) + ((rhdo, 2 (€D ) + ((6hhon D)
+{(nL)o, VA X) = ((€L)0, 7 (VX X)) -

Each of the three first terms in (£29) is constant by ([@I4) and (@I9). Note that
by @D,

((€£)0, (VX X)) = (v (Vi X)o +7"(VyY)o, VA X) = (IIr, (7)o, VX X)
with T'y = T'§, and so the last two terms in (£29) combine into
(g, (7h)o, Tz, (V3 X)o)

which is constant by (@16
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Similarly,

430 (RoEh). B7) = -3 ( (125 + === ) (Bhn. )

1
_E(TF

=

Ep) Tr(ERS) — Tr(ERS) Tr(ER))

with v = ~". As before,

= (5 (25 )2

1 1, ; ;
_Tr(1 —{r — n}%+YV§/—XV§(>—const
v

for i = 1,2, and

(25 )

1 1
= <(7711%)07YV2y + 1_—7*512%> + <(§11%)07XV§( +t1o 77712%>

=)o = (€0 ) + (€ 2= ()0 ) + (ko (€Ro)

+{(R)o, Y V) = ((€R)o, 7" (Y V) .
Each of the three first terms above is constant by (@I4) and {I9]), while

((MR)0, Y V) = ((§r)0, Y (Y V) = <Hf2 (nk)o, g, (YV%)0> = const

with I'y = I'y. Thus, the right hand side of ([@30) is constant as well, and we are
done. g

4.3.3. Simplified version of the maps v and ~v*. To proceed further, we define more
“accessible” versions of the maps v and v*. Recall that gr, and gr, defined above
are subalgebras of block-diagonal matrices with nontrivial traceless blocks deter-
mined by nontrivial runs of I'; and I's, respectively, and zeros everywhere else. Each
diagonal component is isomorphic to sl;, where k is the size of the corresponding
run. To modify the definition of 7, we first modify each nontrivial diagonal block
in gr, and gr, from sl; to Mat, by dropping the tracelessness condition. Next,
7 is defined as the projection from Mat, onto the union of diagonal blocks spec-
ified by I'y, which are then moved to corresponding diagonal blocks specified by
T's. Similarly, the adjoint map 4* acts as the projection to Matr, followed by a
map that moves each diagonal block of Matr, back to the corresponding diagonal
block of Matr,. Consequently, ringed analogs of relations ([{I]) remain valid with
f[pl understood as the orthogonal projection to Matr, and f[p2 as the orthogonal
projection to Matr,. Further, we define §L, {oR, 7z and Nr with 4" and 3¢ replacing
~" and ¢ and note that the ringed versions of the last two relations in (£2)) remain
valid with ﬁfl and ﬁfz being orthogonal projections complementary to f[pl and

f[pz, respectively. Observe that the ringed versions of the other four relations in
[#2) are no longer true, since 1 — 4 and 1 — 4* might be non-invertible.

It is easy to see that v and 4* differ from v and v*, respectively, only on the diag-
onal. Consequently, invariance properties (£11)) and (I3 remain valid in ringed
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versions. Further, the ringed version of the invariance property ([@I2) remains valid
as well, albeit with different constants a®(T3) and a"(7T%), which yields the ringed
version of ([@LI4]). Ringed relations ([@I6]) also hold true: indeed, the sum in (£I7)
is now taken only over trivial X-runs. As a corollary, we restore ringed versions of

relations ([£19).

Recall that to complete the proof of Theorem 7] it remains to consider the
four last terms in ([@21]). The following observation plays a crucial role in handling
these terms.

Lemma 4.10. For each one of the last four terms in ([E21)), the difference between
the initial and the ringed version is constant.

Proof. Equality ((n1,)<,(n})>) = ((11)<, (1} )> ) is trivial, since v* and 5* coincide
onny and n_.
For the second of the four terms, we have to consider the difference

(k)0 (1E)0) = ((MR)o, (MR)o) = (F (X Vi )o — 7 (XVi)o, (Y V3 )o)
+{(Y V)0, 5" (X V)0 — 7" (XV%)o)
(5 =) (X V)0, 5 (X Vo) + (v (X V)0, (B = 7 (X VX)) -

The first summand in the right hand side above equals
1 1 2 \7°(4)
ZA: Al Tr(X Vi) Tr(Y Vi) Y (A)

where the sum is taken over all nontrivial row X-runs. By Lemma 4] each factor
in this expression is constant, and hence the same holds true for the whole sum.
The remaining three summands can be treated in a similar way.

The remaining two terms in [2]]) are treated in the same way as the second
term. (]

Based on Lemma [T0, from now on we proceed with the ringed versions of the
last four terms in (£.21]).

4.3.4. Ezplicit expression for <(n£)<, (77%)>> Let £7 be the I? x [’ trailing minor of
L', then

(4.31) L'V = {0 1“} , L= L 1“} .

Denote I = N (L") — I* + 1. From now on we assume without loss of generality
that
(4.32) reL UL .

Consider the fixed block Xﬂ in £' and an arbitrary block X12 in £2. If 61 > B2

then, by Proposition[d3[i) the second block fits completely 1n51de the first one. This
defines an injection p of the subsets K? and L? of rows and columns of the matrix
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L2 into the subsets K; and L1 of rows and columns of the matrix £!. Put

(4.33) Bl =~ ((£'VE) ) ()5 (V3) 7 >=
(4.3 BY = (VELY (VA (297 ),
(1.35) Bt = ((VEL) 2 (VR e (EZ)K%>'

Lemma 4.11. (i) Ezpression ((1]})<, (17)>) is given by

(4.36) ((ip)<,()>)= Y (Bi+B)+ > B

B <B} Bi=B}

+ 3 (@) (@ 9h)) - (Ve 0h (V2601

BE<BY

if e L}D, and vanishes otherwise.
(ii) Both summands in the last sum in ([@36]) are constant.

Remark 4.12. Since <A1A2 L ANAZ L > = Tr(A;Ay... A*A?...), here and in
what follows we omit the comma and write just <A1 As. . AYAZ . > whenever
Ay, As, ... and A', A% ... are matrices given by explicit expressions.

Proof. First of all, write

(4.37)

()<, (3)>) = (Tr, (11)<) T, (G3)>) ) + (Mg, (Gi)<) TTg, (672)=) )
with Ty = I'¢

It follows from the ringed version of (@Il that for i = 1,2,
(4.38) I, (%) = *(€1)

with ¥ = 4¢. Consequently,
(Tie, ((1)<) T, (72)>)) = (T, ((01)<) 3" ((€2)=)) =0
via the ringed version of ([@I3)).
Note that Tl (5*(V§Y)) = 0 by the definition of 4, therefore I (77},) =
;. (Vi X). |
Let us compute V% X. Taking into account [L8) and (@I0), we get

X = Z

i t 1 zKZ jZ
(Vi) X7 (Vi) X))

0
:Z (V L ) \ (vﬁ)L; EKZ (VL)L; X];’ ,
P 0 0 0
where Ji = [1,n]\ Ji. The latter equality follows from the fact that in columns

Li\ ! all nonzero entries of £ belong to the block (U)L = X7, whereas in

I’L )
columns Wi nonzero entries of £ belong also to the block (U) = Yj{t’l,
tfl t—1

see
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Fig. In more detail,

v i piyLi\YL i \KG i i VK J
s" (V ‘C )Ll\\pl (v )LZ\\I’Z (‘C )Kz (V )Ll\\I/lX i
é i pi\Li\T¢ i\ Pi 7 t
(139) VRN =D Nwef (VR eor (VX

0 0

Note that the upper left block in (£39) is lower triangular by ([@3T]). Besides, the
projection of the middle block onto Iy vanishes, since it corresponds to the diagonal
block defined by the nontrivial X-run A(8}) (or is void if t = 1 and ¥} = @).

It follows from the explanations above and (3] that the contribution of the
t-th summand in (@39) to flfl ((1)<) vanishes, unless ¢ = p. Moreover, if ‘e
L;l;q \ \Illl), it vanishes for ¢ = p as well. So, in what follows we assume that [' € Lzl).
In this case [@39) yields

(4.40) M, ((71)<) =g, ((vﬁﬁ )Lz>< ’
0 0

On the other hand,

2 72
2 |0 (VR e (62 <v2>L2wzxé
(4.41) I, ((77%)>):Z 0 0 (Vz) }J2 ;
o 0 0

where the ¢-th summand corresponds to the t-th X-block of £2.

If 3, < B2, then the contribution of the ¢-th summand in ZI) to the second
term in ([L37) vanishes by ([@40), since in this case J) C JZ \ A(S7), which means
that the upper left block in (£40) fits completely within the zero upper left block
in (@AT)).

Assume that 8] > 7. Then, to the contrary, JZ C J) \ A(f)), and hence
p(L7) € L, \ ¥}. Note that by 40), to compute the second term in (@3T) one

can replace J?2 in (@Z1) by Jy\ JZ. So, using the above injection p, one can rewrite
the two upper blocks at the ¢-th summand of flfl ((172)>) in (@A) as one block

L\p(L\¥F)
(vz)L2\\1/2 (El)p(pK?) )

and the remaining nonzero block in the same summand as

1\ Lp\p(L7)
(V2) g (0.

The corresponding blocks of H ((n£)<) in ([@40) are

1\ PEAE) |\ KL (L)
(VEC) T tivws = (VE) h e (£

and
(Vic! )Ll\p 13y = (vﬁ)Ll\ ) (Ll)p(““ ),

The equalities follow from the fact that all nonzero entries in the columns p(L3?) of
L' belong to the X-block, see Fig.
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The contribution of the first blocks in each pair can be rewritten as
WLp\(LATD) o1\ K, 1\ P(LINTY) (o2
(442) <(£ Loy (VE) L (Eg " (Ve )Lz\\v2>'
Recall that p(K7?) C K,. If the inclusion is strict, then immediately

LI\p(L2\02)
(443) (LY)75) (VL)Ll\p<L2\w2>
p(LNYF) (1K)

:(leﬁ) ; —(ﬁl)p(Kz) (Vﬁ)p(L2\\p2)

p(K7)
L? \\If
(E vﬁ)p(K2 (52) (vﬁ)p(L2\‘l/2)'
Otherwise there is an additional term
1 K,
(‘C )Kl (vﬁ) Ll

in the right hand side of [@.43]). However, for the same reason as above,

L2\ W2 L2\ W2
(Vﬁ) (ﬁl)ﬂ( \¥7) (Vﬁﬁ )z(1 i\VE)
Note that p(L7 \ ¥7) C L, and L} lies strictly to the left of L, see Fig.
Consequently, by ([£31)), the latter submatrix vanishes. Therefore, the additional
term does not contribute to ([@42).
To find the contribution of the second term in (£43)) to (£42), note that

(4.44) (V)R oy (E 0 = (bt
and
2 2
(V) 2har (05" = (VEL) 3

for the same reason as above, and hence the contribution in question equals

LI\ LIV}
B <(v%£2)L§§\Pf (Vlﬁﬁl)ﬁmtw» = const

by (£31)).
Similarly to (£42), [@43]), the contribution of the second blocks in each pair can
be rewritten as

(4.45) <(£ VE) s, — (CE (TE) N (€5 (V2 ) >

As in the previous case, and additional term arises if p(K?) = K 1, and its contri-
bution to ([@45) vanishes.
Note that by (£31]), one has

K
(£'VE) pxe2)
and

Kl
(El Vz) p(FI’(2
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hence the total contribution of the first terms in (£43)) and (45 equals
1 1\P(L\YT) (o2 p(¥?) 12\ K
(w16) {(CVE)ED (& )p(,@ (V2) 5 4 (£ (V2) 51 )
1 2 t\‘P 2 7 o2\ KY
= (£ (5™ (T2)en + (VD)

(K K?
= (LW, (£292) 5 — Ui(VA) ).
where ~
2
(‘62)@2

UtZ t
0

Note that ) )
11 \PED) ¢ 22\ Ky
((£'VE) ) (£29%) ) = const
by ([@31)), which gives the first summand in the last sum in (£36). The remaining
term equals

(V) U(VR) 1 >:—<(clv£) E;‘;J<c2>q>z<v2> )
= — (£ VL) (e (V2)]3).

which coincides with the expression for B} in (£33)); the last equahty above follows

from (£31).

It remains to compute the contribution of the second term in ([@Z43). Similarly

to ([@44), we have
1,£(%7) p(¥7)

(Vﬁ)p@‘z (E5y " = (V2L rhy:

On the other hand, similarly to (Imb, we have
K3 L
(Ve - (vaenh - (v,
where
v, = [0 (L)Y, } .
t 1
As before, we use (L3]) to get
1 ,1\P(¥7) (o2 p2yLi 1,1\ P(Y)) (o2 p2\ ¥F
(V)08 (V2Ea2) = = (Ve )b (V232 = const

which together with the contribution of the second term in (£43) computed above
yields the second summand in the last sum in ([@36]). The remaining term is given

by
(VR (VE) i Vo) = ((TELY) 0t (V) (£3)% )
which coincides w1th the expression for Bf' in (IBZI)
2
Assume now that ﬁl = /32 and hence J, 1 = J2. In this case the blocks XIJ§ and

l
X have the same width, and one of them lies inside the other, but the direction

of the inclusion may vary, and hence p is not defined.
Note that by ([@40), to compute the second term in (£37) in this case, one can
omit the columns J? in (@A), and hence the contribution in question equals

<(V££1)L AL (V2 )L2\‘112 (‘62)}P(€2> ’
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which coincides with the expression for Bi' in ([30). O

4.3.5. Ezplicit expression for {(iik)>, (1%)<). Recall that I'e L,UL} by @32).

Consequently, ‘e K; U I_(;fl; more exactly, either e K; \ @11), or

(4.47) ilel_(; withg=porg=p—1,

- )
see Fig. Consider a fixed block YI—{‘? in £' and an arbitrary block YI—? in £2.

q
If 645 > a2 then, by Proposition EE3|(ii) the second block fits completely inside the
first one. This defines an injection o of the subsets K2 and L? of rows and columns

of the matrix £2 into the subsets K ; and Eé of rows and columns of the matrix £'.
Put

_ o(WFy,) K7 v
(115) B = ((Vee) Gk T e ).
_ o(22) L? 7
(4.49) B’ = <(ﬁlvlﬁ)a<¢§>(£2>q>? (V%)L?>’
_ o} L? K\o7
(4.50) B = <(£1V1£) oL (£2) (V%)Lg > :

Lemma 4.13. (i) Ezpression ((1})>, (7%)<) is given by

4.51)  ((iR)> (1R)<) = (k)0 (MR)o) + (Bi+B)+ Y B
aj<al af=al
o(L?) L7 o(K?) K?
+ 30 (VLT (V23 1) = (£'VE) 1) (£292) )

ifl' e K}, and equals {(1})o, (7% )o) otherwise.
(ii) The first term and both summands in the last sum in the right hand side of

(@ET) are constant.

Proof. Clearly, {(ik)s, (i)<) = (k). (i)o) + (k) (%)< ). The first term
on the right is constant by the ringed version of ([£I9), so in what follows we only
look at the second term. Similarly to (£3T), we have

(4.52)

(k)= (iR)<) = (T, (()=) Tir, ((3)<) ) + (Mg, (Gik)>) ST, ((73)<) )
with [’ = T'%.

It follows from the ringed version of (@Il that for i = 1,2,
(4.53) TIr, (1) = 7(ER)

with ¥ = 4*. Consequently,
(1, ((k)>) Tie, ()<) ) = (fir. (h)>) 5 (€R)<)) =0

via the ringed version of ([{LI3)).
Note that Iy (9(XVY%)) = 0 by the definition of 4, therefore Iy (77%) =
I (YVi).
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Let us compute Y V3. Taking into account (@3] and 1), we get

s [y vk o | EVkg O
vV =S| G SR =3 gV o)
t=1 }/f} (vﬁ)ii 0 t=1 (vz)jb 0
' f;j LIL;

where ft = [1,n] \ I}; the latter equality follows from the fact that in rows K} \ @}

all nonzero entries of £ belong to the block (ﬁ) = YP , whereas in rows ®!
nonzero entries of £? belong also to the block (El) = X7 1i > See Fig. In more
detail,

e e, o
(4.54) YV =Y (ﬁ')”( DL z>f§§ 0

T v o

Note that the upper left block in ([@354) is upper triangular by (£31]). Besides,
the projection of the middle block onto I'y vanishes, since for ®! # &, the middle
block corresponds to the diagonal block defined by the nontrivial Y-run A(af).

Recall that [! e K} UK} |, therefore by @31, the contribution of the t-th
summand in ([L54) to ﬁf‘z ((77}%)>) vanishes, unless ¢ # ¢, where ¢ is either p or
p — 1. Moreover, if [! € K} \ ®,, this contribution vanishes for t = ¢ as well, see
Fig. So, in what follows I € Kl, in which case

o : £V KQ> 0
(4.55) I, ((7k)>) =10y, (( g §
0 0
On the other hand,
, 0 0 0
. > L} K7\@7
456) I ((2)<) = 3 | Fe(VE)E: 0 0f .
’ el I DR LV R N
h Yf2 (VL)Eg ' Yfz (Vﬁ)ig 0

where the ¢-th summand corresponds to the ¢-th Y-block in £2.

If &) < &, then the contribution of the t-th summand in {Z56) to the second
term in [@L52) vanishes by ([E5H), since in this case I} C I7 \ A(a7).

Assume that a; > a7. Then, to the contrary, I} C I} \ A(a}), and hence
o(K}?) C K} \ ®}. Note that by (ZE5), to compute the second term in ([@52), one
can replace ftz in [@350) by I} \ I7. So, using the above injection o, one can rewrite
the two upper blocks at the ¢-th summand of H ((77}23)<) in ([{.50) as one block

o(L7) K7\®7
(ﬁl)k;\g(kg\¢2 (VB

and the remaining nonzero block in the same summand as

(L)t iny (VE) 7
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The corresponding blocks of ﬂfz ((%)>) in @IH) are

KN\o(K2\®? L} KIN\o(K2\®?
(ﬁlvlﬁ)g&;g{@g)\ ): (51) f 2\ P2 )(VL) T
and .
K \o K? KX\o
(1 8) s = () e (VR 7.

The equalities follow from the fact that all nonzero entrles in the rows o(K?2) of £*
belong to the Y-block, see Fig.
The contribution of the first blocks in each pair can be rewritten as

KN\o(K}\®?) o(L?) Ki\®}
(457) <(V£) (Ll)Kl\U(KQ\(I)Q)(V2) (EI)U(K2\¢2)> .

Recall that o(L7?) € L. If the inclusion is strict, then immediately

K\o(K7\®7) o(L})
(4.58) (vﬁ) (Ll)f{l\a(f(z\@?)
o(L? o( K2\ 2 o(L?
= (Ve3P - (TR e
o(L?) o(K7\@7 L7
= (vhe) 1 () R e
q q t t
Otherwise there is an additional term
_ vl {(; El Etlz
( ﬁ)Lé( )K;

in the right hand of ([@18]). However, for the same reason as those discussed during
the treatment of ({42,

Z/l
(L) k2 \02) (Vlﬁ)i = (¢! Vﬁ) o(R2\82)"

Note that o(K7 \ ®7) € K, \ ®} and K lies strictly below K} \ ®}, see Fig.
Hence by ([@31)) the above submatrlx vamshes and the add1t10na1 term does not
contribute to (L5T]).

To find the contribution of the second term in [@58) to ([@51), note that

L, 2\ o2
(459) (£t amy (VE) 7T = (197
and o
()0 (VRS = (£2V2) g

and hence the contribution in question equals

2
- <(£2V%)§}§2 (Elvﬁ) Kt2§2;> = const

by @31).
Similarly to ([@Z3]), the contribution of the second blocks in each pair above can
be rewritten as

o) (TR - (e, (U )

As in the previous case, an additional term arises if o(L?) = E}I, and its contribution

o ([L60) vanishes.
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To find the total contribution of the first terms in (58] and ({@E0), note that
by (3T), in this computation one can replace the row set Ly of L'V 21 with o(L7).
Therefore, the contribution in question equals

(4.61) <(V££1)Z Lz)v(vz) Ko (El)zgzié)vw (V2) (51)3§i2>>
= (VECY) 28, (V) () Fas + (VE) T3 (£%)03 )

- <<vzcl>z§§g§, (V2 - (V) ),
where

= [ o).

t+1

Note that

o(L?)
((VEEY) I (VaL2) > = const
by ([@31)), which gives the first summand in the last sum in (£EI). The remaining

term is given by

- (VL (TR = - ((TheN T (TR e ).

t+1

which coincides with the expression for B} in ([Z48).
It remains to compute the contribution of the second term in (£60). Similarly

to ([@59), we have
i; o f{f a’(f(tz)
(ﬁl)g@%)(vlﬁ)ié )= (£'VE) a3
On the other hand, similarly to (£61), we have
L? L%y by
(LR (VZ) o = (£2VE) g — A

L2 9
where
0
2
(£2) g}

t

Ly =

Using (4.31)) once again we get
<(£ VL) (£2V2) > <(£1V£) (£2V2) > = const,

which together with the contribution of the second term in ([@58) computed above
yields the second summand in the last sum in ([@L5]]). The remaining term is given

by
o f(tz @f
((E98) et Z(T2)7h) = ((£'95) et (€5 (V2) 73 )
which coincides with the expression for B} in M)

—, — 2
Assume now that &; = @, and hence I? = I,. In this case the blocks Y, 2‘ and

Y have the same height, and one of them lies inside the other, but the direction

of ‘the inclusion may vary, and hence o is not defined.
Note that by ([@53]), to compute the second term in (£52) in this case, one can

omit the rows I? in ([356]), and hence the contribution in question equals

(e vn) @R ().
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which coincides with the expression for B in ([Z50). O

4.3.6. Explicit expression for <%C* (fi)g, %C*(V%Y)>. Assume that p and ¢ are de-
fined by @32) and [@AD), respectively, and let o be the injection of K7 and L7
into K and L}, respectively, defined at the beginning of Section L3El Put
(52) t+1 > )

2
\I}t+1

(4.62) BY — <(v1££ )T () 5
Lemma 4.14. (i) Expression <%C* (f})gﬁc*(V%Y» is given by

(463) (3 (ED< A" (V3Y)) = 3 B+ Y BY

B2} B2>pBL_,

p —
L —JL gox 2 Ao\ LI\ = T\A(B])
+ E — £ 1< VL‘C L1~>J1’ (Vﬁ‘c )LQ\\IIfii—»JQ\A(Bf)>
p—1 s°

n < (VLLYEN D TNAGY g (g2 po VY +1%J2\A<5t>>
1

1
Ll\‘l/1 L JINA(BL)? L2,\‘112+IHJ,2\A(6,§)
u=1t=
2

+>_ ({u<p: B> B+ {u<p: By < B}) <(V%)§f§+ (EQ)K2“> ,
t=1

where B}' is given by @34) with p(®7) replaced by ®L for B} = B7, and B} is
given by ([AG2).

(ii) Each summand in the last three sums in ([LG3) is constant.
Proof. Recall that by ([@38)), this term can be rewritten as <f1p1 (1)<, 7*(V§,Y)>
with I'y = I'§ and 4 = 4°.

Note that Vi X has been already computed in {@39). Let us compute §5*(V4Y).
Taking into account (A38) and EI0), we get

, , 0 0
SZ+1 O O SZ+1 1 P 1 f‘ifl
vl = E 3% i t t = E x| * (v ) (E )Ktl ;
( ) —~ ,-)/ * (v ) IY 1 F)/ iiil —1

=2
A : (Wﬁ”)izﬂ\w:

the latter equality is similar to the one used in the derivation of the expression for
Vi X in the proof of Lemma 11l In more detail,

(4.64) 4 (ViY) =

v o 0 0 v o 0
¥ 10 VZ e l(ﬁl) 0] + Z ol 0 (vz Ei)Li1\‘l’i‘| .
t=2 0 O - 0 t=2 £ Li—l\\yi

Note that the diagonal block in the first term in (f.64]) corresponds to the non-
trivial column Y-run A(B_,), unless t = s' + 1 and 9!, , = @. Therefore, ¥*
moves it to the diagonal block corresponding to the nontrivial column X-run A(3})
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occupied by (V. ) (U) Z in (@39). Consequently, the resulting diagonal block in
7t is equal to

(4.65) (vz)ﬁf (Ei) +(Vi)hi 1(51) = (Viﬁﬁi)i%

—1

for 1 <t < s+ 1; note that the first term in the left hand side of ([Z65]) vanishes
for t = s 4+ 1, and the second term vanishes for ¢ = 1.
Further, the projection IIp, of the second block in the first row of (439 vanishes.

Summing up and applying (£31]), we get

st41 L s+l 0 0
. . VLY ‘ L
166) Ti,(ih)< = > 11y, | (VEEZE O] 4 5 50 Lua\W |-
(4.66) I, (17 )< u; I 0 of & |0 (VELYL

Recall that I* € Ly UL, | by @33). Therefore, for any u > p both terms in
(£50) vanish. Consequently, by the ringed version of ([@Il), the contribution of the
second term in expression [@64) for the second function to the final result equals

Lot 202 | S JA\A(B)
S5 (v e )
p—1 s

1 LINW, L —TN\A(BL) o\ LI\ W +1—>j?\A(B?)
+ ZZ< VL' LINGL = TIN\A(BL) Hfz(vﬁﬁ )L2\\IJ:+1 72\ 2 :?) )
u=1t=1
which yields the third and the fourth sums in (£G3). Note that each summand in
both sums is constant by (E3T]).
Further, for any u < p, the nonzero blocks in both terms in (£66) are just
identity matrices by (£31]). Hence, the corresponding contribution of the first term

in expression ([L64) for the second function to the final result equals
(4.67)
52
R 2 th t
S (< p: 68 2 )+ Hu <p: B < ) ((V2)], (€95 ).
t=1
which yields the fifth sum in (£G3). It follows immediately from the proof of Lemma

LA that the trace <(V£)\I,r+1£%+1

Finally, let u = p. Let us find the contribution of the first term in (£G0). From
now on we are looking at the ¢-th summand in the first term of ([@64]) for the second
function. If 3 < 87 then the contribution of this summand vanishes for the same
size considerations as in the proof of Lemma [£.11]

If ﬁ; > 32 then the contribution in question equals

((VELY) o) (VE) i (695 ).

which coincides with B! given by ([E34) and yields the first sum in (@63).

If B; = /37 then the contribution in question remains the same as in the previous
case with p(®7) replaced by ®].

Let us find the contribution of the second term in ([EGG). Note that 4* enters
both the second term in ([@66]) and the first term in [@64]), consequently, we can
drop it in the former and replace by ﬁp2 in the latter, which effectively means that

~4* is simultaneously dropped in both terms.

> is a constant.



44 M. GEKHTMAN, M. SHAPIRO, AND A. VAINSHTEIN

From now on we are looking at the ¢-th summand in the first term of (LG4).
However, since we have dropped ¥*, this means that we are comparing the (¢ — 1)-
st Y-block in £? with the (p — 1)-st Y-block in £!. If B]Ll > B2, then the
contribution of this summand vanishes for the same size considerations as before.

If B;_l < f32_,, then the contribution in question equals

(VEL) T (V) (2%,

which coincides with BIY, given by ([@GZ), and hence yields the second sum in

(£.53). O

4.3.7. Ezplicit expression for <%r(§}%)2ﬁr(XV§()>. Assume that p, ¢, and o are

the same as in Section E3.6] and p be the injection of K? and L? into K; and Lzl)7
respectively, defined at the beginning of Section 3.4l Put

(468) BY = ((£'VE) o) (€23 (V2) 73 )

Lemma 4.15. (i) Expression <%r(§}%)2,%r(XV§()> is given by

(469) (¥(Eh)> 4" (XV5)) = Z Bl+ > B+ ) BY
az<al ai>al

52

p

+2
u=1t=1
2

t=1

Kl—I' o, K2\ @2 T2\ A(a?
<(£1V£)f<3:*“ (V)0 A

P S
11\ Ko\, = L\A()) 1 252 \ K2\ = I2\A ()

+ Z Z <(£ vﬁ)Ki\@}L—)I}L\A(a}L)’HFE (£ vﬁ)Kf\@fﬂIf\A(af)>
u=1t=

52

+X (tu<p-1ialzall+{u<pial < a2H) ()65 (V2) 53 )

where Bi' is given by @EZ9) with o(®F) replaced by ®) for af = af, and B}V is
given by (A6Y).

(ii) Each summand in the last three sums in ([LG3) is constant.

Proof. Recall that by ([A53)), this term can be rewritten as <1211~2 (ﬁ}%)zﬁ(XV?X»
with 'y = I'}, and v = 5".

Note that YV has been already computed in ([E54). Let us compute 5(X V).
Taking into account (L) and (), we get

0 o 0] . 0
(4.70)  H(XV%) 270 (W)f0+2% i \KN® |
0 0 t=1 0 (ﬁ vﬁ)Kf\‘I)i

similarly to (ZG4).

Note first that the diagonal block in the first term in (Z0) corresponds to
the nontrivial row X-run A(f}), unless ¢t = 1 and the first X-block is dummy, or
t =s' and ®,; = @. Hence, 4 moves it to the diagonal block corresponding to the
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o

nontrivial row Y-run A(3¢) occupied by (ﬁ)g (Vi) i in @54). Consequently, the

resulting diagonal block in 7°7iR is equal to
iNLi i \®1 Lt i \PL (i P
(471) (C)E (V)B4 (L5 (V)2 = (VL)
(if the first X-block is dummy and ®} # @, the second term in the left hand side
vanishes; for ®} = & relation {71) holds trivially with all three terms void).
Moreover, the projection IIp, of the second block in the first column of ([E54)
vanishes. Summing up and applying (£31]), we get

. o
(£'Vh)gs 0 | 0
u + K \®,, | -
0 0 ;7 0 (UV};)KESZ

1

(472) ﬁFz (ﬁ}%)z = Z ﬁFz

u=1

Recall that I' € K, U K, 1, see Section 35 Therefore, for any u > p both
terms in (£T2) vanish. Therefore, the contribution of the second term in ([@X0) to
the final result equals

Kl —Il & K2\ @2 5T\ A(a?
DD (VDRI ALV a )

p 82 1 1 1 1 o 2 2 2 2
3> (VRN A ) T, (C2VE) R TR )
u=1 t=1

which yields the fourth and the fifth sums in ([@69). Note that each summand in
both sums is constant by (E3T]).

For any u < p — 1, the nonzero blocks in both terms in (£72)) are just identity
matrices by [@31)). Therefore, the corresponding contribution of the first term of
(@1Q) for the second function to the final result equals

52

2 2
S (Hu<p—1:al=a?}+ {u<p—1:al<af}) ((£)5(VE)7: ),
t=1
which is similar to (67)) and is constant for the same reason.

Further, let w = p — 1. Then the nonzero block in the second term in(@72) is
again an identity matrix, and hence the inequality u < p — 1 in the second term
above is replaced by u < p, which yields the last sum in ([ZG3]).

Let us find the contribution of the first term in [@72). From now on we are
looking at the summation index ¢ in (0) for the second function; recall that
it corresponds to the ¢-th Y-block. If 64;71 < @2 then the contribution of this
summand vanishes for the size considerations, similarly to the proof of Lemma
T4 If &), > af, then the contribution in question equals

1o1\(®) 2 L o2\ BF
<(£ Vi) oat) (£7) et (Vﬁ)L§>v
which coincides with Bj' given by @ZJ). If a} , = a7 then the contribution in
question remains the same as in the previous case with o(®7) replaced by @ ;.
Consequently, we get the first sum in ([£.69).

Finally, let u = p. Then the first term in (£72)) is treated exactly as in the case
u = p — 1, which gives the second sum in (£.69).
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Let us find the contribution of the second term in ([£72)). Note that ¥ enters
both the second term in ([£72) and the first term in ([{70), consequently, we can
drop it in the former and replace by f[pl in the latter, which effectively means that
+ is simultaneously dropped in both terms.

From now on we are looking at the summation index ¢ in [@X0) for the second
function. However, since we have dropped 7, this means that we are comparing the
t-th X-block in £ with the p-th X-block in L£'. If oy, > o then the contribution
of the t-th term in (A70) vanishes for the size considerations.

If a), < af then the contribution in question equals

<(51Va)p§§2)(£2)¢2 (w)fi} ;

which coincides with the expression ([GY) for B;¥ and yields the third sum in

([EED). O

4.4. Proof of Theorem [B.4t final steps. Let us find the total contribution of
all B-terms in the right hand side of (€30, (E51), (E63) and (E6I). Recall that

I' lies in rows K; U I_(;_l and columns Lzl, U I_/zlj_l. We consider the following two
cases.

4.4.1. Case 1: [* lies in rows K; and columns L}D. Note that under these conditions,

. W) . . ST . .
the matrix (Vlﬁﬁl)agwéﬂi in the expression (L48) for B} in (L)) vanishes, since

rows and columns o (W7, ;) lie strictly above and to the left of I'. Besides, the matrix

(clvﬁ)Kl\@ in the expression ([@50) for B in (L5I) vanishes as well. Indeed,
the column (El)%;\% vanishes if j lies to the right of L,. On the other hand, the

i-th row of V] vanishes if i lies above the intersection of the main diagonal with
the vertical line corresponding to the right endpoint of Lj,.

Finally, for any ¢ such that 8} > (7, the contributions of the term Bj' given by
(@34) in (£30) and [63) cancel each other. Similarly, for any ¢ such that &, > a7,
the contributions of the term B! given by ([@Z9) in ([@5I) and ({AEJ) cancel each
other as well. Taking into account that @, = &; is equivalent to oy, = af, we can

rewrite the remaining terms as

(473) > ABY —Bj: By > Bap<ail+ > {BI'=Bj: B} > Bfap=a}}
+D AB s By < By =ait+ D Bl - B B = 0> af)
+ B! =B +B}Y 1 B, =,y < at}+Z{B” BI"+B}': 8, = 8,0, = ai}
+ Z{Bilfv : pfl < ﬂt } + Z{B%I : 6‘;—1 2 6‘%}7
where B}, B/, BIV, and B}V are given by ([@33)), (@35)), ([A68), and ([@G62), respec-

tively.
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Lemma 4.16. (i) Ezpression [@13) is given by

S (VD () + X (VR (Ve )

52 <5} pi2op
a%>0¢11, a%: P
_ 1 2
30 (@R, OB+ 3 (ke Ee))
8253 8E=s5
a$<a}) afzal}l
2\ 52 2\ p2 i
- 3 (v e+ X (e v
BE=5% o=t
a?>al %:a”
99 1 p1y Ly (o2 2y L
+ Z < (E \Y4 ) >— Z <(V££ )Lé(Vﬁﬁ )L$>
ﬁ2 51 BE=58}
=al 2:a
a2=al ap=ap
Ly < e ) X (@rienn).
B?>B1_ i ai<a, , t t

where >°% is taken over the cases when the exit point of X i lies above the exit

point of pr-
p

(ii) Each summand in the expression above is a constant.

Proof. To find the first term in (73] note that for any fixed ¢ satisfying the cor-
responding conditions one has

(4.74)
BY — Bl = ((£'VE) s (€25 (V)12 ) + ((£1VE) 0 ()5 (V)13 )
= <(£1v£)pg2>(£2v§)§> = const

via (Z71) and (@3T]), which yields the first term in the statement of the lemma.
Similarly, to treat the second term in ([.73]) we note that under the corresponding
conditions

(475) Bl = Bl = ((£'VE) 314 (VE) 14 ) + ((£'9h) 1 (£2)55 (V2) 72 )
<£V£ £2V2) >:const

via (LTI and [E3T).

To find the contribution of the third term in (£73]), rewrite it as

(') 1 (2292)50) — ((£'9E) 31 ()5 (V3)Th)

and note that the second term equals

(4.76) <(£1)¢1 (VE)) (52)¢2 (V3); > ,
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1 1

® . JL. . .
} vanishes. Further, the block X" is contained completely inside the

since (vlﬁ)ill? 1

2 1 1
block XIJJ. We denote by p the corresponding injection, so (El)éf = (52)';(2%).

t P t
Therefore, (@70 can be written as

®! L2 K2\®? (L)
<(V15)L71) (£2) g (V%)ig ' (52);$\<I>?> )

where we used the fact that

2 L, K2\ @2 L} LY
(VZ)zs (52);(3 - (V%)Lg\ (52)’;3\413 = (VQLEQ)%% '=o.
1 1
Finally, (£2)alps = (£') s, g1 and

KI\®,»

(LYY g (VE) 57 = (L1E) 5y = 0
ey (Ve)if = B Ve ey =0

hence (A.70) vanishes, and the contribution in question is given by the same expres-
sion as in ([@TH), and thus yields the second term in the statement of the lemma.

To find the fourth term in (73) note that for any fixed ¢ satisfying the corre-
sponding conditions we get

(4.77) B}'— Bi"
1,1\ o2\ Kio1 g p2 Y7 1 e\ L\ o2\ K7 2\¥7

= <(VL£ Jui (VZ)gs ™ (£ )k§,1> - <(V££ )i P (VE) s (£ )K,?>'

Applying ([£E8) to the first expression and using the equality
LIV K7 v, K; L} K;

(VL) gt ™" (VE) fhyas + (VEL) gt (VE)gd = (VELY) g (VE) 1

we get
vl w2 L} K? w2

(478) B = B = ((VELY) (VL) ot ) — ((VEL) 3 (VE) 2 ()55 )
Clearly, the first term above is a constant.

Jl
Note that ozzl) > o2, and hence the block X ;1 is contained completely inside the
P

2
block XIJZ‘, which means, in particular, that p > 1. Consider two sequences of
t
blocks
J J J JZ JZE JZ
(4.79) {Yililleflp,ll’Yfli;""} and {Y.' XL YR
p P P t—1 t—1 t—2

There are four possibilities:

T J? = =
(i) there exists a pair of blocks Y7,""™ and Yl—ét:m such that J)_,, = JZ .,

p—m t—m

- - - ~
I, # I, and the subsequences of blocks to the left of YI—{p’m and Yl—é"m

p—m t—m

coincide;

1 2
(ii) there exists a pair of blocks X}If”m and X}]«j’m such that I;_m = JI?

t—m>
p—m t—m

1 2
Jp—m # Jfm, and the subsequences of blocks to the left of X}Jf’m and X}]«j”"

p—m t—m
coincide;
(iii) the first sequence is a proper subsequence of the second one;
(iv) the second sequence is a proper subsequence of the first one, or is empty.
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Case (i): Clearly, this can be possible only if I? | C I'! . see Fig. [ where

p—m>

blocks Xﬁ“ and Yf{’z are for brevity denoted X}, and Y}, respectively.
k k

Xt
Xp
Ypa© Y §
o, |
‘ 1
Op
Yim
Yoom
””””””””””” 12 )
EREES
FIGURE 16. Case (i)
Denote
m—1 m—1
(480) ©L=|J(KI_ UKl ))UK]_ ,,, E=|J@i ;UL UL,
j=1 j=1

1

P

=2 =
Note that the matrix (£?)g5 coincides with a proper submatrix of (£')g} ; we denote
t

1
the corresponding injection o (it can be considered as an analog of thg injection o
defined in Section E35]). Clearly,

K} w? w7 CH w?
(4.81) (V) e = (vae) T - (v e,
The contribution of the first term in (£JI]) to the second term in ([@T8) equals

L} w2 v w2
- <(V1££1)\I,Z (V2L£2)L§ > - <(V1££1)% (V2L£2)\p§>

and cancels the contribution of the first term in (78] computed above.
To find the contribution of the second term in (L8]] to the second term in (L8]
note that
1 p1 L} 1 Klue! 1 Lt
(4.82) (VL )\1;1;7 = (VL)\I,}{; YLK e

so the contribution in question equals

o? 02 Klue! L,
(4.83) <(V%)L? (52)9? (Vlﬁ)‘pf P(EI)KELJ@})> .
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1

Taking into account that (52)02 = (Ll) (£2)“t\‘p (ch (\)2 and that

0(02)5
K UO K UO \\Ij Kjue,
(4.84) (61)0(62)(%) = (L' i = (£ ey (VE) 2 f\w;p’

this contribution can be rewritten as

<(V£) ; (! Va)f(ou‘z@ (‘CI)K1U®1>
- (TR (DT ey )

Next, by (E31]),
( ) (£2)_‘r\qj ( L?)“t\kp —O,

since the columns L? lie to the left of =7 \ W2.

Finally, by (@31,

o!
(C'VE) S =0 1 0],
where the unit block occupies the rows and the columns o(©?). Therefore, the
remaining contribution equals

(o8 = (G0 - (5, (1),

which is a constant via Lemma [£4] and yields the third term in the statement of
the lemma.

Case (ii): Clearly, this can be possible only if .J}_,, C J? ,,, see Fig. [T where
we use the same convention as in Fig.

X
1
Xp
12
Ypa Yia
1 2
@p, [CN i

2
p-m| X-m

Ypfmzytfm K?—m

2
L t=m

FIGURE 17. Case (ii)



PLETHORA OF CLUSTER STRUCTURES ON GL, 51

Let ©% and =% be defined by ([@30). Note that the matrix (ﬁl) coincides

OluK1

p—m
©2uUK?2
(in a sense, it can be considered as an analog of the injection p defined in Section
32 however, it acts in the opposite direction). Clearly, p(©, UK} ) = ©7 U

K? .. Similarly to [@34)), we have

with a proper submatrix of (£?) ; we denote the corresponding injection p

<c1>01 (vﬁ);i HO

Kruel “1\\11 K)ue) L. Kluel
(ﬁ Vﬁ) (El) (Vlﬁ)z;?\‘y; o (ﬁ ) (VL) o
The first two terms in the right hand side of this equation are treated exactly as in
Case (i) and yield the same contribution. The third term yields

<(Vﬁ) (52) Foo (vﬁ)fl UGl(ﬁl)%u@;>

m

: L aanp(Lh )
since (L) g™ = (£7) g2 . To proceed further, note that
t

P

( ) (Lz)p(Lp m) (V%EQ)Z(; m) (V2) m\P7 m(£2) \qz »

The first term on the right hand side vanishes, since VL is lower triangular, and
columns L7 lie to the left of p(L;_,,). The second yields

@2 Kluel
<(v£) (El) K)_ m\<1’1 . (vﬁ)Lé m (El)Klu®1>
t— 7n\q>t m KlU@l
(D D, (Ee,)
1 1 1
via (ﬁz)p(L’)’ng (ﬁl)Kluol Finally, (lelﬁ)g’{uasq)l vanishes, since LV ¢
is upper triangular, and rows K, \ ®, . lie below K U©,.

Case (iii): This case is only p0s51b1e 1f the last block in the ﬁrst sequence is of
type Y, see Fig. [[8 on the left. Assuming that this block is Y7, Tp- , we proceed

exactly as in Case (ii) with L, , = @ and get the same contribution.
Case (iv): This case is only possible if the last block in the second sequence is of

type X, see Fig. [[8lon the right. Assuming that this block is X T , we proceed
m+l

exactly as in Case (i) with K7, = @ and get the same contr1but10n
To treat the fifth sum in (IIZ{I) note that al < of implies that the block

2
X}Jz is contained completely inside the block X . Therefore, injection p can be

defined as in Sectlonm; moreover, p(V?) = \1111, and p(L?) = L,, since 61 B7.
Consequently, the block Y Tp- is contained completely inside the block Y Ji- ', and

—1 t 1
injection o can be defined as in Section L3
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X Xf
- 1
Xy Xp
_2
=t
Ypa Yt 1 Ypa™Yiu :
1 ; :
% P :
2 O ! :
[CA ! ;
VAl
1 9
12
YpfmiY(frn X%—m
T L 2 .
:;, :f KHTI 7777777777777777777777777777 Ypfm

2
L t=m

FIGURE 18. Cases (iii) and (iv)

We proceed similarly to the previous case and arrive at
(4.85) BY— BM 4 B = <(v1£,cl)‘1’% (V2L2) 53 )
— (VR (VE) 1 () ) + ((E'VE) et (£2)g (V2) 12 )

Clearly, (Vlﬁﬁl)é (V% )K Uy - (El)KluK1 , so the second term in (£.80])
-1
equals

(4.86) <(£1)K1UK1 l(v%)fg(ﬁl)j(l(2)(vﬁ)}{ o 1>

2oy Ea\Y, Koo
<(‘C1)K1uK1 l(v%)fg (‘Cl)p(gz (vﬁ) UK >

Ll\‘lll

(e (R @D,

The first term in ([£30) equals

(o (TDE @R (D)

LI\

L2\ W2 LIV} L\,
<( 52) f(veLt )Ll\\lll> = <(V2££2)L$\\1/§ (Vlgﬁl)L;\\I,%) = const,
which together with the contribution of the first term in ([E8H]) yields the fourth
term in the statement of the lemma for a? > o

2
By (@31), the matrix (leﬁ)K P PUKL)

K2) vanishes. Next, we use injection ¢ men-
tioned above to write (El) p(K2)UR?_ (EQ)K%U(KI Y and hence the second term
1
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in ([AR6) can be written as
(K7) K
(487) — <(ACIV£)p(K2) (‘62)K2UU(K1 1) (v%)Lf >

(K;)
(VD VD e )

2 7 72
(VD O hois (TD)
p(KHUK? L7 \T :
<(£1v£) ey l(ﬁz)KzJ;Kl )(V%)fgl\qug>-
By (&31)), the first term in (M) equals
(4.88) <(c vﬁ) (£2V2) > — const.

Recall that the matrix (52)]:

(K2\®2)Uo(K1_,
(£RT) can be rewritten as

<(le£) ()5 (VR 1 > <(le£) (L) (VR)] >
by (31). Taking into account the third term in (EEI), we get exactly the same
contribution as in (@4, which together with ([A88]) yields the fifth term in the
statement of the lemma for af > a.
To treat the third term in ([£X7) note that

(KUK,
Z(K2)U = (‘Cl) (VL)

) vanishes, and so the second term in

K)UK _1

(£'Ve)

and that the matrix (52) o\ vanishes. Consequently, the term in question
equals

(KP)UK,, 1 poy LT 4\ W] K

<(£1) (K2)(v£)p (‘62)K3U0(f<171)(v2£)i?7 \\p‘z>
L2\l 2

(@t T @E T ),

since (LQ)U(tKll\\I:) (Ll) & 11\ . The obtained expression vanishes since

(VE) i e ™ = (e

vanishes by (@3T]).
Further, consider the sixth term in (@.73]). Using [@.T8]) we arrive at

(189) BY' - B+ Bl = <<vz-c1>“’% (VEC%)35)

- <(v;,cl) : (V2) 15 (L) ) + <(le£) (L2553 (V2) 73 )
Clearly, the first term in (£R9) is a constant.

Jt 2
Note that the blocks X ;i and X}]; coincide. Similarly to the analysis above,
P t

we consider two nonempty sequences of blocks [@.79) (the casesp =1 or ¢t =1 are
trivial). We have the same four possibilities as before, and, additionally,
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(v) the sequences coincide.
Each one of the possibilities (i)—(iv) is further split into two:

2 1
a) the exit point of X3 J’f lies below the exit point of X}If’ ;

1

b) the exit point of X hes above the exit pomt of X
Case (ia): Clearly, thls can be possible only if I) , C 1,57m7 see Fig.

)
Xp Xt
1 =2 |
Yp—1 Yt—l i
1 1
Op ! |
. |
o
1
Yom
2
7777777777777777777777777777 Yiem )
-1 -2
= 5

FIGURE 19. Case (ia)

Define ©7 and Z! in the same way as in ([@80). Using equalities [@82) and

=r

(52)K2 = (El)Kl, we rewrite the second term in (£89) as

() @D ey
(T (TR e, )
N oL 1\
(TR G D ey )

AT,

Note that (51)%1

)Lz\qj2 and

— (L2

1
(VE) s 2 () ey = (VEL) g1

L \\112 L2\ v?
(V2) i ()" = (v2e2) i,
hence the second term in the expression above equals

LIV} LAV LI\W;\
<(V££ )Ll\q;1 (V2 52) > = <(v1££1)L11,\‘1111) (v%£2)L$\w§> = const,
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which together with the first term in (£89) yields the eighth term in the statement

of the lemma, as well as the fourth term for of = a;,.
. Klue! . . = .
Finally, (Vlﬂ) E;f “®7 Vanishes since the columns Lzl, are strictly to the left of

K} U®), so the third term in the expression above vanishes.
Note that

MUICH Ll
(‘C )Ki}uel

= (£'VE) (£ + (£'Vh

(£'VE)

Vi ()0 + (£VE) A ()

By @30), (£'V} )Kl\@1 vanishes; besides, (52)5 = (El)g’f. Hence

(VDR ) =~ (Ve o),

that is the first term in the equation above cancels the third term in (£89). Further,

L}
(El)Kl\q)1 = (52)K't2\q)2 and

(EQ)K2\<I>2 (V%)L - (EQVQ )K2\<1>2’

and hence

190 = (LG (V) =~ (VD (V) )
- <(£1V1£)§Z§£ (EQVQL)??&Q = const.

The remaining contribution of ([&89) equals

asy - (VA ) =~ (T F G (TR ),

since the deleted columns and rows of £V} and £ vanish.
Next we use the injection o (similar to the one used in Case (i) above but acting

in the opposite direction) to rewrite (Ll)o’f = (LQ)U(O1 and to write

\Ilf _t\\I/
(52)0(@;)(%) _(,c?vz’)g(ol) (%), @1)(v2)_2w2,

which transforms the above contribution into
=i\ Wy
(L) (£2V8) Ny ) + ((£19E); wmmIWﬂﬂw)

Clearly, the first term above vanishes since (ﬁ Vz) (@1) = 0. The second one
vanishes since

LUL

(4.92) (ﬁ Vﬁ) P = (El) (Vﬁ)quil’
(L)500 = (£h)g: """ and
CH T, SV,
(Ve) rtony (B} 7 = (VeL) o =0



56 M. GEKHTMAN, M. SHAPIRO, AND A. VAINSHTEIN

Case (ib): Clearly, this can be possible only if I, C I}, cf. Fig. We

proceed exactly as in Case (ia), retaining the definitions of ©, and Z,., and arrive at
(@3TI). As a result, we obtain two contributions similar to those obtained in Case

(ia): one is similar to the eighth term in the statement of the lemma and is given
by

(1.93) > (TR (VEL ).

1_32
ph=67
1_4,2
al=a?

while the other together with (£90) yields the fifth term in the statement of the
1

lemma for of = a;,.

a1
Next, we note that (lelﬁ)f} (El)q)1 (Vl )Lf, since (Vlﬁ)(L—)f = 0. Applying
P

(El)q)1 = (Ez)q)z, we arrive at

@1
(ORI (e,
Note that
2 2 2 2 2
(490 (V3)3h(L)gh = (VELA) 5 — (Th)gd ™ ()5 02 — (V2) b (£9)6-
To treat the first term in (£94]), we use an analog of (@G0 and get
vl L? K} vl L?
(TR (72 ) + { (TR O (2 S ),
Clearly, the first term above equals
(4.95) - <(V1££1)§§'; (V%£2)ig> = const.
The second term above can be rewritten as
1 2 2102 2
(V)17 () (T2) s "7 (L) g ) -

Next, we write
(4.96)

(52)?{% (v%)é{ (£2V2)K ue; (52)14 AN (vgﬁ)fg\U\P@; (‘62)1(2 (vz) ;ue; '

The contribution of the first term in [@3J6]) can be written as
Kl
(R (TD)
K2ue?
<(/:2v2) (,cl)KlUO_(@Q) (Vﬁ)_l\wl>

K2ue?
<(£2V2) U (LIVE)K1U0(02)> 5

where injection o is defined as in Case (i) above. The second term above equals

<(£2V%)?Z (£1V1£)§‘}> = const,
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and yields the seventh term in the statement of the lemma, while the first term
equals

LUL? K;uej? EN\T K,
= (L) (V) s () (VE) S )
and vanishes, since

22\ 0?

(ﬁz)xguég = (VL2

rzurz =0

(V37

L2UL2

by E.31).

The contribution of the second term in (£96) equals
2 2 2
- (OB T e )
LI\wL L\, LW\
_ <(v};cl)% P (V2 52)L2\\P2> — <(vlﬁﬁl)L;\w; (v%£2)ngg> = const

and together with (£98]) cancels the contribution of ([Z93]).
The contribution of the third term in (M) equals

= (V) ()5 (VE) 7 () e )
and vanishes, since
)K U@ (

(VE EQ)f(tgu(—)s = (Vﬁﬁz)ﬁ =0

by (@.31).

The contribution of the second term in (£94) equals
1Ly 11O p1y Y5 (o2 \ K7\ 27
(630, (TD O (T2
and vanishes, since

(‘CI)KI\<I>1 (vﬁ) (‘Clvﬁ)}(l\.:N = 0;

1N ol
the latter equality follows from the fact (ﬁlvlﬁ)gﬁﬁtifgigf

The contribution of the third term in (L94) equals
L o, w, CH
((on (1) F N (VD)5
via (£2)92 = (cHr (@2) Note that
(£ oy (VE) 77 = (£1VE) gy = [1 0],

and hence (£ ) (02 (VL) (El)@1 = (52)92. Consequently, the contribution in
question equals
w7 o7 w7 K7
~(@5H(VE)g:) = ~ (ks (VE)ud )
which is a constant by Lemma 4] yielding the sixth term in the statement of the

lemma.
Case (iia): Clearly, this can be possible only if JZ ,, C J}_,,, see Fig.



58 M. GEKHTMAN, M. SHAPIRO, AND A. VAINSHTEIN

-2
XX}

o |

,
Lim
2 1
thm Xp—m "
K
1.2 p-m
Yo-nt Yio 2
7777777777777777777777777777 p-m Y t-m K,
-1 -2
= >
L p-m

FIGURE 20. Case (iia)

We proceed exactly as in Case (ia) retaining the definitions of ©% and =, and

arrive at (9])). Next, we apply (Ll)ol = (52)02, and note that

(£)e; (V%)i = (£2v£)o2 (2" (vﬁ)—2\xp2 ~(£)g o (Vc)

Consequently, ([A91]) can be written as a sum of three terms. The first two are
treated exactly as in Case (ia) and yield the same contribution. With the help of
([£92), the third term can be rewritten as

LLUL}
(@ (D2 (DL )
Next, we use the injection p (similar to the one defined in Section L3.4]) to write
2
(Ez)f_)t{ = (El)p(Lt m) , which together with

2 1
(Vﬁ)LluLl(ﬁl)f()—)(lL " (Vﬂ)qule\ pim(ﬁl)p(Lt Tiﬂ . (vﬁLI)LluLl r =0

transforms the third term into
L,uL; W\ (L)
o <(£ ) (vﬁ)LlpuLl . (51)9 KL \®L (VQ) m> :

Finally, we use (El) PLE-m) (52) o

e and

m

m\P7_

=0

m

O (L~ e

to make sure that the contribution of this term vanishes.
Case (iib): Clearly, this can be possible only if J)_, C JZ . cf. Fig. 0 We
proceed exactly as in Case (ib), with the only difference: the contribution of the
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first term in ([@90) contains an additional term

(e (T e e, (0.

p—m

p(Ly_ )

K200? and

which vanishes since (El)K1U01 =(£?)

t @ LP m
(vzﬁ)ffjif (EQ)K2UO2 (VL‘CQ)Z(QuLZ =0.

Case (iiia): This case is only possible if the last block in the first sequence is of
1
type X, see Fig. 2Tl on the right. Assuming that this block is X}Jf’m“, we proceed
p—m+1

exactly as in Case (ia) with I_(;fm = & and get the same contribution.

T_2 T_,2
X=X X=X

1 =2 | 1 =2
Yp*l Yia ' Ypﬂ Yia

12
Yp-m Yi-m X,

FIGURE 21. Cases (iiia) and (iva)

Case (iiib): This case is only possible if the last block in the first sequence is of
type Y, cf. Fig.[[8 Assuming that this block is Y7, To- m, we proceed exactly as in

Case (iib) with Lzl)fm = @ and get the same contr1but1on.

Case (iva): This case is only possible if the last block in the second sequence is
72
of type Y, see Fig. 2Tl on the left. Assuming that this block is Yjé"m, we proceed

t—m

exactly as in Case (iia) with L? , = @ and get the same contribution.
Case (ivb): This case is only possible if the last block in the second sequence is

of type X, cf. Fig. Assuming that this block is X 5 i , we proceed exactly as

—m-+1

in Case (ib) with K2 ,, = @ and get the same contr1but10n

Case (v): This case is only possible if the exit points of X7 12 and X Il commde
The last block in both sequences is either of type Y or of type X. In the former
case we proceed as in Case (iva), and in the latter case, as in Case (iiia).

The last two terms in the statement of the lemma are obtained from the last two

2
terms in ([73) by taking into account that (L' v};)jggi in the expression (L.49)) for
t
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_ o (W2 . . = . . . .
B}' and (VLL') er) i the expression ([A62) for B} are unit matrices, since in

U(\Pf+1)
. c e . Jh_ ..
both cases o is an injection into the block Y;,*~". The remaining traces are treated
p—1
in the same way as in ({LG1). O

4.4.2. Case 2: ' lies in rows f(;fl and columns Ezl)fl. Similarly to the previous

2
case, (clv}c)zggi in the expression [{33) for B} in ([@30) and in the expression
t
o(®7)

([A6Y) for B;Y in (L69), (lelﬁ)g@?) in the expression [@49) for B' in the fifth
term in (L69), as well as (Vlﬁﬁl)éé\ql; in the expression ([@35) for B in (£30)
vanish. Further, the contributions of B}’ to ([A36) and to (£63) cancel each other
for any ¢ such that 8} > 7, while the contributions of B}' to ({E]) and to ([@5J)
cancel each other for any ¢ such that 6411071 > a?. Consequently, we arrive at
(4.97)

DABN =Bl ay > a7 By < B+ (BBl ay > af By =Bt}

+ Z{B:ﬁl : 6‘11071 < d?7BZ];71 =B} + Z{B? - B 0711071 = 07?73;1)4 > 67}

FYUB B B =l < )
+ Z{B;I + BiIEErl - B;H DO, = df, B;;fl = Bf}

A direct comparison shows that (£97) can be obtained directly from the first six

terms of [LT3) via switching the roles of B and Bj, replacing i with aj and af
with 8], and shifting indices when necessary.

Lemma 4.17. (i) Ezpression [@3T) is given by

o(L7_\¥7 L7 \¥7 ! A i

- Y (meiieennh e X (@i
1 71 T2 1 7
IR S R DR (A

. Lo JE
where Zl is taken over the cases when the exit point of Yl;zl lies to the left of the
7
. ) J}
exit point of YI;P:II.
(ii) Each summand in the expression above is a constant.

Proof. The contributions of the terms in (£.97) can be obtained from the computa-
tion of the contributions of the corresponding terms in (£73)) via a formal process,
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which replaces K., L., K., L., ®., V., ay, Bs, ax, B and > by L,_1, K. 1, L.,
K., U, &, 1, Bii1, @u_1, Bs, iy and Zl, respectively, and interchanges p and o.
Besides, matrix multiplication from the right should be replaced by the multiplica-
tion from the left, and the upper and lower indices should be interchanged.

As an example of this formal process, let us consider the computation of the

contribution of the fourth term in [@97). First observe, that the expression for
B! — Bj'"in (II_ZZI) is transformed to

<(,c2) C(VE) l(ﬁlvg) 1>—<(£2) I(VQ) S (o) e >

t 1

which is exactly the expression for BI' ; — B/, (note that the summation index in
the statement of the lemma is shifted by one w1th respect to the summation index
in (D).

Next, we apply the transformed version of ([@63]) (which is identical to (L 1))
with shifted indices) to the first expression above and use the transformed equality

(V2)z 'j\cp”(ﬁlvc) Cer, (VR V) = (VB l(ﬁlvﬁ)

to get
(4.98)

Bt - B, = (VD5 (@b ) - (@ (T (e ),

which is the transformed version of [T]). Clearly, the first term above is a con-
stant. - -
Note that 3} 1 > B7 1, which is the transformed version of o, > o7 and means

1
that the block Y, Tpr is contained completely inside the block YIJf’l. Similarly to
t—1

—1
Section [14.1], we consider two sequences of blocks

J, -1 sz gy t 1 t 2 t 2
(XY 2 X2y and (X Y X
p—1 p—2 P— -1 -2 t 2

and study the same four cases. Let us consider Case (1) in detail. The analogs of
O, and =, are

[1]1

(:)rfl - Krfl U U(Krfi U Krfi); r—1 — erl U U(Erfi U eri)-

=2 =2

We add the correspondence O, + Z,_; and Z, — O,_1, which turns the above
relations into the transformed Vers1on of ([A30).

=1
Note that the matrix (ﬁz)ot2 ' coincides with a proper submatrix of (£')g7™";
1 -1
we denote the corresponding 1nJect10n p. Clearly, ’
2 2 292\ K7 2511 (o2
(499) (L5 (V) = (VR — (€5 (VR)ET

which is the transformed version of (XT]).
The contribution of the first term in ([@99) to the second term in (£98) equals

(v @i ) = (e vh e v

and cancels the contribution of the first term in (£98) computed above.
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To find the contribution of the second term in (ZZ99) to the second term in (Z98)

note that
_,UE!

P 1(v£) U:l )

—1

191y %5 1
('VE) ! = (e
which is the transformed version of (Iml), so the contr1but1on in question equals
22 L} JUEL_
<(£2) 1(v2) = (L (vﬁ) = > ;

the latter expression is the transformed version of (IE{I) Taking into account that

2 ‘—‘t 1 1 _‘t 1) 2 ‘—‘t 1 1 p(‘—‘t 1)
(L ) N = (L ) M , (L ) e = (LY)gr IR and that
L p(E7_1) p(E7_1) \o p(E7 1)
(vlﬁ)iijué; 1(51) = (Vlﬁﬁl)iéfldéiﬂ (VL) 1u:171(£1)91 1\1<1>p K

which is the transformed version of (£84]), this contribution can be rewritten as
El 1 1U~ -1 Vl ﬁl p(E7_1) V2 K2
(L)g (VeL) " e (VE)zs )
2,50 2\Ki1 ) p1 US, 1 o1\ Op-1\%p
(@95 (TDE )

Next, by @31,
2 2
(52)“' Car (VBT = (£2VE) 5 e =0,

: 21 2 2
since the rows K2 | lie above ©2 | \ ®2 |

Finally, by (@31,

p(EY_1) 0
1 p1 St _
(VL) e = (1) )

where the unit block occupies the rows and the columns p(Z2 ;). Therefore, the
remaining contribution equals
1 p(—t 2 2 2\ 2\ K7 1 o2\ Li-
(e oni) = (e oni) - (e i),
which is a constant via Lemma [£.4] an yields the third term in the statement of the

lemma.
O

5. THE QUIVER

The goal of this Section is the proof of Theorem

5.1. Preliminary considerations. Consider an arbitrary ordering on the set of
vertices of the quiver Qrr re in which all mutable vertices precede all frozen vertices.
Let Brr re be the exchange matrix that encodes Qrr re under this ordering, and let
Qr: re be the (skew-symmetric) matrix of the constants {log f!,log f2}, f1, f? €
Fr: pe, provided Fr+ re has the same ordering. Then by [I2] Theorem 4.5], to prove
Theorem it suffices to check that

Bre peQpspe = [A1 0]
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for some A # 0. In more detail, denote w?, = {log fs,log fi;}, then the above
equation can be rewritten as

; o [N ) =G
5.1 wH — wH = ’ T
(5-1) , Z s Z o {O otherwise
(,5)—(rs) (r,8)—=(i,9)
for all pairs (¢,7), (i, 7) such that f;; is not frozen. By the definition of the quiver
Qr+ re (see SectionB.3), a non-frozen vertex can have degree six, five, four, or three.
Consider first the case of degree six. All possible neighborhoods of a vertex in this
case are shown in Fig. [l Fig.[Bl(a), Fig. 0la), Fig. [(a), and Fig. B(a).
Consequently, the left hand side of (1)) for 1 < 4,5 < n can be rewritten as

(5.2) (W;]—l,j - w;-,]j-‘rl) - (wzu—l,j—l - W;‘?j) - (Wz?j - wﬁl,jﬂ) + (w;,Jj—l - Wgrl,j)

1 2 3 4

R
see Fig. @ In other words, the neighborhood of (i, ) is covered by the union of
four pairs of vertices, and the contribution 5% of each pair is the difference of the
corresponding values of w. More exactly, the first pair consists of the vertices to
the north and to the east of (4,7), the second pair consists of the vertex to the
north-west of (4,7) and of (¢, ) itself, the third pair consists of (i, ) itself and of
the vertex to the south-east of (7, ), and the fourth pair consists of the vertices to
the west and to the south of (4, 7).

It is easy to see that in all other cases of degree six, the left hand side of (51
can be rewritten in a similar way. For example, for ¢ = 1, an analog of (5.2]) holds
with 07, = wfzj,v”(j—l)—kl — wzfj“ and 07, = ij,yc*(j—l) — wﬁ-, see Fig. [Hl(a).

Further, consider the case of degree five. All possible neighborhoods of a vertex
in this case are shown in Fig. B(b), Fig. B(b), Fig. [(b,c), Fig. B(b,c), Fig. Bi(a),
Fig. [0(a), and Fig.[II(a). Direct inspection of all this cases shows that the lower
vertex is missing either in the first pair (Fig. Bl(b), Fig. Bl(c), and Fig. @(a)), or in
the third pair (Fig. [[(b), Fig. B(b), and Fig.[[I(a)), or in the fourth pair Fig. Bl(b),
Fig. [(c), and Fig. I0(a)). In all these cases the remaining function in a deficient
pair is a minor of size one, and hence all the above relations will remain valid if the
missing function in the deficient pair is replaced by f = 1 (understood as a minor
of size zero).

Similarly, in the case of degree four the are two deficient pairs (any two of the
pairs 1, 3, and 4), and in the case of degree three, all three pairs are deficient.
However, adding at most three dummy functions f = 1 as explained above, we can
always rewrite (5.1]) as

A for (i,7) = (i,7)
0 otherwise.

(5.3) Aij =00 — 6 — 6% + 03, = {

Equation (&3] can be obtained as the restriction to the diagonal X = Y of
a similar equation in the double. Namely, assume that ¢ # j, r # s, and put
wid, = {log £,.s,log £1;}. If additionally 1 < i,j < n and i # 4,5 + 1, we define

1 .27 27 2 1) 2]
dij = Wi ~Wijer i = Wiig o0 T Wi
3 _ i) 1) 4 _ 1) )
A =Wij ~Virrgen Qi T Wi T Wi g

If ¢ or j equals 1 or n, the above definition of dfj should be modified similarly to
the modification of 61% explained above. It follows immediately from B.1), (32)
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that each dk- is a difference {log £ r,logfs;}"” — {log £,xx,log £5;}7, where £ x
and f, ik ;# are two trailing minors of the same matrix that differ in size by one. For
example for i = 1 we get £151 = £, jee(j_1)41, £i2j2 = £ ye(io1), Li3j3 = f15,
and f;aj0 = £1 ;1. We say that d ; is of X-type if the leading block of f;x;r is an
X- block and of Y-type otherwise.

If i = j 41 then we set £1;1 = £ | ;. Consequently, in this case all four dfj are

of X-type. Similarly, if ¢ = j — 1 then we set f;a4 = £ Consequently, in this

i,5—1°
case all four dfj are of Y-type. In what follows we will use the above conventions
without indicating that explicitly.

For i # j equation (53) is the restriction to the diagonal X =Y of the equation

A for (2,9) = (i, ),

5.4 D =d} —d? —d +d} =
(5.4) t v K E K 0 otherwise

in the Drinfeld double. Note that all the quantities involved in the above equation
are defined unambiguously.

The case ¢ = j requires a more delicate treatment. It is impossible to fix a choice
of £,2;2 and f;3;5 in such a way that (B.4)) is satisfied. Consequently, to get (5.3,
we treat each contribution to D;; computed in Section [ separately, and restrict it
to the diagonal X =Y. The obtained restrictions are combined in a proper way to
get Aj; and to prove ([B.3) directly. In more detail, we either set f3252 = £, ;
and £33 = 7, or f250 = £, ;) and f;5;5 = £5. In the former case d; and dj;
are of X-type and d1 and d3 are of Y-type, whlle in the latter case d3 and d4 are
of X-type and dj; and d;; are of Y-type. Note that in both cases the restr1ct1on to
the diagonal ylelds the same pair of functions.

Similarly, in the case # = j we set either £2 = ffj or f2 = f%, depending on the
choice of the corresponding f', so that £! and £2 have the same type.

5.2. Diagonal contributions. Recall that the bracket in the double is computed
via equation (L2I]). In this section we find the contribution of the fist five terms in

(m) to Dij-
Proposition 5.1. The contribution of the first term in [@L21)) to D;; vanishes.

Proof. Similarly to operators £, and Er defined in section 1] define operators
EL and ER via EL—V)(X Vyy and ER—XVX YVY
Note that by ([@26), (£.29), the first term in (2] can be rewritten as

(5.5) (R§(EL). EL) = ((€1),-AL) + ((nL) o, BL) + Tr(EL) - i,
1 1 _
()t - (2 ) o - TED -,
where A7 and B? are matrices depending only on £? and p? and ¢7 are functions
depending only on £2.

Lemma 5.2. The contribution of the third term in [B5) to any one of df;, 1 <
k <4, equals p?.

Proof. For any f,

1 Z" of ., 0f d
= ij

t=1
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If £ is a homogeneous polynomial, then the above expression equals its total degree.
Recall that £, ;+ satisfies this condition, and that degf — degf,; ke = 1. O

Lemma 5.3. The contribution of the sizth term in (5.3) to any one of d¥
k <4, equals ¢2 if dij is of X -type and —q3 otherwise.

’L_]’

Proof. For any f,

1 ot of d
Tr(Ep logf) = Z ((% - ﬁyi]) = =
1] 1]

1]1

log £(tX,t7'Y).

t=1

If £ is a homogeneous polynomial both in z-variables and in y-variables, then the
above expression equals deg,f — deg,f. Recall that £ ;x satisfies this condition
and that deg, £« deng # equals 1 if £;x x is of X- type and 0 if it is of Y-type,
while deg, £k jr — degyf kik equals 0 if £ ;5 is ofX type and 1 if it is of Y-type. O

Recall that every point of a nontrivial X-run except for the last point belongs
to I';. We denote by I'; the union of all nontrivial X -runs, and by 7 the extension
of v that takes the last point of a nontrivial X-run A to the last point of v(A). In
a similar way we define 'y and A*.

Lemma 5.4. (i) The contribution of the first term in (B.3) to df; equals (A7);;
if dfj is of Y -type, (A3 )se(ysei) — |1AG)] Y okeAl) (A7 )k if 43 is of X -type and
j €T'{, and O otherwise.

(ii) The contribution of t{le second term in ([B3) to d; equals (B7);; if d3; iso of
X-type, (B7)se-(jy5e= () — [1AG)| 71 Eke&(j)(B%)kk if 43 is of Y -type and j € T3,
and 0 otherwise.

Proof. (i) Define an n x n matrix J,, (t) as the identity matrix with the entry (m, m)
replaced by t, and set X,,(t) = X Jpn(t), Yin(t) = Y, (t). By the definition of &,
for any f one has

(plogf)u = Z (% ATy T3 Z 8y A Vil

iy (1)

= dt Ing(X:Yc*(l)(t),le(t)).
t=1
If £ is a minor of a matrix £ € LU {X,Y}, then the above expression equals the
total number of columns [ in all column Y-blocks involved in this minor plus the
total number of columns 4°x(1) in all column X-blocks involved in this minor (note
that I # 4°*(1), and hence all such columns are different). Recall that the minors

fis;3 = £;; and fisjs differ in size by one, and that the column missing in the latter

minor is j. Consequently, if dfj is of Y-type, ({L log £33 )1 — ({L log £33 )y equals 1
if | = j, which yields (A%),;, and vanishes otherwise. Similarly, if d3 is of X-type,

this difference equals 1 if j € I‘C and | = 4°(j), which ylelds (A2 )'v o(j )'v (j)» and
vanishes otherwise. Finally, the additional term —|A(j)[~! >, oA ;A 2 )kk stems

from the difference between (€1 log £)o and (£, log £)o, see Section 3.3
(ii) The proof is similar to the proof of (i). O

To prove Proposition 5.1l consider the contributions of the terms in the right
hand side of (5.5) to Dj;.
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1

Let us prove that the contributions of the first term to d;; and d%— cancel each

other, as well as the contributions to dfj and dfj. Assume first that 1 <i < j < n.
Clearly, in this case all dfj are of Y-type, and

1 _ 43 2 _ 3 4 _ 3
(5.6) di; = di_1 ;s di; =di_q -1 dj; =dj ;1

Hence by Lemma [E.4{(i), the sought for cancellations hold true, consequently, the
contribution of the first term in (5.0) to D;; vanishes.

Assume next that 1 < j < i < n. In this case all d}; are of X-type, and (E.G)
holds. Hence by Lemma [B.4]i), the contribution of the first term in (5.0 to D
vanishes, similarly to the previous case.

The next case is 1 < ¢ = j < n. In this case we choose f;2;2 and f;3;5 in such a
way that dj; and d; are of Y-type and d; and dj; are of X-type, and (G.6) holds,
so the contribution of the first term in (5.5]) to D;; vanishes once again.

Assume now that 1 =4 < j < n. In this case d}j and d%j are of X-type and difj
and di; are of Y-type. Relations (B.6) are replaced by

1 _ 3 2 _ .3 4 _ 3
dy; =4, di; =dn—1s di; =47 -1,

where (I — 1) = j — 1, see Section B3] and in particular, Fig. Bl Consequently,
A1 —=1) = j — 1 and 3°(I) = j, and hence by Lemma [E4(i), the sought for
cancellations hold true.

Finally, assume that 1 = j < ¢ < n. In this case d}; and d}; are of X-type and
d? and d}; are of Y-type. Relations (E.0) are replaced by

1 _ .3 2 _ 3 4 _ 3
din =4dj_q1; din =4d;_1 s d;; = djy,,

where 4*(i — 1) = 1 — 1, see Section B3] and in particular, Fig.[6l Consequently, by
Lemma [5.4]i), the sought for cancellations hold true.

To treat the second term in (5.H) we reason exactly in the same way and use
Lemma [B4(ii) instead.

The third term in (&H]) is treated trivially with the help of Lemma 52

Cancellations for the fourth term follow from the cancellations for the second
term established above and the fact that # is a linear operator. Similarly,
cancellations for the fifths term follow from the cancellations for the first term
established above and the fact that 1,170 is a linear operator.

Finally, the sixth term is treated similarly to the first one based on Lemma

B3 O
Proposition 5.5. The contribution of the second term in (L21)) to D;; vanishes.

Proof. The proof of this proposition is similar to the proof of Proposition [5.1] and
is based on analogs of Lemmas Note that the analog of Lemma [54] claims
that contributions of (£)o and (ng)o to D;; depend on 4, §7(i), and (). In the
treatment of the case 1 < i = j < n we choose f;2;2 and f;s;5 in such a way that
dj; and d; are of Y-type and d; and dj; are of X-type. O

Proposition 5.6. The contributions of the third, fourth, and fifth term in ([@21)
to D;; vanish.

Proof. The claim for the third term essentially coincides with the similar claim for
the first term in (&A]), the claim for the fourth term essentially coincides with the
similar claim for the second term in (&A]), and the claim for the fifth term uses
additionally the fact that Hfi is a linear operator. O
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5.3. Non-diagonal contributions. In this section we find the contributions of
the four remaining terms in (@21)) to D;;. More exactly, we will be dealing with
the contributions of the corresponding ringed versions. The contribution of the
difference between the ordinary and the ringed version to D;; vanishes similarly to
the contributions treated in the previous section.

5.3.1. Case 1 < j < i < mn. In this case all seven functions £ , £, ik ;0 satisfy the
conditions of Case 1 in Section .41l Consequently, the 1ead1ng block of f10 =
fi_1,; and £; pjr = fi541 is XI7 the leading block of ;252 = ;1 1, fzzjz =
fis58 = £, and fij5 = £iq1,441 I8 XI, , and the leading block of f;a;4 = f; ;1 and
fi4j4 = fi+1,j is X}I/;,

We have to compute the contributions of ([@36]), (L51)), (£63), and [@69). Note
that the first term in (LEI]) looks exactly the same as terms already treated in
Section 52 and hence its contribution to D;; vanishes. The fourth term in (£51)

T2 2
wizh 4 (VL)
vanish. Next, the contribution of the last term in ([.G3)) to any one of d vanishes,

vanishes under the conditions of Case 1, since both (V1L!)

since the leading blocks of £;x;x and £ j+ coincide. The same holds true for the
last term in (@BJ). Further, the contributions of the third term in E63) to dj;
and to d3; coincide, as Well as the contr1but10ns of this term to d7; and to d;,
they depend only on j*, and j! = j3 = j, j2 = j* = j — 1. The same holds true for
the foutrh term in (LG3). Similarly, the contributions of the fourth term in (£G9)
to d}- and to dfj coincide, as well as the contributions of this term to df’j and to
dfj, since they depend only on ¥, and i' = i? =i — 1, i® = i* = 7. The same holds
true for the fifth term in (Z69]).

The total contribution of all B-terms involved in the above formulas is given in
Lemma [ZI6l Note that the contributions of the third, sixth, ninth and tenth terms
in Lemma to any one of dfj vanish, since the dependence of all these terms
on f! is only over which blocks the summation goes. The latter fact, in turn, is
completely defined by the leading block of £f!, and the leading blocks of £ir6 and

fzk]k coincide.

since

To proceed further assume first that X7 = X7, = X7,’. Consider the first sum
in the third term in (@30). Each block involved in this sum contributes an equal
amount to dj; and d;, as well as to d; and dj;, so the total contribution of the
block vanishes. Slnnlarly, for the second sum in the third term in ([@36]), each block
involved contributes an equal amount to d}] and d3 , as well as to d2 and dfj,
the total contribution of the block vanishes as well.

The first, the second, and the fifth term in Lemma TG are treated exactly as the
first sum in the third term in [@30]), and the fourth term, exactly as the the second
sum in the third term in ([@30). Consequently, all these contributions vanish. We
thus see that D;; = D;;[7] — D;;[8], where D;;[7] and D;;[8] are the contributions of
the seventh and the eights terms in Lemma .10l to D;;.

To treat D;;[7], recall that the sum in the seventh term is taken over the cases
1

when the exit point of X hes above the exit point of X . Consequently, the
treatment in the cases When the exit point of £2 lies above the exit point of f;1 ;1
is again exactly the same as for the first sum in the third term in (£36]), and the
corresponding contribution vanishes. If the exit point of £2 coincides with the exit
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point of £;1;1, that is, if i — ) =4 — j — 1, one has

1 ~ .
o 3 i ) —# —1 for 7 < 4,
(5.7) Di;[7] = —dj;[7] — &y, [7] + d;;[7] = {_#1 for i > i,
where #! is the number of non-leading blocks of £2 satisfying the corresponding
conditions. If the exit point of £2 coincides with the exit point of f;» j2, that is, if
1 —)=1—7j,one has

9 .
Di[7) = a[7] = {#2 wroerisn
# for 7 > 1,
where #2 is the number of non-leading blocks of £2 satisfying the corresponding
conditions. The cases when the exit point of £2 lies below the exit point of f;» j2 do
not contribute to D;;[7].

Similarly, the treatment of D;;[8] in the cases when the exit point of £2 lies above
the exit point of £;1;1 is exactly the same as for the second sum in the third term in
([@38)), and the corresponding contribution vanishes. If the exit point of £2 coincides
with the exit point of f£;1;1, one has

ityls
—# -1 for 7 <7,

_#1 for j > j7

where #! is the same as above. If the exit point of £2 coincides with the exit point
of f;2;2, one has

(5.8) Di;[8] = —dj;[8] — d};[8] + di;[8] = {

241 for < j
Dy[§] =akg) =47 T ford<i
! #2 for j > 7,

where #2 is the same as above. The cases when the exit point of £2 lies below the
exit point of f;2;2 do not contribute to D;;[8].
It follows from the above discussion that for 2 —j=7—7—1

1 for 2 >4, <7,
Dij [7] — Dij[S] =< -1 for 7 < i, j > 7,
0 otherwise.

Consequently, D;; vanishes everywhere on the line 2 — j = ¢ — j — 1. Further, for
?—)=1—j one has

1 for 2 <1, 7> 7,
Dij [7] — Dij[S] =< -1 for 7 > i, j <7,
0 otherwise.

Consequently, D;; vanishes everywhere on the line i — j = i — j except for the point
(i,7) = (i,), where it equals one. Therefore, for X{ = X}/ = X7, relation (54
holds with A = 1.

There are three more possibilities for relations between the blocks X j] , X j]/l,
X IJ,;/:

2) X] # X[ = X}

b) X{ = X7 £ X7

o) X{ £ X{ +X7,.
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To treat each of these three one has to consider correction terms with respect to
the basic case X{ = X} = XJ.. We illustrate this treatment for the first of the
above possibilities.

By Lemma [3] case a) can be further subdivided into three subcases:

al) I'=1,J C J,

a2) I' ¢ I, J =J,

a3) I' ¢ I, J ¢ J.

In case al) we have the following correction terms. For the third term in ({36,
there are blocks X fJ " that satisfy the summation condition 32 < ﬂ; for the pair
fi151, filjl but violate it for the other three pairs. By Lemma [4.3] such blocks are
characterized by conditions ICcI, J=J. Consequently, these blocks produce the
correction term

2 2
- Z ((£'vh) o (L2VE) > > (VELY) o (T2L2) 15 )
J=y
to djj.
For the first term in Lemma H.T6] the correction terms are defined by the same
blocks as above except for the block X IJ,, itself (because of the additional summation
condition a? > al). Consequently, these blocks produce the correction term

S ((EVE) e (€2VE) 5 ) = 3 ((£'Vh) ) (£293)5)

J=J =7
to dj;,
For the second term in Lemma 16, the block X violates the summation con-
dition B2 # ﬁ}), al = 04117 for the pair f;1;1, £;1;1 but satisfies it for the other three
pairs. Besides, the block XIJ, satisfies this condition for the pair f;1 1, £; i1 but vi-
olates it for the other three pairs Consequently, these two blocks produce correctlon

where ®' corresponds to the block X IJ,,.

terms
S (L)) (€2V2)5) = S ((£'VE)5 (£2V2) 7 )
= =

to dzlj7 where @ corresponds to the block X7.

For the fourth term in Lemma [£16] the blocks X fJ " violate the summation con-
dition 32 = p,

pairs. Besides, the block Xj] satisfies this condition for the pair f;1;1, fl-1j1 but
violates it for the other three pairs. Consequently, these blocks produce correction

of > a}, for the pair £;1;1, £;1;1 but satisfy it for the other three

terms )
L? L2 L L
2 ((VEEY (VAL 1) + 37 ((VEe); (VRL)))
J=J
I=1
to dzlj7 where L corresponds to the block Xj].

Summation conditions in the fifth term in Lemma [£.16] are exactly the same as
in the fourth term. Consequently, one gets correction terms

KE\23) \e? K\@ K\®
3= (69 o (€ VE)chas) = 3 {6V ) a (€792 )
J=J =7

I=I

to dl.

ij» where K corresponds to the block Xy
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For the seventh term in Lemma EET0, the block X7 satisfies the summation
condition 57 = S}, of = a, for the pair £;1;1, £;1;1 but Vlolates it for the other three
pairs. Besides, the additional condition on the exit points excludes the diagonal
1 —j=1—j— 1. Consequently, this block produces correction terms

> ((£'VE) 5 (£2VE) ;) +Dyl7]

J
I

~S

to dj;, where D;;[7] is given by (5.7).
For the eights term in Lemma .10 the situation is exactly the same as for the
seventh term. Consequently, one gets correction terms

- Z < (V22 > — Dy;[8]

I,
to d”7 where D;;(8] is given by (5.8).

It is easy to note that the correction terms listed above cancel one another (recall
that vanishing of D;;[7] — D;;[8] for i — j = i — j — 1 was already proved above),
and hence relation (B.4]) is established in the case al). Cases a2), a3), b), and c)
are treated in a similar manner.

5.3.2. Other cases. The case 1 < i < j < n is treated in a similar way with ([Z30])
replaced by (X)) and Lemma [L10] replaced by Lemma LT7

Consider the case 1 < i = j < n. The treatment of the first term in (@51]), the
last terms in (LG3) and [@6T), the third, sixth, ninth and tenth terms in Lemma
[AT16] and the third and the sixth terms in Lemma FTIT is exactly the same as
in the previous section. The third and the fourth terms in (£63)), as well as the
fourth and the fifth terms in (LGJ), are treated almost in the same way as in the
previous section; the only difference is an appropriate choice of the functions on the
diagonal, which ensures required cancellations. To treat all the other contributions,
recall that by the definition, the leading block of £5 is X, and the leading block of
£ is Y. Denote by X the leading block of £;;_1, and by YI—J the leading block of
;1. Similarly to Section [F.3.0] there are four possible cases: X/ = X, YI—J =Y,

£ X, Yf’zY; X! =X, YjJ#Y; X! £ X, Yj‘];éY.

Let us consider the first of the above four cases. Contributions of all terms except
for the seventh and the eights terms in Lemmas and 17 are treated in the
same way as the third and the fourth terms in ([{.63]) above. For example, to treat
the first sum in the third term in @30) we choose f2;2 = £ ;| and 4555 = £77,
so that this sum contributes only to 67; and &7;, and the contributions cancel each
other. For the remaining four terms, there is a subtlety in the case : = j. We write

w= 2fs ’X:Y + 3£ ’X  and note that X is the only block for £55 and Y is the
only block for £77. Consequently, for £2 = éf =, the terms involved in Lemma [
contribute zero for 7 # ¢ and 1/2 for i = 4, while the terms involved in Lemmam
contribute zero for any 7. Similarly, for 2 = ;f;, the terms involved in Lemma
contribute zero for any %2, while the terms involved in Lemma 17| contribute
zero for 7 # i and 1/2 for i = i. Therefore, we get contribution 1 for (¢,j) = (%,)),
as required. In the remaining three cases one has to consider correction terms,
similarly to Section .31

It remains to consider the cases when ¢ or j are equal to 1 or n. For example, let
1 < j <i = n and assume that the degree of the vertex (n, j) in Qr+ re equals 6, see
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Fig.[[(a). It follows from the description of the quiver in Section B3] that (n,j —1)
is a mutable vertex. In this case the functions fisjs and fi4j4 satisfy conditions
of Case 2 in Section 4.2 and all other functions satisfy conditions of Case 1 in
Section LAl Consequently, the leading block of £;1;1 = f,_1; and £1;1 = £, j41
is X7, the leading block of fi2j2 = £,01,5-1 and fi2j2 = f;558 = f;; is XIJ,/, the
leading block of ;40 = £, ;-1 is X7, the leading block of ;35 = £1 11 with
k=~°(j) is YI—J, and the leading block of fl-4j4 =fis Y.

The treatment of the last three terms in ([G3) and the last three terms in
(#X9) remains the same as in Section B3l To proceed further, assume that
X{ =X} =X}/ and Y/ =Y/ ". In this case it is more convenient to replace (5.4)
with Dij = dzlj - dgj + d?‘j3 - &;1]3, where d;ljs = fn,j—l - fij and &ff = flk — f1)k+1,
so that the first three terms in D;; are subject to the rules of Case 1, and the last
term to the rules of Case 2.

The contributions of the third, ninth and tenth terms in Lemma TG to any one
of df;, d7; and d}? vanish for the same reason as in Section 5.3l The same holds
true for the contribution of the third term in Lemma .17 to af‘f.

The first sum in the third term in 38) contributes the same amount to d;; and
d;, and zero to d;7. The same holds true for the first, second and the fifth terms in
Lemma The second sum in the third term in ([€386]) vanishes since p(L?) for
every X-block of £2 such that 32 < le) lies strictly to the left of the column j — 1.

(K}

Further, (,clv})ggk%;

identity matrix, and hence the contribution of this sum to dj vanishes, since both

in the second sum in the fourth term of (@51 is an

sides in this difference depend only on £2. The same reasoning works as well for
the first, the fourth and the fifth terms in Lemma EI7 and for the first sum in
the fourth term of (ZEI) in the case #7 ; > B} _;. The contribution of this sum to
&?]3 for the case 32 | = 311)71 cancels the contribution of the second term in Lemma
E.I1 for the case a; ; < @, _;.

Let us consider now the contribution of the fourth term in Lemma[Z16l Assume

that a t-th X-block of £2 satisfies conditions a? > azl) and 82 = ﬁzl). Consequently,
the (f — 1)-th Y-block of £? satisfies conditions a7 ; > @, _, and 87, = B} ;.
Consider first the case when the inequality above is strict. If the Y-block in question
is not the leading block of £?, then the contributions of the X-block to dj;[4] and
d;;[4] cancel each other, whereas the contribution of the X-block to d?[4] cancels
the contribution of the Y-block to df?[2]. The same holds true if the Y-block is
the leading block of £2 and 7 < 7°(j). If 7 = 7°(j) then the contributions of the
X-block to d;[4] and d;}[4] vanish, whereas the contribution of the X-block to
dj;[4] cancels the contribution of the Y-block to dj7[2]. Finally, if j > v°(j) then
all the above contributions vanish.
Otherwise, if a? | = dzl)fl, the sixth, the seventh and the eights terms in Lemma
L1 contribute to both sides of d}¥, since in both cases the exit point for £2 lies
to the left of the exit point for £'. Consequently, the contributions of the sixth
and the eight terms vanish, while the contribution of the Y-block to d}?[7] equals
the total contribution of the X-block to d;[4], d3;[4] and d?[4], similarly to the
previous case.

Assume now that a t-th X-block of £2 satisfies conditions a7 = a, and 57 = 3.
We distinguish the following five cases.
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A. i —j7>n—j+1; consequently, the sixth, the seventh and the eights terms
in Lemma do not contribute to D;j, since in all cases involved the exit point
for £2 lies below the exit point for £'. Besides, a7 , > &, ; and B2 = 1 . The
treatment of this case is exactly the same as the treatment of the case o7 > 04117 and
B? = B, above.

B.7—j=n—j+ 1; consequently, &7 _; = 6[11)71 and %, = 3;71- Similarly
to the case A, the sixth, the seventh and the eights terms in Lemma do not
contribute to D;j, since in all cases involved the exit point for £2 lies below or
coincides with the exit point for £!. On the other hand, the sixth, the seventh
and the eights terms in Lemma EI7] contribute only to the subtrahend of d”,
but not to the minuend. If the Y-block in question is not the leading block of £2
then the contributions of the X-block to d;j;[4] and d7;[4] cancel each other, the
contribution of the X-block to d?f [4] equals one, while the contributions of the Y-
block to df7[6], d}#[7] and a}?[8] are equal to n+1—a7_; —v°(j), 7°(j)—n and af_,,
respectively. Consequently, the total contribution to D;; vanishes. If the Y-block is
the leading block of £2 then the contributions of the X-block to d;[4] and d;7[4]
vanish. Further, if # > 1 then the contribution of the X-block to d}j [4] vanishes as
well, whereas the contributions of the Y-block to d}?[6], d{7[7] and d}?[8] are equal
ton+i—a? ;—j j—n—1land a? | +1—1, respectlvely Consequently, the total
contribution to D;; vanishes. Finally, if 2 = 1 then the contribution of the X-block
to d};[4] equals one, whereas the contributions of the Y-block to d}?[6], d}¥[7] and
df?[8] are equal to n+1—a7 | —°(j), 7°(j) —n and a7 _,, respectively, and again
the total contribution to D;; vanishes.

C.i—j=n—j; consequently, &7 , = a}_, and 7, = B}_,. Here the sixth, the
seventh and the eights terms in Lemma [£17 do not contribute to d” , since in both
cases involved the exit point for £2 lies to the right or coincides with the exit point
for f'. On the other hand, the sixth, the seventh and the eighth terms in Lemma
0l do not contribute to d”, d2 and to the subtrahend of dff, but contribute to
its minuend. If the X-block in question is not the leading block of £2 then its
contributions to dj;[4] and d;[4] cancel each other, and its contribution to d}?[4]
equals one. The contributions of this block to d;}[6], dj7[7] and d}?[8] are equal to
a? —j, 1 and j — 2 — o, respectively. Consequently, the total contribution to D;;
vanishes. The same holds true if this X-block is the leading block of £2 and 7 < n.
If i = n, and hence j = j, then its contribution to d7;[4] and d}?[4] vanish, and the
contribution to dj;[4] equals one. The contributions of this block to a}?[6], d}?[7]
and d?f’[S] are equal to a? —j, 1 and j — 1 — a?, respectively. Consequently, the
total contribution to D;; equals one. If the Y-block in question is the leading block
of £2 then the contributions of the X-block to d};[4], d¥;[4] and d}?[4] vanish, as
well as the contribution of the Y-block to dff’ [7], and the contributions of Y-block
to dj?[6] and d;}[8] cancel each other. Consequently, the total contribution to Dy;
vanishes.

D.i—j=n—j—1; consequently, a7 , < a) , and 37, = 3} ;. Here the
sixth, the seventh and the eighth terms in Lemma .16l do not contribute to dU7
but contribute to d7; and a}?. Assume first that a7 ; = a}_,, then the sixth, the
seventh and the eights terms in Lemma E.T7 do not contribute to d}? similarly to
case C. If the X-block in question is not the leading block of £2 then its contributions



PLETHORA OF CLUSTER STRUCTURES ON GL, 73

to dj;[4] and d;[4] cancel each other, and its contribution to dj’[4] equals one.
Further, its contributions to d7;[6] and d;?[6] vanish, and contributions to d;[8] and
d}?[8] cancel each other. Finally, its contribution to d7;[7] cancels the contribution
to d?f [4], and hence the total contribution to D;; vanishes. The same holds true if
the X-block is the leading block of £2 and 7 > n— 1. If i = n— 1 the contributions to
d;[4] and d}?[4] vanish and the contributions to d;;[4] and d,[7] cancel each other.
If 7 = n, or if the Y-block in question is the leading block of £2 then all the above
mentioned contributions vanish. The case a7 _; < 64110_1 is similar; additionally to
the above, the contribution of the Y-block to dj vanishes.

E.i—j)<n—j—1; consequently, @7 ; < &), and 37 ; = B} ;. This case is
similar to the previous one, with the additional cancellation of the contributions to
dj;[7] and d};[8].

Therefore, the total contribution to D;; vanishes in all cases except for the case
(i,7) = (n,j) when it is equal one, hence under the assumptions X7 = X7, = X7,
and Yl—j = Yf,i/ relation (4] holds with A = 1. If these assumptions are violated,
one has to consider correction terms similarly to Section 5311

6. REGULARITY CHECK AND THE TORIC ACTION

The goal of this section is threefold:

(i) to check condition (ii) in Proposition 3101 for the family Frr pe,
(ii) to prove Theorem [B3|iii), and

(iii) to prove Proposition B0

6.1. Regularity check. We have to prove the following statement.

Theorem 6.1. For any mutable cluster variable f;; € Frr re, the adjacent variable
i'j is a regqular function on Mat,,.

Proof. The main technical tool in the proof is the version of the Desnanot—Jacobi

identity for minors of a rectangular matrix that we have used previously for the

regularity check in [I5]. Let A be an (m — 1) X m matrix, and o < 8 < 7 be row

indices, then

(6.1) det A® det A77 4 det A7 det A2 = det A” det A2,

where “hatted” subscripts and superscripts indicate deleted rows and columns,
respectively.

Let us assume first that the degree of (4,7) equals six. Following the notation
introduced in the previous section, denote by f;1;1 and fil j1 the functions at the
vertices to the north and to the east of (i, ), respectively, by fiz;2 and fi;s the
functions at the vertices to the north-west and to the south-east of (i, ), respec-
tively, and by f;4;4 and fi4j4 the functions at the vertices to the west and to the
south of (7, j), respectively. Let £ be the matrix used to define f;2;2, fi; and fi3j3,
L, be the matrix used to define f;1;1 and filjl, and £_ be the matrix used to
define fi4j4 and f‘i4j4-

Assume first that degf;; < degf;i1j1. Define a degf;1j1 x (degf;i;1 + 1) matrix

Avia A = (£+)Egijig_]\}(g+(§]”] Then it is easy to see that E{jgij;:}%gﬁﬁ =
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AH’gEi??IH, and moreover, that AHcdlzg”iH is a block in the block upper triangular
El (¥l ’ 1]

Ldegf 1.
matrix AL dzij“jﬂ Consequently,

filjl = det Ai, fil i1 = det A%Q, fi2j2 -det B = det Am, fij -det B = det A%m

J

. _ yldegfij+2,degf;1 1]
with B = A[deg.fij+27degfilj-l]
B=2,v=m,d =1, one gets

filjl -det/l?ﬁI + fizjz -det B - filjl = detAé . fij - det B.

and m = degfy ;1 + 1. Applying [€I) with a = 1,

Note that det A?m = det A? det B with A = A{}jﬁi?jiﬂ, and hence

(6.2) fajidet A2 4 frop2 fijn = fij det A%
Let now deg fi; > degf;1j1. Define a (degfi;+1) x (deg f;;+2) matrix A via adding

the column (0,...,0,1)” on the right to the matrix 4:8;;:1%52;} Then it is easy
s(it 1), N(Ly)] A[2,dcgfi1j1+1] [2,degf;1 ;1 +1]
s(it, 1), N(Ly)] — “T[L,degf;i ]

[
to see that (£+)[ [Ldegfi ]
is a block in the block lower triangular matrix A

, and moreover, that A

[2,degfi;+2]
[1,degfi;+1]"

faji-det B=det Al, fuji-detB=det A%, fap =det AT,  fi; = det Al

Consequently,

. _ jldegf;1;1+2,degfi;+2
with B = A[dcgfiqu +1,degfij+1
8=2,v=m, =1, one gets

filjl -dethet/_l% + fizjz 'f'l'ljl -det B = detAi - fi,

% and m = degf;; + 2. Applying (6I) with a = 1,

where A = AHgZ?f:;iH is the same as in the previous case. Note that det A% =
det A2 det B, where A = AEEZ?}&]—M
matrix A in the previous case. Consequently, relation (62)) remains valid in this
case as well.

To proceed further, we compare degf;; with degf;s js and consider two cases
similar to the two cases above. Reasoning along the same lines, we arrive to the
relation

(63) fij det Ciﬁ + fi?’j?’ fi4j4 = fi“j“ det A?

is given by the same expression as the whole

: _ [s(i*,5*),N(£-)] i : . o
with C' = (,C_)[S(i4 ) n(c_y and A the same as in ©2). The linear combination

of (62) and (63) with coefficients fi4j4 and f;1;1, respectively, yields
(64) fl](ﬁ4]4 det AQ - filjl det Cii) = fi2j2 Jgiljl f:iéljél + filjl ﬁSjS f’i4j4 .

Combining this with Theorem we see that fi'j = fi4j4 det A2 — fijn det Ci2 is a
regular function on Mat,,.

For vertices of degree less than six, the claim follows from the corresponding
degenerate version of ([G.4]). For example, for vertices of degree five there are three
possible degenerations: )

(i) degfi1j1 = 1, and hence f;1;1 = 1, which corresponds to the cases shown in
Fig. Bl(b), Fig. B(c) and Fig. @fa);

(ii) degf;aja = 1, and hence fi4j4 = 1, which corresponds to the cases shown in
Fig. [6l(b), Fig. [(c) and Fig. [0(a);
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(ili) degfi; = 1, and hence i 4 = 1, which corresponds to the cases shown in
Fig.[(b), Fig. B(b) and Fig. IIl(a).

Vertices of degrees four and three are handled via combining the above degen-
erations. (]

6.2. Toric action. To prove Theorem B.3[iii) we show first that the action of
Hrr X Hpe on SL, given by the formula (Hy, H2)X = H; X H, defines a global
toric action of (C*)*r"+kre on Cpr pe. In order to show this we first check that the
right hand sides of all exchange relations in one cluster are semi-invariants of this
action. This statement can be expressed as follows.

Lemma 6.2. Let f;;(X)f;(X) = M(X) be an exchange relation in the initial
cluster, then M(H X Hy) = Y (H1)M(X)x¥ (H2), where x}1 and x¥ are left

and right multiplicative characters of Hrr X Hrpe depending on M.

Proof. Notice first that all cluster variables in the initial cluster are semi-invariants
of the action of Hrr x Hre. Indeed, recall that by B1]), (B2) any cluster variable
fij in the initial cluster is a minor of a matrix £ of size N = N(L£). Clearly, minors
are semi-invariant of the left-right action of the torus Diag, x Diag, on Maty,
where Diag, is the group of invertible diagonal N x N matrices. We construct
now two injective homomorphisms r : Hp- — Diag, x Diagy and cy @ Hpr —
Diagy x Diagy such that the homomorphism (r,¢) : Hpr X Hpe — Diagy x Diagy
given by (r,¢)(Hy, Hy) = r(Hy) - ¢(Hz) extends the left-right action of Hpr X Hpe
on SL, to an action on Maty. Note that Diag, x Diagy is a commutative group,
so (r,c) is well-defined.

We describe first the construction of the homomorphism r. Let A be a nontrivial
row X-run, and A = 7"(A) be the corresponding row Y-run. Recall that Hp: =
exp hrr. Consequently, it follows from (28] that for any fixed T € Hp+ there exists
a constant g4 (T') € C* such that for any pair of corresponding indices i € A and
j € A one has Tj; = g5 (T) - Ty;. Clearly, gl is a multiplicative character of Hr:.

Fix a pair of blocks XIJt and Y—] tin L. Let A be the row X-run corresponding
to ®;, then we put g; = g, and deﬁne a matrix A}(T) € Diagy such that its entry
(4,7) equals ¢;(T) for j € Uf:i(K UK;) U (K;\ ®) and 1 otherwise, and a matrix
BE(T) € Diagy such that its entry (j, j) equals (g5(T)) " for j € ULZ (LU L) ULy
and 1 otherwise, see Fig.

Put AY(T) =T[;_, Ai(T) and B*(T) = [[;_, Bf(T). Finally, for any j € [1, N]
define (*(j) as the image of j under the identification of K; and I, if j € K;
and as the image of j under the identification of K; and I; if j € K;\ &,
and put C*(T) = diag(T¢r(j)cr(j))er- Then, similarly to the proof of Lemma
4 one obtains L(TX,TY) = A"(T)C*(T)L(X,Y)B*(T), and hence r : T —
(A*(T)C*(T), B*(T)) is the desired homomorphism.

The construction of the homomorphism ¢ is similar, with gf defined by the
column X-run corresponding to W;, A$(T) having g¢f(T) as the entry (j,j) for
j € UZ1(L; UL\ ¥, and 1 otherwise, B§(T) having (¢¢(T))~" as the entry
(j,j) for j € U_,(K; UK;) and 1 otherwise, A°(T) = [[;_, A5(T), B(T) =
Hle B{(T), and C(T) = diag(T¢e(j),ce(j))j=1, Where (¢(j) is the image of j under
the identification of L; and J; if j € L, and the image of j under the identification
of Ly and J; if j € L; \ W441. Consequently, the desired homomorphism is given by
C:Tw— (A(T),B(T)C(T)).
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We thus see that any minor P of £ is a semi-invariant of the left-right action
of Hp+ X Hre on SL,, and we can define multiplicative characters Xf and XII; as
the products of the corresponding minors of A", A and C*, or B*, B° and C¢,
respectively.

To prove the lemma, we consider first the most general case when the degree of
the vertex (i, ) is 6. Then, borrowing notation from the proof of Theorem [G.I]

M(X) = g (X) fizg2 (X) fiaga (X) + fir o (X) fsjo (X) fago (X).

It follows from (G.2]) that X-filjl + xfizﬂ =it 4+ Xdcf(A?), where x means x or
Xr. Similarly, it follows from (63) that x/i%i* + y3etAD = fiaga 4 \Fis53 Adding
to both sides of the first equality y/ii1 | to the both sides of the second equality
x/ii' and adding these two equations together we obtain

X.filjl + X.fi2j2 + X.fi4j4 _ Xfiljl + Xfisjs + Xfi4j4 _ X]W,

which proves the assertion of the lemma.

Other cases are obtained from the general case by the same specializations (set-
ting one or more functions above to be 1) that were used in the proof of Theorem
above. This concludes the proof of the lemma. (I

To complete the proof we have to show that any toric action on Crr e can be
obtained in this way. To prove this claim, we first note that the dimension of Hp-
equals kr:, and the dimension of Hre equals kpe. Consequently, the construction
of Lemma produces krr + kpe weight vectors that lie in the kernel of the ex-
change matrix corresponding to Qr: re, see [I2, Lemma 5.3]. Assume that there
exists a vanishing nontrivial linear combination of these weight vectors; this would
mean that all cluster variables remain invariant under the toric action induced by
a nontrivial right-left action of Hpr x Hre on SL,. However, by Theorem [T.1] be-
low, every matrix entry of the initial matrix in SL,, can be written as a Laurent
polynomial in the cluster variables of the initial cluster. Hence, a generic matrix
remains invariant under this nontrivial right-left action on SL,, a contradiction.
Note that the proof of Theorem [.1] does not use the results of Section

6.3. Proof of Proposition (i) We will focus on the behavior of det L(X,Y)
under the right action of D_ = D¢. The left action of D" can be treated in a
similar way. In fact, we will show that det £(X,Y") is a semi-invariant of the right
action of a larger subgroup of D(GL,,). Let P+ be the parabolic subgroups in SL,,
that correspond to parabolic subalgebras ([Z.11]), and let P, be the corresponding
parabolic subgroups in GL,. Elements of Py (respectively, P_) are block upper
(respectively, lower) invertible triangular matrices whose square diagonal blocks
correspond to column X-runs (respectively, column Y-runs).

It follows from (ZI2) that D_ is contained in a subgroup D_ of P, x P_ defined
by the property that every square diagonal block in the first component deter-
mined by a nontrivial column X-run A coincides with the square diagonal block in
the second component determined by the corresponding nontrivial column Y -run.
For g = (g1,92) € D_, consider the transformation of £(X,Y) under the action
(X,Y) — (X,Y)-g, in particular the transformation of the block column L; U L;_1
as depicted in Fig. In dealing with the block column we only need to remember
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that (g1,92) can be written as

A A Asg Bi; 0 0
(91,92) = 0 C  Axs|,|Ba C 0 ;
0 0 Ass B3y B3y Bss

where Aj1, Ass, B11, B3 and C are invertible and C occupies rows and columns
labeled by A(B;) in g; and rows and columns labeled by A(f;_1) in g2 (recall
that both these runs correspond to ¥;). Then the effect of the transformation
(X,Y)— (X,Y) - g on the block column is that it is multiplied on the right by an
invertible matrix

A A 0
0 C 0
0 B3z Bsg

The cumulative effect on £(X,Y) is that it is transformed via a multiplication on
the right by an invertible block diagonal matrix with blocks as above, and therefore
det £(X,Y) is transformed via a multiplication by the determinant of this matrix.
The latter, being a product of powers of determinants of diagonal blocks of g; and
ga, is a character of D_, which proves the statement.

(ii) The claim follows from a more general statement: det £(X,Y") is log-canonical
with all matrix entries x;;, y;; with respect to the Poisson bracket (ZI4) which,
in our situation, takes the form ([@3]). Semi-invariance of det £(X,Y") described in
part (i) above, together with the fact that subalgebras 9_ = 07 and d” = 0° are
isotropic with respect to the bilinear form (({ , )) implies

feo +@,nbah), VEfed F(d,nhah)
for f =logdet £(X,Y). This means that in (214
Rp(VEf) = =V f +mo, (VEF) Rp(VEf) = =VEf +my (V).

where (), denotes the natural projection to D(h) = h@h and 7,7, are projec-
tions to 04 along d_,0" respectively. Due to the invariance of ((, )), (ZI4) then
reduces to

{fa @}TDJ" =
for any ¢ = p(X,Y).
Let now ¢(X,Y) = logx;;. Then (VL¢)0 = (e;;,0), (VRga)O = (e;;,0). Thus,
to prove the desired claim we need to show that 7o, (V f)o and T, (VE f)o do not
depend on X, Y. To this end, we first recall an explicit formula for m,, :

mo (&) = (€ = R (§—n), & — Re(§—m)),

which can be easily derived using the property Ry — R_ = Id satisfied by R-
matrices (Z6). Since in our situation the left gradient V* f computed with respect to
((,))isequalto (Vx f-X,—Vy[f-Y), we conclude that components of 7y, (VX f)o
are equal to (Vx f-X — Ry (ELf)),, where (), now means the projection to the

diagonal in gl,,. By [@23), [E23), (£20),

(Vxf X = R (BLfly = 5 (1 @+ 1= (e )

0 3

(o (V £os (VE@) ) = ({5, (V2 o, (V) o))

N =

+ % (Tr(ELf)S — Tr (ELf)S)1).
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By (@I4), Corollary and ([@27), the right hand side above is constant. The
constancy of 7 (VEf)o and the case of ¢(X,Y) = logy;; can be treated similarly.
This completes the proof.

7. PROOF OF THEOREM [B.3|(11)

As it was explained above in Section 3.4, we have to prove the following state-
ment.

Theorem 7.1. Every matriz entry can be written as a Laurent polynomial in the
watial cluster Frr pe and in any cluster adjacent to it.

Below we implement the strategy of the proof outlined in Section [3.4]

7.1. Proof of Theorem [3.11] and its analogs. Given an aperiodic pair (T'*,T'°)
and a non-trivial row X-run A', we want to explore the relation between cluster

5 B
structures C = Cpr,re and C = Cg, pe, where I'" = I'"(A") is obtained by deletion of

the rightmost root in A" and its image in v(A"). Note that the pair (fr(Zr), re)
remains aperiodic.

Assume that A" is [p + 1,p + k], and the corresponding row Y-run ~(A") is
[¢ +1,q+ k]. Then, in considering (I (A¥),I°), we replace the former one with
[p+ 1,p+ k — 1], and the latter one with [¢ + 1,¢ 4+ k — 1]. Besides, a trivial row
X-run [p+k,p+ k] and a trivial row Y-run [¢+ k, ¢+ k| are added. The rest of row
X- and Y-runs as well as all column X- and Y-runs remain unchanged. In what
follows, parameters p, ¢ and k are assumed to be fixed.

We say that a matrix £ € L is r-piercing for an r € [2,k] if T(p+7r,1) = (L, s,)
for some s, € [1, N(L£)]. Note that two distinct matrices cannot be simultaneously
r-piercing. On the other hand, a matrix can be r-piercing simultaneously for several
distinct values of r; the set of all such values is called the piercing set of L. If a
piercing set consists of r1,...,r;, we will assume that s,, > --- > s;,,. The subset
of all matrices in L that are not r-piercing for any r € [2, k] is denoted L.

Let L = Lfr(Zr),pcv J = jfr(Zr),rcv and let the functions £;;(X,Y) and f;;(X)
be defined via the same expressions as £;;(X,Y) and f;;(X) with L and J replaced
by L and J. Tt is convenient to restate Theorem B.11]in more detail as follows.

Theorem 7.2. Let Z = (z;;) be an n x n matriz. Then there exists a unipotent
upper triangular n x n matric U(Z) whose entries are rational functions in z;; with
denominators equal to powers of fpir1(Z) such that for X = U(Z)Z and for any
i,j €[1,n],

(@) fprea(Z) i T(0,5) = (L7,5) and s < sy,
Ji5(Z) otherwise,

fii(X) = {
where L* is the k-piercing matrixz in L.

Proof. In what follows we assume that ¢ # j, since for i = j the claim of the
theorem is trivial. ~
For any L£(X,Y) € L define £(X,Y’) obtained from £(X,Y’) by removing the

last row from every building block of the form Y[‘ll gk In particular, if £(X,Y)

does not have building blocks like that then £(X,Y) = L(X,Y).
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Note that all matrices £ defined above are irreducible except for the one obtained
from the k-piercing matrix £*. The corresponding matrix L* has two irreducible
diagonal blocks £}, L3 of sizes s, — 1 and N(L*) — s, + 1, respectively. As was
already noted in Section B4} all maximal alternating paths in Grr pe are preserved
in Gy, (Be).re except for the path that goes through the directed inclined edge
(p+k—1)— (¢+k—1). The latter one is split into two: the initial segment up
to the vertex p + k — 1 and the closing segment starting with the vertex ¢ + k — 1.
Consequently, L = {£: L € L, L # L*}U{L}, L5}

Further, if J(i,7) = (£,s) and £ # L£* then J(i,j) = (L,s). Furthermore, if
L € Ly then additionally £;;(X,Y) and £;;(X,Y) coincide. However, if 7 (i, j) =
(L*,s) then

j(z )= (N’{,s) for s = s(i,7) < s,
)= (L5, s — sk +1) for s = s(i,7) > sk.

It follows from the above discussion that the claim of the theorem is an immediate
corollary of the equalities

[s,N(L)] _ A [s,N(L)]
(7.1) det £(X, X)2 v oy = det L(Z, Z) )

for any £ € L and s € [1, N(L)].
To prove (1)), we select a particular ”shape” for U(Z). Let

k—1
(7.2) Uo=Uo(2) = 1n+ Y aulZ)eqisqin:
x=1

where a,,(Z) are coefficients to be determined, and

(7.3) U=U(2) =], o) (U(2)).

Due to the nilpotency of v* on ny, the product above is finite. Clearly, if «,.(Z)
are polynomials in z;; divided by a power of fp+k71 then the same is true for the
entries of U(Z).

The invariance property (I implies that for every (i, ),

£i;(UZ,UZ) = t;(Z,exp(y" ) (U UZ) = 15(2,UoZ);

here the second equality follows from (Z3]). Thus, to prove (1)) for X = UZ it is
sufficient to select parameters a,.(Z) in (L2)) in such a way that

(7.4) det L(2,UoZ) (> ig)| = det L(Z, 2)[7 3 (5]

[s:N(£)] (L)
for all £L € L and s € [1, N(L)].

Observe, that the equation above is satisfied for any choice of «,, if £ € Lg, that
is, if £(X,Y) = £(X,Y). Indeed, in this case any Y-block in £ either does not
contain any of the rows ¢+1, ..., g+k, or contains all of them but without an overlap
with the X-block to the right. If the former is true, the block rows corresponding to
this Y-block in £L(Z,UyZ) and L(Z, Z) coincide, while if the latter is true, then the
block of k rows under consideration in £(Z, UpZ) is obtained from the corresponding
block row of L£(Z,Z) via left multiplication by a k X k unipotent upper triangular
matrix 1 + 22;11 . (Z)es.1, which does not affect trailing principal minors.

Let us now turn to matrices £ € L'\ Lg. In fact, the same reasoning as above
shows that for any such matrix, the functions in the left hand side of (Z4) do
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not change if £(Z,UyZ) is replaced by 7£A(Z, UpZ) obtained from L(Z,Z) via re-
placing every Y-block Z[1 a+k] by (UOZ)é7q+k] and retaining all other Y-blocks Z}—’.
Therefore, in what follows we aim at proving

(7.5) det £(Z, UoZ)>nie) = det £(Z, Z2) N2

[s,N(£)]
forall L€ L\ Lg and s € [1, N(L)].

Assume that £ = £(X,Y) is r-piercing, and so there exists s, € [1, N(£)] such
that £(X,Y)s,s, = ZTptr1; the X-block of £(X,Y) that contains the diagonal
entry (s,, s,) is denoted X[‘]]D;Ln]. We can decompose £ = L(Z,UyZ) into blocks as
follows:

) AT 0
(7.6) L(Z,UZ) = |A;y BY|,
0 By

where the sizes of block rows are s, — r, k and N(L) — s, — k + r, and the sizes of
block columns are s, — 1 and N(L) — s, + 1. Note that the blocks are given by

~ * * ~
Al_[o (UOZHJ’ A= [0 (U02)hr 40

and

Jr
By = [Z[{ﬁl,pﬂg] 0} , B; = {Z[P-Fiﬂyn] 2] )

It will be convenient to combine fl{ and AQ into one (s, +k—r) x (s, — 1) block
A", and BY and Bj into one 6, x (6, —r + 1) block B" with 6, = N(L) — s, + .
A similar decomposition into blocks of the same size for £ = L£(Z, Z) contains
blocks A{, Ag, B{ and f3§ that may be combined into A” and B”, respectively;
consequently, the last row of [15 (and hence of AT) is zero. Note that since exactly
one matrix in L \ Lg is r-piercing for any fixed r, notation /Al’”, B’”, and A", B" is
unambiguous.

Denote the column set of the second block column in (Z.6) by M,. Let

det(L*
(7'7) Oz%(Z) _ ( )(Mk\{sk})u{sk‘f‘% k}

det(L£*)}fF
note that o, = 1. We claim that Uy(Z) given by (Z2) and (1) satisfies condi-
tions (ZH). Note that the denominator in (Z7) equals fpix1(Z), and hence the
denominators of the entries of £ defined by (Z3) are powers of fy.11(Z).

Assume that the piercing set of £ is {r1,...,r}; additionally, set s, , = 1.
Recall that Y-blocks of the form Z[1 k] do not appear in the columns M,, in ﬁ,
and hence (T3] is trivially satisfied for s > s,,.

For s,, < s < s,, — 1, we are in the situation covered by Lemma [T.7] (see Section
below) with M = LM’"Z M =Ly N =0, —r2+1, N =, —r +1, and
ki =mr — 1. Cond1t1on (iii) in the lemma is satisfied trivially, since in this case
B = B. Consequently, [C3) is satisfied if the parameters a,, = «,.(Z) satisfy
equations

(7.8) Z(_l)g”sa;{ det(érl)(S\{%})U[kJrl,erl] =0
»eS

=1 k;

5 goeeey
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for any (k — 71 4 2)-element subset S in [1, k] such that k& € S, where
Exg =#{i €S :i> s}

If [ = 1, there are no other conditions on the parameters a,,, since s,, = 1.
Otherwise, let s,, < s < s, — 1 and consider the block decomposition (Z.6]) for

. T . M,
r = ry. We claim that the situation is now covered by Lemma [l with M = L Mrzv

M= Z%:z, N =10,,—r3+1, No =0,, —r2+1, and k1 = r2 — 1. To check condition

(iii) in the lemma, we pick an arbitrary subset T' C [sy, — 72 + 1,8,, — r2 + k] of

size k — ro + 1 and apply Lemma [[.7] to matrices M = ﬁf/[UM”\[S”’S” —rathl

2
M = LNLL:M”\[S”’S” ~rath] with parameters N = 60,, —ro+1, No =60,, —r1 +1,

and k1 = 7"21 —1. It follows that the condition in question is guaranteed by the same
equations (Z.8)). Consequently, by Lemma [[.7] equations ([ZH) for s,, < s < 8., — 1
are guaranteed by equations (T8 with 7 replaced by r.

Continuing in the same fashion, we conclude that if conditions

and

(7.9) D (=1)"5 s det(B")(s\ (sep)uiks1.0,] =0
»€ES

are satisfied for any r € {ry,...,r} and any (k — r + 2)-element subset S in [1, k]
containing k, then (7)) holds for any s € [1, N(£)]. It remains to show that (Z9)
are valid with o, defined in (T7).

Rewrite (T1) as

_ det(B*) 0kt 1,00]

(7.10) @x(2) det(B*) 4 4,

, x=1,...,k.

If r = k, and hence £ = L*, then every S in ([Z9) is a two element set {s¢, k} with
x € 1,k —1], e.s = 1, egs = 0. Plugging (TI0) into the left hand side of (Z.9))
and clearing denominators we obtain two terms that differ only by sign and thus
the claim follows.

For r < k, we need to evaluate

(7.11) D (=1)7° det(B¥) (oot ,0,) det(B7) s\ (e Ulk+1.0,]-
»€ES

Note that the blocks Z[‘;il n and Z [{)TH n] have the same row set, and the exit point

of the former lies below the exit point of the latter. Consequently, J* C J”, and
the first of the blocks is a submatrix of the second one. Therefore, we find ourselves
in a situation similar to the one discussed in Section 41] above while analyzing
sequences ([L79) of blocks. Reasoning along the same lines, we either arrive at the
cases (ii) and (iii) in Section 4T} and then

=1 Uy Uz 0 = Uy Uy Us Uy O
(7.12) B_[O V1V2], B_{O 0 0 W, Wl
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where odd block columns and the second block row of B* and B” might be empty,
or at the cases (i) and (iv) in Section 41l and then

Uy 0
U2 0 U1 0

(7.13) BF=1Us 0 |, B =|U W |,
Us W 0 W
0 W

where odd block rows and the second block column of B¥ and B” might be empty.
In particular, if B¥ is a submatrix of B” (cf. case (iv) in Section AT then (TIZ)
applies with an empty second block row and third block column in the expression for
B*. Similarly, if B" is a submatrix of B¥ (cf. case (iii) in Section ELZI)) then (ZI3)
applies with an empty second block column and third block row in the expression
for B”.

Suppose ([T12)) is the case. Define 74 > 73 > 7 > 71 > 79 = 0 and ¢ > 0 so that
the size of the block U; equals o x (1, — ;1) for 1 <i < 4. Note that c >n—p > k
and o > 73. We will use the Laplace expansion of the minors in (ZIT]) with respect
to the first block row:

(7.14)
Dk _ o Sky([1,71]UO Sk OU[T2+1,0, —k+1]
det(BY) Geyutk+1,00 = Z(_l)so det(B®) atka1,0) 4B o100 )
©
QT _ = Hry[1,73]UE S EU[Ta41,0,—r+1]
det(B")(s\{sepyutr1,0, = D (=1)7= det(B) (T uipar,0) et(B) 1 ) :

Here the first sum runs over all © C [r; + 1, 2] such that |©| =0 — 7 —k+ 1, and
© is the complement of © in [r; + 1, 73]; the second sum runs over all = C [r3+ 1, 74]
such that |Z| =0 — 73 —r + 1, and = is the complement of Z in [73 + 1, 74]; €0 and
ez depend only on © and =, respectively, and [k 4 1,0] is empty if ¢ = k. Plug
([CI4) into (ZII) and note that for any fixed pair ©, Z, the coefficient at

et (BRI O aen( B

is equal to

= Sy 1,7 [S] =S [1,73]UT
(7.15)  (=1FeteE S (=0 det(BN) 00 det(BY T o

€S

since the upper left o x 75 blocks of B” and B* coincide. Observe that [1,7,]U© C
[1, 73], and hence (TI5) is equal to the left-hand side of the Pliicker relation (.37
with A = B, I =S, J=[k+1,0], L = [1,n]U© and M = ([1,3]UT)\
([1,7]U®©). Thus (ZIT) vanishes for any ©, =, and so ([.I1]) is zero in the case
([CI2). The case (1) can be treated similarly: using the Laplace expansion with
respect to the first block column, one concludes that (1)) is zero. This proves
that with o, defined by (1), all conditions (9] are satisfied, and therefore (Z.0])
is valid, which completes the proof of the theorem.

(]

As it was explained in Section [3.4] we also need a version of Theorem B.11]
relating C = Cp+ re and C = Cir pe, Where = ff(Zf) is obtained by the deletion
of the leftmost root in A*. The treatment of this case follows the same strategy as
above. Once again, we assume that the non-trivial row X-run that corresponds to
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A" C T} is [p+ 1,p + k], and the corresponding row Y-run is [¢ + 1,¢q + k]. This
time, in considering (I, '), we replace the former one with [p + 2, p + k], and the
latter one with [¢+ 2, ¢+ k], and add a trivial row X-run [p+1,p+ 1] and a trivial
row Y-run [¢ + 1,¢q + 1]. The rest of nontrivial row X- and Y-runs as well as all
column X- and Y-runs remain unchanged. In what follows, parameters p, ¢ and k
are assumed to be fixed.

Let L = L. (&) e J = Tt (&) re: and let the functions f;;(X,Y) and fi;(X)
be defined via the same expressions as £;;(X,Y") and f;;(X) with L and J replaced
by L and J. A suitable version of Theorem [B.I1 can be stated as follows.

Theorem 7.3. Let Z = (z;;) be an n x n matriz. Then there exists a unipotent
upper triangular n x n matriz U(Z) whose entries are rational functions in z;; with
denominators equal to powers of fpy21(Z) such that for X = U(Z)Z and for any
6,5 € [Ln],

(@) fpr2a(Z) i T(i,g) = (£7,5) and s < s,
Ji;(Z) otherwise,

fij(X):{

where L* € L is the 2-piercing matriz in L.

Proof. Our approach is similar to that in the proof of Theorem

For any £(X,Y) € L define £(X,Y) obtained from £(X,Y) by removing the
first row from every building block of the form X []JD 41,8 In particular, if £(X,Y)
does not have building blocks like that then £(X,Y) = L(X,Y).

Similarly to the previous case, all matrices L defined above are irreducible except
for the one obtained from the 2-piercing matrix £*. The corresponding matrix L*
has two irreducible diagonal blocks £%, L3 of sizes so — 1 and N(L£*) — sy + 1,
respectively. As was already noted in Section B4}, all maximal alternating paths
in Grr e are preserved in Gfr(Xr),rc except for the path that goes through the
directed inclined edge (p+ 1) — (¢+ 1). The latter one is split into two: the initial
segment up to the vertex p + 1 and the closing segment starting with the vertex
¢+ 1. Consequently, L = {£: L € L, L # L*} U{L%, L3}

As before, if J(i,7) = (£, s) and £ # L£* then J(i,) = (£, s). Furthermore, if
L € Ly then additionally £;;(X,Y) and £;;(X,Y) coincide. However, if 7 (i,j) =
(L*,s) then

~ . ~*,s for s = s(4,j) < sq,
Flig)y =4 9 (t.4)

(L5, s —s2+1) for s = s(i,j) > sa.
It follows from the above discussion that the claim of the theorem is an immediate

corollary of the equalities ([I]) for any £ € L and s € [1, N(L£)].
Let

k
(7.16) Uo(Z2) =1+ Y Qsbqitgis

n=2

and
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As before, the invariance property (£I1)) allows to reduce the problem to selecting
parameters a,, = a,.(Z) such that the analog of (4] with Uy(Z) given by (Z.10)
is satisfied for all £ € L and s € [1, N(L)].

Once again, this relation is satisfied for any choice of «,, if £ € Lg, that is, if
L(X,Y) = L(X,Y), while for matrices £ € L \ Ly one has to replace £(Z,UZ)
by the matrix £(Z,UpZ) similar to the one defined in the proof of Theorem
Therefore, in what follows we aim at proving the analog of (ZH) for all £ € L'\ Ly
and s € [1, N(L)].

We can again use decomposition (Z8) for £ and £, except that now B is ob-
tained from B{ by replacing the first row with zeros, whereas the last row of /15
remains as is, unlike the previous case. Consequently, for s > s,, the analog of
([TA) is satisfied trivially.

For s,, < s < s, — 1, we are in the situation covered by Lemma [[.8 with M =
ﬁ%;j, M= EN%Z, N =0,,—ro+1, Ny =0,, —r1+1, and k; = r,—1. Condition (iv)
in the lemma is satisfied trivially, since in this case By, _x,y2,n] = B[N17k1+2,N]'
Consequently, the analog of ([ZH) holds true if the parameters o, = «,.(Z) satisfy
equations

(7.17) Z (—1)"5a,, det(Brl)Su{%}U[qul,erl] =0
»x€e[1,k]\S

for any (k — r1)-element subset S in [2, k].
Continuing in the same way as in the proof of Theorem [[.2]and using Lemma [T.§]
instead of Lemma [.7, we conclude that if conditions

(7.18) > (D)™ det(B") supuperie,) =0
»x€[1,k]\S
are satisfied for any r € {ry,...,r} and any (k — r)-element subset S in [2, k], then

the analog of (Z4) holds for any s € [1, N(L)].

In particular, when r = 2, and hence £ = L*, every S in ([ZIJ) is obtained by
removing a single index s from [2, k]. Therefore, the sum in the left hand side of
([TI3) is taken over a two-element set {1, >} with > € [2,k]. Since €196 = k — 2 and
€55 = k — 2, a,, is determined uniquely as

o1 det(B?) 16, ()

(7.19) a,(Z) = (-1) - 1,...,k.
det(B2)[2)92]

Therefore ([CI8) is equivalent to vanishing of

(7.20) > (1) det(B?) 10,0\ (o} det(B") suppuiis10,] = 0.

»x€[1,k]\S

Denote S = [1,k]\ S, then €,.+¢,5 = k— 5, and hence (Z20) can be re-written
as

(—1)* Z(—l)s”g det(B?) 3\ (e})usuiis 1,65 4€6(B7) eyusuer,o,) = 0-
»eS

The latter equation is similar to (ZII)) in the proof of Theorem [[2] and the cur-
rent proof can be completed in exactly the same way taking into account that the
denominator in (Z.I9) equals fp42,1(Z). O
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There are two more versions of_'l;heorem BI1 rel&ting the cluster structures
Cre e and Cp. fe, where I = T°(A°) or I = I'*(A°) for a nontrivial column
X-run A°. They are obtained easily from Theorems and via the involution

Lr-re 3 L(X,Y) = L(YT, XT)T € Lpe 1t

op?
opp’™ opp

where Topp = (I2, 1,771 : Ty — Ty) is the opposite BD triple to T' = (I'y, T2, 7 :
'y — T'y). Consequently, X is obtained from Z via multiplication by a lower
triangular matrix, and the distinguished function f,(Z) equals fNLquk(Z ) for I =
fC(ZC) and equals f 44 2(Z) for T¢ = f‘C(ZC)

7.2. Handling adjacent clusters. Let us continue t_h>e comparison of cluster
structures C = Cprpe and C = Cg. pe, where I'" = T"(A"). Recall that the cor-

responding initial quivers Q and Q differ as follows. The vertex v = (p+k,1)is
frozen in Q, but not in Q. Three of the edges incident to the vertex (p+k,1) in
(Q—the one connecting it to the vertex (p +k — 1,1) and the two connecting it
to the vertices (7*(p 4+ k — 1),n) and (v*(p + k — 1) 4+ 1,n)—are absent in @ (in
more detail, the neighborhood of v in @ looks as shown in Fig. [6lb), Fig. I0(a), or
Fig. M(b), while the neighborhood of v in Q looks as shown in Fig. B(d), Fig. I(c),
or Fig. [[0(d), respectively).

As it was explained in Section[3.4] we have to establish an analog of Theorem B.11]
for the fields 7/ = C(©11,--+, @)y« ©nn) and F = C(P11y -, Ply -+ - Pnn) and
the map 7" : F/ — F' given by

(7.21) T'(pij) = {T,(%Zj) for (5,) f h

Gupyr for (i,j) =u
for some integer \,, where T : F — F is the map constructed in Theorem
The map U : X — Z is also borrowed from Theorem [[.2] so condition b) in
Theorem B.IT holds true. Condition ¢) follows immediately from (Z21]). Condition
a) reads f/ o T' =Uo f'.

Recall that cluster mutation formulas provide isomorphisms p : F' — F and
fi : F'' — F such that f' = fopand f' = f o ji. Consequently, condition a) above
would follow from fi o T’ = T o . The latter statement can be reformulated as
follows.

Proposition 7.4. Let 15 be the cluster variable in C(Q, @) obtained via a sequence
of mutations at vertices (i1,71),--., (in,jN) in Q avoiding v, and let 1 be a cluster
variable in C(Q, ) obtained via the same sequence of mutations in Q. Then 1) =
15@;}“ for some integer \y.

Proof. Define a quiver ), by freezing the vertex v in () and retaining all the edges
from v to non-frozen vertices. Then any sequence of mutations in @ avoiding
v translates into the sequence of mutations in @Q,, and all the resulting cluster
variables in C(Q, ¢) and C(Qy, ) coincide. We will use the statement that describes
the relation between cluster variables in two cluster structures whose initial quivers
are “almost the same”. That is, there is a bijection between vertices of these quivers
that restricts to the bijection of subsets of frozen vertices and under this bijection
the two quivers differ only in terms of edges incident to one specified frozen vertex.
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Lemma 7.5. [I5, Lemma 8.4] Let B and B be integer n x (n + m) matrices that
differ in the last column only. Assume that there exist w,w € C™™ such that
!/

Bw = Bw = 0 and Wpim = Wntm = 1. Then for any cluster (x,... 2] .)

in C(E) there exists a collection of numbers N;, i € [1,n + m], such that x;x:\l’_‘_m
satisfy exchange relations of the cluster structure C(B). In particular, for the initial

cluster \; = w; — w;, 1 € [1,n+m)].

In our current situation, B and B are adjacency matrices of quivers Q and Q,,
respectively. The last columns of Band B correspond to the frozen vertex (p+k,1).
To establish the claim of Proposition[.4] we just need to define appropriate weights
@ and w and to show that for any noon-frozen vertex (4, j), Aij = w;; —w;; coincides
with the exponent of f,4.1(Z) in the right hand side of the expression for fi;(X)
in Theorem

Put d;; = degfi;(Z) and d;; = degf;;(X). A direct check proves that the vectors
d= (J”) and d = (d;;) satisfy relations Bd = Bd = 0. Besides, dy = d, = 6, and
hence vectors w = %J and w = %d satisfy the conditions of Lemma [Z.5l Moreover,
Jij and d;; coincide for any f;; that is a minor of £ # L£*, or a minor of £* with

A;j satisfies the required condition. O

7.3. Base of induction: the case |I'}|+ [['{| = 1. It suffices to consider the case
IT%| =1, |T'S| = 0, the other case can then be treated via taking the opposite BD
triple. In this case all the reasoning exhibited in Sections [l and is still valid,
so to complete the proof we only need to check that every matrix element x5 can
be expressed as a Laurent polynomial in terms of cluster variables in the cluster
1y (F). We will do this directly.

Let T = ({p},{q},p — q) with ¢ # p and T'* = &. The functions forming the

initial cluster Frr o are f;;(X) = det X[[j’:fiﬂ] for i > j, fi;(X) = det X[[l?’slj+i]
fori < j,j—i# n—q,and fin—q+i(X) = det EF’N] fori € [1,q], where N = n—p+q

i,N]
and the N x N matrix £ is given by

[n—g+1,n]
X?"qf«l@l] [10 ]
_ n—q s sN—p
(7'22) L= X[q7q+1] X[[€,p+1}]
sN—p.
0 X o]

These last ¢ functions distinguish Frr & from Fiz & that forms an initial cluster for

the standard cluster structure on GL,,. Also, the function fp411(X) = det X| [[;fff]}
is a frozen variable in Cg &, but is mutable in Crr . The mutation at v = (p+1,1)

transforms fp41,1(X) into

_ S XD fpr22(X) fer1.0(X) + frr1.2(X) fon (X)

f X
p—i—l,l( ) prrl,l(X)
(7.23) ] yl2m—p+l]
— det [g,q+1] [[1;7p+1]+1]
n—p
0 Xpiom

with fpy22(X) =1 in case p = n — 1, see Fig. [6(b) and [[0(b). The last equality
follows from the short Pliicker relation based on columns 1,2,3,n — p + 3 applied
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to the (n —p+1) x (n — p + 3) matrix

1 [n] [1,n—p+1]
0 X[q7q+1] X[p7p+1]
[1,n—p+1]
0 0 X[p+27n]
Observe that {f;;(X) = fi; (X[[;Jrnl]n]) 24 € [q¢+1,n],j € [1,n]} together with

the restriction of Qg & to its lower n — ¢ rows and freezing row ¢ + 1 form an
initial cluster for the standard cluster structure C, on (n — ¢) x n matrices. It
follows immediately from [12], Prop. 4.15] that every minor of X with the row set
in [¢ + 1,n] is a cluster variable in C,, and hence can be written as a Laurent
polynomial in any cluster of C,. Note that for p > ¢ — 2 the variable f,11(X) is
frozen in C,, therefore, by [12, Prop. 3.20], it does not enter the denominator of this
Laurent polynomial; for p < ¢ — 2 this variable does not exist in C,;. Consequently,
all such minors remain Laurent polynomials in the cluster adjacent to the initial
one in Crr & after the mutation at (p + 1,1). In particular, for any ¢ € [¢ + 1, n],
j € [1,n], z;; can be written as a Laurent polynomial in this cluster.

For s < g—1, consider the sequence of consecutive mutations at (s+1,n),..., (s+
1,8),(s+1,s+1),...,(s+1,2) starting with the initial cluster in Crr » and denote
the obtained cluster variables f{,, , ,.;(X), t € [1,n — 1]. The same sequence of
mutations in Cg & produces cluster variables

ferl,nftJrl(Z) = det Z[n_tm] te [15 n—3— 1]7

(724) {s}U[s+2,s+t+1]’

n—t,2n—t—s—1
fs’+1)n_t+1(Z) = det Z«Es}U[s-{-?,n] ], ten—sn—1).

Indeed, every mutation in the sequence is applied to a four-valent vertex, and we
obtain consecutively

ry _ fs,n—l(Z)fs+2,n(Z) + fs-i—l,n—l(Z)fsn(Z)

/ VA =
fer1.0(2) fs+1,n(2)
and
3 fs,n—t—l(Z)fs-i-Zn—t(Z) + fs+1;”_t_l(z)f;+1 "7t+1(Z)
t(Z) = f |
ferl,n*( ) fs-‘,—l,’ﬂ—t(Z)

for t € [1,n — 2]. Explicit formulas (Z.24]) now follow by applying an appropriate
version of the short Pliicker relation.

Recall that by Theorem[T.2] X and Z differ only in the ¢-th row. Moreover, every
minor of X whose row set either does not contain ¢ or contains both ¢ and ¢+ 1 is
equal to the corresponding minor of Z. Let 1E(Z ) be such a minor; invoking once
again [I2l Prop. 4.15], one can obtain it by a sequence of mutations in Cy z. Let
¥(X) be the cluster variable obtained by applying the same sequence of mutations
to the initial seed of Crr . By Proposition T4 (X)) = (Z) (fp+171(Z))’\ =
D(X) (fp+171(X))’\ for some integer . Clearly, minors in ([.24]) satisfy the above
condition unless s +t + 1 = ¢, and hence

f;+1,n7t+1(X) = f;+1,n7t+1(X) (fp+1,1(X)))\Sﬂ’nft+1

for t # ¢ — s — 1. However, the exponents Asy1,,—+4+1 are easily computed to be all
zero. Thus, we conclude that

(7.25)  det X[ 00, L= oo (X), t€n—s—1]\{g—s—1},
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and

(7.26) det X[ T = L (X)), ten—sn - 1],

are cluster variables in Crr .
Now we are ready to deal with the entries in the g-th row X. First, expand
fp+11(X) in ([Z23) by the first column as
2,n—p+1
Jor11(X) = zgnfpi1,2(X) 4 Tgq1,0 det Xgpfu[gﬁy]n]-

For p > ¢, the row set of det Xﬁ’}"u_[g Izl]n} lies completely within the last n —

q rows of X, and hence, as explained above, it is a Laurent polynomial in the
cluster we are interested in. For p < ¢, this determinant is a cluster variable
in Cpr, g by (C26) with ¢ = n — 2, and hence it is a Laurent polynomial in any
cluster in Crr . Consequently, in both cases x4, is a Laurent polynomial in the
cluster we are interested in. Further, this claim can be established inductively

for gn—1,Tqn—2,--.,Tq by expanding first the minors f, ,—(X) = det X[t

lg,q+1]
t € [1,n—gq|, and then the minors f, ,—(X) = det X[[;l;]t’2n7t7q], t € n—g+1,n-1],
by the first row as fgn—t(X) = Tgn—t for1,n—t41(X) + P(Tgn—t+1,- -, Tgn, Tij
1> q), where P is a polynomial.
Finally, for s < ¢, xs, is a cluster variable in Crr g, and hence is a Lau-
rent polynomial in any cluster. For t = 1,...,¢ — s — 1, Laurent polynomial

expressions for z,,_+ can obtained recursively using expansions of the cluster

variable fs,—+(X) = det X[[Z;i’t?] by the first row exactly as above. For ¢t =
q—5S,...,n—s — 1, such expressions are obtained recursively by expanding the
cluster variable fi , ;1(X) given by ([Z23)) by the first row as fi,,,_,11(X) =
Tsm—tfst2,n—t41(X)+ P (Tsm—t41s--.,Tsn, Tij 11> s), where P’ is a polynomial.
For t =n—s,...,n — 1 we use the same expansion for f¢ ;, , 1(X) given by
([CZ4). This completes the proof.

Remark 7.6. In fact, one can show that every minor of X whose row set either does
not contain g or contains both ¢ and ¢ + 1 is a cluster variable in Crr .

7.4. Auxiliary statements. In this section we collected several technical state-
ments that were used before.

Lemma 7.7. Let N = N1+ No, k = k1 + ko, and let M, M be two N x N matrices

Al 0 B /:11 9
(7.27) M= Ay Bi|, M= 142 Bi|,
0 By 0 By

with block rows of sizes Ny — k1, k and No — ko and block columns of sizes N1 and
Ny. Assume that

(1) Ay = Ay;

(ii) there exists Al such that Ay = (lk + Zf;ll aieik) Al and Ay is obtained
from A, by replacing the last row with zeros;

, ) B ,
(iii) every maximal minor of B = [ Bl} that contains the last No — ko rows
2

coincides with the corresponding minor of B = [gl} .
2
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Then conditions
(7.28) > (—1)"3 o, det Bs\ (e} Uit 1,Noky] = 0
»EeS

for any S C [1,k] such that |S| = ke +1 and k € S guarantee that
(7.29) det M['N] = det M Y]
for all s € [1,N]; here e,,6 = #{i € S : i > »} and a, = 1.

Proof. Denote

go=det MY & = det MY
By condition (iii), we only need to consider s < Nj. First, fix s € [Ny — k1 + 1, V4],
v~vhich means that M, is in the block As. We use the Laplace expansion of & and
&s with respect to the second block column. Define t = s — Ny + kq, then

& = Z(_l)” det(A2)? det By k41, N4k
T

& = Z(—l)” det(Ay)S det BTU[k+1,N2+k1]7
T

(7.30)

where the sum is taken over all (N} — s+ 1)-element subsets T in [t, k], T = [t, K]\ T,
© =[s,Ni] and e7 = Y, i + &, with £, depending only on s.
By condition (ii),

o [det(45)2 ifkeT,
(7.31)  det(A2)7 = | get(44)0 + % (1) as det(4) ooy EEET,
»e
and
- 0 ifkeT
7.32 det(A2)2 = ’
(7.32) et(4e)r {det(A’Q)? i h¢T.

Besides, det BTU[k+1 Nothy] = det BTU[k+1 Na+ky) by condition (iii). Therefore, the

difference &, — &, can be written as a linear combination of det(A%)9 such that
keT. Let T =T'U{k}; define S =T’ = T U {k}, then |S| = k2 +1 and k € S.
The coefficient at det(A45)9 equals, up to a sign,

(7.33) Z (—1)5%1T’U{k}+”0¢% det B(S\{x})u[k+1,N2+k1]
e[t k]\T"'

= (1" Z (—=1)55 i, det B(g\ {3})U[k+1, Notk1]»
»EeS

since €, ik} + x5 = k — 2. Thus for (Z29) to be valid for s € [Ny —k; + 1, Ni]
it is sufficient that ([C28)) be satisfied for any S C [t, k], |S| = k2 + 1, k € S. In fact,
since (C31) and (732) remain valid for any set © C [1, Ny] of size |©] = Ny —s+1,
similar considerations show that (28] implies

(7.34) de tM@U[N1+1 N _ e tM@U[Nl-i-l ,N]
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for any such © and s € [Ny — k1 + 1, Ny]. This, in turn, results in (Z2Z9) being valid
f~or all s € [1, Ny — k1]. To see this, one has to use the Laplace expansion of £, and
&s with respect to the block row [s, Ny — k1]:
OU[N1+1,N
6o = D (=1)% det(An) x, ) det MR
e
z OU[N1+1,N
& = Z( 1) det(Al) [s,N1—k1] detM[J\L/Jl[ 1c11+1 J\]/]’
e
where © = [s,N1] \ ©, and the sums are taken over all subsets © in [s, N1] of size
|©] = k1. It remains to note that det(Al)G; Nih] = det(Al)gﬁlekl] by condition
(i), and det /\/lOU[NlJr1 M= de t./\/lou NlH N is a particular case of [@34) for

—ki+1,N] — —k1+1,N]
S—Nl k1+1 O

Lemma 7.8. Let M and M be two N x N matrices given by [T20) with the same
sizes of block rows and block columns. Assume that

(i) A1 = Ay;

(i) A (1;C + Ef 5 aieh) As;

(iii) 31 18 obtained from By by replacing the first row with zeros;

(iv) every maximal minor of B = g; that contains the last No — ko rows and

, o . ‘ . ~ B
does not contain the first row coincides with the corresponding minor of B = [Bl} .
2

Then conditions

(735) Z (—1)8”5 Ay det BSU{%}UUCJFL]\&JF]CI] =0
»x€[1,k]\S

for any S C [2,k] such that |S| = ko — 1 guarantee that

(7.36) det ME M = det M{TY

for all s € [1, N]; here a; = 1.

Proof. The proof is a straightforward modification of the proof of Lemma [l.7 For
s € [N1 — k1 + 2, N1], Laplace expansions of & and §~5 with respect to the second
block column are given by (Z30). By condition (i), det(A43)$ = det(A)2, while
by condition (iv), det Biufkt1,No4k,) = det BTU[k+1 Notki]- Consequently, & — &
vanishes, and hence ([36]) holds true.

For s € [1, N7 — k1 + 1], the corresponding Laplace expansions are given by

B [s,N1]
§s = Z( )ET de tA[s Ni k1]UT det B?U[kJrl-,Nerkl]’
T

: 7[s,N1] D
§s = Z( )ET de tA[s Ni k1]UT det B?U[kJrl-,Nerkl]’
T

where T' runs over all kj-element subsets in [Ny — ki + 1, Ny + k2] and ? ={i—
N1+k12i€T} for T = [Nl —k1—|—1,N1—|—k2]\T.
Next, by conditions (i) and (ii),

det AL ift g,

[s,N1] ~
det AZ 7 = 4 4o t AL LS (C1ymlera, det A[E ifteT,

ar ur\{tHu{x}
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where Z = [s, N1 — k1], t = Ny — k1 + 1 and » = x — Ny + k1 € [1,k]. Further, by
conditions (iii) and (iv),

i B 0 ift¢ T,
et Bi = .
Ulk+1,No+kq] det, B?U[k-l—l,Nz-i-kl] ifteT.
Therefore, the difference £ —55 can be written as a linear combination of det flgd;l]

such that t ¢ T. Let T = {t} UT’; define S = T =T \ {1}, then S C [2, k] and

|S| = ko — 1. Consequently, the coefficient at det A[Esd;l] equals, up to a sign,

Z (=1)75 ;. det By e} Ulk+1, Notk1]»
»x€[1,k]\S

and the claim follows. O

Lemma 7.9. Let A be a rectangular matriz, I = (i1,...i;) and J be disjoint row
sets, L and M be disjoint column sets, and |L| = |J| + 1, |[M| = |I| —2. Then

k

(7.37) D (=DM det ALy det AGRYL 40, = 0.
A=1

Proof. The formula can be obtained from standard Pliicker relations via a natural
interpretation of minors of A as Pliicker coordinates for [1 AJ. O
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